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Abstract

The centroid of a Jordan superalgebra consists of the natural “superscalar multiplications”
on the superalgebra. A philosophical question is whether the natural concept of “scalar” in the
category of superalgebras should be that of superscalars or ordinary scalars. Basic examples of
Jordan superalgebras are the simple Jordan superalgebras with semisimple even part, which were
classified over an algebraically closed field of characteristic # 2 by M. Racine and E. Zelmanov.
Here, we determine the centroids of the analogues of these superalgebras over general rings of
scalars and show that they have no odd centroid, suggesting that ordinary scalars are the proper

concept.

1 Jordan Superalgebras

Throughout, ® will be an arbitrary ring of scalars; i.e. a commutative, associative, unital ring.
In particular, we do not assume % € ®, and so we work with quadratic Jordan algebras and super-

algebras.

Definition 1. A ®-superalgebra is a Zy-graded algebra B = By ® By, where B;B; C B;y;. Here,
By is called the even part of B, and By is called the odd part of B. Then Endg(B) is graded by
EO = EOO + E11 = End(Bo) D End(Bl) and El = E01 + ElO = HOm(B(),Bl) D HOm(Bl,Bo). A

homogeneous transformation T; € E; satisfies Ti(B;) C Bjt.

An associative superalgebra is just a Zs-graded associative algebra B = By ® By, where

BiBj - Bi+j-

For example, if D is any associative ®-algebra, then B = M,, 1., (D) is an associative superalgebra

M, (D) 0 0 My xm(D)
graded by By = and By = . More generally,



any idempotent e in a unital associative algebra B gives rise to a graded algebra B, with By =
B11 © By and By = B1g © Bg1, where B;; = e;Bej for ey =eand eg = 1 —e.
A very important class of superalgebras is that of superscalars, the super-analogue of a scalar

ring.

Definition 2. A ®-algebra of superscalars is a unital associative ®-superalgebra S = Sy ® S1

which is supercommutative, so for all x; € S;, y; € Sj,
ziy; = (=1)"y; - and ri = 0.

The quintessential example of superscalars is the Grassmann algebra G = Gy @ G1, the exterior
algebra A(V') on a free module V' of countably-infinite dimension. The requirement that odd su-
perscalars square to zero is not universally accepted. Notice that if % € &, then z1 -y1 = —y1 - 11
implies 22 = 0, but over a general scalar ring, we demand that 2 = 0 (just as the true analogue of

a skew-symmetric bilinear form for general scalars is an alternating bilinear form.

Definition 3. A linear Jordan superalgebra is a superalgebra J = A®M , where A is an ordinary
Jordan algebra and M is an A-bimodule, such that J has a bilinear product {-,-) : J x J — J that
satisfies the following identities:
(i,y;) = (=) (yj,z:)  and S (DR, ), a0, 2] =0,
eyelic (z1,y5,2x)

where [a, b, c] = ({a,b), c) — {(a, (b, c)) is the usual associator on J.

A quadratic Jordan superalgebra is a Jordan superalgebra equipped with a bilinear product
(Ji, J;) C Jitj, a trilinear product (J;, Jj, Jx) C Jiyjtk, a squaring operator 2 : Jo — Jo, and
quadratic operators Uy, : J; — J; such that the Grassmann envelope G(J) = Jo ® Go +J1 @ Gy is a

quadratic Jordan algebra under the following products:

Usoro (45 ©115) = Uso (y;) @ 25n; (z0 ®70)* = a5 ® 5
Uz,@v (Y5 ®15) =0 (z1®@m)* =0
Usi@yi,znem (Y5 @ Mj) = (T4, Y5, 26) @ Vi
(i @ 73,95 @ nj) = (@3, Y5) @ il
We demand that the even bilinear and trilinear products (ro,yo) = (zo + yo0)? — z3 — y2 and
(20,905 20) = (Uzgt20 — Uzo — Usy) (y;) result from linearization of the quadratic products x3 and
Usy.-
We demand explicitly that (z;,y;, z,) be alternating in the outer odd variables, not merely skew-

symmetric, so (x1,y;j,x1) = 0. See (McCrimmon, 1992) for further details.



We say a quadratic Jordan superalgebra is unital if there exists an even element 19 € A such

that Uy, = Id, 23 = U,,(1o), and {1, ;) = 2z; for all x; € J.

A quadratic Jordan superalgebra AT can be created out of an associative superalgebra A =

Ap ® Aq by defining the products as follows:

(i, y;) = may; + (=1)y 2 (Ti, Y5, 26) = TiYj2k + (*Uijﬂk%izkyﬂi
Uzo (y5) = Toy;zo x%; = Toxp.

Such a superalgebra is called special. If A is unital, so is A™T.
The simple Jordan superalgebras with semisimple even part were classified over an algebraically
closed field K of characteristic not 2 by M. L. Racine and E. I. Zelmanov in (Racine and Zelmanov,

2003). If the characteristic of the field is not 3, then there are eight classes of superalgebras:
1. K3 (®), the Kaplansky superalgebra
2. Di"“ (®), the twisted quaternion superalgebra
3. Ky, the Kac superalgebra
4. My m(D), n,m > 1, the rectangular matrix superalgebra
5. Qn(D), n > 2, the square matrix superalgebra
6. P,(D,Dy), n > 2, the orthogonal superalgebra
7. OSppom(®), n,m > 1, the orthosymplectic superalgebra
8. the superalgebra of a nondegenerate supersymmetric bilinear form.
In characteristic 3, there are two additional “sporadic” superalgebras:
S1. HS5(®3), the sporadic conjugate superalgebra
S2. H5(C), the sporadic symplectic superalgebra.

Detailed descriptions of these classes will be provided in the subsequent sections. These super-

algebras remain Jordan superalgebras when considered over arbitrary rings of scalars.

2 The Centroid

Definition 4. Let J be a Jordan superalgebra. The linear or outer centroid of J, LT'(J) =
LTo(J)® LTy (J), is all T = Ty + Ty where T; € Endis(J) satisfies

Ti((wiyz) = (Tilwi), 2n) = (=1)" (s, Ti(=)).- (LT'1)



If J is a quadratic superalgebra, we also demand that
Ti((wiyjr21) = (Ti(ws),y5,26) = (=1 (@i, Ti(y;), k) (LT'2)
= (=)' @y, g5, Ty(zn)),
Ti(Uso(y5)) = Uzo(Ti(y;))- (LI'3)

The supermultiplication operators are (z;,y;) = Lz, (u;) = Ry, (x;) and (x4, Y, 2x) = La, 4, (2K) =

My, -, (y;) = Ry, -, (7;). We can write the linear centroid conditions as

ERyj = Rygn anq = (_1)2'[[/;05,1}7
TlRyijk = Ryj,Zlev ﬂMIivzk = (71)”MT1721¢TI’
Tle’i,yj = (_1)l(i+j)LIi,ijl? TlUon = UIoTl

Thus we consider that R, and R, ., have degree 0 as multiplication operators, while L,, and My, .,
have degree i, and Ly, ,, has degree i + j.

Notice that the asymmetry of the interaction of the centroid with respect to left and right
multiplication is due to the fact that we write our multiplication operators on the left (so they
are tacitly left multiplication), which therefore commute with all right multiplications but only

supercommute with left and middle multiplications.
Lemma 1. LI'(J) is a subsuperalgebra of Endg(J).

Proof. Let X = {Ly;, Ry,, Ly, y;s Mu, 2, Ry, 2, Uzy © @4, y5, 2 € J}. First, it must be shown that
LT'(J) is closed under scalar multiplication. Let o € ®, T; € LT';(J), and X; € X have multiplication
degree j. Then
(@)X, = a((-)VX;T3) = (-1)7aX;T; = (-1) X;(aTy).

Thus, oT; € LT;(J).

Next, it must be shown that LT'(J) is closed under addition. This is true by definition for the
sum of an even element and an odd element of LT'(.J). Suppose S;,T; € LI';(J) and X; € X. Then
(S; + T;) is of degree 4, and

(Si +T)X; =S X; +T;X; = (-1)9X;8; + (-1 X,;T; = (1) X;(S; + Ty),
whence S; + T; € LT';(J), and LT'(J) is closed under addition.

It must also be shown that LT'(J) is closed under composition. Let S;,T; € LI'(J) and X, € X.
Then S;7} is of degree i + j, and

(SiT)) X, = Si((-1)*XTy) = (1) S, X, T}

= (~V)H(-D)" XSy = (1)U X(SITy).



Thus, S;T; € LT'(J), and LI'(J) is a ®-subalgebra of Endg(J). O

We remark that we cannot reduce centroid questions to the unital case, since T € LT'(J) does

not extend to the unital hull J = ®1 & J unless T = ald is already a scalar in ® and T'(1) = ol.

