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FRANCISCO CUENCA CARRÉGALO AND CRISTINA DRAPER?

Abstract. A new structure, based on joining copies of a group by means of a twist, has

recently been considered to describe the brackets of the two exceptional real Lie algebras

of type G2 in a highly symmetric way. In this work we show that these are not isolated

examples, providing a wide range of Lie algebras which are generalized group algebras

over the group Z3
2. On the one hand, some orthogonal Lie algebras are quite naturally

generalized group algebras over such group. On the other hand, previous classifications

on graded contractions can be applied to this context getting many more examples,

involving solvable and nilpotent Lie algebras of dimensions 32, 28, 24, 21, 16 and 14.

1. Introduction

This paper revolves around two ideas, involving the two concepts of generalized group

algebra and of graded contraction, both focussed on Lie algebras. A generalized group

algebra generalizes both a twisted group algebra Fσ[G], for F a field and σ : G × G → F
a map (the earliest works date from the 1960s, as [3]), and a group ring R[G], in case

the ring R is also a vector space over F (see, for instance, [13]). Although at first glance

a generalized group algebra would appear to be a strange object, of which there are no

or uninteresting examples, and above all with no apparent connection to Lie algebras,

the definition is motivated by a very remarkable example appeared in [5]. That work

provided a nice and practical model of each of the two real Lie algebras of type G2,

both the compact and the split ones, as generalized group algebras over Z3
2. In general,

it is particularly difficult to find ways of describing the compact Lie algebra g2,−14. Its

usual description as the Lie algebra of derivations of the octonion division algebra (or of

the octonion split algebra, in the g2,2-case), is not easy to use at all, because not even

the elements have intuitive expressions as linear operators. The mentioned models as

generalized group algebras in [5] exploited the symmetry on the group Z3
2, providing the

bracket in a self-contained way, without the need for prior knowledge of either octonions

or their derivations. A first question is whether the concept of generalized group algebra

can be useful for describing further Lie algebras, or whether the two examples of G2-type

are isolated examples. In this work, we will find generalized group algebras that are
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reductive (direct sum of a semisimple ideal with the center), solvable Lie algebras, and

nilpotent Lie algebras, displaying a considerable range of examples. In other words, the

concept deserves further study.

The second goal is to apply graded contractions to find new Lie algebras with precise

brackets. This concept comes from physics, from the long physics tradition of varying the

product, either by complicating or simplifying it. Take care with the fact that a graded

contraction, as introduced in [4], is not a contraction which is graded, since it is defined

algebraically and not by a limiting process. More precisely, it consists of preserving the

bracket between two homogeneous components up to scalar multiple depending on some

contraction σ : G × G → F. In [7], graded contractions of the orthogonal Lie algebras

so8(C) and so7(C) are completely classified up to equivalence (which means that the

related Lie algebras are isomorphic), obtaining a large list of Lie algebras. The considered

Z3
2-gradings are not arbitrary, they are chosen because they share important properties

with the Z3
2-grading on g2 coming from octonions. The point is that one cannot know the

exact bracket in the contracted Lie algebras without knowing first a precise description

of the original bracket in the orthogonal algebra adapted to the grading. Once you have

described the orthogonal algebras as generalized group algebras, you get as a bonus the

concrete description as generalized group algebras of all the Lie algebras obtained by

graded contraction. This will greatly increase the number of examples available.

The structure of this work follows. The definition of a generalized group algebra is

stated in Section 2.1, as a generalization of a twisted group algebra when replacing the

field F with V a vector space over F. This requires of a map σ : G×G→ Bil(V × V, V ),

called, by analogy, a twist. As the definition is quite new, some examples follow. It

is not difficult to show, in Proposition 2.3 and Corollary 2.4, that some orthogonal Lie

algebras of size 8 and 7 are two more examples of generalized group algebras. They can be

constructed by copying convenient Z3
2-gradings on those orthogonal Lie algebras. Results

on g2 as Lie algebra over Z3
2 are recovered too. This approach of emphasizing the role of

the group has several advantages, as shown in Sections 2.4 and 2.5, which deal with the

Killing form and with the representations compatible with the gradings. The second part

of this work, developed in Section 3, is focused on obtaining more examples of generalized

group algebras. The background on graded contractions is recalled in Section 3.1, jointly

with the classification up to equivalence of the graded contractions of our remarkable

gradings in Section 3.2. The crucial Lemma 3.8 allows us to obtain a large collection of

generalized group algebras in Corollary 3.9.

2. Some orthogonal algebras which are generalized group algebras

Throughout this work, F will be an arbitrary field, most of times of characteristic

different from 2 and 3.
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2.1. Generalized group algebras which are Lie algebras. For G an abelian group,

and a map σ : G × G → F, the twisted group algebra Fσ[G] consists of endowing F[G] =

{
∑

g∈G αgg : αg ∈ F} with the only product defined by bilinear extension of g · h =

σ(g, h)(g + h). This structure encompasses a wide range of examples of different types

of algebras, for instance octonion algebra was described as Fσ[Z3
2] in [1], Clifford algebras

as Fσ[Zn2 ] in [11], and Albert algebra as Fσ[Z3
3] in [8] for convenient maps σ’s. When

replacing the field F with a ring R, we can consider the group ring of G with coefficients

in R again as the set of formal sums R[G] = {
∑

g∈G rgg : rg ∈ R} with product extending

(rg) · (r′h) = (rr′)(g + h). In both cases, two elements are considered equal if and only

if the coefficients of each group element are equal. In [5], a mixture of the above two

concepts appears, in principle for describing the smallest of the exceptional Lie algebras.

The term that was used there, twisted ring group (Eq. (1) below) is probably inadequate:

it does not seem to fit our usage very well (with a strong focus on Lie algebras), nor does

it seem to coincide with previous uses of the term (see the book [13, Chapter 1, Section

2]). The construction in [5] is well suited to the following definition, where the only we

need is a triple (G, V, σ) with V a vector space.

Definition 2.1. Let (G,+) be an abelian group, V a vector space over F, and σ : G×G→
Bil(V × V, V ), (g, h) 7→ σg,h a map. We endow the set of formal sums

V σ[G] :=

{∑
g∈G

rgg : rg ∈ V

}
with an F-algebra structure by means of α(rgg) := (αrg)g and

(1)

(∑
g∈G

rgg

)
·

(∑
h∈G

shh

)
:=

∑
g,h∈G

σg,h(rg, sh)(g + h),

for rg, sh ∈ V , g, h ∈ G and α ∈ F. We refer to this algebra V σ[G] as generalized group

algebra, or simply algebra over G, with the aim of emphasizing the role played by the

concrete group. In case that the generalized group algebra V σ[G] turns out to be a Lie

algebra with this product, we will refer to it as a Lie algebra over G, and the product (1)

will be written with a bracket. Sometimes, we will talk about σ as a twist1.

