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Introduction

The notion of Martindale rings of quotients, jointly with the notion of ex-
tended centroid, play an important role in the study of prime rings satisfying a
generalized polynomial identity, see [11].

This notion of quotients has been a useful tool in several branches of algebra,
not only in the associative setting but also for non-associative structures such as
Jordan systems or Lie algebras. For example, K. McCrimmon in 1989 [8] extended
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Martindale’s construction to semiprime associative structures to obtain what he
called the Martindale system of symmetric quotients, which played a central role
in McCrimmon-Zelmanov’s classification of strongly prime Jordan systems [10].

In a recent paper [3], the authors introduced this type of quotients for Jor-
dan systems and called them Martindale-like Jordan systems of quotients (M-
quotients, for short). In their work they showed the existence of maximal systems
of M-quotients for nondegenerate Jordan systems when 6 was invertible in the
ring of scalars, and later on, in a work jointly written with J. A. Anquela [1], they
extended the construction of maximal algebras of M-quotients for strongly prime
Jordan algebras when only 1

2 belonged to the ring of scalars.

On the other hand, similar-like algebras of quotients for Lie algebras where
defined by M. Siles in [15]. In [3] it is proved that they are related to Jordan
systems of M-quotients through the Tits-Kantor-Koecher construction.

An importan result on Martindale associative quotients is that the extended
centroid of a semiprime associative ring coincides with the center of its Martindale
ring of quotients [5, 14.18 and 14.19]. This fact implies that the central closure of
a semiprime associative ring R is the subring of its Martindale ring of quotients Q

generated by R and the center of Q.

The goal of this paper is to give an analogue of this result for Jordan algebras,
where Martindale rings of quotients are replaced by maximal Jordan algebras of
M-quotients with respect to the filter Fe of all essential ideals of the algebra.
Moreover, for nondegenerate Jordan pairs and triple systems T , where the notion
of center is naturally replaced by the centroid, we obtain that the extended centroid
of T is isomorphic to the centroid and to the extended centroid of the maximal
system of M-quotients of T with respect to the filter Fe of all essential ideals of
T . Our proof is made in two steps: firstly, we show that the extended centroid of
T is isomorphic to the extended centroid of any system of M-quotients of T with
respecto to any power filter of essential ideals, and, secondly, we prove that the
centroid and the extended centroid of the maximal system of M-quotients of T

with respect to Fe are isomorphic.

The paper is divided into three sections. In Section 1 we recall basic linear
facts and linear notions on Jordan systems and Lie algebras over a ring of scalars
Φ, 1

2 ∈ Φ, including the notions of centroid and extended centroid. In Section 2 we
study some properties of Jordan systems of M-quotients, showing, with a purely
combinatorial proof, that the extended centroid does not change when considering
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Jordan systems of M-quotients with respect to power filters of essential ideals.
In the last section we show the coincidence of the centroid and the extended
centroid for the maximal Jordan system of M-quotients of a nondegenerate Jordan
systems (pairs or triple systems) with respect to the filter of all essential ideals.
Moreover, in the case of algebras, we also obtain that the center, the centroid
and the extended centroid of the maximal Jordan algebra of M-quotients coincide.
Some of our arguments are done for Lie algebras since Jordan pairs and Lie algebras
are easily connected through the Tits-Kantor-Koecher construction.

1. Preliminaries

1.1 We will deal with Jordan systems over a ring of scalars Φ, where 1
2 ∈ Φ.

The reader is referred to [4, 6, 10] for basic results, notation and terminology,
though we will stress some notions and basic properties. The identities JPx listed
in [6] will be quoted with their original numbering without explicit reference to
[6].

—For a Jordan pair V = (V +, V −) we will denote its linear products by
Qx,zy = {x, y, z}, for x, z ∈ V σ, y ∈ V −σ, σ = ±. We will write Qxy = 1

2{x, y, x}.
—A Jordan linear triple system T is given by its products Px,zy = {x, y, z},

x, y, z ∈ T . We also have Pxy = 1
2{x, y, x}.

—Given a Jordan algebra J , its linear products will be denoted by x ◦ y and
Ux,zy = {x, y, z}, for x, y, z ∈ J . In this case, Uxy = 1

2{x, y, x} and x2 = 1
2 (x ◦ x).

A Jordan algebra J is said to be unital if there is an element 1 ∈ J satisfying
U1 = IdJ and Ux1 = x2, for any x ∈ J (such an element can be shown to be
unique and it is called the unit of J). Every Jordan algebra J imbeds in a unital
Jordan algebra Ĵ = J ⊕ Φ1 called its (free) unitization [10, 0.6].

A Jordan system J is said to be nondegenerate if zero is the only absolute
zero divisor, i.e., zero is the only x ∈ J such that Ux = 0 (respectively, Qx = 0 or
Px = 0). It is semiprime if it has no nonzero nilpotent ideals, and it is prime if it
has no nonzero orthogonal ideals. Strongly prime Jordan systems are those that
are nondegenerate and prime.

1.2 A Jordan algebra J gives rise to a Jordan triple system JT by simply
forgetting the squaring and letting P = U . Moreover, J is nondegenerate if and
only if JT is so. Conversely, if a Jordan triple system T has an element 1 with
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P1x = x for every x ∈ T , then it is really a unital Jordan algebra with product
U = P and x ◦ x = Px,x1 [12, 0.1].