Definition 5. The super-centroid of a quadratic Jordan superalgebra J, I'(J), has the additional

properties
UTO(IO)(yj) = T02<U$0 (yj))7 (er) (7—‘0(330))2 = TOQ(x(Q))7 (QFQ)
Ur, () () = 0, (Qr3) (Ty(21))” =0, (Qr4)
T? = 0. (QT5)

In other words, these endomorphisms T; act like superscalar multiplications.

Note that QT'2,4 follow from @QT'1,3 if J is unital. The conditions QI'3 — 5 are somewhat
controversial. One could define a weaker version of the centroid without making these demands.
However, since we desire our superscalars to be alternating and we think of our centroid as superscalar
multiplications, such a definition causes a few dilemmas. In particular, since Tj(z1) is even, its U-
operator must be defined. We expect that Ur, () = T} 2U,,, vet the U-operators are not defined
for odd elements. This moral quandary is eliminated if we adopt the conditions above. In fact,
these assumptions are rarely used, only appearing in the cases of the square matrix superalgebra
Qn(D) and the Jordan superalgebra of a quadratic form. Furthermore, the scalar multiplications
®Id certainly belong to I'g(J), as

®Id CTo(J) C LT(J).

We will show that in most cases LT'(J) = ®Id, whence I'(J) = ®Id as well. Thus, our arguments
seldom involve the quadratic conditions.

Note that there is no quandary if § € ®, as I'(J) = LI'(J) if the latter is supercommutative. In
that case, we automatically have, for T; € LT;(J), Ury (o) = 35Uy (20),To(20) = 310Us0.20 = T4 Uy
(To(0))* = 3To(w0)oTo(wo) = §TF (z00m0) = T3(23),  Ury (o) = 53Uty (@n) 1y (er) = T2 May iy =0
(by our hypothesis that M,, ,, =0), and 17 = %(TlTl +TT) = %TlTl -1y =0if LT'(J) is
supercommutative.

The outer centroid is a unital associative superalgebra which is not, a priori, supercommutative.

However, under mild assumptions about the superalgebra J, the centroid will be supercommutative.

Lemma 2 (Hiding Lemma). Suppose By(z;,y;) : J x J — J is a bilinear map and S, T; are By-
linear maps (s0 SsBi(xi,y;) = (—1)**Bi(Ss(2:),y;) = (—1)**+) By (2, Ss(y;)) and similarly for
T,). Then (SyT; — (—1)*'T}S,) By, = 0.



Proof.

(1) T,SsBi(zi,y;) = (=1, Bi(Ss(2),y

;)
—1)stsk () R By (S (), Th ()

)
)
_q)stsktthtsttip (G (7 Ti(y;))
1)skHth+H 1)k S By (a4, Ty (y;))
)

(

(

(
- (-

(—1)teHt ()P D S T, By (a4, y5)

S

sTtBk(Iia yj)'

Corollary 1. Suppose J is a Jordan superalgebra such that either

1. the linear annihilator of J is trivial; i.e.,
(z,J) =z, J,Jy = (J,z,J) =0 implies z=0 or
2. J is linearly idempotent; i.e.,
J=(JLJ)+(J,J,J).
Then LT'(J) is supercommutative.

Proof. Define the following degree zero bilinear maps on J x J: B(z;,y;) == (s, V;), Bz (2i,y;) ==
(Ti,9j, 2x), and B, (x4,y;) := (x4, 2, y;). If Sg, Ty € LI'(J), then by definition S, and T; are B—,
B.,—, and B! —linear, so by the Hiding Lemma, A = S,T; — (—1)*'T}S, has

AB(zi,y5) = A({zi,yy) = (A(zi),y5) =0
Asz (xiayj) = A(<xiayj7zk>) = <A(xl)7y]azk> =0
AB;k (xi,y;) = (A@i), 2k, y5) = 0.

Thus, A maps J into the linear annihilator and kills all bilinear and trilinear products. If J has trivial

linear annihilator or is linearly idempotent, then A =0 on J, and LI'(J) is supercommutative. [

Lemma 3. If the linear centroid LT'(J) is supercommutative, then the supercentroid T'(J) is a

subsuperalgebra of Endg(J).

Proof. Since I'(J) C LT'(J), we need to show that a1y, Sy + To, SoTo, S1T1 € LT'g(J) and a5y,
S1 4+ Th, SoTh, ThSo € LT'1(J) satisfy the new quadratic conditions for a € ®, Sy, Ty € I'o(J), and
Sl,Tl S F1<J)



First,

U(OéTo)(ﬂfU) = OCQUTO(%) = a2T()2U$0 = (aTO)zUIo
((aTh)(z0))* = o (Th(z0))* = o T§ (23) = (aTh)*(23),
so oIy € T'o(J).

For the sum Sy + Tp, note that the quadratic product on J has the property that Uy, w, (2i) =

(vo, zi, Wo) , 80 Uy vy = 2U,,. Now

U(So+T0) (o) Uso(@0).T(x0) + Uso(xo) + Ut (o)

= (So(2o), ", To(x0)) + Usy(ze) + Uty (a0)
= SoTo({zo, s 20)) + Usy (o) + Uty (ao)
= S0T0(2Us,) + Usy (o) + Uty (o)

= 280T0(Us,) + S5 (Uso) + 15 (Us,)

= (So+Ty)*U,, since I'(J) is supercommutative,  and

((So + To)(z0))* = (So(wo))” + (To(w0))” + (So(x0), To(wo))
= S§(ad) + T3 (3) + SoTo{zo, zo)
= (55 +T5 +250Tp) ()
= (So + Tp)*(22) since T'(J) is supercommutative,
so So + To € To(J).
For the composites SpTy and S177,
Uso(mowo) = 56 (Unyao) = 5575 (Usy)

= (SoT0)*U,, since I'(J) is supercommutative.

((SoTo)(@0))® = (So(To(x0)))? = SE(To(x0))* = SFTE(xd)

= (SoTp)*(23) since T'(J) is supercommutative,



so Sp1y € Fo(J), and

Usit)ze) = Usy(Ti(zr)) =0=—SiT7Us,

= (SlT1)2U¢mJ since I'(J) is supercommutative, and

((S1T1)(w0))* = (S1(Ti(x0)))” =0 = —SFTE(a3)

= (S1T1)*(x?) since I'(J) is supercommutative,

so 51Ty € Fo(J)
Next,

OzZUT1 (z1) = O,

Utar)(ay)
((aTI)(xl))z = 042(T1(961))2 =0, and
(aT1)? = o’T7 =0, so Ty € T (J).

For the sum S + T7,

Usi+m)@) = Usi@)+Ti(z) = Usi(@) T Uni(@r) + Usy(@1),13(21)
= 0+0+ 51Uz, 11 (1)
= +£5T1 My, o, =0 since M, 5, = 0 by hypothesis,
((S1 +T) (1) = (Si(z1) + Th(x1))”
= (Si(1))* + (T1(21))? + (Si(a1), T1 (21))
= 040+ S1{(x1,Ti(x1)) = =S1T1{x1,21) =0, and

(S1+T)? = SI+TP+S5T+T1S
= 040+ 5171 — 5171 =0 since I'(J) is supercommutative,

so S +Tj € F1(J)
Finally, for the composites SoT; and TSy,

Usoriy@) = Uso(i(en) = S3Ur, () =0,
Uisoy@) = Uni(so(a) =0,
((SoT1)(1))* = (So(Ti(21)))* = S3(Ti(x1)) =0,
((TySo)(21))* = (Tu(So(21))* =0, and
(SoTy)? = ST =0=TS2 = (T1S0)* since I'(J) is supercommutative,

so SoT1,T1S0 € T'1(J). Thus, I'(J) is a subsuperalgebra of Ends(J).



The preceding lemma leads directly to the following result.

Theorem 1. If LT'(J) is supercommutative, then To(J) is a commutative, associative ring of scalars

(called simply the centroid), and J is a superalgebra over I'o(J).

When LT'(J) is supercommutative, the superalgebra J can be considered as a superalgebra over
its supercentroid. Thus, the supercentroid provides a natural algebra of superscalars for J. This begs
the following question: is the supercentroid really a set of superscalars, or is it just an ordinary set of
scalars in disguise? In other words, are there any odd elements of the supercentroid? Since an odd
supercentroidal element is a rather strange creature, one expects that a “nice” Jordan superalgebra
would have no odd supercentroid. The classification in (Racine and Zelmanov, 2003) includes many
of the “nice” examples of Jordan superalgebras over a field, so to provide support to this conjecture,
we determine the supercentroids of these superalgebras over a general ring ®. We will show that,
under mild assumptions about the ring ® and the superalgebra J, there is no odd supercentroid,
and in most cases, the algebra is already centroidal: the supercentroid only consists of the scalar

multiplications by .