Example 2.2. (1) Any twisted group algebra Fσ[G] is a generalized group algebra

for V = F and σ : G×G→ F, where we trivially identify Bil(F× F,F) with F by

assigning to a bilinear map the image of (1, 1). Here the general conditions for the

generalized group algebra to be a Lie algebra turn out to be

σ(g, h) = −σ(h, g),
∑

g,h,k cyclic

σ(g, h)σ(g + h, k) = 0,

1The term twist is inspired in Example 2.2(1), although in the general case, we are not twisting any

previous product in V , rather, each σg,h endows the vector space V with a ring structure.



4 NEW LIE ALGEBRAS OVER Z3
2

which translate the skew-symmetry and the Jacobi identity respectively. For in-

stance, if σ ≡ 0, Fσ[G] is an abelian Lie algebra. There are nontrivial occurrences

too, as the next example shows.

(2) The general linear algebra gln(F) = (Matn×n(F), [·, ·]) is a generalized group alge-

bra for any algebraically closed field F, V = F, G = Z2
n and

σ : G×G→ Bil(F× F,F) ≡ F, σ((a1, a2), (b1, b2)) = ξa2b1 − ξa1b2 ,

where ξ is a primitive nth root of the unity. For proving this, recall that gln(F) is

linearly spanned by the set {XaY b : a, b = 0, . . . , n− 1} for

X =


1 0 . . . . . . 0

0 ξ 0 . . . 0
...

. . . . . . . . .
...

0 . . . 0 ξn−2 0

0 . . . . . . 0 ξn−1

 , Y =


0 1 0 . . . 0

0 0 1 . . . 0
...

. . . . . . . . .
...

0 . . . 0 0 1

1 0 . . . . . . 0

 .

As Xn = In = Y n and Y X = ξXY , then

[Xa1Y a2 , Xb1Y b2 ] = (ξa2b1 − ξa1b2)Xa1+b1Y a2+b2 .

Then the identification Xa1Y a2 7→ (a1, a2) ∈ G gives the required isomorphism.

(3) Both the real algebras g2,−14 and g2,2 are simple ideals of generalized group algebras

for F = R, V = F2, G = Z3
2 and the explicit σ’s described in [5, Theorem 1 and

Corollary 3], respectively. To be precise, those exceptional real Lie algebras appear

as V σ[G×], removing the neutral element of the group. In order to include these

and other cases of interest, subalgebras of Lie algebras over G will be also called

Lie algebras over G. Note also that, if we consider the complex field F = C, both

the obtained Lie algebras become isomorphic to the only complex Lie algebra of

type G2, another Lie algebra over Z3
2.

2.2. The orthogonal Lie algebra of size 8 as generalized group algebra. From

now on through this work, G will always be Z3
2. The elements in G = Z3

2 admit a labelling

(2)
g0 := (0̄, 0̄, 0̄), g1 := (1̄, 0̄, 0̄), g2 := (0̄, 1̄, 0̄), g3 := (0̄, 0̄, 1̄),

g4 := (1̄, 1̄, 0̄), g5 := (0̄, 1̄, 1̄), g6 := (1̄, 1̄, 1̄), g7 := (1̄, 0̄, 1̄),

such that gi+gi+1 = gi+3 for any i ∈ I = {1, . . . , 7}, where the sum of indices is considered

modulo 7. (Hence gi+1 + gi+3 = gi and gi+3 + gi = gi+1.) For further use, denote by i ∗ j
the only index in I ∪ {0} such that gi + gj = gi∗j.

A G-grading Γ on an algebra A is a vector space decomposition Γ : A =
⊕

g∈GAg
such that AgAh ⊂ Ag+h, for all g, h ∈ G. Each subspace Ag is called a homogeneous

component, and g its degree. Generalized group algebras V σ[G] are naturally G-graded,

for (V σ[G])g = V g.
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In particular, any Lie algebra over G is G-graded. (Gradings over groups have proved

to be a key tool to study Lie algebras, so the readers are kindly invited to consult the

AMS monography [9] for further information on gradings on simple Lie algebras.) Of

course the converse does not necessarily occur, and a necessary condition for a G-graded

Lie algebra to be a Lie algebra over G is that all the homogeneous components have the

same dimension (coinciding of course with the dimension of V as a vector space over F).

Our main aim in this section is to describe the orthogonal Lie algebra so8(F) of the

skew-symmetric matrices as a simple ideal of a generalized group algebra over the group

Z3
2, based on our knowledge of a concrete Z3

2-grading on so8(F) with strong symmetry

properties, including that one of constant dimension of the homogeneous components

(up to the neutral component, which vanishes). The main relevant facts concerning this

grading can be extracted for instance from [7], but we will recall them here for fixing the

notation.

Denote by 〈·, ·〉 the usual scalar product in F8, that is, 〈
∑7

i=0 xiei,
∑7

i=0 yiei〉 =
∑7

i=0 xiyi,

for {ei : i = 0, . . . , 7} the canonical basis of F8. The orthogonal algebra

so8(F) := {f ∈ gl8(F) : 〈f(x), y〉+ 〈x, f(y)〉 = 0 for any x, y ∈ F8},

is spanned by the linear operators ϕij ≡ ϕei,ej , where

ϕx,y : F8 → F8, ϕx,y(z) := 〈x, z〉y − 〈y, z〉x.

The G-grading on the vector space V = F8 (no more than a vector space decomposition

labelled on the group) obtained by assigning deg(ei) = gi ∈ G, induces a G-grading on

the orthogonal algebra, denoted as Γd4 : so8(F) = ⊕g∈Gso8(F)g, in the usual way, i.e., a

map f ∈ so8(F) has degree g if f(Vh) ⊂ Vg+h for all h ∈ G. Taking into account that

ϕij(ek) = δikej − δjkei (δ is used for the Kronecker delta), then ϕij ∈ so8(F)gi+gj . As

gi+2 + gi+6 = gi = gi+4 + gi+5 for all i ∈ I, in particular

Bi = {ϕi+1,i+3, ϕi+2,i+6, ϕi+4,i+5, ϕ0,i} ⊂ so8(F)gi .

By dimension count, this implies that Bi is a basis of so8(F)gi if i 6= 0 and that so8(F)g0 = 0.