By doubling any Jordan triple system T one obtains the double Jordan pair
V (T ) = (T, T ) with products Qx,zy = Px,zy, for any x, y, z ∈ T [6, 1.13]. More-
over, T is a nondegenerate Jordan triple system if and only if V (T ) is nondegen-
erate. Reciprocally, each Jordan pair V gives rise to a polarized triple system
T (V ) = V + ⊕ V −. Niceness conditions such as nondegeneracy, primeness, strong
primeness, and others are inherited by the polarized triple system of a Jordan pair.
Moreover, V is a nondegenerate Jordan pair if and only if T (V ) is nondegenerate.

1.3 In a nondegenerate Jordan system J , the annihilator AnnJ(I) of an ideal
I of J is an ideal of J , given by AnnJ(I) = {x ∈ J | UxI = 0} = {x ∈ J | UIx = 0}
[9, 1.3, 1.7; 13, 1.3].

An ideal I of J will be said sturdy if AnnJ(I) = 0. It is easy to prove that
essential ideals coincide with sturdy ideals in any semiprime Jordan system.

1.4 Given a Jordan triple system T , its centroid Γ(T ) consists of all maps
γ ∈ End(T ) such that γ({x, y, z}) = {γ(x), y, z} = {x, γ(y), z} for all x, y, z ∈ T .
Similarly, when dealing with Jordan pairs V = (V +, V −), a map γ = (γ+, γ−) ∈
End(V ) belongs to its centroid Γ(V ) if γσ({xσ, y−σ, zσ}) = {γσ(xσ), y−σ, zσ} =
{xσ, γ−σ(y−σ), zσ}, for all xσ, zσ ∈ V σ and y−σ ∈ V −σ, σ = ±. The condition for
a linear map γ to belong to the centroid of a Jordan algebra J is γ(x◦y) = γ(x)◦y,
for all x, y ∈ J .

The centroid of a Lie algebra L is the set of linear maps γ : L → L such that
γ([x, y]) = [γ(x), y] for all x, y ∈ L.

1.5 Let T be a Jordan triple system and let I be an ideal of T . A linear
mapping f : I → T will be called a T -homomorphism if for all y ∈ I, x, z ∈ T it
satisfies:

(i) f({y, x, z}) = {f(y), x, z}, and

(ii) f({x, y, z}) = {x, f(y), z}.
The set of T -homomorphisms with domain I will be denoted HomT (I, T ).

1.6 Similarly, for a Jordan pair V = (V +, V −) and an ideal I = (I+, I−) , we
define a V -homomorphism as a pair f = (f+, f−) of linear mappings fσ : Iσ →
V σ, σ = ±, satisfying, for all yσ ∈ Iσ, xσ, zσ ∈ V σ, σ = ±,
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(i) fσ({yσ, x−σ, zσ} = {fσ(yσ), x−σ, zσ}, and

(ii) fσ({xσ, y−σ, zσ}) = {xσ, f−σ(y−σ), zσ}.
We denote by HomV (I, V ) the set of V-homomorphisms from I into V .

1.7 For a Jordan algebra J and an ideal I, an algebra J-homomorphism is a
linear map that satisfies, for all x ∈ J and all y ∈ I,

(iii) f(y ◦ x) = f(y) ◦ x.

Again we denote the set of J-homomorphisms defined on I by HomJ(I, J).

Following [12], a pair (f, I), where f ∈ HomJ(I, J), for a Jordan system (pair,
triple, or algebra) will be called a permissible map if the ideal I is essential.

1.8 For permissible maps (f, I) and (g, L) of the Jordan system T , define a
relation ≡ by (f, I) ≡ (g, L) if there is an essential ideal K of T , contained in I∩L,
such that f(x) = g(x) for all x ∈ K. It is easy to see that this is an equivalence
relation. The quotient set C(T ) will be called the extended centroid of T . We will
write [f, I] for the equivalence class of the permissible map (f, I).

For nondegenerate linear systems this set has a ring structure coming from
the addition of homomorphisms and from the composition of restrictions of homo-
morphisms, see [2].

1.9 As for Jordan systems, we can define the extended centroid for Lie
algebras. Given a Lie algebra L and an ideal I of L, an L-homomorphism with
domain I is a linear map f : I → L such that for any x ∈ L and any y ∈ I we have
f([x, y]) = [x, f(y)]. A pair (f, I), where f is an L-homomorphism with domain I,
will be called a permissible map if the ideal I is essential. As before, we can define
an equivalence relation ≡ in the set of all permissible maps, such that the quotient
C(L) is called the extended centroid of L. If L is nondegenerate, C(L) has also
a ring structure through the addition of homomorphisms and the composition of
restrictions of homomorphisms.

2. Quotients and the extended centroid

2.1 A filter F on a Jordan system or a Lie algebra is a nonempty family of
nonzero ideals such that for any I1, I2 ∈ F there exists I ∈ F such that I ⊂ I1∩I2.
Moreover, F is a power filter if for any I ∈ F there exists K ∈ F such that
K ⊂ I#, where I# = [I, I] for Lie algebras, I# = (QI+I−, QI−I+) for Jordan
pairs, I# = PII for Jordan triple systems, and I# = I2 for Jordan algebras. We
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highlight the filter Fe of all essential ideals in V . When V is semiprime it is easy
to show that Fe is a power filter, and that it coincides with the set Fs of all sturdy
ideals in V .

