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Abstract

The Martinez construction of fractions from a Jordan algebra requires a Jordan derivation in-
volving certain quadratic multiplications on the original algebra. We study a general Bergmann
construction of such structural transformations in the context of Jordan pairs. The Bergmann
transformations corresponding to fractions are defined only on subpairs determined by sesqui-
principal inner ideals, dominions, and we give criterion for a creating structural transformations
on them. These results will be applied to the creation of Jordan algebras of fractions, and the
methods should have future application to the problem of creating fractions for Jordan pairs.*

Throughout, we consider algebraic systems over an arbitrary ring of scalars ®. A Jordan pair, a
pair ¥V = (VT,V ™) of ®-modules with compositions (z,a) — Q.(a) € VT for (z,a) € VT x VT,
7 = =+, which are quadratic in 2 and linear in a, and satisfy the following axioms strictly (in all
scalar extensions, equivalently, all their linearizations hold in V itself): for all x,y € V", a,b € VT

(JPl) Da:,an = QxDa,xa (JP2) DQza,a = Dw,Qa(w)v (JP3) QQma = QmQana

where as usual we set Qg = Qz1y — Qz — Qy, which gives the trilinear product {z,a,y} :=
Qz,y(a) =: Dy o(y) with {V7V-TV7} C V7. We will economize on superscripts and use typography
instead, denoting, for a fixed 7 = £, elements of V7™ by z,y, z, w and elements of V~7 by a,b,c. We
can turn V7 into a Jordan algebra (V™)@ via U,y := Q.Q.y, 2> := Q,a.

We will use [3] as reference for most results about Jordan pairs, with some results on homotopes,
dominions, and universal envelopes from [5]. The following formulas are used frequently enough in
the paper for us to display them:

(0~1-1) Dw,aQy + QyDa,z = Q{m,a,y},yv
(012) Dx,Qay = D{ac,a,y}p, - Dy,Qaac = D;c,aDy,a - Qx,yQaa
Dq.ye = Da,{y,a0r = DQuzy = DayDaz — QaQy,a:
) QQza,y = Qm,yDa,m - Dy,an = Daz,an,y - QmDa,ya
014) Q{m,a,y} + QQIQay,y = QmQaQy + QyQan + Dm,aQyDa,za
) QQmQay,Dmyay = QanQyDa,w + DwﬂQyQan,
) Qaw—&-Qza = Ba,x,an = Q;zBa,a,am QBa,w,ay = Ba,x,aQyBoz,a,xz
(Ba,rc,a =a’l+ QDI,a + QmQa)a
(0.1.7) x("“’a) = Qma(”"’”), .Da:.(n,a)7a(k,:) = Dx,a(n+k—1,z) = Dx('rrHcflTa)’a,
(018) DQmQQy,a(m—l,rp) — DDz,ay’a(m,z) + Dy7a(m+l,x) =0.

The multiplication envelope M(V) is the subalgebra End(V) := End(V* @& V™) generated by
all Qu, Dy We make use of the universal multiplication envelope UME(V), encoding the action
of linear multiplication operators from )V on all possible bimodules, and the universal polynomial
envelope UPE(V), encoding the action of multiplications by V on all extensions ¥V 2 V [5]. The
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generic indeterminates in UPE(V) will be denoted by Z,a etc.; they can be specialized to elements
of any extension. The universal multiplication envelope can be thought of as the generic polynomials
in UPE(V) homogeneous of degree 1 in some z, a in UPE(V) [5, 2.4].

If the element s dominates n in V~7 in the sense that there are N7, 8™ € End(V7") with Q,, =
N77Qs =QsN, Qns =S Qs = Q57, then [5, 3.2] the dominion K %, := &n + &s+ Q,V is
an inner ideal, whose elements = := yn 4+ as + Qsa, y := as + Qsa, z := Qsa all have Q-operators
which can be “divided by Q,”,

(021) Qn,z = MJUQS = QsMgv (Maio-:zsig-Ds,a_Dn,aa Mg::Da,ssia_Da,n)»
(022) Quy =G 7Q, = Q.G° (G7 = aS™ + M7,
(0.23) Qr=X Q. =Q.X° (X7 =+2NT ++G" + B7).