Furthermore, each homogeneous component so8(F)gi is an abelian subalgebra, since, for

any ψ ∈ so8(F), and any pair of elements x, y ∈ F8, the next identity holds

(3) [ψ, ϕx,y] = ϕψ(x),y + ϕx,ψ(y),

from which it is easy to deduce [Bi,Bi] = 0. A graded Lie algebra where all the ho-

mogeneous components (up to the neutral component) are abelian and have the same

dimension is the key to endow it with a structure of generalized group algebra over the

grading group. In our case, denote by G× = G\{g0} and simply consider the vector space

isomorphism

(4)
Ψ : so8(F) −→ V [G×]

a1ϕi+1,i+3 + a2ϕi+2,i+6 + a3ϕi+4,i+5 + a4ϕ0,i 7−→ (a1, a2, a3, a4)gi,
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which is a graded map (Ψ(so8(F)gi) ⊂ V gi). Now define the bracket in the subspace

V [G×] (in other words, take σ) in the only way that makes Ψ: so8(F) → V σ[G×] a Lie

algebra isomorphism. For consistency with Definition 2.1, we extend σ to the whole group

G. The appropriate σ follows:

Proposition 2.3. Let V = F4 and G = Z3
2. Then L = V σ[G] is a generalized group

algebra for the map σ : G×G→ Bil(V × V, V ), σ(gi, gj) ≡ σi,j given by, for any i ∈ I,

(5)

σi,i+1(r, s) = (−a2b1 − a3b3,−a2b3 − a3b1, a1b2 + a4b4, a1b4 + a4b2),

σi,i+2(r, s) = (a2b3 + a4b4,−a1b1 − a3b2,−a1b2 − a3b1, a2b4 + a4b3),

σi,i+4(r, s) = (−a1b2 − a2b3, a3b1 + a4b4,−a1b3 − a2b2, a3b4 + a4b1),

if r = (a1, a2, a3, a4), s = (b1, b2, b3, b4), σ0i(r, s) = σi0(r, s) = σ00(r, s) = σii(r, s) = 0 and

σi,i+3(r, s) = −σi,i+4(s, r), σi,i+5(r, s) = −σi,i+2(s, r), σi,i+6(r, s) = −σi,i+1(s, r).

Furthermore the center z(L) = {rg0 : r ∈ V } has dimension 4, and the derived algebra

[L,L] = 〈{rgi : r ∈ V, i ∈ I}〉 ≡ V σ[G×] is simple and isomorphic to so8(F).

Proof. It is clear that [rg0, V
σ[G]] = 0, so that V g0 is central and we have only to check

that the map Ψ: so8(F) → V σ[G×] ≤ L, defined in Eq. (4), is an algebra isomorphism

(in particular V σ[G×] would be a Lie algebra). Thus, let us check that Ψ([f, f ′]) =

[Ψ(f),Ψ(f ′)] for any homogeneous elements f, f ′ ∈ so8(F) of degrees i, j ∈ I, respectively.

For

f = a1ϕi+1,i+3 + a2ϕi+2,i+6 + a3ϕi+4,i+5 + a4ϕ0,i, r = (a1, a2, a3, a4),

f ′ = b1ϕj+1,j+3 + b2ϕj+2,j+6 + b3ϕj+4,j+5 + b4ϕ0,j, r′ = (b1, b2, b3, b4),

we have [Ψ(f),Ψ(f ′)] = [rgi, r
′gj] = σi,j(r, r

′)gi∗j, and we want to check that this coincides

with Ψ([f, f ′]). If i = j, no problem arises since so8(F)gi is abelian and σii ≡ 0. Compute,

for j = i+ 1, the brackets of basic elements with the help of (3),

[·, ·] ϕj+1,j+3 ϕj+2,j+6 ϕj+4,j+5 ϕ0,j

ϕi+1,i+3 0 ϕi∗j+4,i∗j+5 0 ϕ0,i∗j

ϕi+2,i+6 −ϕi∗j+1,i∗j+3 0 −ϕi∗j+2,i∗j+6 0

ϕi+4,i+5 −ϕi∗j+2,i∗j+6 0 −ϕi∗j+1,i∗j+3 0

ϕ0,i 0 ϕ0,i∗j 0 ϕi∗j+4,i∗j+5

This immediately gives

[f, f ′] = (−a2b1−a3b3)ϕi+4,i+6+(−a2b3−a3b1)ϕi+5,i+2+(a1b2+a4b4)ϕi,i+1+(a1b4+a4b2)ϕ0,i+3

so that

Ψ([f, f ′]) = (−a2b1 − a3b3,−a2b3 − a3b1, a1b2 + a4b4, a1b4 + a4b2)gi+3 = σi,i+1(r, r
′)gi∗(i+1).

Similarly we have to compute the brackets among basic elements for the case j = i+ 2,
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[·, ·] ϕj+1,j+3 ϕj+2,j+6 ϕj+4,j+5 ϕ0,j

ϕi+1,i+3 −ϕi∗j+2,i∗j+6 −ϕi∗j+4,i∗j+5 0 0

ϕi+2,i+6 0 0 ϕi∗j+1,i∗j+3 ϕ0,i∗j

ϕi+4,i+5 −ϕi∗j+4,i∗j+5 −ϕi∗j+2,i∗j+6 0 0

ϕ0,i 0 0 ϕ0,i∗j ϕi∗j+1,i∗j+3

and in case j = i+ 4,

[·, ·] ϕj+1,j+3 ϕj+2,j+6 ϕj+4,j+5 ϕ0,j

ϕi+1,i+3 0 −ϕi∗j+1,i∗j+3 −ϕi∗j+4,i∗j+5 0

ϕi+2,i+6 0 −ϕi∗j+4,i∗j+5 −ϕi∗j+1,i∗j+3 0

ϕi+4,i+5 ϕi∗j+2,i∗j+6 0 0 ϕ0,i∗j

ϕ0,i ϕ0,i∗j 0 0 ϕi∗j+2,i∗j+6

The cases j = i + 6, i + 5, i + 3 are consequence of the skew-symmetry in so8(F) and of

the fact σij(r, s) = −σji(s, r). For instance, if j = i+ 6, as i = (i+ 6) + 1,

(6) [Ψ(f),Ψ(f ′)] = σi,i+6(r, r
′)(gi + gi+6) = −σi+6,i(r

′, r)gi+2

= −σi,i+1(r
′, r)(gi+6 + gi) = −[Ψ(f ′),Ψ(f)] = −Ψ([f ′, f ]) = Ψ([f, f ′]).

This finishes the proof. �

2.3. The series g2 ⊂ b3 ⊂ d4 as Lie algebras over Z3
2. From the above construction

of the orthogonal algebra of size 8 as generalized group algebra, we can deduce that the

orthogonal algebra of size 7 is another example of generalized group algebra, and then

recover the result of [5] which says that a certain subalgebra of type G2 can be described

too as a Lie algebra over Z3
2.

First, if we consider the vector subspace V ′ = {(a, b, c, 0) : a, b, c ∈ F} ≤ V , it is clear

that V ′[G] =
{∑

g∈G rgg : rg ∈ V ′
}

is closed for the bracket considered in Proposition 2.3,

hence it is a Lie subalgebra of V σ[G]. This is precisely the sum of an orthogonal algebra

of size 7 (simple Lie algebra of type B3) with a 3-dimensional center:

Corollary 2.4. Let W = F3 and G = Z3
2. Then L = W σ[G] is a generalized group algebra

for the map σ : G×G→ Bil(W ×W,W ), σ(gi, gj) ≡ σi,j given by, for any i ∈ I,

(7)

σi,i+1(r, s) = (−a2b1 − a3b3,−a2b3 − a3b1, a1b2),
σi,i+2(r, s) = (a2b3,−a1b1 − a3b2,−a1b2 − a3b1),
σi,i+4(r, s) = (−a1b2 − a2b3, a3b1,−a1b3 − a2b2),

if r = (a1, a2, a3), s = (b1, b2, b3), σ0i(r, s) = σi0(r, s) = σ00(r, s) = σii(r, s) = 0 and

σi,i+3(r, s) = −σi,i+4(s, r), σi,i+5(r, s) = −σi,i+2(s, r), σi,i+6(r, s) = −σi,i+1(s, r).

