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Abstract

The centroid of a Jordan superalgebra consists of the natural “superscalar multiplications”

on the superalgebra. A philosophical question is whether the natural concept of “scalar” in the

category of superalgebras should be that of superscalars or ordinary scalars. Basic examples of

Jordan superalgebras are the simple Jordan superalgebras with semisimple even part, which were

classified over an algebraically closed field of characteristic 6= 2 by M. Racine and E. Zelmanov.

Here, we determine the centroids of the analogues of these superalgebras over general rings of

scalars and show that they have no odd centroid, suggesting that ordinary scalars are the proper

concept.

1 Jordan Superalgebras

Throughout, Φ will be an arbitrary ring of scalars; i.e. a commutative, associative, unital ring.

In particular, we do not assume 1
2 ∈ Φ, and so we work with quadratic Jordan algebras and super-

algebras.

Definition 1. A Φ-superalgebra is a Z2-graded algebra B = B0⊕B1, where BiBj ⊆ Bi+j. Here,

B0 is called the even part of B, and B1 is called the odd part of B. Then EndΦ(B) is graded by

E0 = E00 + E11 = End(B0) ⊕ End(B1) and E1 = E01 + E10 = Hom(B0, B1) ⊕ Hom(B1, B0). A

homogeneous transformation Tl ∈ El satisfies Tl(Bi) ⊂ Bi+l.

An associative superalgebra is just a Z2-graded associative algebra B = B0 ⊕ B1, where

BiBj ⊆ Bi+j.

For example, if D is any associative Φ-algebra, then B = Mn+m(D) is an associative superalgebra

graded by B0 =

 Mn(D) 0

0 Mm(D)

 and B1 =

 0 Mn×m(D)

Mm×n(D) 0

 . More generally,
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any idempotent e in a unital associative algebra B gives rise to a graded algebra Be with B0 =

B11 ⊕B00 and B1 = B10 ⊕B01, where Bij = eiBej for e1 = e and e0 = 1− e.

A very important class of superalgebras is that of superscalars, the super-analogue of a scalar

ring.

Definition 2. A Φ-algebra of superscalars is a unital associative Φ-superalgebra S = S0 ⊕ S1

which is supercommutative, so for all xi ∈ Si, yj ∈ Sj,

xi · yj = (−1)ijyj · xi and x2
1 = 0.

The quintessential example of superscalars is the Grassmann algebra G = G0 ⊕G1, the exterior

algebra Λ(V ) on a free module V of countably-infinite dimension. The requirement that odd su-

perscalars square to zero is not universally accepted. Notice that if 1
2 ∈ Φ, then x1 · y1 = −y1 · x1

implies x2
1 = 0, but over a general scalar ring, we demand that x2

1 = 0 (just as the true analogue of

a skew-symmetric bilinear form for general scalars is an alternating bilinear form.

Definition 3. A linear Jordan superalgebra is a superalgebra J = A⊕M , where A is an ordinary

Jordan algebra and M is an A-bimodule, such that J has a bilinear product 〈·, ·〉 : J × J → J that

satisfies the following identities:

〈xi, yj〉 = (−1)ij〈yj , xi〉 and
∑

cyclic (xi,yj ,zk)

(−1)(i+s)k[〈xi, yj〉, as, zk] = 0,

where [a, b, c] = 〈〈a, b〉, c〉 − 〈a, 〈b, c〉〉 is the usual associator on J .

A quadratic Jordan superalgebra is a Jordan superalgebra equipped with a bilinear product

〈Ji, Jj〉 ⊆ Ji+j, a trilinear product 〈Ji, Jj , Jk〉 ⊆ Ji+j+k, a squaring operator 2 : J0 → J0, and

quadratic operators Ux0 : Ji → Ji such that the Grassmann envelope G(J) = J0 ⊗G0 + J1 ⊗G1 is a

quadratic Jordan algebra under the following products:

Ux0⊗γ0(yj ⊗ ηj) = Ux0(yj)⊗ γ2
0ηj (x0 ⊗ γ0)2 = x2

0 ⊗ γ2
0

Ux1⊗γ1(yj ⊗ ηj) = 0 (x1 ⊗ γ1)2 = 0

Uxi⊗γi,zk⊗µk
(yj ⊗ ηj) = 〈xi, yj , zk〉 ⊗ γiηjµk

〈xi ⊗ γi, yj ⊗ ηj〉 = 〈xi, yj〉 ⊗ γiηj .

We demand that the even bilinear and trilinear products 〈x0, y0〉 = (x0 + y0)2 − x2
0 − y2

0 and

〈x0, y0, z0〉 = (Ux0+z0 − Ux0 − Uz0) (yj) result from linearization of the quadratic products x2
0 and

Ux0 .

We demand explicitly that 〈xi, yj , zk〉 be alternating in the outer odd variables, not merely skew-

symmetric, so 〈x1, yj , x1〉 = 0. See (McCrimmon, 1992) for further details.
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We say a quadratic Jordan superalgebra is unital if there exists an even element 10 ∈ A such

that U10 = Id, x2
0 = Ux0(10), and 〈10, xi〉 = 2xi for all xi ∈ J .

A quadratic Jordan superalgebra A+ can be created out of an associative superalgebra A =

A0 ⊕A1 by defining the products as follows:

〈xi, yj〉 = xiyj + (−1)ijyjxi 〈xi, yj , zk〉 = xiyjzk + (−1)ij+jk+kizkyjxi

Ux0(yj) = x0yjx0 x2
0 = x0x0.

Such a superalgebra is called special. If A is unital, so is A+.

The simple Jordan superalgebras with semisimple even part were classified over an algebraically

closed field K of characteristic not 2 by M. L. Racine and E. I. Zelmanov in (Racine and Zelmanov,

2003). If the characteristic of the field is not 3, then there are eight classes of superalgebras:

1. Kλ
3 (Φ), the Kaplansky superalgebra

2. Dλ,µ
4 (Φ), the twisted quaternion superalgebra

3. K10, the Kac superalgebra

4. Mn,m(D), n, m ≥ 1, the rectangular matrix superalgebra

5. Qn(D), n ≥ 2, the square matrix superalgebra

6. Pn(D,D0), n ≥ 2, the orthogonal superalgebra

7. OSpn,2m(Φ), n, m ≥ 1, the orthosymplectic superalgebra

8. the superalgebra of a nondegenerate supersymmetric bilinear form.

In characteristic 3, there are two additional “sporadic” superalgebras:

S1. HS3(Φ3), the sporadic conjugate superalgebra

S2. H3(C), the sporadic symplectic superalgebra.

Detailed descriptions of these classes will be provided in the subsequent sections. These super-

algebras remain Jordan superalgebras when considered over arbitrary rings of scalars.

2 The Centroid

Definition 4. Let J be a Jordan superalgebra. The linear or outer centroid of J, LΓ(J) =

LΓ0(J)⊕ LΓ1(J), is all T = T0 + T1 where Tl ∈ EndlΦ(J) satisfies

Tl(〈xi, zk〉) = 〈Tl(xi), zk〉 = (−1)li〈xi, Tl(zk)〉. (LΓ1)
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If J is a quadratic superalgebra, we also demand that

Tl(〈xi, yj , zk〉) = 〈Tl(xi), yj , zk〉 = (−1)li〈xi, Tl(yj), zk〉 (LΓ2)

= (−1)l(i+j)〈xi, yj , Tl(zk)〉,

Tl(Ux0(yj)) = Ux0(Tl(yj)). (LΓ3)

The supermultiplication operators are 〈xi, yj〉 = Lxi
(uj) = Ryj

(xi) and 〈xi, yj , zk〉 = Lxi,yj
(zK) =

Mxi,zk
(yj) = Ryj ,zk

(xi). We can write the linear centroid conditions as

TlRyj = Ryj Tl TlLxi = (−1)ilLxiTl,

TlRyj ,zk
= Ryj ,zk

Tl, TlMxi,zk
= (−1)liMxi,zk

Tl,

TlLxi,yj
= (−1)l(i+j)Lxi,yj

Tl, TlUx0 = Ux0Tl.

Thus we consider that Ryj
and Ryj ,zk

have degree 0 as multiplication operators, while Lxi
and Mxi,zk

have degree i, and Lxi,yj has degree i + j.

Notice that the asymmetry of the interaction of the centroid with respect to left and right

multiplication is due to the fact that we write our multiplication operators on the left (so they

are tacitly left multiplication), which therefore commute with all right multiplications but only

supercommute with left and middle multiplications.

Lemma 1. LΓ(J) is a subsuperalgebra of EndΦ(J).

Proof. Let X = {Lxi , Ryj , Lxi,yj ,Mxi,zk
, Ryj ,zk

, Ux0 : xi, yj , zk ∈ J}. First, it must be shown that

LΓ(J) is closed under scalar multiplication. Let α ∈ Φ, Ti ∈ LΓi(J), and Xj ∈ X have multiplication

degree j. Then

(αTi)Xj = α((−1)ijXjTi) = (−1)ijαXjTi = (−1)ijXj(αTi).

Thus, αTi ∈ LΓi(J).

Next, it must be shown that LΓ(J) is closed under addition. This is true by definition for the

sum of an even element and an odd element of LΓ(J). Suppose Si, Ti ∈ LΓi(J) and Xj ∈ X . Then

(Si + Ti) is of degree i, and

(Si + Ti)Xj = SiXj + TiXj = (−1)ijXjSi + (−1)ijXjTi = (−1)ijXj(Si + Ti),

whence Si + Ti ∈ LΓi(J), and LΓ(J) is closed under addition.

It must also be shown that LΓ(J) is closed under composition. Let Si, Tj ∈ LΓ(J) and Xk ∈ X .

Then SiTj is of degree i + j, and

(SiTj)Xk = Si((−1)jkXkTj) = (−1)jkSiXkTj

= (−1)jk(−1)ikXkSiTj = (−1)(j+i)kXk(SiTj).
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Thus, SiTj ∈ LΓ(J), and LΓ(J) is a Φ-subalgebra of EndΦ(J).