1 Bergmann Triples and Pairs

A structural pair 7 = (T, T7), or structural transformation of a Jordan pair V), consists
of two linear transformations 77 € End(V7) (the superscript indicates the domain and range)
satisfying

(1.1.1) QTT(Q;) =T7Q.,T7".

for all z € V7 and 7 = £. The structural transformations of a pair form a submonoid, the structure
monoid Str(V), of End(V*) x End(V ™) under 7,y = (T{'T5, Ty Ty ). A structural 7 induces a
pair of inner ideals (I,I7) = (TH(V ™), T~ (V™)) [since Q;-V ™" C I], as well as a homotopic
Jordan pair V(7) = (V*,V~) under Q;(CT)T = Q.T77, Dy.oT := Dy p-~(q)- A second structural
S =(57,577) then induces a homomorphism

(1.1.2) YETS) (1),

Familiar examples of structural transformations are the pairs 7, := (¢™, (¢7)~') determined by
an automorphism (¢, ) of the pair, and the Bergmann transformations B, ; ., in particular
principal structural transformations 7, ., determined by any x € V7,a € V77,

Ba,ac,a = (Ba,x,aa Ba,a,x)» ’Z.tc,a = BO,x,a = (Qana Qan) fO’I‘ acd,re VT,G’ eV T

which result immediately from (JP3) and (0.1.6).

A structural transformation is inner if it is built from multiplications, T € M(V). The most
important structural transformations for us are the generic structural transformations 7 €
UME(V) which are built generically out of multiplications from V), satisfying (1.1.1) for generic
variables 7, so that (1.1.1) continues to hold for the action of 7" in all extensions of V:

(1.1.1Gen) T ceUMEWV), T 7 =T7)" with QTT(;) = TTQETT* EUME(V).

The basic examples of generic transformations are the Bergmann and principal transformations.

A monostructural transformation is a single transformation 77 € Hom(V~",V7) (the su-

perscript indicates the codomain) satisfying

(1.2.1) Qrr(a) =T Q1.

for all @ € V~7.2 The product of two monostructural transformations 7%, T~ gives a structural
transformation (777~ ,T-T"). Any monostructural 77 with domain V=7 yields an inner ideal
I" = T7(V~7), and turns the domain V=7 into a homotopic Jordan triple system (V7)) via

2These are odd in the sense of gradings: if we rewrite VT,V ~ as a Zy-grading V5, Vi then structural transformations

are even, 7 (V;) C V4, while monostructural transformations are odd, T7(V;,1) C V7.



Pry := Q.T(y), Lz,y = Dy 1(y); in the important case of a principal monostructural transformation
TT = Q; for t € V7, the elemental homotope (V~7)®) := (V~7)(@) bhecomes a Jordan algebra via
(3 := Q,t. For each element z~7 € V7 a monostructural 77 induces an algebra homomorphism

(1.2.2) T (v )TET) L (ynyET)

of the elemental homotopes, since T( 3ET(Z))y) = T(QIQT(Z)y) =TQ.TQ.Ty = Qrx»Q-T(y) =
UL, T(y) and T(ETE) = T(Q,T(2)) = Qreyz = T(a) .