Furthermore the center z(L) = {rg0 : r ∈ W} has dimension 3, and the derived algebra

[L,L] = 〈{rgi : r ∈ W, i ∈ I}〉 ≡ W σ[G×] is simple and isomorphic to so7(F).
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Proof. The fact that L = W σ[G] is a generalized group algebra for our choice of the twist σ

was justified before the proof: the concrete expression comes from substituting a4 = b4 = 0

in the twist considered in Proposition 2.3, and then deleting the last coordinate.

Thus, we have only to check that the Lie subalgebra (V ′)σ[G×] is isomorphic to so7(F).

Indeed, if we identify the vector subspace of F8 spanned by {ei : i = 1, . . . , 7} with F7,

choosing a scalar product 〈·, ·〉 which makes such basis to be orthonormal, and we grade

F7 by assigning again deg(ei) = gi ∈ Z3
2 for all i ∈ I, the related orthogonal Lie algebra is

Z3
2-graded too, and

B′i = {ϕi+1,i+3, ϕi+2,i+6, ϕi+4,i+5} ⊂ so7(F)gi

is a basis of the homogeneous component of degree gi. Moreover, this basis B′i consists of

the first 3 vectors of the basis Bi of so8(F)gi . �

More details on this Z3
2-grading on so7(F) are given in [7, Lemma 2.2], so we will use

the same notation as there, Γb3 . That work uses the complex field to obtain a complete

classification of graded contractions, but the concrete field was not relevant for describing

the main properties of the grading, which remain valid in our setting.

Remark 2.5. As we know, if F is the real field, so8(R) and so7(R) are compact Lie

algebras (negative definite Killing form), so this will also be the case for both V σ[G×] in

Proposition 2.3 and W σ[G×] in Corollary 2.4. (The Killing form is discussed below in

Section 2.4.) The use of the group G = Z3
2 is not a coincidence, there does not exist a

H-grading on any compact Lie algebra for H 6= Zn2 (see, for instance, [2, Proposition 1]).

Moreover, our algebras are strongly related with the octonion division algebra, which is,

in turn, a twisted group algebra over Z3
2 ([1]).

Recall that the only example of generalized group algebra that has already been studied

is that one of g2 in [5] (real and complex field). As this Lie algebra lives inside the

orthogonal algebra so7(F), and the related G-gradings are compatible, then the Lie algebra

g2 should live as a subalgebra of that one in Corollary 2.4. It is convenient to locate this

subalgebra.

Lemma 2.6. Take the vector subspace S = {(a1, a2, a3) : a1 + a2 + a3 = 0} of W = F3.

The map σ in Corollary 2.4 satisfies σg,h(S, S) ⊂ S for all g, h ∈ G, so that Sσ[G] is also

a generalized group algebra.

Proof. Denote by s1 = (0, 1,−1) and s2 = (2,−1,−1), a set of generators of S. A simple

substitution in (7) gives

σi,i+1 : (s1, s1) 7→ 1
2
(s1 − s2) σi,i+2 : (s1, s1) 7→ 1

2
(s1 − s2) σi,i+4 : (s1, s1) 7→ 1

2
(s1 + s2)

(s1, s2) 7→ 3
2
(s1 − s2) (s1, s2) 7→ −1

2
(3s1 + s2) (s1, s2) 7→ −1

2
(3s1 − s2)

(s2, s1) 7→ −1
2

(3s1 + s2) (s2, s1) 7→ 1
2
(3s1 + s2) (s2, s1) 7→ −3

2
(s1 + s2)

(s2, s2) 7→ 1
2
(3s1 + s2) (s2, s2) 7→ −1

2
(9s1 − s2) (s2, s2) 7→ −1

2
(3s1 − s2).
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Also take into account that σg,h(r, r
′) = −σh,g(r′, r) to finish the proof. �

Proposition 2.7. The generalized group algebra Sσ[G] as in Lemma 2.6, is sum of a two

dimensional center, Sg0 and g2 ≡ Sσ[G×], a simple subalgebra of type G2.

Proof. Note that s1 and s2 in the proof of the above lemma can be naturally identified

with the derivations of the octonion algebra 2E`i,i+2
i and 2F `i

i from [6, Eq. (14)], for

`i = {i, i + 1, i + 3}, taking into account that 2E`i,i+2
i = ϕi+2,i+6 − ϕi+4,i+5 and 2F `i

i =

2ϕi+1,i+3 − ϕi+2,i+6 − ϕi+4,i+5. �

From now on, we will denote by Γg2 the grading on the generalized Lie algebra g2 :=

Sσ[G×].

In the above proof we have used our previous knowledge of octonions and the concrete

derivations of octonions taken for instance from [6]. But Remark 2.9 below provides an

alternative proof to this proposition. This means that we have a completely independent

construction of g2 without using derivations of octonions (not even for the proof), whose

bracket is, besides, very easy to handle.

Our proof that g2 is a Lie algebra over Z3
2 is also independent of [5], although an explicit

correspondence can be given by (a1s1 + a2s2)gi 7→ 2(a1, a2)gi. In any case, seeing g2 as a

subalgebra of W σ[G] in such a natural way with S = 〈(1, 1, 1)〉⊥ has made the twist have

a much more friendly expression than that of [5, Theorem 1].

2.4. Lie algebras over G and the Killing form. We will show how well adapted this

structure is to the framework of Lie theory, providing a completely natural description of

the Killing form in terms of the generalized Lie algebra. In particular, this facilitates the

choice of orthonormal bases.

Proposition 2.8. Let κ : L × L → L denote the Killing form of a Lie algebra L, that

is, κ(x, y) = tr(ad(x) ad(y)), for ad the adjoint operator. As usual consider the group

G = Z3
2.

(1) If L = V σ[G] is the Lie algebra in Proposition 2.3, for any i, j ∈ I, r, s ∈ V = F4,

κ(rgi, sgj) = −12〈r, s〉δij.

(2) If L = W σ[G] is the Lie algebra in Corollary 2.4, i, j ∈ I, r, s ∈ W = F3, then

κ(rgi, sgj) = −10〈r, s〉δij.

(3) If L = Sσ[G] is the Lie algebra in Proposition 2.7, i, j ∈ I, r, s ∈ S = 〈(1, 1, 1)〉⊥ ≤
F3, then

κ(rgi, sgj) = −8〈r, s〉δij.
In the three cases, the neutral component coincides with the radical of κ.