2.2 Let T be a Jordan triple system and consider a filter F on T . We say
that a Jordan triple system Q is a triple system of Martindale-like quotients (triple
system of M-quotients, for short) of T with respect to F if the elements of Q are
F-absorbed into T , i.e., for each 0 6= q ∈ Q there exists an ideal Iq ∈ F such that

0 6= {q, Iq, T}+ {q, T, Iq}+ {Iq, q, T} ⊂ T.

Similarly, a pair of Martindale-like quotients (M-quotients, for short) of a
Jordan pair V with respect to a filter F in V is Jordan pair Q whose elements
are F-absorbed into V (cf. [3, 2.5]), and an algebra of Martindale-like quotients
(M-quotients, for short) of a Jordan algebra J with respect to a filter F in J is
a Jordan algebra that whose elements satisfy the absorption property into J by
ideals of F (cf. [3, 5.1]).

To simplify our calculations, in this section we are going to work with Jordan
triple systems, though the results are also valid for Jordan algebras and pairs.

2.3 Lemma. Let Q be a Jordan triple system of M-quotients of a Jordan
triple system T with respect to a filter F . Then {q, I, T}+ {q, T, I}+ {I, q, T} 6= 0
for any 0 6= q ∈ Q and any sturdy ideal I in F . Moreover, if F is a power filter,
{q, I, I} 6= 0 6= {I, q, I}.

Proof. This lemma is mainly [3, 4.2]. If F is a power filter, we already know
that {q, I, I}+ {I, q, I} 6= 0 for any I ∈ F .

Now suppose that {q, I, I} = 0. Then there exist y1, y2 ∈ I with {y1, q, y2} 6=
0. Moreover, since I has zero annihilator,

0 6= PI{y1, q, y2} ⊂ {I, I, {q, I, I}}+ {PII, I, q} = 0,

by JP13, leading to a contradiction, hence {q, I, I} 6= 0. Similarly, {I, q, I} must
be nonzero.

2.4 Lemma. Let Q be a Jordan triple system of M-quotients of a Jordan
triple system T with respect to a filter F . Given u,w ∈ Q and an ideal K of T ,

(i) if K ′ ∈ F is an ideal of T that absorbs w, and x ∈ (K ∩ K ′)3, then both
{w, x, u} and {x,w, u} belong to {K ∩K ′, T, u}+ {T, K ∩K ′, u},
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(ii) if K ′ ∈ F is an ideal of T that absorbs w, and t ∈ (K ∩ K ′)9, then both
{t, w, u} and {w, t, u} belong to {(K ∩K ′)3, (K ∩K ′)3, u}.
Proof. (i). By JP16, for x1, x2, x3 ∈ K ∩K ′,

{w, {x1, x2, x3}, u} = {{w, x1, x2}, x3, u}+ {{w, x3, x2}, x1, u}
− {x2, {x1, w, x3}, u} ∈ {K ∩K ′, T, u}+ {T, K ∩K ′, u},

{{x1, x2, x3}, w, u} = {x3, {x2, x1, w}, u} − {{x3, w, x1}, x2, u}
+ {x1, {x2, x3, w}, u} ∈ {K ∩K ′, T, u}+ {T, K ∩K ′, u}.

(ii). Let us consider x1, x2, x3 ∈ (K ∩K ′)3. By JP16 and (i),

{w, {x1, x2, x3}, u} = {{w, x1, x2}, x3, u}+ {{w, x3, x2}, x1, u}
− {x2, {x1, w, x3}, u} ∈ {(K ∩K ′)3, (K ∩K ′)3, u}

since (K ∩K ′)3 is a semi-ideal of (T, T ). Similarly,

{{x1, x2, x3}, w, u} = {x3, {x2, x1, w}, u} − {{x3, w, x1}, x2, u}
+ {x1, {x2, x3, w}, u} ∈ {(K ∩K ′)3, (K ∩K ′)3, u}

which completes the proof.

2.5 Lemma. Let Q be a Jordan system of M-quotients of a nondegenerate
Jordan system T with respect to a filter of essential ideals F . Then every essential
ideal of Q hits T in an essential ideal of T .

Proof. Let us suppose without loss of generality that T and Q are Jordan
triple systems. Let I be an essential ideal of Q and define I = I ∩ T . Given
z ∈ AnnT (I) and q ∈ I, if Pzq 6= 0, there exists an essential ideal K ∈ F that
absorbs both q and Pzq into T . Let x ∈ K3 such that 0 6= PxPzq ∈ T . Now, since T

is nondegenerate and K3 is an essential ideal, 0 6= PPxPzqK
3 = PxPzPqPzPxK3 ⊂

PxPz(I ∩ T ) = PxPzI = 0, a contradiction. So Pzq = 0 for every q ∈ I, which
implies that z = 0, i.e., AnnT (I) = 0 and I is an essential ideal of T .

The following theorem is the main result of this section: extended centroids
do not change when considering triples of M-quotients with respect to power filters
of essential ideals.