3 General Behavior of Centroid

Lemma 4. Let J = A® M be a Jordan superalgebra.

1. The kernel of a centroidal T € LT'(J) os an outer ideal in J (homogeneous if T € LT';(J)), so

T = ald as soon as T = ald on an outer generating set.
2. In particular, if T(A) =0 and M = (A, M) + Ua(A, M), then T = 0.

Proof. Note that (2) follows from (1) by setting « = 0. If T € LT'(J), then 7" =T — ald € LT'(J),
and T = «ald if and only if 7" = 0, so it suffices to show that the kernel of T' is an outer ideal. The
kernel of T; is homogeneous, since T;(zo + x1) = T;(zo) + T;(z1) € J; @ Jiy1 vanishes if and only if

T;(x0) = Ti(z1) = 0. Let M denote the outer multiplication algebra generated by the set
{Id,Ly, Ly, M, U, :z,y € AUM and z € A}.

For a set of homogeneous elements S C AU M (e.g., for S = Ker(T)), let M(S) = {m(z) : m €
M,z € S} be the outer ideal generated by S. Each element of M(S) can be written as linear
combinations of elements of the form (mj(ma(--- (m,(2))))) for some z € S and some homogeneous

m; € My, where €(i) € {0,1} and M; denotes the operators of multiplication degree j as described



in Section 2. By definition, 7" supercommutes with all homogeneous outer multiplications, so

T(mi(ma(---(ma(2))))) = F(ma(ma(--- (ma(T(2))))))
(=0ifz € Ker(T)).

If S = Ker(T), this gives us that T(M(S)) = 0, whence M(S) = Ker(T) is an outer ideal of J. [

Lemma 5. Suppose J is a Jordan algebra or superalgebra with idempotent e. Let J = Jo® J1 D Jo

be the Peirce decomposition of J with respect to e. Then
1. T(Ji(e)) C Ji(e) for T € LT4(J) and i =0,1,2.

2. If T(e) = ae for a € & (for example, if e is a reduced idempotent Jo(e) = Pe), then
T =«ald on J;.

3. In particular, if T(e) =0, T(J1) = 0.

4. Suppose N C Jy is J;-invariant fori =0 or 2, so (J;, N C N. If Z, ={a € J; : (a, N) =0}
is 0, then T'(e) = 0 implies T(J;) = 0.

Proof. Let E; denote the even Peirce projection on J;(e), so By = Ue, Eg =Uj_,,and By =U,_j_,.
Then if z; € .71‘(6)7 To(l‘z) = T(Ez(;’l?z» = E,(To(«rz)) S ‘71(6)
Suppose T'(e) = ce. Then for any x; € Ji,
T(1) = T(le,21)) = (T(e), 1) = (e, 31) = ale, z1) = oz,
To prove (4), J; is T-invariant when T'(e) = 0, so
(T'(Ji),N) = (Ji,; T(N)) € (J;,T(J1)) =0 by (3).
Thus, T'(J;) C Z; = 0. O

Lemma 6. 1. Suppose J = A @ M is a Jordan superalgebra with idempotent e € A such that
(e,m) =m for allm € M. Then LT'1(J) = 0.

2. Suppose J has idempotents e; and unit 1 = Y e;, where all Ma(e;) = 0. If% € ®, then
LTy (J) =0.

Proof. 1. First, for Ty € LT'1(J), Ti(e) = T1(Uec(e)) = Ue(T1(€)) € Ue(M) = 0 since M C Jy(e)
by hypothesis. Then Ty (M) C Ty (J1(e)) = 0 and T1(A;1(e)) = 0 by Lemma 5. Also by Lemma
5, Tl(Ag (&5) AQ) cMnNn (JQ ©® J()) =0. rI‘hU.S7 Tl (A) =0 as well.

10



2. For each i, Ti(e;) = T(Ue,(ei)) = U, (T1(e;)) € U, (M) = Ma(e;) = 0 by hypothesis, so
Ti(1) = Y. Ti(e;) = 0. Then 0 = (T1(1),2;) = (1, T1(2;)) = 2T (z;) for all z;, so if 1 € @,
then all T} (z;) =0, and T} = 0.

O

Lemma 7. Let J be a Jordan algebra or superalgebra, and let Ts € LTs(J) or Ts € To(J). If B is
a Ts-invariant subalgebra or subsuperalgebra of J, then Ts|g € LT's(B) or Ty|g € T's(B).

Proof. Let x; € B; and y; € B;. Now Ti|g = Ts on B, so for P = Ly, Ly, y;, My, y,;, Ug, of degree
k=1,i14+ 7,14+ 7, and 0, respectively,

T,|gP = T,P = (-1)**PT, = (-1)**PT,|

as endomorphisms of B. Thus, Ts|g € LI's(B).
If Ty € To(T) (ie., Ury(vy) = TgUsy if s =0 or Uryp,) = 0if s = 1),

Up 1sb0) = Utove) = 16 (Usy) = Tol5(Us ), Ur g6y = Uri(0y) = 0
on B. Thus, T|g € I's(B). O

Lemma 8. Suppose J is a unital quadratic Jordan superalgebra over a ring ® such that % €.

1. If T € LT'(J) has T(1g) = alg for 1o the unit of J and o € @, then T = ald on all of J. In
particular, if T(1p) =0, then T = 0.

2. If A is linearly centroidal, so LT'(A) = ®Id, then LT(J) = ®Id.

Proof. 1. Let T € LI'(J), and suppose that T'(1p) = alp for some a € ®. Since 1 is the unit of
the quadratic Jordan superalgebra J, (1o, ;) = 2z; for all z; € J;. Thus,

ZT(Z‘Z) = T(QZ‘Z) = T(<10,J)l>) = <T(10),$1> = <0410,J}i> = 20&.13‘1'.
Since % € ®, this implies that T(x;) = ax;.
2. If Ty € LTo(J), then Ty|a € LT(A) = ®Id by Lemma 7, so Ty(1p) = alg, and Ty = ald by

(1)
O

Lemma 9. Let D be a unital associative ring with involution — : D — D owver its *-centroid
® =T(D) (soa=a fora € ®). Let 1 C Dy C H(D) be an ample subspace; i.e., dDod C Dq for all
d€ D, soddc Dy andd+d € Dy. Let J = H,(D,Dy) be an ample outer ideal in the hermitian
n X n matrices with respect to the — transpose involution with diagonal entries in Dy. Then if n > 2,

LT(J) = ®Id.

11



Proof. Let T € LI'(J)). Note that J has n supplementary orthogonal idempotents e; = e;;. Let J;
denote the i*" Peirce space of J with respect to these idempotents. Then Lemma 5 gives us that
T(J;) C J;, so T'(e;) = a;e; for some a; € Dy. Now if n > 2 and @ # 7,
Qje; = T(ej) = T(Ueij"l‘@ji (€:))
= Ueij+€ji(T(ei)) = Ueij+eji(aiei) = Qi€j.
Therefore, a; = ; for all 1 <4, j < n, so T'(e;) = ae; for some o € Dy.
Now for any d € D,
adeij + ﬁaeji = {aei, d@ij + Eeji, ej} = {T(ei), deij + Eeji, ej}
= {6i, deij + Eej,», T((:’J)} = {ei, dt’:‘l‘j + Eeji, aej}
= daeij + oﬂeji.
Thus, ad = da for all d € D, whence a € T'(D) = ®.

Let T" =T — ald € LT(J). Then T’(e;) = 0 for all i. Now by Lemma 5, T"(J1)(e;) = 0, so if
n > 2 and ¢ # j, then T"(De;;) = 0. Thus, T = ald. O

4 The Sporadic Superalgebras

When the base ring ® has the property that 3® = 0, two additional “sporadic” algebras appear
in the classification. Both arise as hermitian 3 x 3 matrices over an alternative superalgebra. Note

that since ® has “characteristic” 3, % € .

