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Jordan Algebras and Symmetric Manifolds

CHO-HO CHU

Jordan algebras correspond to a class of Lie algebras. While the role of Lie algebras in geometry is universally
recognised, the same cannot be said about Jordan algebras. We explain in this article the close connection
between Jordan algebras and symmetric manifolds.

Jordan and Lie algebras

We are familiar with the role of Lie algebras in
geometry, for instance, we know that the smooth
vector �elds (Figure 1) of a smooth manifold form
a Lie algebra. Jordan algebras are close relatives
of Lie algebras, but less famous and perhaps even
lesser known is their connection to geometry. The
revelation below, it is hoped, may help to ameliorate
this unfavourable state of a�airs and generate wider
interest in Jordan algebras.

Figure 1. A vector �eld

Let us begin by introducing Jordan algebras and
explain their relationship with Lie algebras. We refer
to [7] for a more informative sketch of Jordan algebras.
In what follows, all vector spaces are either real
or complex. A Jordan algebra A is a vector space
equipped with a bilinear product

(a,b) ∈ A × A ↦→ a ◦ b ∈ A

which is commutative and satis�es the Jordan identity

a ◦ (b ◦ a2) = (a ◦ b) ◦ a2 (a,b ∈ A).

We do not assume associativity of the product. We
call A unital if it has an identity.

One can turn any associative algebra A into a Jordan
algebra by de�ning a new product

a ◦ b = 1
2
(ab + ba) (a,b ∈ A)

with which A becomes a Jordan algebra, where
the product on the right-hand side is the original
product of A. Subalgebras of (A,◦) are called
special Jordan algebras. For example, the associative
algebrasMn (ℝ),Mn (ℂ) andMn (ℍ) of n×n matrices
over the reals ℝ, complexes ℂ and quaternions
ℍ, respectively, are special Jordan algebras in the
product ◦. However, the Jordan algebra (H3 (O),◦)
of 3 × 3 Hermitian matrices over the Cayley algebra
O is not special.

Although the concept of a Jordan algebra was �rst
introduced by Jordan, von Neumann and Wigner
[5], under the name of an r -number system, to
formulate an algebraic model for quantummechanics,
unexpected connections with Lie algebras and
geometry were soon discovered.

How are Jordan algebras related to Lie algebras? A
Lie algebra L is also a vector space equipped with an
anti-symmetric bilinear product, usually denoted by
the brackets [a,b], not assumed to be associative,
which satis�es the Jacobi identity

[[a,b],c ] + [b ,c ],a] + [[c ,a],b] = 0.

Comparing de�nitions, one sees no obvious
relationship between the two, e.g. one is
commutative but the other anti-commutative.

In fact, it is well-known to algebraists that several
exceptional Lie algebras can be constructed from
H3 (O). Apart from this and, what is more relevant
to our discussion, is the fact that there is a 1-1
correspondence between a class of Lie algebras and
Jordan algebras (actually, Jordan triples, which are
slightly more general than Jordan algebras).
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A Jordan triple is a vector space V equipped with a
Jordan triple product

(a,b ,c ) ∈ V ×V ×V ↦→ {a,b ,c } ∈ V

which is linear and symmetric in the outer variables,
but conjugate linear in the middle variable, and
satis�es the Jordan triple identity

{a,b , {x ,y ,z }} = {{a,b ,x},y ,z }−
{x , {b ,a,y},z } + {x ,y , {a,b ,z }}.

Example. A real Jordan algebra (A,◦) is a Jordan
triple in the canonical triple product

{a,b ,c } = (a◦b)◦c+a◦(b◦c )−b◦(a◦c ). (1)

If (A,◦) is a complex Jordan algebra equipped with
an involution ∗, then it is also a Jordan triple in the
canonical triple product

{a,b ,c } = (a ◦ b∗) ◦ c + a ◦ (b∗ ◦ c ) − b∗ ◦ (a ◦ c ).