(This example makes it very clear that the Killing form of a subalgebra is not the

restriction of the Killing form of the algebra to the subalgebra.)
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Proof. Recall that if Γ : L =
⊕

g∈G Lg is a G-grading on a Lie algebra, then κ(Lg,Lh) = 0

if g 6= −h. As now G = Z3
2, any two different homogeneous components are orthogonal

for κ. Then assume that i = j, and let us compute the trace of F = ad(rgi) ad(sgi),

for r, s ∈ F4. Let us denote by {e′k : k = 1, 2, 3, 4} the canonical basis of V , and by

πk : V gl → F the projection πk((a1, a2, a3, a4)gl) = ak. (We avoid the name πlk in order

not to complicate the notation.) Since F (V gl) ⊂ V gl, then

κ(rgi, sgj) =
∑
l=0...7

∑
k=1...4

πk(F (e′kgl)).

For l ∈ {0, i}, F (V gl) = 0. For l = i+ 1, F (tgi+1) = −σi,i+4(σi,i+1(s, t), r)gi+1. So we can

compute, for r = (a1, a2, a3, a4) and s = (b1, b2, b3, b4),

π1(F (e′1gi+1)) = π3(F (e′3gi+1)) = −a2b2 − a3b3,
π2(F (e′2gi+1)) = π4(F (e′4gi+1)) = −a1b1 − a4b4,

which gives
∑

k=1...4 πk(F (e′kgi+1)) = −2〈r, s〉. Similarly we proceed with any l 6= 0, i to

obtain
∑

k=1...4 πk(F (e′kgl)) = −2〈r, s〉. Thus κ(rgi, sgi) = −12〈r, s〉, finishing the case

[L,L] ∼= so8(F).

For the second case, we have to be careful, because the Killing form does not restrict

well to subalgebras. Besides, although we can argue quite similarly, now not all the partial

sums are equal. What happens is, for F = ad(rgi) ad(sgi), r = (a1, a2, a3), s = (b1, b2, b3),∑
k=1...4 πk(F (e′kgi+1)) =

∑
k=1...4 πk(F (e′kgi+3)) = −a1b1 − 2a2b2 − 2a3b3,∑

k=1...4 πk(F (e′kgi+2)) =
∑

k=1...4 πk(F (e′kgi+6)) = −2a1b1 − a2b2 − 2a3b3,∑
k=1...4 πk(F (e′kgi+4)) =

∑
k=1...4 πk(F (e′kgi+5)) = −2a1b1 − 2a2b2 − a3b3,

which gives trace of F equal to −10〈r, s〉.
Finally, for the algebra Sσ[G], it is enough to check that κ(s1gi, s1gi) = −16, κ(s1gi, s2gi) =

0 and κ(s1gi, s2gi) = −48, as then the bilinearity gives the result. For instance, the map

F = ad(s1gi) ad(s1gi) can be tediously computed:

s1gi+1 7→ (−s1 − s2)gi+1, s1gi+2 7→ −s1gi+2, s1gi+4 7→ −s1gi+4,

s2gi+1 7→ (−3s1 − 3s2)gi+1, s2gi+2 7→ −s2gi+2, s2gi+4 7→ −s2gi+4,

s1gi+3 7→ (−s1 + s2)gi+3, s1gi+6 7→ −s1gi+6, s1gi+5 7→ −s1gi+5,

s2gi+3 7→ (3s1 − 3s2)gi+3, s2gi+6 7→ −s2gi+6, s2gi+5 7→ −s2gi+5,

which gives tr(F ) = −1−3−1−3−1−1−1−1−1−1−1−1 = −16. Proceed similarly

with the other two cases. �

Remark 2.9. The previous proposition implies the semisimplicity of the derived algebra

of Sσ[G], since the Killing form is nondegenerate (in fact, it is negative definite in case

F = R). It is not very difficult to conclude that it has type G2, without any other

consideration on derivations of octonions. Indeed, the only other semisimple Lie algebra

of dimension 14 has type A2⊕2A1, by dimension count (the only simple Lie algebras with

dimensions less than 14 have dimension 3, 8 and 10), which cannot be contained in an
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algebra of type B3, arguing about the rank. To summarize, we have an alternative proof

of Proposition 2.7 which does not need to use [6].

2.5. Generalized group algebras and irreducible representations. It is well-known,

if F is an algebraically closed field of characteristic zero, that so8(F) has 4 basic irreducible

representations, and any other irreducible representation lives as a submodule of the ten-

sor product of copies of the basic ones. This makes it important to describe these 4

representations in an easy way. (Material about representations on Lie algebras can be

consulted, for instance, in [12].) Besides the adjoint module, the other 3 basic modules

have all dimension 8 and are the natural one, and the two half-spin modules. Our next

purpose is to describe these modules from the point of view of the generalized Lie algebra.

(The adjoint module is of course not necessary.) They are surprisingly well adapted to

our description in terms of the group Z3
2.

Proposition 2.10. The 3 non-equivalent irreducible representations of dimension 8 of

the generalized Lie algebra [L,L] = V σ[G×] are given by ρk : V σ[G×]→ gl8(F), k = 1, 2, 3,

for

ρ1((a, b, c, d)gi) = δ(i)(a,b,c,d)
ρ2((a, b, c, d)gi) = δ(i)(a,b,c,d)−a+b+c−d

2
(1,1,1,−1)

ρ3((a, b, c, d)gi) = δ(i)(a,b,c,d)−a+b+c+d
2

(1,1,1,1)

where δ(i)(a,b,c,d) : F8 → F8 denotes the linear map:

ei+1 7→ aei+3, ei+2 7→ bei+6, ei+4 7→ cei+5, e0 7→ dei,

ei+3 7→ −aei+1, ei+6 7→ −bei+2, ei+5 7→ −cei+4, ei 7→ −de0.

Proof. The natural representation ρ1 is clear, due to

ϕi+1,i+3 = δ(i)(1,0,0,0), ϕi+2,i+6 = δ(i)(0,1,0,0), ϕi+4,i+5 = δ(i)(0,0,1,0), ϕ0,i = δ(i)(0,0,0,1).

For describing the two other representations, it is convenient to think of F8 as an algebra

O = F8 with the product where e0 = 1 is the unity, e2i = −1 for all i ∈ I and

(8) eiei+1 = −ei+1ei = ei+3,

and all the cyclic permutations of this identity hold, always taking the sum modulo 7.

(This is the Cayley algebra, or octonion algebra, if the field has characteristic different

from 2 and 3.) According to the principle of local triality (see, for instance, [14, Theo-

rem 3.31]), for every U ∈ so8(F) there are unique U ′, U ′′ ∈ so8(F) satisfying

U(xy) = U ′(x)y + xU ′′(y) for all x, y ∈ O.