4.1 The Sporadic Conjugate Superalgebra HS3 (®3)

Suppose & = ®j is a ring of scalars with 3® = 0, and let A = H5(®) and M = S3(P) & S3(P),
where S3(®) denotes the space of all skew 3 x 3 matrices s* = —s. Then J = A @ M with bilinear
product defined for h; € A = H3(®) and s; € S3(P) by

(h1,h2) = hiha + haohy
(h51®F) = (ks +s1h) @ (hsz + s2h)
(55(®) 9 0,55(®) ®0) = 0= (0@ 95(®),0® 55(®))
<51@6,6@:2> = 5189+ S95;

12



is a linear Jordan superalgebra, and since % € @, it is automatically a quadratic Jordan superalgebra
with quadratic product defined by
Un(h') = hh'h h% = hh
Un(s1 ©532) = (hs1h & hsah).
Note that J is a unital quadratic Jordan superalgebra with unit I3, as Uy, = Id, h? = U,I)3, and
(I3, x;) = 2x; for each z; € J.
This superalgebra can be viewed as the hermitian 3 x 3 matrices over the alternative superalgebra

B(1,2) = By ® By = ®1 @ (Pz @ Py), where zy = —yx = 1, under the conjugate superinvolution
(bo ® b1)* = bg ® —by. See (Shestakov, 1999) for more details.

Theorem 2. LT'(HS5(®3)) = P31d.

Proof. Let s; = (o) and s; = (07;) be skew matrices. Then since Led o4 =0=0 for

2
1 =1,2,3. Now Ms(e;;) = 0, since

[N Qi — T
Ue“ (Sl D SZ) = 0yi€i D 064 = 0.

By Lemma 6 (2), LT'1(J) = 0.
By Lemma 9, H3(®3) is centroidal, so Lemma 8 (2) implies LT'o(J) = ®Id. O

4.2 The Sporadic Symplectic Superalgebra H3(C)

Let ® = ®3 be a ring of scalars with 3® = 0, so % € ®. Let C = Cy & C1, where Cy =

M5(®) and C; = &my @ Pmy is the free module over ® with basis {m1, ms}. Now C has basis

{e11, €12, €21, €22, M1, Mo }, where the product on these elements is given by the following table.

e1n | e €21 | ea2 || M1 | M2
e11 || e11 e12 0 0 m 0
€12 0 0 el | ez || me 0
€21 || e21 | e22 0 0 0 my
€22 0 0 € | e 0 mo
mq 0 | —mo 0 my || —e21 | €11
ma || mo 0 -my | O —eg2 | €12

Then C is an alternative superalgebra with superinvolution given by (a & m)* = @ & (—m), where

— : M3(®) — @ is the usual symplectic involution

a1 a2 a22 —ai2

a21 a2 —a21 a1

13



Let J = H3(C), the hermitian 3 x 3 matrices with respect to the *-transpose superinvolution.
Then J is a linear (and hence quadratic since % € ®) Jordan superalgebra with even part A = H3(C))

and odd part M = H3(C7). The bilinear product is given by (z;,y;) = z;y; + (—1)¥y,z;, and the

quadratic product is given by U,,(y;) = xoyjzo. Note that since m* = —m, the elements of
I, 0 0

M = H3(C1) are skew matrices, and the superalgebra J is unital with unit I = 0 I, 0
0 0 I

Theorem 3. LT'(Hs(B)) = ®Id.

Proof. First, note that J = Hs(B) has three orthogonal idempotents,

I, 0 0 0 0 O 0 0 O
Ey = 0 00|, B2=] 01, 0 |,and E5=] 0 0 0
0 0 0 0 0 O 0 0 I

Let Ty € LT'1(J), and consider T; (E;). Note that Ma(E;) = 0, since M is skew and 3 € ® implies
that the diagonal entries of skew elements are zero. By Lemma 6 (2), LT'1(J) = 0.
Now A = Hj3(Cyp) is centroidal, since LI'(H3(Co)) = Lr(c,) = Lrm,@)) = Lar, = ®Id by
(McCrimmon, 2004). Thus, Lemma 8 implies LT'o(J) = ®Id.
O

5 The Small-dimensional Superalgebras

5.1 The Kaplansky Superalgebra Kg)‘)(@)

Let @ be a ring of scalars, let A = ®e be the free module over ® with basis e, and let M = ¢z @ Py
be the free module over ® with basis {x,y}. Then for A € ®, J = KéA)(CI)) = A @ M with bilinear
product given by

e’ = €, <€,$> =, <e,y> =Y <‘Tay> =Ae
<€,€> = 2e, <.%',l‘> =0, <y7y> =0

and quadratic product with U, = Id on A and U, = 0 on M is a quadratic Jordan superalgebra
over ®. Details on the quadratic product and trilinear product can be found in (King, 2001). Note
that e is an idempotent, and J has Peirce decomposition J = Jo @ J; ® Jy with respect to e, where

Jo=0e=A, J; =Px® Py =M, and Jy = 0.

Theorem 4. LT (Kg”) — ®1d.
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Proof. First, e is an idempotent that satisfies the hypotheses of Lemma 6, so K3 has no odd centroid.

Let Ty € LT'o(K3). Since e is a reduced idempotent and z,y € Ji(e), by Lemma 5 (2), Tp = ald. O

5.2 The Twisted Quaternion Superalgebra DE;\’“)(@)

Let ® be a ring of scalars with A\, u € ® and p # 0. Let A = ®e; & Pey be the free module
over ® with basis {e1,e2}, and let M = &z @ Py be the free module over ® with basis {z,y}. Then
J = DiA’“)(é) = A ® M with bilinear product given by

ef =e;, (e, e;) = 2e;, (e1,e2) =0,
(i) =z, (eiy) =y, (z,y)=2Xer+pex (z,2)=0 (y,y)=0
and quadratic product with
Ue,(e5) = dijei, Ue, =0o0n M,

Ueyyey =Idon M, Ug ., =00n A
is a quadratic Jordan superalgebra over ®. Details on the quadratic product and trilinear product
can be found in (King, 2001). Notice that as a linear space, J is isomorphic to the split quaternion
superalgebra M>(®)" graded by e;; via * — Aeja, ¥ — ea1, but the odd product (z,y) is a twisted
Aeqq + pegs imbedding of [Aeja, ea1] = Aepp — Aeaa.

Theorem 5. LT (Dfl’\’“)(cb)) — ®Id.

Proof. Note that e; is an idempotent with Peirce decomposition Jo = ®ey, J; = M, and Jy = Pes.
Now e; satisfies the conditions of Lemma 6, so LI'1(J) = 0. Let Ty € LI'¢(J). Since e is reduced,
To(e1) = ae; for some o € ®. Let T} = Ty — ald € LTo(J). Then T{(e1) = 0, and by Lemma 5 (3),
T43(J1) = 0. Now by Lemma 5 (4), since Z(e1) = Zo(e1) =0, T; = 0 on Ja(ey) and Jy(ey). Hence,
T5(J) =0, and Ty = ald on J. O

5.3 The Kac Superalgebra K

Let @ be a ring of scalars, let A = Pe dV @ Pf be the free module over &, where V is free with
basis By = {v1, v, V3,04, }, and let M = $zq @ Py; @ Pas @ Pys be the free module over ¢ with
basis {x1,y1,21,y2}. Then J = K19 = A@® M with bilinear product given by

62267 f2:fa <€,6>:26, <faf>:2f
(e, f) =0, (e,v) = 2v; (f,vi) =0
e,m) =m = (f,m), me M

<U17y1> = Y2, <U1,$2> = T, <02,331> = T2, <U2,y2> = Y1,

<U37yl> = —T2, <U3,y2> = I, <U47I1> = Y2, <U47172> = —Y,
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(Ti,yi) = e —=3f, (x1,22) = —2v3, (T1,Y2) = 201,
(Y1, 72) = =202,  (Y1,¥2) = —2us
and all other products of basis elements (u,w) = 0 is a quadratic Jordan superalgebra.
The quadratic and trilinear products on J are rather awkward to describe, and thus we will
limit our discussion to the cases needed in the following arguments. See (McCrimmon, 2006) for full

details on these products. In particular,

<331>y1,€>=e, <a’31,y1,’01>=2’l}17

(1,y1,v4) =0, and (1,91, v3) = 2v3.

Theorem 6. LT'(Kyy) = ®1d.

Proof. First, note that the element e is an idempotent, and the Peirce decomposition with respect
to e for J = Kjg is given by Jo = ®e @ Pv; B Pvy @ Pug @ Puy, J; = M, and Jy = ¢f. Now e
satisfies the conditions of Lemma 6, so LT';(J) = 0.

Let Ty € LT(J). Let To(e) = e + Byv1 + Bavs + B3vs + Bavg. Now, from the trilinear products

described above, we have

To(e) = To({x1,y1,€)) = (@1,91,To(e))

= (x1,y1,ae+ i1 + Pavs + B3vz + Bava)
4

= ae+ Zﬁi<$1,y17w> = ae + 20101 + 20303.
i=1

Thus, a«@e + [iv1 + Povs + [3vs + Lavy = ae + 20qv7 + 203v3, and then
0 = Biv1 — PBovs + P3ug — Bavys. Since the v;’s are independent, we have 8; = 0 for all ¢, whence
To(e) = ae.