An inner monostructural transformation 7' € M(V) is built out of multiplications from V), while
a generic monostructural T' € UME(V) satisfies (1.2.1) in UME(V). Note that because they are
built out of multiplications, the inner 77 send any ideal I into itself, and hence induce structural
or monostructural transformations on any quotient V. All generic, and most inner, structural or
monostructural transformations also induce structural or monostructural transformations on all
extensions V O V.2 The basic examples of generic monostructural transformations are the principal
Q-

To put these structural transformations in a more general context, for any Jordan triple J the
structure monoid Str(J) consists of all pairs (71,72) € End(J) x End(J)°? such that Pr, ) =
T;P,T; (i = 1,2,j = 3 — 1), with canonical reversal involution (T%,7%)* = (T2,T1). In the case
J = VPol of the polarized triple of a Jordan pair, if we set G := Str(J) N (Hom(V7,V?) x
Hom(V =7,V 7)) we obtain a 2 x 2-graded object with associative products G*7G™” C G via
(T, T5)-(S1,52) = (T1S1, S2T») and involution G°™* = G~" 9. Here the structural transformations
are Gt = Str(V) = G—~*, and the monostructural transformations are the symmetric elements
(Tl,Tl) e GoO,

Since the defining structural condition is quadratic in z, the structural transformations do not
form a linear space. In some situations it is possible to glue two structural transformations together
by means of “glue”. The archetypal example for monostructural transformations is Q,,, Q4, being
glued together by @, », to form Q, 4z,-

Bergmann Triple Proposition 1.3 We say G = (GT,G™) consisting of two linear transformations
G™ : VT — V7 is structural glue for two structural pairs T, 72, and call (71,G,72) o Bergmann
triple, if the following two Bergmann Triple Gluing Relations hold for all z € V7 :

(1.3.1) (T-Glue 1): T7Q.G™7+G"Q.T; " = Qrra).ar(x) (1=1,2),
(1.32) (T-Glue 2): T7Q.Ty " + T3 QT "+ G"Q.G™7 = Qar(2) + Q17 (), 17 (2)-
In this case, for any scalars aq, s in a scalar extension Q) we we can glue the two pairs together via

G obtain a Bergmann transformation on Vg

(1.3.3) Xy ow 7.0 0 X = a3TT 4+ a10aG™ + 3Ty

Structurality of the T; and the conditions T-Glue 1-2 are necessary and sufficient for Xo, o, 71.6.7
to be structural for all scalars in all possible extensions 2.

PROOF: On the one hand we have

3Most inner structural transformations are structural by the Jordan pair axioms, but it is possible for a transfor-
mation built from outer multiplications to be accidentally structural on V but not on all V: in V = V(A1) V =
V(A*) for A = ®(z,y)/I, A = @(w,y,z)/i = A(z) quotients of the free associative algebras on z,y,z by
the ideals I,] generated by the elements [[z,y],],[[z,y],y] the multiplication T = [Va,Vy] = Adjy ) 18 triv-
ially structural on V since it vanishes identically ([z,y] is by construction in the center of A), but not on A
because Up(;yz = [z, ylzz[z,ylz + z[z,ylzz[z,y] — [zylzzz(z,y] — z[z,y]z[z,y]z ¢ Alz,y] + [z,y]A D T(A) since

z[z,y)2le, y]z ¢ Alz,y] + [z, 9] 4.



Qxr@) = Qa3ry(e) T Qa7 (0), 00267 (2) T QaraeG(@) T Qadty (2),0375 (2)
+Qu377 (2).000267 (2) T Qo311 (2)
= alQr7 (@) + Q717 (2),67(2) + 0103 (Qcr (2) + Q17 ()17 (2))
+13Q717 (2),67 (2) + 03QT7 ()

and on the other hand

XTQ, X7 =alT{ Q.17 7 + oo (TT Q.G + GTQ T, )
+aio3 (17 Q. Ty "+ T5Q. Ty " + G7Q,G™7)
+ajad (T{QIG_T + GTQzT{T) + T3 Q. Ty .
By identifying coefficients of like powers o oz% we see structurality and the gluing conditions suffice

for structurality of X, and these conditions are necessary for structurality in the extensions where
a; = t; are indeterminates in Q = ®[t1, t2] by independence of the powers of t1, to. |