2.6 Theorem. Let T ≤ Q be nondegenerate Jordan triple systems such that
Q is a triple system of M-quotients of T with respect to a power filter of essential
ideals. Then C(T ) ∼= C(Q) (ring isomorphism).
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Proof. Let [f, I] ∈ C(Q), i.e., I is an essential ideal of Q and f : I → Q is a
permissible map.

It is trivial to prove that I := f−1(T ) ∩ T is an ideal of T .

Let us show that I is essential. Let J be a nonzero ideal of T . Since I∩T is an
essential ideal of T (2.5), we can consider 0 6= x ∈ J ∩I ⊂ T . If f(x) ∈ T we have
finished; otherwise, since Q is a triple system of M-quotients of T and f(x) 6= 0
there exist a, b ∈ T such that 0 6= {f(x), a, b} ∈ T , so 0 6= {x, a, b} ∈ J ∩I, because
f({x, a, b}) = {f(x), a, b} ∈ T .

Let us consider the map ϕ : C(Q) → C(T ) defined by ϕ([f, I]) = [f |I , I].
Clearly it is well defined and it is a homomorphism of associative rings.

Let us show that ϕ is a monomorphism. Let [f, I] ∈ C(Q) be such that
0 = ϕ[f, I] = [f |I , I]. Then there exists an essential ideal K of T contained in
I with f |I(K) = 0. Now consider the ideal IdQ(K) of Q generated by K, and
IdQ(K) ∩ I, which is an essential ideal of Q (since IdQ(K) is an essential ideal of
Q) with f(IdQ(K) ∩ I) = 0, which implies [f, I] = 0, i. e., ϕ is a monomorphism
of associative rings.

Now we prove that ϕ is an epimorphism. Let [f, I] ∈ C(T ). We want to define
a permissible map on the ideal IdQ(I) generated by I in Q. Given an element
ξ ∈ IdQ(I) we can express it as a sum of monomials consisting of an element of
I multiplied an even number of times by elements of Q, i.e., ξ =

∑k
i=1 ani

i , for
0 ≤ n1 ≤ . . . ≤ ni ≤ . . . ≤ nk and where ani

i , f(ai)n, and the sets An
i and fAn

i are
defined inductively as follows:

a0
i ∈ A0

i ={ai} ⊂ I; f(ai)0 ∈ fA0
i = {f(a0

i ) | a0
i ∈ A0

i };
an+1

i ∈ An+1
i ={{v, w, an

i } | v, w ∈ Q, an
i ∈ An

i }∪
{{v, an

i , w} | v, w ∈ Q, an
i ∈ An

i };
f(ai)n+1 ∈ fAn+1

i ={{v, w, f(ai)n} | v, w ∈ Q, f(ai)n ∈ fAn
i }∪

{{v, f(ai)n, w} | v, w ∈ Q, f(ai)n ∈ fAn
i }.

Sometimes, to simplify the notation, we will forget the subscrips of the ai ∈ I and
simply write a for elements of I, an for elements in An and f(a)n for elements in
fAn.

We define

f : IdQ(I) → W by f(
k∑

i=1

ani
i ) :=

k∑

i=1

f(ai)ni .
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Let us show that f is well defined, i.e., if ξ =
∑k

i=1 ani
i = 0, then also

f(ξ) =
∑k

i=1 f(ai)ni = 0. Then it is easy to see that [f, IdQ(I)] ∈ C(Q) and
ϕ([f, IdQ(I)]) = [f, I], proving that ϕ is surjective.

We claim that it is enough to prove the following property (P): for every an

there exists an essential ideal K of T such that for every x, y ∈ K,

{x, y, an} ∈ I and f({x, y, an}) = {x, y, f(a)n}. (P)

Indeed, as soon as we have (P) then we can find a common absorbing essential
ideal K of T for every summand ani

i appearing in ξ =
∑k

i=1 ani
i = 0, i.e., for every

x, y ∈ K

{x, y, ani
i } ∈ I and f({x, y, ani

i }) = {x, y, f(ai)ni}.
Suppose that 0 6= f(ξ) =

∑k
i=1 f(ai)ni ∈ Q, so we can choose K ′ ∈ F such that

0 6= {K ′,K ′,
k∑

i=1

f(ai)ni} ⊂ T,

i.e., we have elements v, w ∈ K ′ such that 0 6= η = {v, w,
∑k

i=1 f(ai)ni} ⊂ T . But
using (P), for every x, y ∈ K

0 = f({x, y, {v, w, ξ}}) = f({x, y, {v, w,

k∑

i=1

ani
i }}) = {x, y, {v, w,

k∑

i=1

f(ai)ni}},

hence 0 = {K, K, η}, which is not possible since K is an essential ideal of T . We
have proved that 0 =

∑k
i=1 ani

i ∈ IdQ(I) implies
∑k

i=1 f(ai)ni = 0, i.e., f is well
defined.

Now let us prove property (P). We give a proof by induction on n:

If n = 0, the result follows for K = T because f is a permissible map of T .