Precisely the representations ρ2, ρ3 : so8(F)→ gl8(F) come from assigning ρ2(U) = U ′ and

ρ3(U) = U ′′. Thus, it is convenient to recall the proof of this principle, based on the

well-known fact that

(9) so8(F) = der(O)⊕ LO0 ⊕RO0 ,
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for der(O) the derivation algebra, O0 = 〈{ei : i ∈ I}〉, and where Lx, Rx : O → O
denote the left and right multiplication operators Lx(y) = xy and Rx(y) = yx. Now, if

d ∈ der(O), that is, d(xy) = d(x)y + xd(y), this means that d = d′ = d′′. On the other

hand, the alternativity of the algebra O (that is, x2y = x(xy) and yx2 = (yx)x) gives, for

any x ∈ O0,

(10) (Lx)
′ = Rx + Lx, (Lx)

′′ = −Lx, (Rx)
′ = −Rx, (Rx)

′′ = Rx + Lx.

In particular all this can be applied to our skew-symmetric maps ϕx,y. This requires of

computing its decomposition according to Eq. (9). Once we check that, for any x, y ∈ O0,

ϕx,y +
1

12

(
R[x,y] − L[x,y]

)
=

1

6

(
[Lx, Ly] + [Lx, Ry] + [Rx, Ry]

)
∈ der(O)

(the derivations on the alternative algebra O are described in [14]), and

ϕ1,x =
1

2
(Rx + Lx),

then Eq. (10) gives immediately

(11)
(ϕx,y)

′ = ϕx,y + 1
4
R[x,y], (ϕ1,x)

′ = 1
2
Lx = ϕ1,x − 1

2
Rx,

(ϕx,y)
′′ = ϕx,y − 1

4
L[x,y], (ϕ1,x)

′′ = 1
2
Rx = ϕ1,x − 1

2
Lx.

According to Eq. (8), [ei+1, ei+3] = [ei+2, ei+6] = [ei+4, ei+5] = 2ei, and

Lei = δ(i)(1,1,1,1), Rei = δ(i)(−1,−1,−1,1).

The only thing left to do is to put this together with Eq. (11) to get ρ2((a, b, c, d)gi) =

δ(i)(a,b,c,d) + a+b+c−d
2

δ(i)(−1,−1,−1,1) and ρ3((a, b, c, d)gi) = δ(i)(a,b,c,d) − a+b+c+d
2

δ(i)(1,1,1,1).

More familiar expressions follows immediately,

ρ2((a, b, c, d)gi) = δ(i)(a−b−c+d
2

,−a+b−c+d
2

,−a−b+c+d
2

,a+b+c+d
2

),
ρ3((a, b, c, d)gi) = δ(i)(a−b−c−d

2
,−a+b−c−d

2
,−a−b+c−d

2
,−a−b−c+d

2

).
�

In particular, all the (finite) irreducible modules for so8(F) admitG-gradings compatible

with the G-grading on the Lie algebra. This is well-known from [10], but Proposition 2.10

takes advantage of it to provide concrete -and again, very easy- expressions of these

actions.

Remark 2.11. Note that, for u1 = (1, 1, 1,−1) and u2 = (1, 1, 1, 1), we can write

ρ1(vgi) = δ(i)v, ρ2(vgi) = δ(i)su1 (v), and ρ3(vgi) = δ(i)su2 (v), for any v ∈ V , where

su(v) = v − 2 〈v,u〉〈u,u〉u denotes the (order 2) reflection through the hyperplane u⊥. The

triality automorphism is an order 3 automorphism of so8(F) which permutes the three in-

equivalent representations. It can be obtained by composing these order 2 automorphisms

of V σ[G]:

vgi 7→ su1(v)gi, vgi 7→ su2(v)gi,
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which translate the automorphisms of so8(F) given by

U 7→ U ′, U 7→ U ′′.

(Note that, σij(su1(v), su1(v
′)) = su1(σij(v, v

′)) for all i, j ∈ I, v, v′ ∈ V , which is the

condition for vgi 7→ su1(v)gi to define an automorphism. Similarly occurs for u2, but it

is not a general fact for any u.) Hence, the triality automorphism θ : so8(F) → so8(F),

θ(U ′) = U ′′ for any U ∈ so8(F), can be described in terms of the Lie algebra over Z3
2 as

θ(vgi) = su2su1(v)gi. In other words, in column notation,

θ(vgi) =

1

2

 1 −1 −1 1

−1 1 −1 1

−1 −1 1 1

−1 −1 −1 −1

 v

 gi.

Remarkably, the fixed subalgebra Fix(θ) = {(a, b, c, d)gi : i ∈ I, a+b+c = d = 0} = S[G×]

coincides, as expected, with g2.

The case we are interested in highlighting is g2, with 2 basic irreducible representations:

the adjoint representation and the natural representation, of dimension 7. It can be

extracted from the natural representation of so7(F) ≡ W σ[G×], which is the own F7 =

〈{ei : i ∈ I}〉. Using the notations in Proposition 2.10, the irreducible representations of

dimension 7 for W σ[G×] and Sσ[G×] are given, respectively, by

ρb3 : W σ[G×]→ gl7(F), ρb3((a, b, c)gi) = δ(i)a,b,c,0|F7 ,

ρg2 : Sσ[G×]→ gl7(F), ρg2((a, b, c)gi) = δ(i)a,b,c,0|F7 .

The action is easily written in terms of the basis Bi = {ei, ei+1, ei+2, ei+3, ei+4, ei+5, ei+6}
of F. The coordinates of a vector in this basis will be denoted with the subindex Bi

.

Corollary 2.12. The irreducible representation ρg2 : Sσ[G×] → gl7(F) can be described

by

ρg2(s1gi) : (α0, α1, α2, α3, α4, α5, α6)Bi
7→ (0, 0,−α6, 0, α5,−α4, α2)Bi

,

ρg2(s2gi) : (α0, α1, α2, α3, α4, α5, α6)Bi
7→ (0,−2α3, α6, 2α1, α5,−α4,−α2)Bi

.

This avoids using the octonion algebra, and especially, it avoids using derivations of

the octonion algebra, which are obviously painful. (Note that changing from the basis Bi

to Bj only involves shifting the coordinates in cycles.)

3. generalized group algebras coming from graded contractions

More examples of non-necessarily reductive Lie algebras which are generalized group

algebras can be obtained with a tool proposed by physicists, that one of graded contrac-

tions.
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3.1. Preliminaries on graded contractions. This section is mainly extracted from

[6, Sections 2 and 3], although there the chosen field is C. Note that the proofs can be

adapted without significative changes. Let G be an arbitrary abelian group.

Definition 3.1. Let Γ : L =
⊕

g∈G Lg be a G-grading on a Lie algebra L over F.

• A graded contraction of Γ is a map ε : G × G → F such that the vector space L

endowed with the product [x, y]ε := ε(g, h)[x, y], for x ∈ Lg, y ∈ Lh, g, h ∈ G,

is a Lie algebra. We write Lε to refer to (L, [·, ·]ε), which is G-graded too with

(Lε)g = Lg.

