A COMBINATORIAL CONJECTURE RELATED WITH COMPLEX BOUNDED SYMMETRIC DOMAINS

GUY ROOS

1. MOTIVATIONS

Let Ω be a bounded irreducible symmetric domain. To each such Ω are attached numerical invariants: the *multiplicities a* and *b*, and the *rank r*. These three invariants characterize the domain up to isomorphism. Hereunder is the table of all possible values, corresponding to the classification of irreducible complex bounded symmetric domains:

Type	a	b	r	g	d
$I_{m,n}$ $(1 \le m \le n)$	2	n-m	m	m+n	mn
$II_n (n \ge 2)$	4	$\begin{cases} 0 & (n = 2p) \\ 2 & (n = 2p + 1) \end{cases}$	$\left[\frac{n}{2}\right]$	2(n-1)	-
$III_n (n \ge 1)$	1	0	n	n+1	$\frac{n(n+1)}{2}$
$IV_n (n>2)$	n-2	0	2	n	n $$
V	6	4	2	12	16
VI	8	0	3	18	27
In the last two columns of this table					

In the last two columns of this table

$$g = 2 + a(r-1) + b$$

is the genus of the bounded symmetric domain Ω and

$$d = \dim_{\mathbb{C}} \Omega = r + \frac{r(r-1)}{2}a + rb$$

its complex dimension.

The Hua polynomial χ of the bounded symmetric domain Ω is then defined by

$$\chi(s) = \prod_{j=1}^{r} \left(s + 1 + (j-1)\frac{a}{2} \right)_{1+b+(r-j)a},\tag{1}$$

where $(s)_k$ denotes the raising factorial

$$(s)_k = s(s+1)\cdots(s+k-1) = \frac{\Gamma(s+k)}{\Gamma(s)}.$$

The polynomial χ is related to the Hua integral $\int_{\Omega} N(z,z)^s \omega(z)$ (where N is the generic norm for Ω) by

$$\int_{\Omega} N(z,z)^{s} \omega(z) = \frac{\chi(0)}{\chi(s)} \int_{\Omega} \omega \qquad (s > -1).$$

(see [1]).

One checks easily that deg $\chi = d$. The expression of χ for the different types of bounded symmetric domains is as follows:

Date: 7th November 2004.

GUY ROOS

- Type I_{m,n} (1 ≤ m ≤ n): χ(s) = ∏^m_{j=1}(s + j)_n.
 Type II_{2p}: χ(s) = ∏^p_{j=1}(s + 2j 1)_{2p-1}.
- Type II_{2p+1} : $\chi(s) = \prod_{j=1}^{n} (s+2j-1)_{2p+1}$. Type III_n : $\chi(s) = \prod_{j=1}^{n} \left(s + \frac{j+1}{2}\right)_{1+n-j}$.
- Type IV_n : $\chi(s) = (s+1)_{n-1} \left(s + \frac{n}{2}\right)$.
- Type $V: \chi(s) = (s+1)_8(s+4)_8$.
- Type VI: $\chi(s) = (s+1)_9(s+5)_9(s+9)_9$.

Let $\mu \in \mathbb{R}, \mu > 0$. The following expansion

$$\frac{\chi(k\mu)}{\chi(0)} = \sum_{j=0}^{d} c_{\mu,j} \frac{(k+1)_j}{j!}.$$
(2)

and the associated rational function

$$F_{\chi,\mu}(t) = \sum_{j=0}^{d} c_{\mu,j} \left(\frac{1}{1-t}\right)^{j}$$
(3)

play a key role in the computation of the Bergman kernel of some Hartogs domains built over bounded symmetric domains (see [1], [2]).

2. The conjecture

Let

$$\mu_0 = \frac{g}{d+1}.$$

Conjecture. The coefficients $c_{\mu,j}$ in (2):

$$\chi(\mu s) = \sum_{j=0}^d c_{\mu,j}(s+1)_j$$

are all strictly positive if and only if

 $\mu < \mu_0.$

For $\mu = \mu_0$, all coefficients $c_{\mu,j}$ in (2) are strictly positive, except $c_{\mu,d-1} = 0$ and except for the rank 1 type $I_{1,n}$ (where $c_{\mu,d} = 1$ and $c_{\mu,j} = 0$ for all j < d).

We call μ_0 the *critical exponent* for Ω . The values of the critical exponent are

Type $I_{m,n}$ II_n III_n IV_n V VI $\mu_0 \qquad \frac{m+n}{mn+1} \qquad \frac{4}{n+\frac{2}{n-1}} \qquad \frac{2}{n+\frac{1}{n+1}} \qquad \frac{n}{n+1} \qquad \frac{12}{17} \qquad \frac{9}{14}$ We have always $\mu_0 < 1$, except in the rank 1 case $I_{1,n}$.

Remark 1. The conjecture has been checked with help of computer algebra software in many significant cases:

- for $\mu = \mu_0$ and the types $I_{3,3}$, IV_3 , IV_4 , IV_6 , V, VI;
- for type V and various values of μ .

Remark 2. As the function $F_{\chi,\mu}$ is related to the Bergman kernel of a family of bounded (non homogeneous) domains, it is known that all derivatives $F_{\chi,\mu}^{(k)}, k > 0$, of this function are strictly positive on [0, 1] for all $\mu > 0$.

Remark 3. If the conjecture is true, it would allow to compare the Bergman metric of some Hartogs domains built over bounded symmetric domains, with the Kähler-Einstein metric of the same domains.

$$\mathbf{2}$$

A COMBINATORIAL CONJECTURE

References

- Yin Weiping, Lu Keping, Roos Guy, New classes of domains with explicit Bergman kernel, Science in China Ser. A Mathematics, 47(2004), 352–371.
- Roos, Guy, Weighted Bergman kernels and virtual Bergman kernels, Proceedings SCV2004 Beijing, to appear. Jordan archive, Preprint #169.
- [3] Wang An, Yin Weiping, Zhang Liyou, Roos Guy, The Kähler–Einstein metric for some Hartogs domains over bounded symmetric domains, in preparation.

Nevski prospekt 113/4-53, 191024 St Petersburg, Russian Federation $E\text{-}mail\ address:\ \texttt{guy.roos@normalesup.org}$