We remark that we cannot reduce centroid questions to the unital case, since T ∈ LΓ(J) does

not extend to the unital hull J̃ = Φ1⊕ J unless T = αId is already a scalar in Φ and T (1̂) = α1̂.

Definition 5. The super-centroid of a quadratic Jordan superalgebra J , Γ(J), has the additional

properties

UT0(x0)(yj) = T 2
0 (Ux0(yj)), (QΓ1) (T0(x0))

2 = T 2
0 (x2

0), (QΓ2)

UT1(x1)(yj) = 0, (QΓ3) (T1(x1))
2 = 0, (QΓ4)

T 2
1 = 0. (QΓ5)

In other words, these endomorphisms Tl act like superscalar multiplications.

Note that QΓ2, 4 follow from QΓ1, 3 if J is unital. The conditions QΓ3 − 5 are somewhat

controversial. One could define a weaker version of the centroid without making these demands.

However, since we desire our superscalars to be alternating and we think of our centroid as superscalar

multiplications, such a definition causes a few dilemmas. In particular, since T1(x1) is even, its U -

operator must be defined. We expect that UT1(x1) = T 2
1 Ux1 , yet the U -operators are not defined

for odd elements. This moral quandary is eliminated if we adopt the conditions above. In fact,

these assumptions are rarely used, only appearing in the cases of the square matrix superalgebra

Qn(D) and the Jordan superalgebra of a quadratic form. Furthermore, the scalar multiplications

ΦId certainly belong to Γ0(J), as

ΦId ⊆ Γ0(J) ⊆ LΓ(J).

We will show that in most cases LΓ(J) = ΦId, whence Γ(J) = ΦId as well. Thus, our arguments

seldom involve the quadratic conditions.

Note that there is no quandary if 1
2 ∈ Φ, as Γ(J) = LΓ(J) if the latter is supercommutative. In

that case, we automatically have, for Ti ∈ LΓi(J), UT0(x0) = 1
2UT0(x0),T0(x0) = 1

2T 2
0 Ux0,x0 = T 2

0 Ux0 ,

(T0(x0))
2 = 1

2T0(x0)◦T0(x0) = 1
2T 2

0 (x0◦x0) = T 2
0 (x2

0), UT1(x1) = 1
2UT1(x1),T1(x1) = 1

2T 2
1 Mx1,x1 = 0

(by our hypothesis that Mx1,x1 = 0), and T 2
1 = 1

2 (T1T1 + T1T1) = 1
2T1T1 − T1T1 = 0 if LΓ(J) is

supercommutative.

The outer centroid is a unital associative superalgebra which is not, a priori, supercommutative.

However, under mild assumptions about the superalgebra J , the centroid will be supercommutative.

Lemma 2 (Hiding Lemma). Suppose Bk(xi, yj) : J × J → J is a bilinear map and Ss, Tt are Bk-

linear maps (so SsBk(xi, yj) = (−1)skBk(Ss(xi), yj) = (−1)s(k+i)Bk(xi, Ss(yj)) and similarly for

Tt). Then (SsTt − (−1)stTtSs)Bk = 0.
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Proof.

(−1)stTtSsBk(xi, yj) = (−1)st+skTtBk(Ss(xi), yj)

= (−1)st+sk(−1)t(k+s+i)Bk(Ss(xi), Tt(yj))

= (−1)st+sk+tk+ts+tiBk(Ss(xi), Tt(yj))

= (−1)sk+tk+ti(−1)skSsBk(xi, Tt(yj))

= (−1)tk+ti(−1)t(k+i)SsTtBk(xi, yj)

= SsTtBk(xi, yj).

Corollary 1. Suppose J is a Jordan superalgebra such that either

1. the linear annihilator of J is trivial; i.e.,

〈z, J〉 = 〈z, J, J〉 = 〈J, z, J〉 = 0 implies z = 0 or

2. J is linearly idempotent; i.e.,

J = 〈J, J〉+ 〈J, J, J〉.

Then LΓ(J) is supercommutative.

Proof. Define the following degree zero bilinear maps on J × J : B(xi, yj) := 〈xi, yj〉, Bzk
(xi, yj) :=

〈xi, yj , zk〉, and B′
zk

(xi, yj) := 〈xi, zk, yj〉. If Ss, Tt ∈ LΓ(J), then by definition Ss and Tt are B−,

Bzk
−, and B′

zk
−linear, so by the Hiding Lemma, ∆ = SsTt − (−1)stTtSs has

∆B(xi, yj) = ∆(〈xi, yj〉) = 〈∆(xi), yj〉 = 0

∆Bzk
(xi, yj) = ∆(〈xi, yj , zk〉) = 〈∆(xi), yj , zk〉 = 0

∆B′
zk

(xi, yj) = 〈∆(xi), zk, yj〉 = 0.

Thus, ∆ maps J into the linear annihilator and kills all bilinear and trilinear products. If J has trivial

linear annihilator or is linearly idempotent, then ∆ = 0 on J , and LΓ(J) is supercommutative.

Lemma 3. If the linear centroid LΓ(J) is supercommutative, then the supercentroid Γ(J) is a

subsuperalgebra of EndΦ(J).

Proof. Since Γ(J) ⊆ LΓ(J), we need to show that αT0, S0 + T0, S0T0, S1T1 ∈ LΓ0(J) and αS1,

S1 + T1, S0T1, T1S0 ∈ LΓ1(J) satisfy the new quadratic conditions for α ∈ Φ, S0, T0 ∈ Γ0(J), and

S1, T1 ∈ Γ1(J).
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First,

U(αT0)(x0) = α2UT0(x0) = α2T 2
0 Ux0 = (αT0)2Ux0

((αT0)(x0))
2 = α2 (T0(x0))

2 = α2T 2
0 (x2

0) = (αT0)2(x2
0),

so αT0 ∈ Γ0(J).

For the sum S0 + T0, note that the quadratic product on J has the property that Uv0,w0(zi) =

〈v0, zi, w0〉 , so Uv0,v0 = 2Uv0 . Now

U(S0+T0)(x0) = US0(x0),T (x0) + US0(x0) + UT0(x0)

= 〈S0(x0), ·, T0(x0)〉+ US0(x0) + UT0(x0)

= S0T0(〈x0, ·, x0〉) + US0(x0) + UT0(x0)

= S0T0(2Ux0) + US0(x0) + UT0(x0)

= 2S0T0(Ux0) + S2
0(Ux0) + T 2

0 (Ux0)

= (S0 + T0)2Ux0 since Γ(J) is supercommutative, and

((S0 + T0)(x0))
2 = (S0(x0))

2 + (T0(x0))
2 + 〈S0(x0), T0(x0)〉

= S2
0(x2

0) + T 2
0 (x2

0) + S0T0〈x0, x0〉

=
(
S2

0 + T 2
0 + 2S0T0

)
(x2

0)

= (S0 + T0)2(x2
0) since Γ(J) is supercommutative,

so S0 + T0 ∈ Γ0(J).

For the composites S0T0 and S1T1,

US0(T0(x0)) = S2
0(UT0(x0)) = S2

0T 2
0 (Ux0)

= (S0T0)2Ux0 since Γ(J) is supercommutative.

((S0T0)(x0))
2 = (S0(T0(x0)))

2 = S2
0(T0(x0))2 = S2

0T 2
0 (x2

0)

= (S0T0)2(x2
0) since Γ(J) is supercommutative,
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so S0T0 ∈ Γ0(J), and

U(S1T1)(x0) = US1(T1(x1)) = 0 = −S2
1T 2

1 Ux0

= (S1T1)2Ux0 since Γ(J) is supercommutative, and

((S1T1)(x0))
2 = (S1(T1(x0)))

2 = 0 = −S2
1T 2

1 (x2
0)

= (S1T1)2(x2
0) since Γ(J) is supercommutative,

so S1T1 ∈ Γ0(J).

Next,

U(αT1)(x1) = α2UT1(x1) = 0,

((αT1)(x1))
2 = α2(T1(x1))2 = 0, and

(αT1)2 = α2T 2
1 = 0, so αT1 ∈ Γ1(J).

For the sum S1 + T1,

U(S1+T1)(x1) = US1(x1)+T1(x1) = US1(x1) + UT1(x1) + US1(x1),T1(x1)

= 0 + 0 + S1Ux1,T1(x1)

= ±S1T1Mx1,x1 = 0 since Mx1,x1 = 0 by hypothesis,

((S1 + T1)(x1))
2 = (S1(x1) + T1(x1))

2

= (S1(x1))2 + (T1(x1))2 + 〈S1(x1), T1(x1)〉

= 0 + 0 + S1〈x1, T1(x1)〉 = −S1T1〈x1, x1〉 = 0, and

(S1 + T1)2 = S2
1 + T 2

1 + S1T1 + T1S1

= 0 + 0 + S1T1 − S1T1 = 0 since Γ(J) is supercommutative,

so S1 + T1 ∈ Γ1(J).

Finally, for the composites S0T1 and T1S0,

U(S0T1)(x1) = US0(T1(x1)) = S2
0UT1(x1) = 0,

U(T1S0)(x1) = UT1(S0(x1)) = 0,

((S0T1)(x1))
2 = (S0(T1(x1)))

2 = S2
0(T1(x1))2 = 0,

((T1S0)(x1))
2 = (T1(S0(x1)))

2 = 0, and

(S0T1)2 = S2
0T 2

1 = 0 = T 2
1 S2

0 = (T1S0)2 since Γ(J) is supercommutative,

so S0T1, T1S0 ∈ Γ1(J). Thus, Γ(J) is a subsuperalgebra of EndΦ(J).
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The preceding lemma leads directly to the following result.

Theorem 1. If LΓ(J) is supercommutative, then Γ0(J) is a commutative, associative ring of scalars

(called simply the centroid), and J is a superalgebra over Γ0(J).