• We will say that two graded contractions ε and ε′ of Γ are equivalent, written ε ∼ ε′,

if Lε and Lε
′

are isomorphic as graded algebras, i.e., there is an isomorphism of

Lie algebras f : Lε → Lε
′

such that for any g ∈ G there is h ∈ G with f(Lg) = Lh.

Remark 3.2. ([6, Remark 2.9]) If Γ is a grading on a Lie algebra L, an arbitrary map

ε : G×G→ F is a graded contraction of Γ if and only if

(a1)
(
ε(g, h)− ε(h, g)

)
[x, y] = 0,

(a2)
(
ε(g, h, k)− ε(k, g, h)

)
[x, [y, z]] +

(
ε(h, k, g)− ε(k, g, h)

)
[y, [z, x]] = 0,

for all g, h, k ∈ G and any choice of homogeneous elements x ∈ Lg, y ∈ Lh, z ∈ Lk. Here

ε : G×G×G→ F denotes the ternary map defined as ε(g, h, k) := ε(g, h+ k)ε(h, k).

These conditions are in general strongly dependent on the considered grading Γ on L.

But the Z3
2-gradings Γd4 , Γb3 and Γg2 have some properties ([7, Lemma 2.2]) that make it

possible to give them a common treatment:

(i) Le = 0;

(ii) [Lg,Lh] = Lg+h for all g 6= h ∈ G×;

(iii) If 〈g, h, k〉 = G, then there exist x ∈ Lg, y ∈ Lh and z ∈ Lk such that the set

{[x, [y, z]], [y, [z, x]]} is linearly independent.

This permits easily to prove (arguments as in [6, Lemma 3.2]) that

Lemma 3.3. For any graded contraction ε of Γ ∈ {Γd4 ,Γb3 ,Γg2}, there exists another

graded contraction ε′ of Γ equivalent to ε satisfying ε′(g, g) = ε′(e, g) = ε′(g, e) = 0. Any

map ε′ : G×G→ F satisfying this condition will be called admissible.

Conditions in Remark 3.2 can be weakened for admissible maps:

Lemma 3.4. An admissible map ε : G×G→ F is a graded contraction of Γ ∈ {Γd4 ,Γb3 ,Γg2}
if and only if the following conditions hold for all g, h, k ∈ G:

(a1)’ ε(g, h) = ε(h, g),

(a2)’ ε(g, h, k) = ε(k, g, h), provided that G = 〈g, h, k〉.

Ultimately, this enables to find, in [7], all the admissible graded contractions of Γd4 and

Γb3 up to equivalence for F = C, adapting the results on [6] about the Z3
2-grading on the
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simple Lie algebra g2 obtained as derivations of the octonion algebra (our Γg2). Some of

the results are valid independently of the field, but not all, as shown, for instance, in [7,

Proposition 4.1], which contains some comments on the real field.

3.2. Graded contractions of Γd4, Γb3 and Γg2. Let us recall the above mentioned

classification. The key concept is that of support:

Definition 3.5. Take X := {{i, j} : 1 ≤ i < j ≤ 7}. For any admissible graded

contraction ε : G×G→ F, its support is defined by Sε := {{i, j} ∈ X : ε(gi, gj) 6= 0}.

The support can not be an arbitrary subset of X.

Definition 3.6. If 〈gi, gj, gk〉 = G, that is, for i, j, k ∈ I distinct with k 6= i ∗ j, consider

the cardinal 6 set

P{i,j,k} := {{i, j}, {j, k}, {k, i}, {i, j ∗ k}, {j, k ∗ i}, {k, i ∗ j}} ⊂ X.

A subset T ⊂ X is called nice if, whenever i, j, k ∈ I distinct with k 6= i ∗ j, {i, j}, {i ∗
j, k} ∈ T , we have P{i,j,k} ⊂ T .

As proved in [6, Proposition 3.10], the support of any admissible graded contraction

is a nice set. And conversely, if T ⊂ X is a nice set, then εT : G × G → F is always an

admissible graded contraction, for

(12) εT (gi, gj) =

1 if {i, j} ∈ T ,

0 otherwise.

Observe that we are not specifying which of the three gradings, Γd4 , Γb3 or Γg2 , we are

referring to: this is due to the surprising result that an admissible map ε : G×G→ F is

a graded contraction of one of such gradings if and only if it is a graded contraction of

the other two. However, do not forget that the Lie algebras Lε obtained depend on L,

not only on the map ε, so that with Lε we are referring to several Lie algebras even of

different dimension.

As we are interested in getting non-isomorphic Lie algebras, we have to study the

equivalence of graded contractions. We say that two nice sets T and T ′ are collinear

if there is a bijection µ : I → I such that µ(i) ∗ µ(j) = µ(i ∗ j) for all i 6= j and

{{µ(i), µ(j)} : {i, j} ∈ T} = T ′. (The term collineation for µ comes from preserving

the lines of the Fano plane PG(2, 2).) The properties of the three considered gradings,

concretely the fact that they share the group of symmetries of the grading, the so-called

Weyl group of the grading, allowed us to prove that if T and T ′ were collinear, then εT

and εT
′

would be equivalent (regardless of whether the algebra under consideration was

gC2 , so7(C) or so8(C)). Surprisingly, the converse, which seemed to be true, is not true,

but is ‘nearly’ true: there are 24 equivalence classes of non-collinear nice sets, and the

corresponding graded contractions by (12) are all not equivalent except for only one case.
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Best of all, this follows being true by replacing the complex field by any other field of

characteristic different from zero (even this restriction could be weakened). According to

the classification of the nice sets up to collineations, a tedious purely combinatorial task

completed in [6, Theorem 3.27], we can choose the following representatives of the classes

of the nice sets up to collineations:

• T1 := ∅;
• T2 := {{1, 2}};
• T3 := {{1, 2}, {1, 3}};
• T4 := {{1, 2}, {1, 4}};
• T5 := {{1, 2}, {5, 7}};
• T6 := {{1, 2}, {1, 4}, {2, 4}};
• T7 := {{2, 4}, {3, 7}, {5, 6}};
• T8 := {{1, 2}, {1, 3}, {1, 6}};
• T9 := {{1, 2}, {1, 3}, {1, 4}};
• T10 := {{1, 2}, {1, 3}, {1, 5}};
• T11 := {{1, 2}, {1, 7}, {2, 7}};
• T12 := {{1, 2}, {1, 7}, {5, 7}};
• T13 := {{1, 2}, {1, 3}, {1, 4}, {1, 6}};
• T14 := {{1, 2}, {1, 3}, {1, 4}, {1, 7}};
• T15 := {{1, 2}, {1, 5}, {1, 7}, {2, 7}};
• T16 := {{1, 2}, {1, 7}, {2, 5}, {5, 7}};
• T17 := {{1, 2}, {1, 3}, {1, 4}, {1, 6}, {1, 7}};
• T18 := {{1, 2}, {1, 5}, {1, 7}, {2, 5}, {2, 7}};
• T19 := {{3, 5}, {3, 6}, {3, 7}, {5, 6}, {5, 7}, {6, 7}};
• T20 := {{1, 2}, {1, 3}, {1, 4}, {1, 5}, {1, 6}, {1, 7}};
• T21 := {{1, 2}, {1, 3}, {1, 5}, {2, 3}, {2, 7}, {3, 4}} = P{1,2,3};

• T22 := {{1, 2}, {1, 3}, {1, 4}, {1, 5}, {1, 6}, {1, 7}, {2, 3}, {2, 7}, {3, 4}, {4, 7}};
• T23 := X − T19;
• T24 := X.