Suppose it is true for n and let K be an essential ideal of T such that for
every x, y ∈ K

{x, y, an} ∈ I and f({x, y, an}) = {x, y, f(a)n}. (P)n

Let an+1 := {v, w, an} for some v, w ∈ Q and let us consider an ideal K ′ ∈ F
that absorbs v, w and an into T , and let K1 be an essential ideal of T contained
in (K ′ ∩K ∩ I)9. Then for every x, y, z ∈ K1, by JP16 we have:

{x, y, {v, w, an}} = {x, {y, v, w}, an} − {x,w, {v, y, an}}
+ {x, {y, an, w}, v}. (I)
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Let us study each summand separately.

(1). By (2.4)(i),(ii) and the induction hypothesis: {y, v, w} ∈ {(K ′ ∩ K ∩
I)3, (K ′∩K∩I)3, w} ⊂ (K ′∩K∩I)3 ⊂ K, hence {x, {y, v, w}, an} ∈ {K, K, an} ⊂
I. Therefore,

f({x, {y, v, w}, an}) = {x, {y, v, w}, f(a)n}. (S1)

(2). By (2.4)(i),(ii) and the induction hypothesis: {v, y, an} ∈ {(K ′ ∩ K ∩
I)3, (K ′ ∩K ∩ I)3, an} ⊂ (K ′ ∩K ∩ I)3 ⊂ I, hence {x,w, {v, y, an}} ∈ {(K ′ ∩K ∩
I)3, (K ′ ∩K ∩ I)3, I} ⊂ I.

Now, for any z ∈ (K ′ ∩K ∩ I)3 and x1, x2, x3 ∈ (K ′ ∩K ∩ I), by JP16,

f({{x1, x2, x3}, w, z}) = f({x1, {x2, x3, w}, z}) + f({x3, {x2, x1, w}, z})
− f({{x1, w, x3}, x2, z}) = {x1, {x2, x3, w}, f(z)}+ {x3, {x2, x1, w}, f(z)}
− {{x1, w, x3}, x2, f(z)} = {{x1, x2, x3}, w, f(z)},

since z ∈ I and {x2, x3, w} ∈ T , {x2, x1, w} ∈ T and {x1, w, x3} ∈ T . Therefore,

f({x,w, z}) = {x,w, f(z)}, ∀ x, z ∈ (K ′ ∩K ∩ I)3 (AS2)

Now for every y1, y2, y3 ∈ (K ′ ∩K ∩ I)3, by JP16,

f({v, {y1, y2, y3}, an}) = f({{v, y1, y2}, y3, a
n}) + f({{v, y3, y2}, y1, a

n})
− f({y2, {y1, v, y3}, an}) = {{v, y1, y2}, y3, f(a)n}+ {{v, y3, y2}, y1, f(a)n}
− {y2, {y1, v, y3}, f(a)n} = {v, {y1, y2, y3}, f(a)n}

because we can use the induction hypothesis in each summand (each summand
belongs to I and consists of elements in K and an). Hence for every y ∈ (K ′ ∩
K ∩ I)9 we obtain

f({v, y, an}) = {v, y, f(a)n}. (BS2)

By (AS2) we get f({x,w, {v, y, an}}) = {x, w, f({v, y, an})} and together with
(BS2) we have

f({x,w, {v, y, an}}) = {x,w, {v, y, f(a)n}}. (S2)

(3). By (2.4)(i),(ii) and the induction hypothesis: {y, an, w} ∈ {(K ′ ∩ K ∩
I)3, (K ′ ∩ K ∩ I)3, w} ⊂ (K ′ ∩ K ∩ I)3, hence {x, {y, an, w}, v} ∈ {(K ′ ∩ K ∩
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I)3, (K ′ ∩K ∩ I)3, v} ⊂ I. If we take any b ∈ K1 and any x, t ∈ (K ′ ∩K ∩ I)3,
and use JP13,

Pbf({x, t, v}) = f(Pb{x, t, v}) = f({b, x, {t, v, b}})− f({Pbx, v, t})
= {b, x, f({t, v, b})} − {Pbx, v, f(t)} = {b, x, {f(t), v, b}} − {Pbx, v, f(t)}
= Pb{x, f(t), v}

by (AS2) (which is also true if we change w by v) applied to both terms. Since
this holds for every b ∈ K1, which is an essential ideal of T , we obtain

f({x, t, v}) = {x, f(t), v} (AS3)

for every x, t ∈ (K ′ ∩K ∩ I)3.

On the other hand, for every z1, z2, z3 ∈ (K ′ ∩K ∩ I)3 we have

f({{z1, z2, z3}, w, an}) = f({z1, {z2, z3, w}, an}) + f({z3, {z2, z1, w}, an})
− f({{z1, w, z3}, z2, a

n}) = {z1, {z2, z3, w}, f(a)n}+ {z3, {z2, z1, w}, f(a)n}
− {{z1, w, z3}, z2, f(a)n} = {{z1, z2, z3}, w, f(a)n}

because we can use the induction hypothesis in each summand (each summand
belongs to I and consists of elements in K and an). Therefore, for z ∈ K1 we get

f({z, w, an} = {z, w, f(a)n}. (BS3)