For generic structural transformations T; € UME(V) we have obvious notions of generic glue,
generic Bergmann triple, generic Bergmann transformation satisfying (1.3) generically.
The archetypal example of a generic Bergmann triple is the principal triple (73, 4,9, 7Tz,.4) With
generic glue G = (Quy,2,RQa QuQuy,z,) for z; € V7,a € V7. Clearly these 7; are structural
transformations, and G is structural glue as in (1.3.1-2) since for ¢ = +7 we have generically in 7
that

(TG]') ﬂgQinU + GUQECZ;_U = QT?’(;),GU(;)’

(TG2) T QiTj + 15 QiTi +G QEG_ = QGU(%) + QT;’(;),T_;’(;)

which follow directly from the linearizations

of (JP3) for all € = ng (when o = 7) and ¢ = & (when 0 = —7). Here the resulting Bergmann
operator Xy, 0,.71.6.7 = Zayz1+aszs,a 18 principal.

The Bergmann terminology comes from the fact that for the special case 7y = (Id, Id), Tz =
(ReQa,QuQz); G = (Dy.a,Dq ) the Bergmann transformation X is just the ordinary Bergmann
transformation B, .. Here it is a matter of gluing a structural transformation to the identity struc-
tural transformation using as glue a Lie-structural transformation or Lie-structural pair

(]‘4) D= (D+7D_) : QD’(z),m = DTQ:v +QID_T (1' S ‘/T7 T = :l:)

Bergmann Pair Proposition 1.5 We say a Lie-structural transformation D is structural glue
for a structural transformation T, and call (D, 7T ) a Bergmann pair, if the following two Bergmann
Pair Gluing Relations hold for allx € V7 :

(1.5.1) (P-Glue 1): 7T7Q.D "+ D"Q, T "™ = Q17 (2),D(w)>
(1.5.2) (P-Glue 2): T7Q, + Q. T " +D"Q:D" = Qpr(2) + Qrr(2) 2

In this case, for any scalars ay, s in a scalar extension Q) we we can glue the two pairs together via
G obtain a Bergmann transformation on Vg

(1 5 3) Ba17(¥27D,T = Xa%I,alazD,agT = O‘%I +ara2D + Oz%T,
- Bop1 i=Baipr =T +aD+T.



Structurality of T', Lie-structurality of D, and the conditions P-Glue 1-2 are necessary and sufficient
for X, ., to be structural for all scalars in all possible extensions (2.

ProOF: This follows from the above Triple Proposition for 77 = 1,75 = T, G = D since here
T is automatically structural, (T-Glue 1) for i=1 is precisely the Lie-structural condition (1.3.4),
(T-Glue 1) for i=2 is (P-Glue 1), and (T-Glue 2) is (P-Glue 2). |

The Lie-structural transformations form a subalgebra, the Lie structure algebra StrL(V), of
End(VT) x End(V ™) under [Dy, D] := ([Df, D], [D5, Dy ]). We again have obvious notions of
generic Lie-structural transformation D and generic Bergmann pair (7,D) for a generic
structural transformation 7. The archetypal example of a generic Bergmann pair is, of course, the
prinCipal pair Dm,a = (Dr,aaDa,z)a ,Tz,a = (QanaQan)a with Ba,z,a = (Ba,z,ayBa,a,z) the usual
generic Bergmann transformation. If 2 happens to be invertible, then B, ; , reduces to a principal
structural transformation 7, 5 = (QzQas-11a> Qar—11aQz)-

2 Cancellation Operators

It is clear from the definitions that the restriction to an invariant subpair V~Q Y of a structural
transformation, monostructural transformation, Bergmann triple, or pair on V remains such on V,
but the restriction of a generic structural transformation need not remain generic: being generic
on V means it remains so on all extensions of V', which may not be extensions of V and so are not
guaranteed to remain structural. On the other hand, if the monostructural transformation does
not leave the subpair invariant, we can sometimes shove it down into the subpair. In the case of
Ore fractions [4, 1, 2], § = Q7 'n € V does not leave V invariant, but for a reduced denominator
Qséq, @qQS, Dj.s, Dy g all leave V invariant. Here we begin a convention that our denominators s
and our inner ideals K will always belong to V=7. We say a transformation T° € Hom(f/*", ‘7”) has
denominator s € V7 if ()5 shoves T (or rather, they shove each other) down to endomorphisms
on V in the sense that