When LΓ(J) is supercommutative, the superalgebra J can be considered as a superalgebra over

its supercentroid. Thus, the supercentroid provides a natural algebra of superscalars for J . This begs

the following question: is the supercentroid really a set of superscalars, or is it just an ordinary set of

scalars in disguise? In other words, are there any odd elements of the supercentroid? Since an odd

supercentroidal element is a rather strange creature, one expects that a “nice” Jordan superalgebra

would have no odd supercentroid. The classification in (Racine and Zelmanov, 2003) includes many

of the “nice” examples of Jordan superalgebras over a field, so to provide support to this conjecture,

we determine the supercentroids of these superalgebras over a general ring Φ. We will show that,

under mild assumptions about the ring Φ and the superalgebra J , there is no odd supercentroid,

and in most cases, the algebra is already centroidal: the supercentroid only consists of the scalar

multiplications by Φ.

3 General Behavior of Centroid

Lemma 4. Let J = A⊕M be a Jordan superalgebra.

1. The kernel of a centroidal T ∈ LΓ(J) os an outer ideal in J (homogeneous if T ∈ LΓi(J)), so

T = αId as soon as T = αId on an outer generating set.

2. In particular, if T (A) = 0 and M = 〈A,M〉+ UA〈A,M〉, then T = 0.

Proof. Note that (2) follows from (1) by setting α = 0. If T ∈ LΓ(J), then T ′ = T − αId ∈ LΓ(J),

and T = αId if and only if T ′ = 0, so it suffices to show that the kernel of T is an outer ideal. The

kernel of Ti is homogeneous, since Ti(x0 + x1) = Ti(x0) + Ti(x1) ∈ Ji ⊕ Ji+1 vanishes if and only if

Ti(x0) = Ti(x1) = 0. Let M denote the outer multiplication algebra generated by the set

{Id, Lx, Lx,y,Mx,y, Uz : x, y ∈ A ∪M and z ∈ A}.

For a set of homogeneous elements S ⊂ A ∪ M (e.g., for S = Ker(T )), let M(S) = {m(z) : m ∈

M, z ∈ S} be the outer ideal generated by S. Each element of M(S) can be written as linear

combinations of elements of the form (m1(m2(· · · (mn(z))))) for some z ∈ S and some homogeneous

mi ∈Mε(i), where ε(i) ∈ {0, 1} and Mj denotes the operators of multiplication degree j as described
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in Section 2. By definition, T supercommutes with all homogeneous outer multiplications, so

T (m1(m2(· · · (mn(z))))) = ±(m1(m2(· · · (mn(T (z))))))

(= 0 if z ∈ Ker(T )).

If S = Ker(T ), this gives us that T (M(S)) = 0, whence M(S) = Ker(T ) is an outer ideal of J .

Lemma 5. Suppose J is a Jordan algebra or superalgebra with idempotent e. Let J = J2⊕J1⊕J0

be the Peirce decomposition of J with respect to e. Then

1. T (Ji(e)) ⊆ Ji(e) for T ∈ LΓs(J ) and i = 0, 1, 2.

2. If T (e) = αe for α ∈ Φ (for example, if e is a reduced idempotent J2(e) = Φe), then

T = αId on J1.

3. In particular, if T (e) = 0, T (J1) = 0.

4. Suppose N ⊆ J1 is Ji-invariant for i = 0 or 2, so 〈Ji, N〉 ⊆ N . If Zi = {a ∈ Ji : 〈a,N〉 = 0}

is 0, then T (e) = 0 implies T (Ji) = 0.

Proof. Let Ei denote the even Peirce projection on Ji(e), so E2 = Ue, E0 = U1̂−e, and E1 = Ue,1̂−e.

Then if xi ∈ Ji(e), T0(xi) = T (Ei(xi)) = Ei(T0(xi)) ∈ Ji(e).

Suppose T (e) = αe. Then for any x1 ∈ J1,

T (x1) = T (〈e, x1〉) = 〈T (e), x1〉 = 〈αe, x1〉 = α〈e, x1〉 = αx1.

To prove (4), Ji is T -invariant when T (e) = 0, so

〈T (Ji), N〉 = 〈Ji, T (N)〉 ⊆ 〈Ji, T (J1)〉 = 0 by (3).

Thus, T (Ji) ⊆ Zi = 0.

Lemma 6. 1. Suppose J = A ⊕ M is a Jordan superalgebra with idempotent e ∈ A such that

〈e,m〉 = m for all m ∈ M . Then LΓ1(J) = 0.

2. Suppose J has idempotents ei and unit 1 =
∑

ei, where all M2(ei) = 0. If 1
2 ∈ Φ, then

LΓ1(J) = 0.

Proof. 1. First, for T1 ∈ LΓ1(J), T1(e) = T1(Ue(e)) = Ue(T1(e)) ∈ Ue(M) = 0 since M ⊆ J1(e)

by hypothesis. Then T1(M) ⊆ T1(J1(e)) = 0 and T1(A1(e)) = 0 by Lemma 5. Also by Lemma

5, T1(A2 ⊕A0) ⊂ M ∩ (J2 ⊕ J0) = 0. Thus, T1(A) = 0 as well.
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2. For each i, T1(ei) = T (Uei(ei)) = Uei(T1(ei)) ∈ Uei(M) = M2(ei) = 0 by hypothesis, so

T1(1) =
∑

T1(ei) = 0. Then 0 = 〈T1(1), xi〉 = 〈1, T1(xi)〉 = 2T1(xi) for all xi, so if 1
2 ∈ Φ,

then all T1(xi) = 0, and T1 = 0.

Lemma 7. Let J be a Jordan algebra or superalgebra, and let Ts ∈ LΓs(J ) or Ts ∈ Γs(J ). If B is

a Ts-invariant subalgebra or subsuperalgebra of J , then Ts|B ∈ LΓs(B) or Ts|B ∈ Γs(B).

Proof. Let xi ∈ Bi and yj ∈ Bj . Now Ts|B = Ts on B, so for P = Lxi , Lxi,yj ,Mxi,yj , Ux0 of degree

k = i, i + j, i + j, and 0, respectively,

Ts|BP = TsP = (−1)ksPTs = (−1)ksPTs|B

as endomorphisms of B. Thus, Ts|B ∈ LΓs(B).

If Ts ∈ Γs(J ) (i.e., UT0(b0) = T 2
0 Ub0 if s = 0 or UT1(b1) = 0 if s = 1),

UB
T0|B(b0)

= UT0(b0) = T 2
0 (Ub0) = T0|2B(UB

b0), UB
T1|B(b1)

= UT1(b1) = 0

on B. Thus, T |B ∈ Γs(B).

Lemma 8. Suppose J is a unital quadratic Jordan superalgebra over a ring Φ such that 1
2 ∈ Φ.

1. If T ∈ LΓ(J) has T (10) = α10 for 10 the unit of J and α ∈ Φ, then T = αId on all of J . In

particular, if T (10) = 0, then T = 0.

2. If A is linearly centroidal, so LΓ(A) = ΦId, then LΓ0(J) = ΦId.

Proof. 1. Let T ∈ LΓ(J), and suppose that T (10) = α10 for some α ∈ Φ. Since 10 is the unit of

the quadratic Jordan superalgebra J , 〈10, xi〉 = 2xi for all xi ∈ Ji. Thus,

2T (xi) = T (2xi) = T (〈10, xi〉) = 〈T (10), xi〉 = 〈α10, xi〉 = 2αxi.

Since 1
2 ∈ Φ, this implies that T (xi) = αxi.

2. If T0 ∈ LΓ0(J), then T0|A ∈ LΓ(A) = ΦId by Lemma 7, so T0(10) = α10, and T0 = αId by

(1).

Lemma 9. Let D be a unital associative ring with involution − : D → D over its ∗-centroid

Φ = Γ(D) (so ᾱ = α for α ∈ Φ). Let 1 ⊆ D0 ⊆ H(D) be an ample subspace; i.e., dD0d̄ ⊆ D0 for all

d ∈ D, so dd̄ ∈ D0 and d + d̄ ∈ D0. Let J = Hn(D,D0) be an ample outer ideal in the hermitian

n×n matrices with respect to the − transpose involution with diagonal entries in D0. Then if n ≥ 2,

LΓ(J) = ΦId.
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Proof. Let T ∈ LΓ(J)). Note that J has n supplementary orthogonal idempotents ei = eii. Let Ji

denote the ith Peirce space of J with respect to these idempotents. Then Lemma 5 gives us that

T (Ji) ⊆ Ji, so T (ei) = αiei for some αi ∈ D0. Now if n ≥ 2 and i 6= j,

αjej = T (ej) = T (Ueij+eji
(ei))

= Ueij+eji
(T (ei)) = Ueij+eji

(αiei) = αiej .

Therefore, αi = αj for all 1 ≤ i, j ≤ n, so T (ei) = αei for some α ∈ D0.

Now for any d ∈ D,

αdeij + dαeji = {αei, deij + deji, ej} = {T (ei), deij + deji, ej}

= {ei, deij + deji, T (ej)} = {ei, deij + deji, αej}

= dαeij + αdeji.

Thus, αd = dα for all d ∈ D, whence α ∈ Γ(D) = Φ.

Let T ′ = T − αId ∈ LΓ(J). Then T ′(ei) = 0 for all i. Now by Lemma 5, T ′(J1)(ei) = 0, so if

n ≥ 2 and i 6= j, then T ′(Deij) = 0. Thus, T = αId.

4 The Sporadic Superalgebras

When the base ring Φ has the property that 3Φ = 0, two additional “sporadic” algebras appear

in the classification. Both arise as hermitian 3× 3 matrices over an alternative superalgebra. Note

that since Φ has “characteristic” 3, 1
2 ∈ Φ.