Let T) = To —ald € LT'4(J). Then Tj(e) = 0, and by Lemma 5 (3), T{(J1(e)) = 0. By Lemma 5
(4), T = 0 on Ja(e) and Jo(e), since
Zs(e) = {az € Ja(e) : (az, M) = 0} and Zy(e) = {vf : (af, M) = 0} are both zero (see (Mc-
Crimmon, 2006) for products). This gives us that 7§ = 0 on J, whence Ty = ald. O

6 The Matrix Superalgebras

6.1 The Rectangular Matrix Superalgebra M,, ,(D), (n,m > 1)

Let D be a unital associative algebra (not necessarily commutative) over its (associative) centroid
I'(D) = ®. For n,m > 1, the matrix algebra B = M, ,,(D) := M4+, (D) can be viewed as an

associative superalgebra with even part consisting of the diagonal matrices By = M, (D) & M,,(D)
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and odd part consisting of the off-diagonal matrices By = My, xm (D)® M xn (D). We have 1 = Eqq+

I, O 0 0
Eoo, where E11 = and EOO = . Then BO = UEll(B)@UEOO (B) = B11 @Boo,
0 0 0 In

and By = E11BEy ® EgwBE11 = B1o ® Bo1.
View M, (D) as an algebra over & = I'(D). Note that ® acts faithfully on both A and M.

Indeed, if ye;; = 0 or v&;; = 0 for a single matrix unit e;;, then v = 0.

Theorem 7. 1. If B is a semiprime unital associative algebra over ® = I'(B), and e # 0,1 is

an idempotent of B, then I'(BS) = ®Id.
2. If D is semiprime over ® =I'(D), then LTI'(M,, (D)) = ®Id.

Proof. First, note that (2) is a special case of (1) since D semiprime implies B = M, ,,(D) is
semiprime. To prove (1), note that e is an idempotent that satisfies the conditions of Lemma 6, so
J = B has LT1(J) = 0.

Next, we will show that the even elements of the centroid are just the ®-multiplications. Let
To € LTy(J). The Peirce decompositions relative to e = e; and ey = 1—e are Ja(e1) = B11 = Jo(eo),
Jo(e1) = Boo = Ja(ep), and Ji(e1) = B1o® Bo1 = Ji(eq). Also, A = B11® Bogo, and M = By ® Bo.
By Lemma 5, Ty can be written as Ty = T11 @ Ty for T;; € Endg(B;;), and by Lemma 7, T;; €
LT(B}).

Lemma 10. If B is a semiprime over its centroid ®, then T;; = a;Id for some ; € ® (i = 1,0).

Proof. If B is semiprime, then the B;; = e;Be; are semiprime as associative algebras. By (McCrim-
mon, 1999) (Corollary 3.4), since B is a unital semiprime associative algebra, LT'\(B;}) = LT'(B;;) =

Lg, so T;; = a; Ey; for some a; € P. O]

Now M C Ji(e;), so Lemma 5 implies that To = a1 Id = apld on M. Since ® acts faithfully on
M, a1 = ag, which gives us that Ty = ald on both A and M. O

6.2 The Square Matrix Superalgebra Q,(D), (n > 2)

Let D be a unital associative algebra (not necessarily commutative) over its centroid I'(D) = ®.

For n > 2, let

Qu(D) = b ta,b € Mu(D) y = M,(D)® Q,
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10 0 1
where Qy = &1y @ Py and wi2 = 1 for 1g = and wy = . Then Q,(D) is a
0 10

subsuperalgebra of M,, ,,(D) with even part

a 0
A= ta € My(D) p = M,(D)" = M,(D)" ® &1,
0 a
and odd part
_ 0 b
M={b= = b :be M,(D) p = M, (D)™ = M,(D)* @wr.
b 0

We will identify both A and M with M, (D). Then A is spanned by {ae;; : 1 <4,j <n, a € D}
and M is spanned by {fe;; : 1 <1i,j <n, € D}.
The quadratic product on @, (D) is given by

U, (b) = aba U, (b) = aba,

the bilinear product on @, (D) is given by

(a,b) =aob=ab+ba, {a,b)=aob=ab+ba, (a,b)=[a,b]=ab— ba,

and the trilinear product is given by

(a,b,c) = abc+ cba
(a,b,8) = (a,b,c) = (a,b,c) = abc + cba
{a,b,¢) = (a,b,c) = (a,b,c)=abc— cha
(a,b,¢) = abc— cha.

View @, (D) as an algebra over ® = I'(D). As in M, ,,(D), ® acts faithfully on both A and M,

and if ve;; = 0 or ve5; = 0 for a single matrix unit e;;, then v = 0.
Theorem 8. If & =T'(D) is semiprime (e.g., if D is semiprime), then forn > 2, T(Q,(D)) = ®Id.

Proof. First, we will show that there is no odd centroid for J = @, (D). Let Ty € T'1(J). Then
Ms(eii) = Desi, Aa(eii) = Degs, Ti(eis) = T1(Ue,,(ei)) = Ue,, (T1(eis)) = Fw€ai for some ;; € D,
and Ty (e) = U,,, T1(€5) = di; for some 6;; € D. Now for ¢ # j and any o € D,

ae;; = (aeij, ej5) = (€ii, aej) = (€, 08i;)
implies
Ti(aei;) = (aei,75i€55) = (Vi€ aeij) = (0iieii, 0ij)

= ;€ = Vi0€ij = 0;00€;;.
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Thus, ayj; = visa = 6500, and in particular, if a = 1, then v;; = ~;; = 03, and all have a common
value v = 7;; = 75 = ;. Now ay = ya for all a € D implies that v € I'(D).

By (QI3), 0 = Ur,(ei7)(€ii) = Use,,(€ii) = Y?€ii, so 42 = 0. Since v € ® = I'(D) and ® is
semiprime, v = 0. Now T3 (o e;5) = T1({aujeis, e55)) = 0, and Th (o €;;) = T1({ayjeij,€55)) = 0, so
Ty = 0. This shows that T7(J) = 0.

Let To € T'o(J). Recall that A = M, (D)*. By Lemma 7, Ty|la € I'(M,(D)*). Then by
(McCrimmon, 1999) (Corollary 3.4), since D is semiprime over ®, To|a = old for some o € P.
Let Ty = Tp — old € To(J), so T{(A) = 0. Since M is spanned by all ae;; = (e;;,a€;) and
ae;; = Ue,, ({eij, aej;)), Lemma 5 (2) implies that T; = 0, whence Ty = old. O

Remark 1. If we do not demand that T? =0 or Ur, @ =0 for Ty € T1(J), then Ty = L, with

2~y = 0 would be an odd element of the centroid.

6.3 The Orthogonal Matrix Superalgebra P,,(D,Dg), n > 2

Let D be a unital associative ring with involution * and Dy an ample subspace. Then x :
M,,(D) — M, (D) given by a* = (a*)" is an involution. For n > 2, let P, (D, Dy) denote the follow-
ing subsuperalgebra of M,, ,(D):

a s
P,(D,Dy) = ca € My (D), s € Sp(D)is alternating, h € H, (D, Do)
h a*

Here, s alternating means s = sk(u) = u — u* for some v € M, (D). Now S, (D) is spanned by all
as;; = ae;; —arej; for o € D and ¢ # j and all a@s;; = (o — a*)ey; for a € D, and H, (D, Dy) is
spanned by all ﬁij = aeij + a*ej; for o € D and @ # j and all ﬁ := ~ye;; for v € Dy.
Define § : M, ,,(D) — M, (D) by
#

Proposition 1. § is a superinvolution on M, (D).