Jordan algebras are just Jordan triples (V, {·, ·, ·}V )
containing a unit element e , the latter means
{e ,a,e }V = a for all a ∈ V . Indeed, for such V , we
can de�ne a product

a ◦ b := {a,e ,b}V (a,b ∈ V )

with whichV becomes a Jordan algebra, and {·, ·, ·}V
is exactly the canonical triple product de�ned by the
Jordan product ◦ as in (1).

Example. According to the preceding example, the
real Jordan algebra (Mn (ℝ),◦) is a Jordan triple in the
canonical triple product. The complex Jordan algebra
(Mn (ℂ),◦) has an involution de�ned by conjugate
transpose : (ai j )∗ := (a j i ), it is therefore a complex
Jordan triple in the canonical triple product, which
can be rewritten as

{a,b ,c } = 1
2
(ab∗c + cb∗a) (a,b ,c ∈ Mn (ℂ)).

The subspaces Skn (ℂ) and Sn (ℂ) of Mn (ℂ),
consisting of skew-symmetric and symmetric
matrices respectively, are also complex Jordan triples
in the above triple product.

Example. The complex vector spaceMmn (ℂ) of m×
n complex matrices has no natural Jordan product if
m ≠ n. However, it is a complex Jordan triple in the
triple product

{a,b ,c } := 1
2
(ab∗c + cb∗c ) (a,b ,c ∈ Mmn (ℂ)).

A Lie algebra L is called 3-graded if there is a
3-grading L = L−1 ⊕ L0 ⊕ L1, where the summands
are subspaces of L satisfying [Li ,L j ] ⊂ Li+ j or {0}
if i + j = ±2.

One can �nd in [2] some references for the following
correspondence between Jordan triples and Lie
algebras, which can be in�nite dimensional.

Theorem. (Tits–Kantor–Koecher) There is a 1-1
correspondence between Jordan triplesV and 3-graded
Lie algebras L = L−1 ⊕ L0 ⊕ L1 with L0 = [L−1,L1]
and an involution \ : L → L satisfying \ (L j ) = L− j .

In this correspondence, we have V = L±1 and

{a,b ,c } = [[a, \ (b)],c ] (a,b ,c ∈ V )

which relates the Jordan triple identity in V and the
Jacobi identity in L.

Symmetric manifolds

Our ensuing discussion of Jordan algebras and
geometry can be summarised brie�y by saying
that Jordan algebras appear as tangent spaces of
symmetric manifolds (Figure 2).

That Jordan algebras have something to do with
symmetry may not be a surprise, given that they
correspond to a class of Lie algebras and Lie theory
describes fundamental laws of symmetry.

Figure 2. The tangent space TxM at a point x in a
symmetric manifold M carries a Jordan algebraic structure

A tangent space TxM (Figure 2) of a manifold M at
a point x ∈ M is the vector space of all tangent
vectors at x , it is a higher dimensional generalisation
of a tangent line to a curve and a tangent plane
to a surface. A tangent vector �eld X on M is a
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selection of a tangent vector X (p) ∈ TpM at each
point p ∈ M .

A connected manifold M with a Riemannian metric
g is called symmetric if it has a (unique) symmetry sp
at (about) each point p ∈ M , where a symmetry is an
isometry sp : M → M with respect to g satisfying
two conditions below:

(i) sp ◦ sp is the identity map;

(ii) p is the only �xed-point of sp in a neighbourhood
of p .

Such a manifold is called a (Riemannian) symmetric
space. Symmetric spaces are an important class of
Riemannian manifolds and appear in many �elds.

Example. The Euclidean space ℝd is a symmetric
space. The symmetry sp about p ∈ ℝd is given by
sp (x) = 2p − x .

A Hermitian symmetric space is a Riemannian
symmetric space, which carries the structure of a
complex manifold such that the given Riemannian
metric is Hermitian, and the symmetries are
holomorphic isometries. How are they related to
Jordan algebras?