4.1 The Sporadic Conjugate Superalgebra HS3 (Φ3)

Suppose Φ = Φ3 is a ring of scalars with 3Φ = 0, and let A = H3(Φ) and M = S3(Φ) ⊕ S3(Φ),

where S3(Φ) denotes the space of all skew 3 × 3 matrices st = −s. Then J = A⊕M with bilinear

product defined for hi ∈ A = H3(Φ) and si ∈ S3(Φ) by

〈h1, h2〉 = h1h2 + h2h1

〈h, s1 ⊕ s2〉 = (hs1 + s1h)⊕ (hs2 + s2h)

〈S3(Φ)⊕ 0, S3(Φ)⊕ 0〉 = 0 = 〈0⊕ S3(Φ), 0⊕ S3(Φ)〉

〈s1 ⊕ 0, 0⊕ s2〉 = s1s2 + s2s1

12



is a linear Jordan superalgebra, and since 1
2 ∈ Φ, it is automatically a quadratic Jordan superalgebra

with quadratic product defined by

Uh(h′) = hh′h h2 = hh

Uh(s1 ⊕ s2) = (hs1h⊕ hs2h).

Note that J is a unital quadratic Jordan superalgebra with unit I3, as UI3 = Id, h2 = UhI)3, and

〈I3, xi〉 = 2xi for each xi ∈ J .

This superalgebra can be viewed as the hermitian 3×3 matrices over the alternative superalgebra

B(1, 2) = B0 ⊕ B1 = Φ1 ⊕ (Φx⊕ Φy), where xy = −yx = 1, under the conjugate superinvolution

(b0 ⊕ b1)∗ = b0 ⊕−b1. See (Shestakov, 1999) for more details.

Theorem 2. LΓ(HS3(Φ3)) = Φ3Id.

Proof. Let si = (σjk) and s′i = (σ′jk) be skew matrices. Then since 1
2 ∈ Φ, σii = 0 = σ′ii for

i = 1, 2, 3. Now M2(eii) = 0, since

Ueii

(
si ⊕ s′i

)
= σiieii ⊕ σ′iieii = 0.

By Lemma 6 (2), LΓ1(J) = 0.

By Lemma 9, H3(Φ3) is centroidal, so Lemma 8 (2) implies LΓ0(J) = ΦId.

4.2 The Sporadic Symplectic Superalgebra H3(C)

Let Φ = Φ3 be a ring of scalars with 3Φ = 0, so 1
2 ∈ Φ. Let C = C0 ⊕ C1, where C0 =

M2(Φ) and C1 = Φm1 ⊕ Φm2 is the free module over Φ with basis {m1,m2}. Now C has basis

{e11, e12, e21, e22,m1,m2}, where the product on these elements is given by the following table.

e11 e12 e21 e22 m1 m2

e11 e11 e12 0 0 m1 0

e12 0 0 e11 e12 m2 0

e21 e21 e22 0 0 0 m1

e22 0 0 e21 e22 0 m2

m1 0 −m2 0 m1 −e21 e11

m2 m2 0 −m1 0 −e22 e12

Then C is an alternative superalgebra with superinvolution given by (a ⊕m)∗ = a ⊕ (−m), where

− : M2(Φ) → Φ is the usual symplectic involution a11 a12

a21 a22

 =

 a22 −a12

−a21 a11

 .
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Let J = H3(C), the hermitian 3 × 3 matrices with respect to the ∗-transpose superinvolution.

Then J is a linear (and hence quadratic since 1
2 ∈ Φ) Jordan superalgebra with even part A = H3(C0)

and odd part M = H3(C1). The bilinear product is given by 〈xi, yj〉 = xiyj + (−1)ijyjxi, and the

quadratic product is given by Ux0(yj) = x0yjx0. Note that since m∗ = −m, the elements of

M = H3(C1) are skew matrices, and the superalgebra J is unital with unit I =


I2 0 0

0 I2 0

0 0 I2

 .

Theorem 3. LΓ(H3(B)) = ΦId.

Proof. First, note that J = H3(B) has three orthogonal idempotents,

E1 =


I2 0 0

0 0 0

0 0 0

 , E2 =


0 0 0

0 I2 0

0 0 0

 , and E3 =


0 0 0

0 0 0

0 0 I2

 .

Let T1 ∈ LΓ1(J), and consider T1(Ei). Note that M2(Ei) = 0, since M is skew and 1
2 ∈ Φ implies

that the diagonal entries of skew elements are zero. By Lemma 6 (2), LΓ1(J) = 0.

Now A = H3(C0) is centroidal, since LΓ(H3(C0)) = LΓ(C0) = LΓ(M2(Φ)) = LΦI2 = ΦId by

(McCrimmon, 2004). Thus, Lemma 8 implies LΓ0(J) = ΦId.

5 The Small-dimensional Superalgebras

5.1 The Kaplansky Superalgebra K
(λ)
3 (Φ)

Let Φ be a ring of scalars, let A = Φe be the free module over Φ with basis e, and let M = Φx⊕Φy

be the free module over Φ with basis {x, y}. Then for λ ∈ Φ, J = K
(λ)
3 (Φ) = A ⊕M with bilinear

product given by

e2 = e, 〈e, x〉 = x, 〈e, y〉 = y, 〈x, y〉 = λe

〈e, e〉 = 2e, 〈x, x〉 = 0, 〈y, y〉 = 0

and quadratic product with Ue = Id on A and Ue = 0 on M is a quadratic Jordan superalgebra

over Φ. Details on the quadratic product and trilinear product can be found in (King, 2001). Note

that e is an idempotent, and J has Peirce decomposition J = J2 ⊕ J1 ⊕ J0 with respect to e, where

J2 = Φe = A, J1 = Φx⊕ Φy = M , and J0 = 0.

Theorem 4. LΓ
(
K

(λ)
3

)
= ΦId.
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Proof. First, e is an idempotent that satisfies the hypotheses of Lemma 6, so K3 has no odd centroid.

Let T0 ∈ LΓ0(K3). Since e is a reduced idempotent and x, y ∈ J1(e), by Lemma 5 (2), T0 = αId.

5.2 The Twisted Quaternion Superalgebra D
(λ,µ)
4 (Φ)

Let Φ be a ring of scalars with λ, µ ∈ Φ and µ 6= 0. Let A = Φe1 ⊕ Φe2 be the free module

over Φ with basis {e1, e2}, and let M = Φx⊕Φy be the free module over Φ with basis {x, y}. Then

J = D
(λ,µ)
4 (Φ) = A⊕M with bilinear product given by

e2
i = ei, 〈ei, ei〉 = 2ei, 〈e1, e2〉 = 0,

〈ei, x〉 = x, 〈ei, y〉 = y, 〈x, y〉 = λe1 + µe2 〈x, x〉 = 0 〈y, y〉 = 0

and quadratic product with

Uei(ej) = δijei, Uei = 0 on M,

Ue1,e2 = Id on M, Ue1,e2 = 0 on A

is a quadratic Jordan superalgebra over Φ. Details on the quadratic product and trilinear product

can be found in (King, 2001). Notice that as a linear space, J is isomorphic to the split quaternion

superalgebra M2(Φ)+ graded by eii via x → λe12, y → e21, but the odd product 〈x, y〉 is a twisted

λe11 + µe22 imbedding of [λe12, e21] = λe11 − λe22.

Theorem 5. LΓ
(
D

(λ,µ)
4 (Φ)

)
= ΦId.

Proof. Note that e1 is an idempotent with Peirce decomposition J2 = Φe1, J1 = M , and J0 = Φe2.

Now e1 satisfies the conditions of Lemma 6, so LΓ1(J) = 0. Let T0 ∈ LΓ0(J). Since e1 is reduced,

T0(e1) = αe1 for some α ∈ Φ. Let T ′
0 = T0 −αId ∈ LΓ0(J). Then T ′

0(e1) = 0, and by Lemma 5 (3),

T ′
0(J1) = 0. Now by Lemma 5 (4), since Z2(e1) = Z0(e1) = 0, T ′

0 = 0 on J2(e1) and J0(e1). Hence,

T ′
0(J) = 0, and T0 = αId on J .

5.3 The Kac Superalgebra K10

Let Φ be a ring of scalars, let A = Φe⊕ V ⊕Φf be the free module over Φ, where V is free with

basis B0 = {v1, v2, v3, v4, }, and let M = Φx1 ⊕ Φy1 ⊕ Φx2 ⊕ Φy2 be the free module over Φ with

basis {x1, y1, x1, y2}. Then J = K10 = A⊕M with bilinear product given by

e2 = e, f2 = f, 〈e, e〉 = 2e, 〈f, f〉 = 2f

〈e, f〉 = 0, 〈e, vi〉 = 2vi 〈f, vi〉 = 0

〈e,m〉 = m = 〈f,m〉, m ∈ M

〈v1, y1〉 = y2, 〈v1, x2〉 = x1, 〈v2, x1〉 = x2, 〈v2, y2〉 = y1,

〈v3, y1〉 = −x2, 〈v3, y2〉 = x1, 〈v4, x1〉 = y2, 〈v4, x2〉 = −y1,
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〈xi, yi〉 = e− 3f, 〈x1, x2〉 = −2v3, 〈x1, y2〉 = 2v1,

〈y1, x2〉 = −2v2, 〈y1, y2〉 = −2v4

and all other products of basis elements 〈u, w〉 = 0 is a quadratic Jordan superalgebra.

The quadratic and trilinear products on J are rather awkward to describe, and thus we will

limit our discussion to the cases needed in the following arguments. See (McCrimmon, 2006) for full

details on these products. In particular,

〈x1, y1, e〉 = e, 〈x1, y1, v1〉 = 2v1,

〈x1, y1, v4〉 = 0, and 〈x1, y1, v3〉 = 2v3.

Theorem 6. LΓ(K10) = ΦId.

Proof. First, note that the element e is an idempotent, and the Peirce decomposition with respect

to e for J = K10 is given by J2 = Φe ⊕ Φv1 ⊕ Φv2 ⊕ Φv3 ⊕ Φv4, J1 = M , and J0 = Φf . Now e

satisfies the conditions of Lemma 6, so LΓ1(J) = 0.