Now, for every b, y ∈ K1 we have by JP13

Pbf({y, an, w}) = f(Pb{y, an, w}) = f({b, y, {an, w, b}})− f({Pby, w, an})
= {b, y, f({an, w, b})} − {Pby, w, f(a)n}
= {b, y, {f(a)n, w, b}} − {Pby, w, f(a)n}
= Pb{y, f(a)n, w}

since b and Pby belong to K1 so we can apply (BS3) in each summand. This
formula holds for every b ∈ K1, which is an essential ideal of T , so for every
y ∈ K1

f({y, an, w}) = {y, f(a)n, w}. (CS3)

Now putting together (AS3) and (CS3) we get that for every x, y ∈ K1

f({x, {y, an, w}, v}) = {x, f({y, an, w}), v} = {x, {y, f(a)n, w}, v}. (S3)
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And putting together (I), (S1), (S2) and (S3) we get that for every x, y ∈ K1

{x, y, {v, w, an}} ∈ (K ′ ∩K ∩ I)3 ⊂ I, and

f({x, y, {v, w, an}}) = {x, y, {v, w, f(a)n}},

which is (P)n+1 for an+1 := {v, w, an}.
It remains to prove the same property (P)n+1 for an element of the form

an+1 = {v, an, w}. For every x, y ∈ K1, by JP16,

{x, y, {v, an, w}} = {x, {y, v, an}, w}+ {x, {y, w, an}, v} − {x, an, {v, y, w}}
∈ (K ′ ∩K ∩ I)3

using (2.4) and the induction hypothesis as in (I). Moreover, by (AS3), (BS3) and
the induction hypothesis,

f({x, {y, v, an}, w}) = {x, f({y, v, an}), w} = {x, {y, v, f(a)n}, w},
f({x, {y, w, an}, v}) = {x, f({y, w, an}, v} (by (AS3)) = {x, {y, w, f(a)n}} and

f({x, an, {v, y, w}}) = {x, f(a)n, {v, y, w}},

so f({x, y, {v, an, w}}) = {x, y, {v, f(a)n, w}}, i.e., for every x, y ∈ K1

{x, y, {v, an, w}} ∈ (K ′ ∩K ∩ I)3 ⊂ I, and

f({x, y, {v, an, w}}) = {x, y, {v, f(a)n, w}}.

which completes the proof.

Now, it is natural to extend this theorem to Jordan pairs and algebras.

2.7 Corollary. Let V ≤ W be nondegenerate Jordan pairs such that W is
a pair of M-quotients of V with respect to a power filter of essential ideals. Then
C(V ) ∼= C(W ) (ring isomorphism).

Proof. If W is a Jordan pair of M-quotients of V with respect to a power
filter of essential ideals F , then the polarized triple system T (W ) associated to
W is a triple system of M-quotients of the polarized triple system T (V ) with
respect to the power filter of essential ideals T (F) = {I+ ⊕ I− | (I+, I−) ∈ F}.
Now, by (2.6), C(T (V )) ∼= C(T (W )), while by [13, 2.7], C(V ) ∼= C(T (V )) and
C(W ) ∼= C(T (W )), which completes the proof.
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2.8 Corollary. Let J be a nondegenerate Jordan algebra and let Q be an
algebra of M-quotients of J with respect to a power filter of essential ideals. Then
C(J) ∼= C(Q) (ring isomorphism).

Proof. Let JT and QT denote the underlying triple systems of J and Q

respectively. It has been shown in [3, 5.2] that QT is a triple system of M-
quotients of JT with respect to the same filter of ideals, so by (2.6) C(JT ) ∼=
C(QT ). Moreover, by [13, 2.4] the extended centroid of a nondegenerate Jordan
algebra is isomorphic to the extended centroid of its underlying triple system,
which completes the proof.

3. Centroids, extended centroids and centers

From now on, we will deal with rings of scalars Φ with 1
2 and 1

3 in Φ. The
condition 1

3 ∈ Φ is needed for the existence of maximal systems of M-quotients
of nondegenerate Jordan systems and Lie algebras (cf. [3, 5.4]). Moreover, in
this section we will always consider quotients with respect to the filter Fe of all
essential ideals of the Jordan system or Lie algebra.

The goal of this section is to show the coincidence of the center, the centroid
and the extended centroid of the maximal algebra of M-quotients Qmax(J) of a
nondegenerate Jordan algebra J with respect to Fe. With this, given such J with
extended centroid C(J), we will get that the central closure of J is the subalgebra
of Qmax(J) generated by J and the center of Qmax(J).

Our proof will be done through Lie algebras by the Tits-Kantor-Koecher
(TKK) construction [14, §1].

3.1 Recall that given a semiprime Lie algebra L, we can consider algebras
of quotients Q of such L with respect to the filter of all essential ideals Fe, in
the sense that any nonzero element q of Q can be absorbed into L by an essential
ideal: there exists an essential ideal I of L such that 0 6= [q, I] ⊂ L. Moreover,
it was shown in [15, 3.4, 3.6] that the maximal algebra of quotients Qmax(L) of
L can be built, in the sense that it is an algebra of quotients of L and any other
algebra of quotients of L can be imbedded in such Qmax(L). Explicitly, Qmax(L)
consists of the direct limit of all derivations defined on essential ideals of L, i.e.,

Qmax(L) = lim
→

Der(I, L), I ∈ Fe.