Let M be a Hermitian symmetric space. Fix
a symmetry sp : M → M , which is
an element in the automorphism group AutM ,
consisting of biholomorphic isometries of M . Here
a biholomorphism f : M → M is a bijective
holomorphic map whose inverse f −1 is also
holomorphic. AutM is a real Lie group with real
Lie algebra L. Each element in L is a (holomorphic)
tangent vector �eld X on M , with X (p) ∈ TpM . The
symmetry sp induces an involution f : L → L for
which L has an eigenspace decomposition

L = k ⊕ p

where

k = {X ∈ L : f(X ) = X },
p = {X ∈ L : f(X ) = −X }

and the map X ∈ p ↦→ X (p) ∈ TpM is a real linear
isomorphism.

The complexi�cation Lc of L is a 3-graded Lie algebra

Lc = p+ ⊕ kc ⊕ p−

with an involution \ satisfying \ (p±) = p∓ and \ (kc ) =
kc , where p+ is complex linear isomorphic to TpM .

By the Tits-Kantor-Koecher theorem above, p+ is a
Jordan triple and therefore the tangent space TpM
inherits the Jordan triple structure from p+ via the
linear isomorphism between them.

Further, TpM is a so-called Hermitian Jordan triple,
meaning that [p,p] ⊂ k in the eigenspace
decomposition L = k ⊕ p.

Conversely, given a complex Jordan triple V , Kaup
[6] has shown that one can construct a real Lie
algebra L with decomposition L = k ⊕ p , and if V
is Hermitian, meaning [p ,p] ⊂ k , then there is a
Hermitian symmetric space D such thatV identi�es
in a natural way with a tangent space TaD of D . We
have therefore establish the following.

Theorem. There is a 1-1 correspondence between
Hermitian Jordan triples and Hermitian symmetric
spaces.

This theorem o�ers us an extra tool - to wit, Jordan
triples, to study symmetric spaces. Indeed, it can
even be extended to in�nite dimension, which will
be discussed brie�y later. Thus we have a uni�ed
approach, using Jordan triples, to both �nite and
in�nite dimensional symmetric spaces.

Symmetric spaces have been classi�ed by É. Cartan
using Lie theory. Let us consider the example of
nonpositively curved Hermitian symmetric spaces and
o�er a Jordan perspective. The Hermitian Jordan
triples corresponding to this class can be classi�ed.
They are �nite direct sums

V1 ⊕ · · · ⊕Vn
of six basic types of Jordan triples V j ( j = 1, . . . ,n).
Each V j is one of the following:

(1)Mmn (ℂ), (2) Skn (ℂ), (3) Sn (ℂ),
(4) S pin, (5)M12 (O), (6)H3 (O)

where H3 (O) consists of 3 × 3 Hermitian matrices
over the complex Cayley algebra O and M12 (O)
consists of 1 × 2 matrices over O. Each irreducible
nonpositively curved Hermitian symmetric space in
É. Cartan’s classi�cation list is biholomorphic to the
open unit ball of one of these six types of Jordan
triples of matrices.

Jordan algebras and symmetric cones

The real Jordan algebras classi�ed in [5] are �nite
dimensional and assumed to be formally real, that is,
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they satisfy the condition

a21 + · · · + a
2
n = 0⇒ a1 = · · · = an = 0.

We now reveal their relationship with Riemannian
symmetric spaces. In short, they are in 1-1
correspondence with a class of cones which are
Riemannian symmetric spaces.

Since all �nite dimensional (Hausdor�) topological
vector spaces are linearly homeomophic to a
Euclidean space of the same dimension, there
is only one (Hausdor�) topology on a �nite
dimensional vector space V making addition and
scalar multiplication continuous. Therefore, there is
no ambiguity to say that a set is open in V without
referring to this topology.

A nonempty set Ω in a vector space V is called a
cone if Ω +Ω ⊂ Ω and UΩ ⊂ Ω for all U > 0.

LetV be �nite dimensional. An open cone Ω inV is
called proper if

Ω ∩ −Ω = {0}

where Ω is the closure of Ω. The cone Ω induces a
partial ordering ≤ in V so that x ≤ y ⇔ y − x ∈ Ω.