Let T0 ∈ LΓ0(J). Let T0(e) = αe + β1v1 + β2v2 + β3v3 + β4v4. Now, from the trilinear products

described above, we have

T0(e) = T0(〈x1, y1, e〉) = 〈x1, y1, T0(e)〉

= 〈x1, y1, αe + β1v1 + β2v2 + β3v3 + β4v4〉

= αe +
4∑

i=1

βi〈x1, y1, vi〉 = αe + 2β1v1 + 2β3v3.

Thus, αe + β1v1 + β2v2 + β3v3 + β4v4 = αe + 2β1v1 + 2β3v3, and then

0 = β1v1 − β2v2 + β3v3 − β4v4. Since the vi’s are independent, we have βi = 0 for all i, whence

T0(e) = αe.

Let T ′
0 = T0−αId ∈ LΓ0(J). Then T ′

0(e) = 0, and by Lemma 5 (3), T ′
0(J1(e)) = 0. By Lemma 5

(4), T ′
0 = 0 on J2(e) and J0(e), since

Z2(e) = {a2 ∈ J2(e) : 〈a2,M〉 = 0} and Z0(e) = {γf : 〈αf,M〉 = 0} are both zero (see (Mc-

Crimmon, 2006) for products). This gives us that T ′
0 = 0 on J , whence T0 = αId.

6 The Matrix Superalgebras

6.1 The Rectangular Matrix Superalgebra Mn,m(D), (n,m ≥ 1)

Let D be a unital associative algebra (not necessarily commutative) over its (associative) centroid

Γ(D) = Φ. For n, m ≥ 1, the matrix algebra B = Mn,m(D) := Mn+m(D) can be viewed as an

associative superalgebra with even part consisting of the diagonal matrices B0 = Mn(D)⊕Mm(D)
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and odd part consisting of the off-diagonal matrices B1 = Mn×m(D)⊕Mm×n(D). We have 1 = E11+

E00, where E11 =

 In 0

0 0

 and E00 =

 0 0

0 Im

. Then B0 = UE11(B)⊕UE00(B) = B11⊕B00,

and B1 = E11BE00 ⊕ E00BE11 = B10 ⊕B01.

View Mn,m(D) as an algebra over Φ = Γ(D). Note that Φ acts faithfully on both A and M .

Indeed, if γeij = 0 or γeij = 0 for a single matrix unit eij , then γ = 0.

Theorem 7. 1. If B is a semiprime unital associative algebra over Φ = Γ(B), and e 6= 0, 1 is

an idempotent of B, then Γ(B+
e ) = ΦId.

2. If D is semiprime over Φ = Γ(D), then LΓ(Mn,m(D)) = ΦId.

Proof. First, note that (2) is a special case of (1) since D semiprime implies B = Mn,m(D) is

semiprime. To prove (1), note that e is an idempotent that satisfies the conditions of Lemma 6, so

J = B+
e has LΓ1(J) = 0.

Next, we will show that the even elements of the centroid are just the Φ-multiplications. Let

T0 ∈ LΓ0(J). The Peirce decompositions relative to e = e1 and e0 = 1−e are J2(e1) = B11 = J0(e0),

J0(e1) = B00 = J2(e0), and J1(e1) = B10⊕B01 = J1(e0). Also, A = B11⊕B00, and M = B10⊕B01.

By Lemma 5, T0 can be written as T0 = T11 ⊕ T00 for Tii ∈ EndΦ(Bii), and by Lemma 7, Tii ∈

LΓ(B+
ii ).

Lemma 10. If B is a semiprime over its centroid Φ, then Tii = αiId for some αi ∈ Φ (i = 1, 0).

Proof. If B is semiprime, then the Bii = eiBei are semiprime as associative algebras. By (McCrim-

mon, 1999) (Corollary 3.4), since B is a unital semiprime associative algebra, LΓ(B+
ii ) = LΓ(Bii) =

LΦ, so Tii = αiEii for some αi ∈ Φ.

Now M ⊆ J1(ei), so Lemma 5 implies that T0 = α1Id = α0Id on M . Since Φ acts faithfully on

M , α1 = α0, which gives us that T0 = αId on both A and M .

6.2 The Square Matrix Superalgebra Qn(D), (n ≥ 2)

Let D be a unital associative algebra (not necessarily commutative) over its centroid Γ(D) = Φ.

For n ≥ 2, let

Qn(D) =


 a b

b a

 : a, b ∈ Mn(D)

 ∼= Mn(D)⊗ Ω0,
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where Ω0 = Φ10 ⊕ Φω1 and ω1
2 = 10 for 10 =

 1 0

0 1

 and ω1 =

 0 1

1 0

. Then Qn(D) is a

subsuperalgebra of Mn,n(D) with even part

A =


 a 0

0 a

 : a ∈ Mn(D)

 ∼= Mn(D)+ ∼= Mn(D)+ ⊗ Φ10

and odd part

M =

b =

 0 b

b 0

 = bω1 : b ∈ Mn(D)

 ∼= Mn(D)− ∼= Mn(D)+ ⊗ ω1.

We will identify both A and M with Mn(D). Then A is spanned by {αeij : 1 ≤ i, j ≤ n, α ∈ D}

and M is spanned by {βeij : 1 ≤ i, j ≤ n, β ∈ D}.

The quadratic product on Qn(D) is given by

Ua(b) = aba Ua(b) = aba,

the bilinear product on Qn(D) is given by

〈a, b〉 = a ◦ b = ab + ba, 〈a, b〉 = a ◦ b = ab + ba, 〈a, b〉 = [a, b] = ab− ba,

and the trilinear product is given by

〈a, b, c〉 = abc + cba

〈a, b, c〉 = 〈a, b, c〉 = 〈a, b, c〉 = abc + cba

〈a, b, c〉 = 〈a, b, c〉 = 〈a, b, c〉 = abc− cba

〈a, b, c〉 = abc− cba.

View Qn(D) as an algebra over Φ = Γ(D). As in Mn,m(D), Φ acts faithfully on both A and M ,

and if γeij = 0 or γeij = 0 for a single matrix unit eij , then γ = 0.

Theorem 8. If Φ = Γ(D) is semiprime (e.g., if D is semiprime), then for n ≥ 2, Γ(Qn(D)) = ΦId.

Proof. First, we will show that there is no odd centroid for J = Qn(D). Let T1 ∈ Γ1(J ). Then

M2(eii) = Deii, A2(eii) = Deii, T1(eii) = T1(Ueii
(eii)) = Ueii

(T1(eii)) = γiieii for some γii ∈ D,

and T1(eii) = Ueii
T1(eii) = δii for some δii ∈ D. Now for i 6= j and any α ∈ D,

αeij = 〈αeij , ejj〉 = 〈eii, αeij〉 = 〈eii, αeij〉

implies

T1(αeij) = 〈αeij , γjjejj〉 = 〈γiieii, αeij〉 = 〈δiieii, αeij〉

= αγjjeij = γiiαeij = δiiαeij .
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Thus, αγjj = γiiα = δiiα, and in particular, if α = 1, then γjj = γii = δii, and all have a common

value γ = γjj = γii = δii. Now αγ = γα for all α ∈ D implies that γ ∈ Γ(D).

By (QΓ3), 0 = UT1(eii)(eii) = Uγeii
(eii) = γ2eii, so γ2 = 0. Since γ ∈ Φ = Γ(D) and Φ is

semiprime, γ = 0. Now T1(αijeij) = T1(〈αijeij , ejj〉) = 0, and T1(αijeij) = T1(〈αijeij , ejj〉) = 0, so

T1 = 0. This shows that T1(J) = 0.

Let T0 ∈ Γ0(J ). Recall that A ∼= Mn(D)+. By Lemma 7, T0|A ∈ Γ(Mn(D)+). Then by

(McCrimmon, 1999) (Corollary 3.4), since D is semiprime over Φ, T0|A = σId for some σ ∈ Φ.

Let T ′
0 = T0 − σId ∈ Γ0(J ), so T ′

0(A) = 0. Since M is spanned by all αeij = 〈eii, αeij〉 and

αeii = Ueii(〈eij , αeji〉), Lemma 5 (2) implies that T ′
0 = 0, whence T0 = σId.

Remark 1. If we do not demand that T 2
1 = 0 or UT1(b)

= 0 for T1 ∈ Γ1(J ), then T1 = Lγω1 with

2γ = 0 would be an odd element of the centroid.

6.3 The Orthogonal Matrix Superalgebra Pn(D,D0), n ≥ 2

Let D be a unital associative ring with involution ∗ and D0 an ample subspace. Then ? :

Mn(D) → Mn(D) given by a? = (a∗)t is an involution. For n ≥ 2, let Pn(D,D0) denote the follow-

ing subsuperalgebra of Mn,n(D):

Pn(D,D0) =


 a s

h a?

 : a ∈ Mn(D), s ∈ Sn(D) is alternating, h ∈ Hn(D,D0)

 .

Here, s alternating means s = sk(u) = u − u? for some u ∈ Mn(D). Now Sn(D) is spanned by all

αsij := αeij − α?eji for α ∈ D and i 6= j and all αsii := (α − α?)eii for α ∈ D, and Hn(D,D0) is

spanned by all αhij := αeij + α?eji for α ∈ D and i 6= j and all γhii := γeii for γ ∈ D0.

Define ] : Mn,n(D) → Mn,n(D) by a b

c d

]

=

 d? −b?

c? a?

 .

Proposition 1. ] is a superinvolution on Mn,n(D).

Proof. Clearly, B]] = B for all B ∈ Mn,n(D), so ] is of period 2. It remains to show that (BiCj)] =

(−1)ijC]
jB

]
i for all Bi ∈ Mn,n(D)i and Cj ∈ Mn,n(D)j . First, a b

c d

 a′ b′

c′ d′

]

=

 aa′ + bc′ ab′ + bd′

ca′ + dc′ cb′ + dd′

]

=

 b′?c? + d′?d? −b′?a? − d′?b?

a′?c? + c′?d? a′?a? + c′?b?

 , and
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 a′ b′

c′ d′

] a b

c d

]

=

 d′? −b′?

c′? a′?

 d? −b?

c? a?