Proof. Clearly, B¥ = B for all B € M,, ,(D), so # is of period 2. It remains to show that (B;C;)* =
(—1)¥CBY for all B; € M, ,(D); and Cj € M, »(D);. First,
#

a b a v aa’ +bc  ab + bd’
c d d d ca' +dcd b +dd
b/*c* _|_ d/*d* _b/*a/* _ d/*b*
= ) and
a/*c* + C/*d* a/*a* Jr C/*b*
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a b a b d*  —bv* dr  —b*
d d c d c* a”* ¢t a*
d*d* — Ve —d* b — b a*
A+ a*ct —c*b* + a*a*
If either element is even, then b* and ¢* or b"* and ¢* are zero, whence the expressions above are
equal. On the other hand, if both elements are odd, then a*, d*, a’*, and d'* are all zero, and

# # #

0 b 0 v 0o v 0 b —b™*c* 0
c 0 d 0 d 0 c 0 0 —*b*
Thus, # is a superinvolution. O

Then P, (D, Dy) is an ample outer ideal in the superalgebra of hermitian elements with respect
to the superinvolution £; it is a superalgebra with even part A = {(a,a*") : a € M,,(D)} = M,,(D)"
and odd part M = S, (D) @ m. Since A = M, (D)™, we will identify (a,a*') with a. For
a,bc€ A, s,s',s" € S,(D), and h,h' b € H,(D, Dy), the bilinear product is given by

(a,b) = ab+ba
(a,5@®h) = as+sa* ®a*h+ ha
Gohs®l) = sk —sh

(a,b,c) = abc+ cba
<a,b,§®ﬁ> = abs + sa*a* ® a*d*h + hba
(a,3® T, b) = asa’™* + bsa* @ a*hb + a*ha
(a,E@ﬁ,;@:’> = ash’' —s'ha
G@has @) = sahl —sa*h
GohsON,ON) = shis’ —s''s®hsh’ — h's'h.

Finally, the quadratic product is given by

U, (b ®GEe i)) = aba @ (asa* ® a*ha).
Note that for any skew s, ¢, the following are still alternating:

as + sa* = sk(as)  asb* + bsa* = sk(asb*)
sht —ths = sk(sht) a(sk(u))a* = sk(aua*).
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Also, the following remain in Dy by ampleness:

a*b*h + hba = tr(hba), a*ha,
a*hb + b*ha = tr(a*hb), a*h + ha,
hsh! — h'sh = tr(hsh’).

Thus, the products above produce the appropriate homogeneous elements.

Theorem 9. Ifn > 2 and D is semiprime, then LT (P, (D, Dy)) = ®Id for ® = T'(D).
Proof. Let J = P,(D, Dy) and Ty € LT'y(J). First, we will show that Ty (I,,) = 0.
Lemma 11. Ty ([,) = 0.

Proof. Note that, since T1(a) is an odd element for any a € A, there exist functions S : A — S, (D)

and H : A — H,(D, Dy) such that Ty (a) = S(a) ® H(a) for all a € A. Let S(e;;) = (o), and let
H(eii) = (akl) with «a;; € Dy.

Then Tifei) = Ti(Ue(ei)) = Uey, (Ti(eis)) = Ue,, (SCeis) @ Hewr) )
= 0ii€ii O 0i€-
Since n > 2, there exists j # i. Then
0 = Ti((ejj,e50) — Ta({ejir i) = (Talejs), e5i) — (€ji, T(€ir))

= (0j;€j; D Qjj€j5,€ji) — (€jir TiiCii © Wii€ii)

= ojj(ejiej; +ejjei;) © agjleijes; + ejjegi) — oulejiei + eieij) © cui(eijen + eiieji)

= qajj(ei; +e5i) — oiileji + €ij).

Hence, 0;(eji+ e;;) = 0,a;;(e;j + eji), so 0i; = 0 = aj; for all 4,7, and T (e;;) = Th(ej;) = 0,

so T1(I,) = 0. O
Lemma 12. T} (M) = 0.

Proof. We will show that for any m = 5, @ Tons Ti(m) =0. Let a € A and m € M, and let
T1(m) = (75) (vecall that this is really (7i;) & (75;)). Since T1(I,) = 0,

0={a,T1(1,),m) = {a,I,, Th (M) = aTy (M) + T1 (M)a.

This says that for any a € A, —aTi(m) = Ti(M)a. Then for i # j, mje;; = eyTi(M)ej; =

—Ty(m)esej; = 0. Thus, 7,; = 0 for ¢ # j, whence

Tl(m) = dz’ag(ﬁl,ng, ... Tnn)
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is a diagonal matrix.
The above argument says that for any odd m € M, Ti(Th) is a diagonal matrix. Then for i # j

and ™ as above, (m, e;;) is odd, so T1 ({7, €;;)) must be diagonal. However,
Ti((m,ei) = (Tu(m), e (diag(Ti1, a2, - - - Tan)s €i5) = (Tii + 7j5)€ij5

and these are not all diagonal unless 7;; = —7;; for all ¢ # j.

For a € Dy, ahy; € H,(D,Dy). Let Ty(ahy;) = diag(py, pa, - - - pn). Note that U, (ahy) = ahy,
so by Lemma 5, Ty (ahi;) = piei;, which gives us that p; = 0 for j # i. However, we have already
shown above that p; = —p; for i # j and n > 1, whence p; = 0 and T3 (ah;;) = 0. Also note that
Ue.,,(Bsii) = Bsii, so a similar argument yields that Ty (3s;;) = 0.

Now for m = @@ﬁ as above, let s, = () and h,, = (ag;). Then
Tiieii = Ue,Ti(m) =T1(Ue, (M))
= T1(Ue,i(Gnshn))) = T1(Biisii) + Ti(aishi) = 0.
Thus, 0 = 7;; = —7;; for each 4, and then T (W) = diag(T11, 722, ..., Tan) = 0. O
Lemma 13. A C M(h:u)

Proof. Recall that T = e € H,(D,Dy) and s;j = e;j — ej; € Sp(D). We will show that the
spanning set for A is contained in ./\/l(h:u) First, for j # 1, (h:u, @s1;) = aeji, SO aeji € ./\/l(h:u)
Now (aej1,e1j) = aeir + aej;, and applying U,,, and U, we get aey; and aejj, respectively, in
M(h:n) Then (aeir,e1;) = cer; € ./\/l(h:n), and if j # k and j, k # 1, by the above, (aej1,e1x) =
aeji € M(h:u) Thus, the spanning set for A is contained in M(h:u), whence A C M(h:u) O

Since T} (h:u) = 0, Lemma 4 gives us that 73(A) = 0 as well. Hence, in view of Lemma 12,
Ti(J) = 0.

We now know that LT'1(J) = 0, so consider Ty € LT'o(J). Note that Ty|a € LI'(M,(D)") =
LT (M,(D)) = {La1, : « € &} = ®Id by Lemma 10. Therefore, there exists a € I'(D) such that
Tola = ald. Let T, = Ty — ald. Then T} € LT'¢(J) has T§|a = 0.

We will show that Tj) = 0 on the spanning set for M. Note that e;; € A is an idempotent such
that for i # j, {Bs;; : B € D}U {ﬁ :y € D} C Ji(e;;). Then by Lemma 5, since T{(e;) = 0,
T4(Bsij) =0="Ty; (ﬁ) for all 8,7 € D and i # j. It remains to show that T}(8s:) = 0 = T4 (vhi;)
for B € D and v € Dy.

Since the kernel of T is an outer ideal of J which contains A and Ds;;, Dh;; for i # j, it also

contains (e;;, Bsi;) = (eji, Beij — B*eji) = (B — *)ejj = Bsjj.
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Note that Ue“ (’Yh“) = ’yh” Then

T(S(’yh“) = TO/(UEH, (%)) = Uen‘ (Té(%)) = ﬁ/sii @ lylhiiv and

0 = (Tg(ei)vhag) = (esj, Ty(Vheg)) = (esgy (B — F)es B V)

V' (eji + €ij).

Hence, v/ = 0. Similarly,

0 = (Ty(eji)svhg) = (ejis To(Yhiy)) = (ejis (B — B )ews ® 7€)
= (= 0")(eji+ esj).

Hence, §' = 8. Then ('s;; = 0, whence T§(~vh;;) = 0 for all i. This gives us that Tj|a = 0, so
Tolam = ald as well. O

6.4 The Orthosymplectic Superalgebra OSp,, 2m(®)

Let ® be a (commutative) ring of scalars. For n,m > 0, let % : M, 21 (®) — M, 2m (P) be given

by

* —1
t 1
G, bn><2m - In 0 A, “Coamxn In 0
t t
Comxn dom 0 Som bn>< 2m d2m 0 Som
t t —1
(2% —Comx nSQm

t t —1
SmenXZm SdeZmS2m

0 In
I, 0

where Ss,, =

Lemma 14. * is a superinvolution.