The elements q of Qmax(L) can be seen as equivalence classes [dq, I] where I is
an essential ideal of L and dq : I → L is a derivation. Two equivalence classes
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q = [dq, I] and p = [dp,K] are equal if dq and dp coincide on a common domain
(which must be an essential ideal of L). Notice that the Lie product in Qmax(L) is
[p, q] = [[dp, dq], (I ∩K)2], i.e., the derivation associated to [p, q] is d[p,q] = [dp, dq].

The next result relates the centroid and the extended centroid of some ideals
of Qmax(L).

3.2 Theorem. Let L be a semiprime Lie algebra, let Q = Qmax(L) be its
maximal algebra of quotients and I an essential ideal of Q with L ⊂ I. Then

(i) the map ΨI : Γ(I) → C(I) defined by ΨI(γ) = [γ, I] is a monomorphisms of
associative rings.

(ii) Let us suppose that every essential ideal of I hits L in an essential ideal.
Then every [f, I ′] ∈ C(I) can be extended to a map f̄ : I → Q such that for
every p, q ∈ I, f̄ [p, q] = [f̄(p), q]. Moreover, if f̄(q) ∈ I for every q ∈ I and
[f, I ′] ∈ C(I), Γ(I) is isomorphic to C(I).

Proof. (i). Let us consider the map

ΨI : Γ(I) → C(I) defined by ΨI(γ) = [γ, I].

It is clear that ΨI is a homomorphism of associative rings. Moreover, since Q is
semiprime, I is semiprime and ΨI is a monomorphism: if there exists 0 6= γ ∈ Γ(I)
with ΨI(γ) = 0, then γ annihilates an essential ideal K of I, i.e., γ(K) = 0, and
in this case, since 0 6= γ(I) is an ideal of I (so γ(I) ∩ K 6= 0), there exists
0 6= γ(x) ∈ K, which implies that γ2(x) = 0 and therefore the (nonzero) ideal of I
generated by γ(x) has zero square, a contradiction.

(ii). Given [f, I ′] ∈ C(I) and q = [dq, I
′′] ∈ I, we define

f̄(q) := [f ◦ dq, (I ′′ ∩ f−1(L))2].

(1) Let us show that f̄(q) is an element of Q. On the one hand, let us prove
that (I ′′∩f−1(L))2 is an essential ideal of L. It is clear that we only have to show
that f−1(L) is an essential ideal of L: for any ideal C of L, by hypothesis, I ′ ∩ L

is essential in L, so, we can take 0 6= a ∈ I ′ ∩ C. If f(a) ∈ L, a ∈ f−1(L) ∩ C;
otherwise, 0 6= f(a) ∈ I implies that there exists b ∈ L with 0 6= [f(a), b] ∈ L,
so 0 6= [a, b] ∈ f−1(L) ∩ C. On the other hand, let us prove that f ◦ dq is a
derivation on (I ′′ ∩ f−1(L))2: for any x, y ∈ (I ′′ ∩ f−1(L))2, (f ◦ dq)[x, y] =
f([dq(x), y]) + f([x, dq(y)]) = [fdq(x), y] + [x, fdq(y)] because dq(x), dq(y) ∈ I ′.
We have proved that f̄(q) ∈ Q for any q ∈ I.
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(2) Let us prove that the map f̄ : I → Q satisfies that for every p, q ∈ I,
f̄ [p, q] = [f̄(p), q]:

(2.1) Given p = [dp, I
′′] ∈ I, f and dp commute on (I ′′ ∩ f−1(L))2: for any

x ∈ (I ′′ ∩ f−1(L))2, (f ◦ dp)(x) = f([p, x]) = [p, f(x)] = (dp ◦ f)(x), because
[p, x] ∈ [p, I ′] ⊂ I ′, x ∈ I ′, and f(x) ∈ I ′′.

(2.2) For any two elements of I, p = [dp, I
′
p] and q = [dq, I

′
q], we want to show

that f̄([p, q]) = [f̄(p), q] = [p, f̄(q)], i.e., the maps f ◦ d[p,q], d[f̄(p),q] and d[p,f̄(q)]

coincide on an essential ideal of L. Take any x ∈ (I ′p ∩ I ′q ∩ f−1(L))4,

(f ◦ d[p,q])(x) = f̄([[p, q], x]) = f̄([[p, x], q]) + f̄([p, [q, x]])

= −fdqdp(x) + fdpdq(x) = [fdp, dq](x) + [dq, f ]dp(x)

= d[f̄(p),q](x),

because dq and f commute on dq(x) ∈ (I ′p∩f−1(L))2 by (1). Now, (f ◦d[p,q])(x) =
−(f ◦ d[q,p])(x) = −d[f̄(q),p](x) = d[p,f̄(q)](x).

(3) Therefore, if f̄(q) ∈ I for every q ∈ I and [f, I ′] ∈ C(I), given [f, I ′] ∈
C(I), we have that [f, I ′] = ΨI(f̄) which implies that Ψ is an isomorphism of
rings, i.e., Γ(I) ∼= C(I).

This theorem has an easy consequence for prime Lie algebras.

3.3 Corollary. Let L be a prime Lie algebra and Q = Qmax(L) be its
maximal algebra of quotients, then Γ(Q) is isomorphic to C(Q).