=

 d′?d? − b′?c? −d′?b? − b′?a?

c′?d? + a′?c? −c′?b? + a′?a?

 .

If either element is even, then b? and c? or b′? and c′? are zero, whence the expressions above are

equal. On the other hand, if both elements are odd, then a?, d?, a′?, and d′? are all zero, and 0 b

c 0

 0 b′

c′ 0

]

= −

 0 b′

c′ 0

] 0 b

c 0

]

=

 −b′?c? 0

0 −c′?b?

 .

Thus, ] is a superinvolution.

Then Pn(D,D0) is an ample outer ideal in the superalgebra of hermitian elements with respect

to the superinvolution ]; it is a superalgebra with even part A = {(a, a?t) : a ∈ Mn(D)} ∼= Mn(D)+

and odd part M = Sn(D) ⊕Hn(D,D0). Since A ∼= Mn(D)+, we will identify (a, a?t) with a. For

a, b, c ∈ A, s, s′, s′′ ∈ Sn(D), and h, h′, h′′ ∈ Hn(D,D0), the bilinear product is given by

〈a, b〉 = ab + ba

〈a, s⊕ h〉 = as + sa? ⊕ a?h + ha

〈s⊕ h, s′ ⊕ h′〉 = sh′ − s′h.

The triple product on Pn(D) is given by

〈a, b, c〉 = abc + cba

〈a, b, s⊕ h〉 = abs + sa′?a? ⊕ a?a′?h + hba

〈a, s⊕ h, b〉 = asa′? + bsa? ⊕ a?hb + a′?ha

〈a, s⊕ h, s′ ⊕ h′〉 = ash′ − s′ha

〈s⊕ h, a, s′ ⊕ h′〉 = sah′ − s′a?h

〈s⊕ h, s′ ⊕ h′, s′′ ⊕ h′′〉 = sh′s′′ − s′′h′s⊕ hs′h′′ − h′′s′h.

Finally, the quadratic product is given by

Ua

(
b⊕ (s⊕ h)

)
= aba⊕ (asa? ⊕ a?ha).

Note that for any skew s, t, the following are still alternating:

as + sa? = sk(as) asb? + bsa? = sk(asb?)

sht− ths = sk(sht) a(sk(u))a? = sk(aua?).
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Also, the following remain in D0 by ampleness:

a?b?h + hba = tr(hba), a?ha,

a?hb + b?ha = tr(a?hb), a?h + ha,

hsh′ − h′sh = tr(hsh′).

Thus, the products above produce the appropriate homogeneous elements.

Theorem 9. If n ≥ 2 and D is semiprime, then LΓ(Pn(D,D0)) = ΦId for Φ = Γ(D).

Proof. Let J = Pn(D,D0) and T1 ∈ LΓ1(J). First, we will show that T1(In) = 0.

Lemma 11. T1(In) = 0.

Proof. Note that, since T1(a) is an odd element for any a ∈ A, there exist functions S : A → Sn(D)

and H : A → Hn(D,D0) such that T1(a) = S(a) ⊕H(a) for all a ∈ A. Let S(eii) = (σkl), and let

H(eii) = (αkl) with αii ∈ D0.

Then T1(eii) = T1(Ueii
(eii)) = Ueii

(T1(eii)) = Ueii

(
S(eii)⊕H(eii)

)
= σiieii ⊕ αiieii.

Since n ≥ 2, there exists j 6= i. Then

0 = T1(〈ejj , eji〉)− T1(〈eji, eii〉) = 〈T1(ejj), eji〉 − 〈eji, T (eii)〉

= 〈σjjejj ⊕ αjjejj , eji〉 − 〈eji, σiieii ⊕ αiieii〉

= σjj(ejiejj + ejjeij)⊕ αjj(eijejj + ejjeji)− σii(ejieii + eiieij)⊕ αii(eijeii + eiieji)

= αjj(eij + eji)− σii(eji + eij).

Hence, σii(eji + eij) = 0, αjj(eij + eji), so σii = 0 = αjj for all i, j, and T1(eii) = T1(eji) = 0,

so T1(In) = 0.

Lemma 12. T1(M) = 0.

Proof. We will show that for any m = sn ⊕ hn, T1(m) = 0. Let a ∈ A and m ∈ M , and let

T1(m) = (τij) (recall that this is really (τij)⊕ (τ∗ji)). Since T1(In) = 0,

0 = 〈a, T1(In),m〉 = 〈a, In, T1(m〉 = aT1(m) + T1(m)a.

This says that for any a ∈ A, −aT1(m) = T1(m)a. Then for i 6= j, τijeij = eiiT1(m)ejj =

−T1(m)eiiejj = 0. Thus, τij = 0 for i 6= j, whence

T1(m) = diag(τ11, τ22, . . . τnn)
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is a diagonal matrix.

The above argument says that for any odd m ∈ M , T1(m) is a diagonal matrix. Then for i 6= j

and m as above, 〈m, eij〉 is odd, so T1(〈m, eij〉) must be diagonal. However,

T1(〈m, eij〉) = 〈T1(m), eij〉〈diag(τ11, τ22, . . . τnn), eij〉 = (τii + τjj)eij ,

and these are not all diagonal unless τii = −τjj for all i 6= j.

For α ∈ D0, αhii ∈ Hn(D,D0). Let T1(αhii) = diag(ρ1, ρ2, . . . ρn). Note that Ueii(αhii) = αhii,

so by Lemma 5, T1(αhii) = ρieii, which gives us that ρj = 0 for j 6= i. However, we have already

shown above that ρi = −ρj for i 6= j and n > 1, whence ρi = 0 and T1(αhii) = 0. Also note that

Ueii(βsii) = βsii, so a similar argument yields that T1(βsii) = 0.

Now for m = sn ⊕ hn as above, let sn = (βkl) and hn = (αkl). Then

τiieii = Ueii
T1(m) = T1(Ueii

(m))

= T1(Ueii
((sn, hn))) = T1(βiisii) + T1(αiihii) = 0.

Thus, 0 = τii = −τjj for each i, and then T1(m) = diag(τ11, τ22, . . . , τnn) = 0.

Lemma 13. A ⊂M(h11).

Proof. Recall that hii = eii ∈ Hn(D,D0) and sij = eij − eji ∈ Sn(D). We will show that the

spanning set for A is contained in M(h11). First, for j 6= 1, 〈h11, αs1j〉 = αej1, so αej1 ∈ M(h11).

Now 〈αej1, e1j〉 = αe11 + αejj , and applying Ue11 and Uejj
, we get αe11 and αejj , respectively, in

M(h11). Then 〈αe11, e1j〉 = αe1j ∈ M(h11), and if j 6= k and j, k 6= 1, by the above, 〈αej1, e1k〉 =

αejk ∈M(h11). Thus, the spanning set for A is contained in M(h11), whence A ⊂M(h11).

Since T1(h11) = 0, Lemma 4 gives us that T1(A) = 0 as well. Hence, in view of Lemma 12,

T1(J) = 0.

We now know that LΓ1(J) = 0, so consider T0 ∈ LΓ0(J). Note that T0|A ∈ LΓ(Mn(D)+) =

LΓ(Mn(D)) = {LαIn : α ∈ Φ} = ΦId by Lemma 10. Therefore, there exists α ∈ Γ(D) such that

T0|A = αId. Let T ′
0 = T0 − αId. Then T ′

0 ∈ LΓ0(J) has T ′
0|A = 0.

We will show that T ′
0 = 0 on the spanning set for M . Note that eii ∈ A is an idempotent such

that for i 6= j, {βsij : β ∈ D} ∪ {γhij : γ ∈ D} ⊂ J1(eii). Then by Lemma 5, since T ′
0(eii) = 0,

T ′
0(βsij) = 0 = T ′

0(γhij) for all β, γ ∈ D and i 6= j. It remains to show that T ′
0(βsii) = 0 = T ′

0(γhii)

for β ∈ D and γ ∈ D0.

Since the kernel of T ′
0 is an outer ideal of J which contains A and Dsij , Dhij for i 6= j, it also

contains 〈eji, βsij〉 = 〈eji, βeij − β∗eji〉 = (β − β∗)ejj = βsjj .
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Note that Ueii
(γhii) = γhii. Then

T ′
0(γhii) = T ′

0(Ueii(γhii)) = Ueii(T
′
0(γhii)) = β′sii ⊕ γ′hii, and

0 = 〈T ′
0(eij), γhij〉 = 〈eij , T

′
0(γhij)〉 = 〈eij , (β′ − β′∗)eii ⊕ γ′eii〉

= γ′(eji + eij).

Hence, γ′ = 0. Similarly,

0 = 〈T ′
0(eji), γhij〉 = 〈eji, T

′
0(γhij)〉 = 〈eji, (β′ − β′∗)eii ⊕ γ′eii〉

= (β′ − β′∗)(eji + eij).

Hence, β′ = β′∗. Then β′sii = 0, whence T ′
0(γhii) = 0 for all i. This gives us that T ′

0|M = 0, so

T0|M = αId as well.

6.4 The Orthosymplectic Superalgebra OSpn,2m(Φ)

Let Φ be a (commutative) ring of scalars. For n, m > 0, let ∗ : Mn,2m(Φ) → Mn,2m(Φ) be given

by  an bn×2m

c2m×n d2m

∗

=

 In 0

0 S2m

 at
n −ct

2m×n

bt
n×2m dt

2m

 In 0

0 S2m

−1

=

 at
n −ct

2m×nS−1
2m

S2mbt
n×2m S2mdt

2mS−1
2m



where S2m =

 0 Im

−Im 0

 .

Lemma 14. ∗ is a superinvolution.