(The elements in the Ti’s appear to have been changed from [6], simply because the

labelling of the elements of Z3
2 in (2) is different from that one in [6].) Furthermore, for any

i 6= j, εTi is not equivalent to εTj except for the case {i, j} = {8, 10} ([6, Proposition 4.11]).

These are not the only non-equivalent graded contractions. For instance, consider, for

any λ, λ1, λ2 ∈ F− {0} the admissible maps ηλ, µλ, βλ1,λ2 : G×G→ F given by

(1) ηλi,j = 0 for {i, j} /∈ T14, ηλ1,2 = ηλ1,3 = ηλ1,4 = 1 and ηλ1,7 = λ;

(2) µλi,j = 0 for {i, j} /∈ T17, µλ1,2 = µλ1,4 = µλ1,6 = 1 and µλ1,3 = µλ1,7 = λ;

(3) βλ1,λ2i,j = 0 for {i, j} /∈ T20, βλ1,λ21,2 = βλ1,λ21,4 = 1, βλ1,λ21,3 = βλ1,λ21,7 = λ1 and βλ1,λ21,5 =

βλ1,λ21,6 = λ2;
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where we write ηij = η(gi, gj) for any admissible map η. (With this notation, η1 = εT14 ,

µ1 = εT17 and β1,1 = εT20 .) These are graded contractions too. In fact, for the complex

field, they provide the classification of the graded contractions up to equivalence:

Theorem 3.7. ([6, Theorem 4.13] and [7, Theorem 3.24]) For F = C, representa-

tives of all isomorphism classes up to equivalence of the graded contractions of any Γ ∈
{Γd4 ,Γb3 ,Γg2} are just:

• εTi with i 6= 8, 14, 17, 20;

• ηλ with λ ∈ F− {0}, where ηλ ∼ ηλ
′

if and only if λ′ ∈ {λ, λ−1};
• µλ with λ ∈ F− {0}, where µλ ∼ µλ

′
if and only if λ′ ∈ {±λ,±λ−1};

• βλ1,λ2 with λ1, λ2 ∈ F−{0}, where βλ1,λ2 ∼ βλ
′
1,λ
′
2 if and only if the set {±λ′1,±λ′2}

coincides with either {±λ1,±λ2} or {±λ−11 ,±λ2λ−11 } or {±λ−12 ,±λ1λ−12 }.

In the real case, a lot of work remains to be done to achieve a complete classification:

all the above provide non-equivalent graded contractions but the list is far from exhaus-

tive. Do not forget [7, Proposition 4.1] that for the three considered algebras there are

admissible graded contractions with support equal to X which allow to pass from the

compact algebra to the split form, obviously not isomorphic.

3.3. Graded contractions on generalized group algebras. The following observa-

tion is trivial but crucial for our purposes.

Lemma 3.8. Let L = V σ[G] a Lie algebra over G, for V and σ as in Definition 2.1. Let

Γ(V,σ,G) the G-grading on L given by Lg = V g. For any graded contraction ε : G×G→ F
of Γ(V,σ,G), the algebra Lε = V εσ[G] is again a Lie algebra over G.

Proof. Take σ̃ : G×G→ Bil(V×V, V ), (g, h) 7→ ε(g, h)σg,h. Let us check that Lε = V σ̃[G].

Indeed, for homogeneous elements in L, x = rg and y = sh, r, s ∈ V ,

[x, y]ε = ε(g, h)[x, y] = ε(g, h)σg,h(r, s)(g + h) = σ̃g,h(r, s)(g + h),

which coincides with the bracket in V εσ[G], so that Lε is a generalized group algebra.

This finishes the argument, since the algebra Lε = (L, [ , ]ε) is Lie by the own definition

of graded contraction. �

This means that all the Lie algebras obtained by means of a graded contraction of Γd4 ,

Γb3 and Γg2 as in Section 3.2 are examples of generalized group algebras. This is important

for us, because it provides immediately an important collection of examples of generalized

group algebras, showing that the example of g2 was not isolated at all. More details on the

properties satisfied by the obtained algebras were exhibited in [6, Theorem 5.1]: thus there

are generalized group algebras of very different nature: reductive, nilpotent, solvable but

not nilpotent, and so on. Although we are far from a classification of the generalized group

algebras which are Lie algebras, we have contributed in our first objective, to highlight
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the possible importance of the concept of generalized group algebras in the Lie theory

setting.

Moreover, the concrete expressions of the twists σ’s in Proposition 2.3 and Corollary 2.4

can be combined with the graded contractions described in Theorem 3.7 by means of

Lemma 3.8, thus getting totally precise expressions for the twists related to the new

family of generalized group algebras.

Corollary 3.9. Let V = F4 and G = Z3
2. Then L = V σ̃[G] is a Lie algebra over Z3

2 for

any σ̃ : G×G→ Bil(V × V, V ) in the next list:

σ̃ ∈ {εTiσ, ηλσ, µλσ, βλ1,λ2σ : i = 1, . . . , 24; λ, λ1, λ2 ∈ F− {0}},

for σ given in Eq. (5) and εTi, ηλ, µλ and βλ1,λ2 the graded contractions described in

Section 3.2. The same result is true by replacing V with W = F3 or with S = 〈(1, 1, 1)〉⊥ ≤
W and σ with the twist in Eq. (7).

3.4. Some conclusions. Only in Corollary 3.9, we already provide 60 different general-

ized group algebras which are Lie algebras, distributed in 20 of each dimension between

16, 24 and 32, together with 9 infinite families depending on one or two free parameters,

again with the aforementioned dimensions. (To be more exact, those families are infinite

only if the considered F is infinite.) The provided descriptions permit to multiply easily

in these Lie algebras independently of the ground field. So, we have shown the potential

of the concept of generalized group algebra to provide new examples of Lie algebras.

Thus, a suggestion for describing new Lie algebras with properties is to start with a

convenient grading on a possibly well-known Lie algebra with regularity properties on

the dimensions of the homogeneous components, and then study its graded contractions.

Perhaps, the results in this work may seem a coincidence, but even if it were so, there

are more coincidences as ours. A convenient candidate for following this study is the

exceptional split Lie algebra of dimension 52 of type F4, which is the derivation algebra

of an Albert algebra which becomes a twisted group algebra over the group Z3
3. Graded

contractions over this group have not been studied so far.
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