A COMBINATORIAL CONJECTURE RELATED WITH COMPLEX BOUNDED SYMMETRIC DOMAINS

GUY ROOS

1. Motivations

Let Ω be a bounded irreducible symmetric domain. To each such Ω are attached numerical invariants: the multiplicities a and b, and the rank r. These three invariants characterize the domain up to isomorphism. Hereunder is the table of all possible values, corresponding to the classification of irreducible complex bounded symmetric domains:

Type		a	b	r	g	d
$I_{m, n}$	$(1 \leq m \leq n)$	2	$n-m$	m	$m+n$	$m n$
$I I_{n} \quad(n \geq 2)$	4	$\begin{cases}0 & (n=2 p)\end{cases}$	$\left[\frac{n}{2}\right]$	$2(n-1)$	$\frac{n(n-1)}{2}$	
$I I I_{n}$	$(n \geq 1)$	1	0	n	$n+1$	$\frac{n(n+1)}{2}$
$I V_{n}$	$(n>2)$	$n-2$	0	2	n	n
V	6	4	2	12	16	
$V I$		8	0	3	18	27

In the last two columns of this table

$$
g=2+a(r-1)+b
$$

is the genus of the bounded symmetric domain Ω and

$$
d=\operatorname{dim}_{\mathbb{C}} \Omega=r+\frac{r(r-1)}{2} a+r b
$$

its complex dimension.
The Hua polynomial χ of the bounded symmetric domain Ω is then defined by

$$
\begin{equation*}
\chi(s)=\prod_{j=1}^{r}\left(s+1+(j-1) \frac{a}{2}\right)_{1+b+(r-j) a} \tag{1}
\end{equation*}
$$

where $(s)_{k}$ denotes the raising factorial

$$
(s)_{k}=s(s+1) \cdots(s+k-1)=\frac{\Gamma(s+k)}{\Gamma(s)}
$$

The polynomial χ is related to the Hua integral $\int_{\Omega} N(z, z)^{s} \omega(z)$ (where N is the generic norm for Ω) by

$$
\int_{\Omega} N(z, z)^{s} \omega(z)=\frac{\chi(0)}{\chi(s)} \int_{\Omega} \omega \quad(s>-1) .
$$

(see [1]).
One checks easily that $\operatorname{deg} \chi=d$. The expression of χ for the different types of bounded symmetic domains is as follows:

- Type $\mathrm{I}_{m, n}(1 \leq m \leq n): \chi(s)=\prod_{j=1}^{m}(s+j)_{n}$.
- Type $I_{2 p}: \chi(s)=\prod_{j=1}^{p}(s+2 j-1)_{2 p-1}$.
- Type $I I_{2 p+1}: \chi(s)=\prod_{j=1}^{p}(s+2 j-1)_{2 p+1}$.
- Type III $_{n}: \chi(s)=\prod_{j=1}^{n}\left(s+\frac{j+1}{2}\right)_{1+n-j}$.
- Type $I V_{n}: \chi(s)=(s+1)_{n-1}\left(s+\frac{n}{2}\right)$.
- Type $V: \chi(s)=(s+1)_{8}(s+4)_{8}$.
- Type VI: $\chi(s)=(s+1)_{9}(s+5)_{9}(s+9)_{9}$.

Let $\mu \in \mathbb{R}, \mu>0$. The following expansion

$$
\begin{equation*}
\frac{\chi(k \mu)}{\chi(0)}=\sum_{j=0}^{d} c_{\mu, j} \frac{(k+1)_{j}}{j!} \tag{2}
\end{equation*}
$$

and the associated rational function

$$
\begin{equation*}
F_{\chi, \mu}(t)=\sum_{j=0}^{d} c_{\mu, j}\left(\frac{1}{1-t}\right)^{j} \tag{3}
\end{equation*}
$$

play a key role in the computation of the Bergman kernel of some Hartogs domains built over bounded symmetric domains (see [1], [2]).

2. The conjecture

Let

$$
\mu_{0}=\frac{g}{d+1} .
$$

Conjecture. The coefficients $c_{\mu, j}$ in (2):

$$
\chi(\mu s)=\sum_{j=0}^{d} c_{\mu, j}(s+1)_{j}
$$

are all strictly positive if and only if

$$
\mu<\mu_{0}
$$

For $\mu=\mu_{0}$, all coefficients $c_{\mu, j}$ in (2) are strictly positive, except $c_{\mu, d-1}=0$ and except for the rank 1 type $I_{1, n}$ (where $c_{\mu, d}=1$ and $c_{\mu, j}=0$ for all $j<d$).

We call μ_{0} the critical exponent for Ω. The values of the critical exponent are

$$
\begin{array}{lllllll}
\text { Type } & I_{m, n} & I I_{n} & I I_{n} & I V_{n} & V & V I \\
\mu_{0} & \frac{m+n}{m n+1} & \frac{4}{n+\frac{2}{n+1}} & \frac{2}{n+\frac{1}{n+1}} & \frac{n}{n+1} & \frac{12}{17} & \frac{9}{14}
\end{array}
$$

We have always $\mu_{0}<1$, except in the rank 1 case $I_{1, n}$.
Remark 1. The conjecture has been checked with help of computer algebra software in many significant cases:

- for $\mu=\mu_{0}$ and the types $I_{3,3}, I V_{3}, I V_{4}, I V_{6}, V, V I$;
- for type V and various values of μ.

Remark 2. As the function $F_{\chi, \mu}$ is related to the Bergman kernel of a family of bounded (non homogeneous) domains, it is known that all derivatives $F_{\chi, \mu}^{(k)}, k>0$, of this function are strictly positive on $[0,1[$ for all $\mu>0$.
Remark 3. If the conjecture is true, it would allow to compare the Bergman metric of some Hartogs domains built over bounded symmetric domains, with the KählerEinstein metric of the same domains.

References

[1] Yin Weiping, Lu Keping, Roos Guy, New classes of domains with explicit Bergman kernel, Science in China Ser. A Mathematics, 47(2004), 352-371.
[2] Roos, Guy, Weighted Bergman kernels and virtual Bergman kernels, Proceedings SCV2004 Beijing, to appear. Jordan archive, Preprint \#169.
[3] Wang An, Yin Weiping, Zhang Liyou, Roos Guy, The Kähler-Einstein metric for some Hartogs domains over bounded symmetric domains, in preparation.

Nevski prospekt 113/4-53, 191024 St Petersburg, Russian Federation
E-mail address: guy.roos@normalesup.org