Proof. Throughout, b, b′ ∈ Mn×2m(Φ), c, c′ ∈ M2m×n(Φ), a, a′ ∈ Mn(Φ), d, d′ ∈ M2m(Φ), and

S = S2m. First, ∗ is of period 2, since a b

c d

∗∗

=

 at −ctS−1

Sbt SdtS−1

∗

=

 a −(Sbt)tS−1

S(−ctS)t S(SdtS−1)tS−1


=

 a bI2m

I2mc −I2md(−I2m)

 =

 a b

c d

 .
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Now  a b

c d

 a′ b′

c′ d′

∗ =

 aa′ + bc′ ab′ + bd′

ca′ + dc′ cb′ + dd′

∗

=

 a′tat + c′tb′ −(a′tct + c′tdt)S−1

S(b′tat + d′tbt) S(b′tct + d′tdt)S−1

 ,

and  a′ b′

c′ d′

∗ a b

c d

∗

=

 a′t −c′tS−1

Sb′t Sd′tS−1

 at −ctS−1

Sbt SdtS−1


=

 a′tat − c′tS−1Sbt −a′tctS−1 − c′tS−1SdtS−1

Sb′tat + Sd′tS−1Sbt −Sb′tctS−1 + Sd′tS−1SdtS−1


=

 a′tat − c′tbt −(a′tct + c′tdt)S−1

S(b′tat + d′tbt) S(−b′tct + d′tdt)S−1

 .

If at least one element is even, b = c = 0 or b′ = c′ = 0, so the expressions above are equal. If both

are odd, then a = d = 0 and a′ = d′ = 0, and 0 b

c 0

 0 b′

c′ 0

∗ = −

 0 b′

c′ 0

∗ 0 b

c 0

∗

.

Thus, (xiyj)∗ = (−1)ijy∗j x∗i , whence ∗ is a superinvolution.

Let J = OSpn,2m(Φ) denote the hermitian elements with respect to this superinvolution. Then

J is a subsuperalgebra of Mn,2m(Φ) with even part A ∼= Hn(Φ) ⊕ R, where R = {d ∈ M2m(Φ) :

SdtS−1 = d}. Throughout, for 1 ≤ k, l ≤ m, let k′ = k + m and l′ = l + m. Here, R is spanned by

the following elements:

rkl = rk′l′ = 0⊕ (ekl + el′k′), rkl′ = 0⊕ (ekl′ − elk′), rk′l = 0⊕ (ek′l − el′k).

The odd part isbn×2m =

 0 bn×2m

S2mbt
n×2m 0

 : bn×2m ∈ Mn×2m(Φ)

 ∼= Mn×2m(Φ).

The quadratic product on J is given by

Uh⊕r(h′ ⊕ r′) = hh′h⊕ rr′r

Uh⊕r(b) = hbr,
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the bilinear product is given by

〈h⊕ r, h′ ⊕ r′〉 = (hh′ + h′h)⊕ (rr′ + r′r)

〈b, c〉 = (bSct − cSbt)⊕ (Sbtc− Sctb)

〈h⊕ r, b〉 = hb + br,

and the trilinear product is given by

〈h⊕ r, h′ ⊕ r′, h′′ ⊕ r′′〉 = (hh′h′′ + h′′h′h)⊕ (rr′r′′ + r′′r′r)

〈h⊕ r, h′ ⊕ r′, b〉 = hh′b + br′r

〈h⊕ r, b, h′ ⊕ r′〉 = hbr′ + h′br

〈h⊕ r, b, c〉 = (hbSct − cSbth)⊕ (rSbtc− Sctbr)

〈b, h⊕ r, c〉 = (bhSct − crSbt)⊕ (Sbthc− Scthb)

〈b, c, d〉 = bSctd− dSctb

Theorem 10. LΓ(OSpn,2m(Φ)) = Φ Id.

Proof. Let J = OSp2,2m(Φ) and T1 ∈ LΓ1(J). First, note that as in Mn,2m(Φ), J contains the

idempotent e = In ⊕ 0, which satisfies the conditions of Lemma 6, so T1 = 0.

Let T0 ∈ LΓ0(J). By Lemma 5, T0 : Hn(Φ) → Hn(Φ), and by Lemma 7, T0|Hn(Φ) ∈ LΓ(Hn(Φ)).

By Lemma 9, T0 is multiplication by some α ∈ Φ on Hn(Φ). Let T ′
0 = T0 − αId ∈ LΓ0(J). Now

M = J1(e) for e = In ⊕ 0, so T ′
0 = 0 on M by Lemma 5. Finally, note that J0 = (R), and

suppose that r ∈ Z0 = {r ∈ R : 〈r, J1〉 = 0}. Then 〈r, B〉 = Br = 0 for any B ∈ Mn,2m(Φ). Let

r =
∑2m

i,j=1 ρijEij . Then

0 = E1krEt
1l = E1k

 2m∑
i,j=1

ρijEij

Et
1l = ρklE11 = 0,

whence ρkl = 0 for all k, l = 1 . . . 2m. Hence, r = 0, so Z0 = 0. By Lemma 5, T ′
0(R) = 0 as well,

whence T0 = αId on all of J .

7 Quadratic Form Superalgebras

Suppose J = A ⊕ M is a superspace over a ring of scalars Φ equipped with a quadratic form

Q : A → Φ and an alternating bilinear form B1 : M×M → Φ. Throughout, assume Φ acts faithfully

on J . Let B0 be the bilinear form associated with Q, given by

B0(x0, y0) = Q(x0 + y0)−Q(x0)−Q(y0).
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Then the bilinear form B = B0 ⊕B1, where B(A,M) = 0, is a supersymmetric bilinear form on J .

Suppose J has a basepoint 10 ∈ A such that Q(10) = 1. Define an involution − : J → J by

yj = tr(yj)10 − yj , where tr(yj) := B(yj , 10). Note that since A ⊥ M , tr(M) = 0, whence y1 = −y1

for all y1 ∈ M . The superspace J = J(Q,B1, 10) can be turned into a unital quadratic Jordan

superalgebra, called the superalgebra of the superform, by defining the following products:

Ux0(yi) = B(x0, yi)x0 −Q(x0)yj , Ux0(y1) = Q(x0)y1

〈xi, yj〉 = tr(xi)yj + (−1)ijtr(yj)xi −B(xi, yj)10

〈xi, yj , zk〉 = B(xi, yj)zk + (−1)ij+jk+kiB(zk, yj)xi − (−1)jkB(xi, zk)yj .

Since A ⊥ M and tr(M) = 0, these products often become much simpler, depending on the

combination of even and odd elements. In particular,

〈x0, y0〉 = tr(x0)y0 + tr(y0)x0 −B0(x0, y0)10

〈x0, y1〉 = tr(x0)y1

〈y1, x0〉 = tr(x0)y1

〈x1, y1〉 = −B1(x1, y1)10.

Note that the bilinear product 〈M,M〉 is alternating.

〈x0, y0, z0〉 = B0(x0, y0)z0 + B0(z0, y0)x0 −B0(x0, z0)y0

〈x1, y0, z0〉 = B0(z0, y0)x1

〈z0, y0, x1〉 = B0(z0, y0)x1

〈x0, y1, z0〉 = B0(x0, z0)y1

〈x1, y1, z0〉 = −B1(x1, y1)z0

〈z0, y1, x1〉 = B1(x1, y1)z0

〈x1, y0, z1〉 = −B1(x1, z1)y0

〈x1, y1, z1〉 = −B1(x1, y1)z1 + B1(z1, y1)x1 −B1(x1, z1)y1.

Again, note that the trilinear products 〈M,M, J〉, 〈M,J,M〉, 〈J,M,M〉, and 〈M,M,M〉 are alter-

nating in the variables from M .

What is the centroid Γ(J)? Since we think of the elements of the centroid as “superscalars,”

it is reasonable to conjecture that they interact like superscalars with the bilinear form B and the

quadratic form Q. The following results will show that this is true under mild assumptions about

the superalgebra.
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Definition 6. For B = B0 ⊕ B1, the centroid of (Q,B), Γ(Q,B), is the set of homogeneous

degree-zero transformations T = TA ⊕ TM ∈ EndΦ(J) such that the following hold for all x, y, z ∈ J

and w ∈ A:

B(x, y)T (z) = B(T (x), y)z = B(x, T (y))z

Q(T (w))y = Q(w)T 2(y).

Definition 7. Let β : V × V → Φ be a bilinear form and W a Φ-module. We say β is

(i) full-valued1 if 1 ∈ Φ is contained in the ideal generated by β(V, V );

(ii) cancellable-valued on W if β(u, v) is cancellable on W for some u, v, so

β(u, v)w = 0 for w ∈ W implies w=0;

(iii) alternatingly cancellable on W if
⋃

v∈V

β(V, v)β(V, v) is cancellable on W , so

β(u, v)β(u′, v)w = 0 for all u, e′, v ∈ V implies w = 0;

(iv) cancellable on W if β(V, V ) is cancellable on W , so

β(u, v)w = 0 for all u, v ∈ V implies w = 0.

Lemma 15. For a bilinear form β : V × V → Φ,

1. If β is (i) full-valued or (ii) cancellable-valued on W , then (iii) β is alternatingly cancellable

on W , which implies that (iv) β is cancellable on W .

2. If W is a faithful Φ-module, so αW = 0 implies α = 0, then (iii) β is alternatingly cancellable

or (iv) β is cancellable on W implies (v) β is alternatingly cancellable or cancellable on Φ,

which implies (vi) V is torsion-free, so αV = 0 for α ∈ Φ implies α = 0.

Proof. 1. Suppose (i) holds, so 1 =
n∑

i=1

β(ui, vi) for ui, vi ∈ V . For any k,

1 = 1n(k−1)+1 =

(
n∑

i=1

β(ui, vi)

)n(k−1)+1

∈
n∑

i=1

Φβ(ui, vi)k

by the Pigeonhole Principle, since in each monomial of length n(k − 1) + 1, the n different

β(ui, vi) can’t all appear less than k − 1 times, so one must appear k times. Suppose w ∈ V

has β(V, v)β(V, v)w = 0 for all v ∈ V . Then β(ui, vi)2w = 0 for all i, and

w = 1w ∈
n∑

i=1

Φβ(ui, vi)2w = 0.