Proof. Throughout, b,/ € M, xom(®), ¢, € Mopxn(®), a,a’ € M, (®), d,d € My, (P), and

S = So,. First, * is of period 2, since

sk k *

a b at  —cts—!t

c d Sbt Sdts—!

a —(Sbt)ts—1
S(—ctS)t  S(SdtS—1yts—1
a bls,, a b
IQmC _Ide(_IQ’m) c d
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Now

a b a v aa' +bc  ab + bd'
c d d d ca' +dcd b +dd
a/tat + C/tb/ _(a/tct _i_cltdt)sfl

S(b/tat —i—d/tbt) S(b/tct —l—d/tdt)s_l

and
a v ) a b ) ot —dtS! at  —cts1
d d c d Syt Sdts—t Sbt Sdtst
a/tat _ c/tS—lsbt _a/tcts—l _ cltS—ISdtS—l

St'tal + Sd'tS~1Spt  —Sb'tctSTt 4 Sd'tST1SdtSt
atat — ctvt —(a'tct + ¢tdt) S
S(b/tat + d/tbt) S(_b/tct + d/tdt)S—l
If at least one element is even, b = c =0 or ¥ = ¢ = 0, so the expressions above are equal. If both

are odd, thena =d =0 and a’ =d =0, and

0 b (VI (VI 0 b
c 0 d 0 d 0 c 0
Thus, (z;y;)* = (—=1)7y x}, whence * is a superinvolution. O

Let J = OSpy,om(®) denote the hermitian elements with respect to this superinvolution. Then
J is a subsuperalgebra of M,, 2,,(®) with even part A = H,(®) & R, where R = {d € My, (P) :
Sd!S—1 = d}. Throughout, for 1 < k,l < m, let ¥’ = k +m and I’ = [ + m. Here, R is spanned by

the following elements:
T =Ty =0® (ex +epr), T =0@ (epr —einr)s T = 0D (err — ev).
The odd part is

0 bn><2m R e —
bn><2m = " : bn><2m S Mnme((I)) = Mn><27n(q))~
Smenme 0

The quadratic product on J is given by

Ungr(W @&71") = hh'herr'r

Unar(b) = hbr,
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the bilinear product is given by

(her,h ®r')y = (hh' +hh)® (rr' +1'r)
(b,e) = (bSc' —cSb) @ (Sblc — Sc'b)
(h@r,b)y = hb+br,

and the trilinear product is given by

(hor,h ®r " @r"y = (A" +h"Wh)® (rr'r"” +1"r'r)
(hor,h ©r'b) = hWb+br'r
(h@r,b,h ©r'y = hbr’' +h'br
(h@rbe) = (hbSc' —cSb'h) @ (rSbic— Sc'br)
(b,hdre) = (bhSc' —crSb') @ (Sb'he — Sc'hb)
(b,e,d) = bSctd—dScth

Theorem 10. LT'(OSpy, 2m(®)) = @ Id.

Proof. Let J = OSpa2m(®) and Th € LT'1(J). First, note that as in M, 2,,(®P), J contains the
idempotent e = I,, @ 0, which satisfies the conditions of Lemma 6, so 71 = 0.

Let Ty € LT'o(J). By Lemma 5, T : H,(®) — H,(®), and by Lemma 7, To| g, (o) € LI'(H,(P)).
By Lemma 9, Tp is multiplication by some o € ® on H,(®). Let T) = Ty — ald € LT'y(J). Now
M = Ji(e) for e = I, 0, so T} = 0 on M by Lemma 5. Finally, note that Jy = (R), and
suppose that r € Zg = {r € R : (r,J1) = 0}. Then (r, B) = Br = 0 for any B € M, 2, (®). Let
r= Z?,T:l pijEij. Then

2m
0= EyrEl, = Eyy, Z pijEij | EY = prE1 =0,
ij=1
whence p; = 0 for all k,l = 1...2m. Hence, r = 0, so Zy = 0. By Lemma 5, T§(R) = 0 as well,
whence Ty = ald on all of J. O

7 Quadratic Form Superalgebras

Suppose J = A @ M is a superspace over a ring of scalars ® equipped with a quadratic form
Q@ : A — ® and an alternating bilinear form B; : M x M — ®. Throughout, assume & acts faithfully
on J. Let By be the bilinear form associated with @, given by

Bo(xo,90) = Q(xo + yo) — Q(z0) — Q(vo)-
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Then the bilinear form B = By @ By, where B(A, M) = 0, is a supersymmetric bilinear form on J.
Suppose J has a basepoint 1o € A such that @Q(1p) = 1. Define an involution — : J — J by
y; = tr(y;)1lo — y;, where tr(y;) := B(y;, 1lo). Note that since A L M, tr(M) = 0, whence y7 = —y;
for all y; € M. The superspace J = J(Q, By,1p) can be turned into a unital quadratic Jordan
superalgebra, called the superalgebra of the superform, by defining the following products:

U:Eo (yl) = B(x()vm)xo - Q(xO)%a Uzo (yl) = Q(ﬁo)yl
(Tiy;) = tr(z)y; + (=17 tr(y;)z: — Blzi, y;)lo
(xi,yj,zk) = B, 75)2 + (1) B 592, — (1) B(24, 21)75.

Since A L M and ¢r(M) = 0, these products often become much simpler, depending on the

combination of even and odd elements. In particular,
( ) = tr(zo)yo + tr(yo)ro — Bo(o, yo)lo
( ) = tr(zo)y

(y1,20) = tr(zo)n

( ) = —Bi(z1,y1)lo.

Note that the bilinear product (M, M) is alternating.

(To,90,20) = Bo(wo,0)20 + Bo(20,T0)To — Bo(wo, 20)%0
(1,90, 20) = DBo(z0,%0)71

(z0,90,21) = Bo(20,%0)71

(zo,y1,20) = Bolzo, 20)y1

(x1,91,20) = —Bi(z1,51)20

(20,91,71) = DBi(x1,91)%0

(T1,90,21) = —DBi(w1,21)%

(x1,91,21) = —DBi(z1,91)21 + Bi(z1,91)71 — Bi(z1, 21)1-

Again, note that the trilinear products (M, M, J), (M, J, M), (J,M, M), and (M, M, M) are alter-
nating in the variables from M.

What is the centroid I'(J)? Since we think of the elements of the centroid as “superscalars,”
it is reasonable to conjecture that they interact like superscalars with the bilinear form B and the
quadratic form . The following results will show that this is true under mild assumptions about

the superalgebra.
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Definition 6. For B = By ® Bj, the centroid of (Q,B), I'(Q, B), is the set of homogeneous

degree-zero transformations T = Ta ® Ty € Ende(J) such that the following hold for all x,y,z € J
and w € A:

B(z,y)T(z) = B(T(x),y)z = B(z,T(y))z

QT (w))y Q(w)T*(y).

Definition 7. Let :V x V — ® be a bilinear form and W a ®-module. We say [ is
(i) full-valued! if 1 € ® is contained in the ideal generated by B(V,V);
(#i) cancellable-valued on W if B(u,v) is cancellable on W for some u,v, so

B(u,v)w =0 forweW implies w=0;
(7ii) alternatingly cancellable on W if U B(V,v)B(V,v) is cancellable on W, so

veV

B(u,v)B(u',v)w =0 for all u,e’,v € V implies w = 0;
(iv) cancellable on W if 3(V,V) is cancellable on W, so
B(u,v)w =0 for all u,v € V implies w = 0.
Lemma 15. For a bilinear form §:V xV — &,

1. If B is (i) full-valued or (ii) cancellable-valued on W, then (iii) B is alternatingly cancellable
on W, which implies that (iv) 8 is cancellable on W.

2. If W is a faithful ®-module, so aW = 0 implies a = 0, then (iii) B is alternatingly cancellable
or (i) B is cancellable on W implies (v) B is alternatingly cancellable or cancellable on ®,
which implies (vi) V is torsion-free, so oV =0 for a € ® implies a = 0.

Proof. 1. Suppose (i) holds, so 1 = Zﬁ(ui, v;) for u;,v; € V. For any k,
i=1

n

n n(k—1)+1
1= 1n(k71)+1 = (Z 5(111','01')) S Z@ﬁ(ui,vi)k
i=1 i=1
by the Pigeonhole Principle, since in each monomial of length n(k — 1) + 1, the n different
B(u;,v;) can’t all appear less than & — 1 times, so one must appear k times. Suppose w € V
has B(V,v)B(V,v)w = 0 for all v € V. Then S(u;, v;)?w = 0 for all 4, and

w=1lwe Z(I)ﬁ(ui,vi)Qw =0.

i=1

1Thanks to Ottmar Loos for suggesting the full-valued case.
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Hence, (3 is alternatingly cancellable on W.

Suppose (ii) holds, so there exist u,v € V such that [(u,v) is cancellable on W. Then
B(V,v)B(V,v)w = 0 implies ((u,v)B(u,v)w = 0, which implies w = 0 since [(u,v) is can-

cellable. Hence, [ is alternatingly cancellable on W.

Suppose (iii) holds, and suppose w € V has S(V,V)w = 0. Then
B(V,v)B8(V,v)w = 0 for any v, which implies w = 0 since [ is alternatingly cancellable on W.