An open cone Ω in V is called linearly homogeneous
if for any a,b ∈ Ω, there is a linear automorphism
i : Ω → Ω such that i(a) = b . Here, a linear
automorphism is a (continuous) linear isomorphism
i :V →V such that i(Ω) = Ω.

If we consider an open cone Ω in V as a smooth
manifold, then the tangent space TeΩ at each point
e ∈ Ω can be identi�ed with V .

Theorem. Let Ω be a proper linearly homogeneous
open cone in a �nite dimensional vector spaceV . Then
Ω carries the structure of a Riemannian symmetric
space whose linear automorphisms are isometries if
and only if V admits the structure of a formally real
Jordan algebra and Ω = {a2 : a ∈ V }.

Example. Let V = ℝ3. The light cone (Figure 3)

Ω = {(x1,x2,x3) ∈ ℝ3 : x3 > 0,x23 > x21 + x
2
2}

is a linearly homogeneous proper open cone
in ℝ3 and a Riemannian symmetric space. The
corresponding Jordan algebraic structure of ℝ3 is
given by the Jordan product

(x1,x2,x3) ◦ (y1,y2,y3) = (x1y3 + x3y1,
x2y3 + x3y2, x1y1 + x2y2 + x3y3).

Figure 3. The tangent space R3 of the symmetric light
cone Ω is a formally real Jordan algebra

In�nite dimension

Now a few words about the in�nite dimensional
case. Essentially, assertions made in the previous
discussion, particulary the last two theorems, can
be extended to in�nite dimension.

First, the toplogical vector spaces we need to
consider are the ones equipped with a complete
norm, namely, the Banach spaces. A norm ‖ · ‖ on
a vector space V is said to be complete if V is a
complete metric space in the metric d (x ,y) = ‖x−y ‖
de�ned by the norm.

An in�nite dimensional generalisation of a formally
real Jordan algebra in �nite dimension is the concept
of a unital JB-algebra, which is a real unital Jordan
algebra as well as a Banach space A satisfying

‖a2‖ = ‖a‖2, ‖a ◦ b ‖ ≤ ‖a‖‖b ‖,
‖a2‖ ≤ ‖a2 + b2‖ (a,b ∈ A).

A �nite dimensional formally real Jordan algebra is a
unital JB-algebra in the trace norm.

A �nite dimensional manifold is modelled locally on
ℝd or ℂd . Analogously, a connected manifold can be
modelled locally on a real or complex Banach space E .
Such a manifold is called a real or complex connected
Banach manifold, respectively. The manifold is called
in�nite dimensional if E is in�nite dimensional.

In contrast to the �nite dimensional manifolds, it is
not meaningful to de�ne a Riemannian metric on an
in�nite dimensional Banach manifold. Instead, one
can de�ne the notion of a Finsler metric on a Banach
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manifold, generalising that of a Riemannian metric
(cf [1]). With this metric, we can extend the concept
of a symmetric manifold to in�nite dimension.

A Banach manifold equipped with a Finsler metric
a is called a Finsler manifold. A connected Finsler
manifold M is called symmetric if there is a (unique)
symmetry sp : M → M at each p ∈ M , which is
a a-isometry satisfying the same conditions for a
symmetry given before.

An open cone Ω in a Banach spaceV is called normal
if there is a constant W > 0 such that 0 ≤ x ≤ y ⇒
‖x ‖ ≤ W‖y ‖. A �nite dimensional proper open cone
is normal.

An in�nite dimensional extension of the last theorem
reads as follows (see [4]).

Theorem. Let Ω be a normal linearly homogeneous
open cone in a real Banach space V . Then Ω carries
the structure of a Finsler symmetric manifold whose
linear automorphisms are isometries if and only if V
admits the structure of a unital JB-algebra and Ω =

{a2 : a ∈ V }.

A �nal remark. Kaup [6] actually proved his
aforementioned theorem for Hermitian Jordan triples
in in�nite dimension (see also [3]).

Theorem. (Kaup) There is a 1-1 correspondence
between complex symmetric Finsler manifolds and
Hermitian Jordan triples that are Banach spaces with a
continuous Jordan triple product.
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