1Thanks to Ottmar Loos for suggesting the full-valued case.
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Hence, β is alternatingly cancellable on W .

Suppose (ii) holds, so there exist u, v ∈ V such that β(u, v) is cancellable on W . Then

β(V, v)β(V, v)w = 0 implies β(u, v)β(u, v)w = 0, which implies w = 0 since β(u, v) is can-

cellable. Hence, β is alternatingly cancellable on W .

Suppose (iii) holds, and suppose w ∈ V has β(V, V )w = 0. Then

β(V, v)β(V, v)w = 0 for any v, which implies w = 0 since β is alternatingly cancellable on W .

Hence, β is also cancellable on W .

2. Suppose (iii) or (iv) holds, and let S(V, V ) =
⋃

v∈V β(V, v)β(V, v) or S(V, V ) = β(V, V ),

respectively. If Sα = 0, then S(αw) = 0. Thus, αw is killed by all β(V, v)β(V, v) or β(V, V ),

whence αW = 0 by (iii) or (iv) on W . Since W is a faithful Φ-module, α = 0, and hence (v)

β is alternatingly faithful on Φ.

Suppose (v) holds, and suppose αV = 0. Then 0 = S(V, αV ) = S(V, V )α, so α = 0 by (v).

Hence, (vi) V is torsion-free.

Remark 2. If B0 is cancellable on A = J0 or B1 is cancellable on M = J1, then Γ(Q, B) is a

commutative ring of scalars by the usual hiding trick:

Bi(ui, vi)TS(z) = Bi(T (ui), vi)S(z) = Bi(T (ui), S(vi))z

= Bi(ui, S(vi))T (z) = Bi(ui, vi)ST (z),

so Bi(Ji, Ji)[TS(z)− ST (z)] = 0, whence TS = ST since Bi is cancellable on Ji.

Inspecting the product rules, it is clear that we can view the superalgebra J(Q,B1, 10) as an

algebra over Φ′ = Γ(Q,B).

Theorem 11. If J = J(Q, B1, 10), where B0 and B1 are cancellable on J and B1 is alternat-

ingly cancellable on M , then the centroid of J is just the centroid of the quadratic form (Q,B), so

Γ(J(Q,B1, 10)) = Γ(Q,B) = Φ′.

Proof. Since B0 and B1 are faithful, we know J is an algebra over Φ′. We will show Γ1(J) = 0 and

Γ0(J) = Φ′.

Lemma 16. If B0 is cancellable on A and B1 is alternatingly cancellable on M , then J has no odd

centroid, so Γ1(J) = 0.

Proof. Let T1 ∈ Γ1(J). Then for all vj ∈ Jj , we have

1. B1(z1, y1)T1(z1) = 0;
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2. B0(z0, y0)T1(x1) = B1(x1, T1(y0))z0;

3. B1(z1, y1)T1(x0) = −B0(x0, T1(z1))y1;

4. B1(z1, w1)B1(z1, y1)B1(x1, T1(x0)) = 0.

First, (1) follows since 0 = T1(〈z1, y1, z1〉) = 〈T1(z1), y1, z1〉 = B1(z1, y1)T1(z1). Next, T1(〈z0, y0, x1〉) =

〈z0, T1(y0), x1, so (2) holds, and (3) follows from

T1(〈x0, y1, z1〉) = −〈x0, y1, T1(z1)〉. Applying B1(z1, w1)B1(x1, ·) to (3), we obtain

B1(z1, w1)B1(z1, y1)B1(x1, T1(x0)) = B1(z1, w1)B1(x1, [B1(z1, y1)T1(x0)])

= B1(z1, w1)B1(x1, [−B0(x0, T1(z1))y1])

= −B1(x1, y1)B1(z1, w1)B0(x0, T1(z1))

= −B1(x1, y1)B0(x0, [B1(z1, w1)T1(z1)])

= 0 by (1).

Since B1 is alternatingly cancellable on Φ, (4) implies that B1(x1, T1(x0)) = 0 for all x1, x0, so by

(2), B0(z0, y0)T1(x1) = 0 for all z0, y0, x1. Now B0(A,A)T1(x1) = 0, so T1(x1) = 0 since B0 is

cancellable on A. Thus, T1(M) = 0, and by (3), B1(M,M)T1(A) = 0. Since B1 is cancellable on

M , T1(A) = 0. Hence, T1 = 0 on J = A⊕M .

Lemma 17. Suppose B0 and B1 are cancellable on J . Then if T0 ∈ Γ0(J),

Bi(T0(xi), yi) = Bi(xi, T0(yi)),

so T0 “hops” inside Bi. Additionally, Bi(T0(xi), yi)zk = Bi(xi, yi)T0(zk) for k 6= i, so T0 hops out

of Bi onto z1−i.

Proof. If i = j = 0,

B0(T0(x0), y0)z1 = 〈T0(x0), z1, y0〉

= 〈x0, z1, T0(y0)〉 = B0(x0, T0(y0))z1

= 〈x0, T0(z1), y0〉 = B0(x0, y0)T0(z1).

Then B0(T0(x0), y0)z1 − B0(x0, y0)T0(z1) = 0, so T0 always hops out of B0 onto any z1. We also

have
[
B0(T0(x0), y0)−B0(x0, T0(y0))

]
z1 = 0 for any z1 ∈ M . Since B0 is cancellable on J , Lemma

15 (vi) gives us that B0(T0(x0), y0)−B0(x0, T0(y0)) = 0.
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If i = j = 1,

B1(T0(x1), y1)z0 = 〈z0, y1, T0(x1)〉

= 〈z0, T0(y1), x1〉 = B1(x1, T0(y1))z0

= 〈T0(z0), y1, x1〉 = B1(x1, y1)T0(z0).

Then B1(T0(x1), y1)z0−B1(x1, y1)T0(z0) = 0, so T0 hops out of B1 onto any z0. Also,
[
B1(T0(x1), y1)−

B1(x1, T0(y1))
]
z0 = 0 for any z0 ∈ A. Since B1 is cancellable on J , Lemma 15 (vi) gives us that

B1(T0(x1), y1)−B1(x1, T0(y1)) = 0.

Note that Lemma 17 states that the elements of the centroid not only act as superscalars within

products, but also within the bilinear form.

We would also expect a superscalar to be able to move from inside the bilinear form to outside

the bilinear form. In other words, we would like T to “hop” into the bilinear form. Under what

conditions is B(xi, yj)Tl(zk) = B(Tl(xi), yj)zk? It is clearly true for l = 1 since all odd elements

of the centroid are identically zero. Thus, we will restrict our study of this concept to the more

interesting case of even elements T0.

First, note that since A ⊥ M , if i 6= j, then B(xi, yj)T0(zk) = 0 = B(T0(xi), yj)zk. By Lemma

17, all that remains is the case when i = j = k.

Lemma 18. If B0 and B1 are cancellable on J , then T0 ∈ Γ0(J) hops out of B onto like elements;

i.e.,

Bi(T0(xi), yi)zi = Bi(xi, yi)T0(zi) for i = 0, 1.

Proof. If i 6= j, Lemma 17 gives us that

βjT0(xi) := Bj(yj , zj)T0(xi) = Bj(T0(yj), zj)xi =: β′jxi.

Set ∆i := Bi(xi, yi)(β′j)−Bi(T0(xi), yi)zi ∈ Ji. Then

βj∆i = Bi(xi, yi)(β′jzi)−Bi(β′jxi, yi)zi

= β′j [Bi(xi, yi)zi −Bi(xi, yi)zi] = 0.

Thus, Bj(Ji, Ji)∆i = 0, and since Bj is cancellable on Ji, we have ∆i = 0 for i = 0, 1, whence

Bi(T0(xi), yi)zi = Bi(xi, yi)T0(zi).
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Lemma 19. If B1 is cancellable on J , Q(T0(x0))y0 = Q(x0)T 2
0 (y0).

Proof. Since T0 ∈ Γ(J), UT0(x0)(y0) = T 2
0 (Ux0(y0)). Expanding these products, we get

B0(T0(x0), y0)T0(x0)−Q(T0(x0))y0 = B0(x0, y0)T 2
0 (x0)−Q(x0)T 2

0 (y0).

Then

Q(T0(x0))y0 −Q(x0)T 2
0 (y0) = B0(T0(x0), y0)T0(x0)−B0(x0, y0)T0(T0(x0))

= B0(T0(T0(x0)), y0)x0 −B0(T0(T0(x0)), y0)x0 by Lemma 18

= 0.

Hence, Q(T0(x0))y0 = Q(x0)T 2
0 (y0).

Lemma 20. For any x0 ∈ A and any y1 ∈ M ,

Q(T0(x0))y1 = Q(x0)T 2
0 (y1).

Proof. Recall that UT0(x0)(y1) = T 2
0 (Ux0(y1)). Thus, Q(T0(x0))y1 = Q(x0)T 2

0 (y1).

Hence, we have shown that Γ(J(Q,B1, 10)) = Γ(Q,B) = Φ′.

Remark 3. If B1 is cancellable on J , the above results state that T0 ∈ Γ0(J) is almost a scalar. If

β = B1(u1, v1) is a cancellable scalar, let

Φ̃ = Φ < β−1 >=
{ ϕ

βn
: ϕ ∈ Φ, n ∈ N

}
,

so Φ̃ is the usual “localization of Φ at β.” Then B0(T0(u1), v1)Id = B1(u1, v1)T0 by Lemma ??, so

T0 = β−1B1(T0(u1), v1)Id ∈ Φ̃Id.

In other words, βT0 ∈ ΦId for all T0 ∈ Γ0(J).

8 Conclusion

This evidence leads to the conclusion that the natural concept of scalars in a Jordan superalgebra

should be the usual notion of scalars rather than superscalars. We adopt as the correct notion of

centroid for a Jordan superalgebra the set Γ0(J), when Γ0(J) is supercommutative. In this case, the

centroid is a commutative, associative ring of scalars, and J is a Γ0(J)-superalgebra via Definitions

4 and 5.
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