Hence, [ is also cancellable on W.

)

2. Suppose (iii) or (iv) holds, and let S(V,V) = U,y B(V,v)B(V,v) or S(V,V) = B(V,V
respectively. If Sa = 0, then S(cw) = 0. Thus, aw is killed by all B(V,v)3(V,v) or 5(V,V
whence oW = 0 by (iii) or (iv) on W. Since W is a faithful #-module, o = 0, and hence (v)

)
),
0 is alternatingly faithful on ®.

Suppose (v) holds, and suppose aV = 0. Then 0 = S(V,aV) = S(V,V)a, so a = 0 by (v).
Hence, (vi) V is torsion-free.

O

Remark 2. If By is cancellable on A = Jy or By is cancellable on M = Jy, then T'(Q,B) is a

commutative ring of scalars by the usual hiding trick:

Bi(T'(ui), vi)S(2) = Bi(T (us), S(vi))z

Bi(ui, S(’l}z))T(Z) = Bi(ui, ’Ui)ST(Z),

so Bi(J;, J;)[T'S(z) — ST (2)] = 0, whence T'S = ST since B; is cancellable on J;.
Inspecting the product rules, it is clear that we can view the superalgebra J(Q, Bi,1o) as an

algebra over ® =T(Q, B).

Theorem 11. If J = J(Q, B1,1p), where By and By are cancellable on J and By is alternat-
ingly cancellable on M, then the centroid of J is just the centroid of the quadratic form (Q, B), so
I'(J(Q,B1,1p)) =T(Q,B) = %'.

Proof. Since By and Bj are faithful, we know J is an algebra over ®'. We will show I'; (J) = 0 and
To(J) =P,

Lemma 16. If By is cancellable on A and By is alternatingly cancellable on M, then J has no odd
centroid, so T'y(J) = 0.

Proof. Let Th € T'y(J). Then for all v; € J;, we have

1. Bi(z1,91)T1(21) = 0;
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2. Bo(20,%0)T1(21) = Bi(21,T1(%0))20;
3. Bi(z1,y1)T1(20) = —Bo(xo, T1(21))y1;
4. By(z1,w1)B1(21,y1)B1(z1, T (x0)) = 0.

First, (1) follows since 0 = T1 ({21, y1,21)) = (T1(21),y1, 21) = B1(z1,91)T1(21). Next, T1 ({20, Yo, z1)) =
(20, T1(%0), z1, so (2) holds, and (3) follows from
Ty ({xo,y1,21)) = —(x0,y1,T1(21)). Applying By (z1,w1)B1(z1,-) to (3), we obtain
Bi(z1,w1)Bi(21,91)Bi(21, Ti(xo)) = Bi(z1,wi)Bi(as, [Bi(z1,91)T1(20)])
= Bi(z1,w1)Bi (w1, [~Bo(zo, T1(21))y1))
= —Bi(z1,y1)B1(z1,w1)Bo(zo, T1(21))
= —Bi(z1,y1)Bo(xo, [Bi(21, w1)T1(21)])
= 0 by (1).
Since Bj is alternatingly cancellable on ®, (4) implies that By (z1,Ti(x0)) = 0 for all z1,xg, so by
(2), Bo(z0,y0)T1(x1) = 0 for all zg,yo,z1. Now By(A, A)Ti(x1) = 0, so T1(z1) = 0 since By is
cancellable on A. Thus, T1(M) = 0, and by (3), B1(M,M)T1(A) = 0. Since B; is cancellable on
M, Ty(A)=0. Hence, Ty =0on J = A& M.
O

Lemma 17. Suppose By and By are cancellable on J. Then if Ty € To(J),
Bi(To(xi),yi) = Bi(xi, To(y:)),

so Ty “hops” inside B;. Additionally, B;(To(x;),yi)zx = Bi(zi,yi)To(2x) for k # i, so Ty hops out

of B; onto z1_;.
Proof. If i = j =0,
Bo(To(zo0),y0)21 = (To(zo), 21, ¥0)

= (0,21, T0(y0)) = Bo(wo, To(yo))21

= (20, T0(21),y0) = Bo(o,0)To(21)-

Then Bo(To(x0),y0)z1 — Bo(xo,y0)To(21) = 0, so Ty always hops out of By onto any z;. We also
have [BQ(TQ((E()), yo) — Bo(zo, To(yo))]zl =0 for any z; € M. Since By is cancellable on J, Lemma
15 (vi) gives us that Bo(To(z0),yo) — Bo(zo, To(yo)) = 0.
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Ifi=j=1,
Bi(To(z1),y1)z0 = (20,91, To(z1))
= (20, To(y1), 71) = Bi(21,To(y1))20
= (To(20), 91, 71) = Bi(z1,91)To(20)-
Then By (To(x1), y1)20—Bi (1, y1)To(z0) = 0, so Ty hops out of By onto any z. Also, [By(To(z1),y1)—

By (sr:l,TO(yl))]zo = 0 for any z9 € A. Since B; is cancellable on J, Lemma 15 (vi) gives us that
Bi(To(x1),y1) — Bi(z1, To(y1)) = 0. O

Note that Lemma 17 states that the elements of the centroid not only act as superscalars within
products, but also within the bilinear form.

We would also expect a superscalar to be able to move from inside the bilinear form to outside
the bilinear form. In other words, we would like T' to “hop” into the bilinear form. Under what
conditions is B(z;,y;)Ti(zk) = B(Ti(z:),y;)zx? It is clearly true for [ = 1 since all odd elements
of the centroid are identically zero. Thus, we will restrict our study of this concept to the more
interesting case of even elements Tj.

First, note that since A L M, if ¢ # j, then B(z;,y;)To(2x) = 0 = B(To(x;), y;)zk. By Lemma

17, all that remains is the case when i = 7 = k.

Lemma 18. If By and B; are cancellable on J, then Ty € To(J) hops out of B onto like elements;
i.e.,

Bi(To(xi),yi)zi = Bi(wi,yi)To(zi) fori=0,1.
Proof. 1f i # j, Lemma 17 gives us that
BiTo(xi) == Bj(y;, zj)To(xi) = Bj(Toly;s), z)xi =: Bji.
Set A; := Bi(w4,y:)(8}) — Bi(To(%i),yi)zi € Ji- Then

BiAi = Bi(zi,y:)(Bj2i) — Bi(Bjwi, yi)2i

B [Bi(xi, yi)zi — Bi(wi, yi)zi] = 0.

Thus, B;(J;,Ji)A; = 0, and since B; is cancellable on J;, we have A; = 0 for ¢ = 0,1, whence
Bi(To(xi),yi)zi = Bi(wi, yi)To (). 0
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Lemma 19. If By is cancellable on J, Q(To(xo))yo = Q(20)TE (yo)-

Proof. Since Ty € T'(J), Ury(z0)(W0) = T5 (Us, (%0))- Expanding these products, we get

Bo(To(w0),y0)To(x0) — Q(To(zo))yo = Bo(wo, %0)T5 (z0) — Q(z0)T4 (yo)-

Then
Q(To(w0))yo — Q(x0)T5 (yo) = Bo(To(zo), yo)To(xo) — Bol(wo, yo)To(To(xo))
= Bo(To(To(z0)), yo)zo — Bo(To(To(x0)), yo)zo by Lemma 18
= 0.
Hence, Q(To(x0))yo = Q(x0)T5 (yo)- =

Lemma 20. For any xg € A and any y1 € M,
Q(To(x0))y1 = Q(x0)T5 (y1)-
Proof. Recall that Up,(z,)(y1) = T3 Uy, (y1)). Thus, Q(To(wo))y1 = Q(x0)TE (y1)- O
Hence, we have shown that T'(J(Q, B1,10)) =T'(Q, B) = ®'. O

Remark 3. If By is cancellable on J, the above results state that Ty € T'o(J) is almost a scalar. If

8 = Bi(uy,v1) is a cancellable scalar, let
& — -1 _[¥ .
dP=0<p >—{@.gpe¢, neN},
so ® is the usual “localization of ® at 3.7 Then By(Ty(u1),v1)Id = By(uy,v1)Ty by Lemma 2?7, so

To = 87 By (To(uy),v1)Id € ®Id.

In other words, 8Ty € ®Id for all Ty € T'y(J).

8 Conclusion

This evidence leads to the conclusion that the natural concept of scalars in a Jordan superalgebra
should be the usual notion of scalars rather than superscalars. We adopt as the correct notion of
centroid for a Jordan superalgebra the set T'g(J), when T'g(.J) is supercommutative. In this case, the
centroid is a commutative, associative ring of scalars, and J is a I'g(J)-superalgebra via Definitions

4 and 5.
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