Now we turn to Jordan pairs and use their connection with Lie algebras
through the Tits-Kantor-Koecher construction. Recall that given a Jordan pair
V , TKK(V ) becomes a 3-graded Lie algebra with associated Jordan pair V . To
use (3.2) for Jordan pairs, we need the following technical results.

3.4 Lemma. Let V be a Jordan pair and let TKK(V ) be its Tits-Kantor-
Koecher algebra. If we denote by Γ( ) the centroid, and by C( ) the extended
centroid, then Γ(V ) ∼= Γ(TKK(V )) and C(V ) ∼= C(TKK(V )).

Proof. The extension of the elements of Γ(V ) and C(V ) to the Lie algebra
TKK(V ) is done in the obvious way, taking into account that given an ideal I =
(I+, I−) of the Jordan pair V , the ideal of TKK(V ) generated by I is Ĩ = I+ ⊕
([I+, V −] + [V +, I−])⊕ I−.

3.5 Theorem. Let T be a nondegenerate Jordan system and let Q be its
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maximal system of M-quotients. Then the extended centroid C(Q) is isomorphic
to the centroid Γ(Q) and, in the case of Jordan algebras, also to the center of Q.

Proof. Let us suppose that we are working with a Jordan pair T . Let us
denote by L = TKK(T ), the Tits-Kantor-Koecher algebra of T . The maximal
Lie algebra of quotients Qmax(L) of L with respect to the filter Fe is a 3-graded
Lie algebra, Qmax(L) = Q−1 ⊕ Q0 ⊕ Q1, see [3, 2.4], and Q ∼= (Q−1,Q1) is the
maximal pair of M-quotients of T with respect to Fe, see [3, 3.2].

Since Qmax(L) is nondegenerate, the ideal I of Qmax(L) generated by Q is
isomorphic to TKK(Q) and is an essential ideal of Qmax(L) which contains L. Let
us show that I ∼= TKK(Q) satisfies the hypothesis of (3.2)(ii),

(I) I ∩ L is an essential ideal of L: since I is an essential ideal of Q, I ∩ Q

is a essential ideal of Q. Now, by (2.5), I ∩Q ∩ T is an essential ideal of T which
implies that I ∩ L is an essential ideal of L.

(II) f̄(I) ⊂ I: Given q1 = [dq1 , I
′′] ∈ I1 and [f, I ′] ∈ C(I), let us show that

f̄(q1) := [f ◦ dq1(I
′′ ∩ f−1(L))2] ∈ I1. If we put f̄(q1) = p1 + p0 + p−1 ∈ Q, then

0 = f̄([q1, I1]) = [f̄(q1), I1] ⊂ [p0, I1] + [p−1, I1] ∈ I1 ⊕ I0,

so [p0, I1] = 0 and [p−1, I0] = 0, and, since I is nondegenerate, p−1 = 0. Therefore,
f̄(I1) ⊂ I0 ⊕ I1. Similarly, f̄(I−1) ⊂ I0 ⊕ I−1. We know that [f̄(q1), q−1] =
[q1, f̄(q−1)], but [f̄(q1), q−1] ∈ I−1 ⊕ I0 and [q1, f̄(q−1)] ∈ I0 ⊕ I1 implies that
[f̄(q1), q−1] ∈ I0 and therefore [p0, I−1] = 0. So [p0, I1 ∪ I−1] = 0, which gives
[p0, I] = 0 and, therefore, p0 = 0. Hence f̄(q1) ∈ I1. Notice that f̄(q−1) ∈ I−1

follows in a similar way, which implies that f̄(I) ⊂ I.

Then, by (3.2)(ii), Γ(TKK(Q)) ∼= Γ(I) ∼= C(I) ∼= C(TKK(Q)). Moreover,
the centroid (extended centroid) of a Jordan pair is isomorphic to the centroid
(extended centroid) of its Tits-Kantor-Koecher algebra (3.4), so we get

Γ(Q) ∼= Γ(TKK(Q)) ∼= C(TKK(Q)) ∼= C(Q).

Since the centroid and the extended centroid of a Jordan triple system are
isomorphic to the centroid and the extended centroid of its double Jordan pair,
we obtain the result for Jordan triple systems, and since the centroid and the
extended centroid of a Jordan algebra are isomorphic to the centroid and the
extended centroid of its associated Jordan triple system, we obtain the result for
Jordan algebras.
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Finally, by [3, 5.5], the maximal Jordan algebra Q of M-quotients of a nonde-
generate Jordan algebra is unital, and we have, by [7, pag. 156], that the centroid
of Q is essentially the center of Q.

Putting together (2.6) and (3.5) we have the main result of this work.

3.6 Corollary. Let T be a nondegenerate Jordan system and let Q be its
maximal system of M-quotients with respect to Fe. Then:

(i) C(T ) ∼= C(Q) ∼= Γ(Q).

(ii) If T is a Jordan algebra, C(T ) ∼= C(Q) ∼= Γ(Q) ∼= Z(Q) · Id, where Id denotes
the identity map in Q.

3.7 Corollary. Let J be a nondegenerate Jordan algebra and let Q be its
maximal algebra of M-quotients with respect to Fe. Then the central closure of J

is the subalgebra of Q generated by J and the center of Q.
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