(2.1) (Transformation Denominator): N~ := Q, 7% € End(V ), N7 := T?Q, € End(V?),

which implies that the N7 are s-cancellation operators which result by cancelling Q4 on the right
and left from the operator T~7 := Q,T°Qs,

(2.2) T=° =N"7Q, = Q,N° € Hom(V°,Q,V?).

[More precisely, st“, fUQS, QST_”QS leave V invariant, and N~°, N9, T~ are their restrictions
to V.] If Qs is actually invertible, then T° = QN7 = N°Q;! (hence the description of Q, as
“denominator”). We say T has generic denominator s if N7 € UME (V) satisfy (2.1) generically
in UME(V) and N-7 = (N7)*. Note that the cancellation operators are in general not uniquely
determined, but in many important cases there are natural inner or generic operators N7, S7 to
choose. For example, (0.2) shows that if s dominates n then N7, S7, M,, G™, X7 are cancellation

Operatgrs for T79 = an Qn,m Qn,zv Qn,ya Qz ~
If T is monostructural to begin with, then the induced 777 is monostructural on V leaving V

invariant, and its s-cancellation operator (N~7, N?) is a structural transformation on V,

(2.3) QN*U(Z:) =N77Q,N°, QNo(a) =NIQN~° (xeV7%,aeV),

since Qg 7y = @sQri()Qs = QsTQ.TQ, on V becomes Qn - () = N"°Q,N? on V, and dually
QTQSa = fQSQaQSf becomes Qo (q) = N°Qo N 7. If T is a generic monostructural transforma-
tion, then (2.2) holds in UME(V) (not necessarily in UME(V)).



The archetypal example for our development is the restriction to V of a principal structural
transformation by an element ¢ of an ambient pair V. Following the example of reduced Ore
fractions, we say that an element G € V? for ¥V O V has denominator s € V7 if its multiplication
operators QsQg, Q3Qs, Dg,s, Ds g all leave V invariant, and its homotope powers fall in V:

(2.4) (Elemental Denominator): QsQq> Ds g € En(i( ) Qqu, a5 €~End(‘{ ), .
$3:=Qs() € V77, g2 1= Q4(s), g5 := Q3Qs(q) € V7.
(this is a much stronger condition than merely T = @q having denomiator s). We call n := s the
numerator of ¢ (¢ has many numerators and denominators).

Pseudo-Principal Example 2.5 Suppose V DV and the element q € V has denominator s € V=
as in (2.4), so by restriction we have cancellation operators N7, 8™ € End(V7™) (r = +o0) and
elements sz, q2,q3 given by

(2.5.0) n:=s2:=Qs(d), ¢2:=Qq4(s), g3 :=Qz(n) V7,
(2.5.1) N77:= Qqu\v, N9 = QdQs'Vy
(2 5. 2) ST = ,q|V7 S = q, |V

Then for generic z := Qqsa, y ‘= as+ 2z, x :=yn+vy, a € V ,wE VT o % & the unrestricted
generic maps N7, S7, MI, B™, G™, X7 are cancellation operators in U/\/lé' V) :

(2.5.3) (n-Cancellation): @, =N"7Q,=Q;N?, (NT)*=N"7,

(2.5.4) (n,s-Cancellation): Q,s=5"7Qs=QsS%, (S7)"=(S"7),

(2.5.5) (z-Cancellation): @, = QSQzQS,

(2.5.6) (n,z-Cancellation): @, .= M_”Qs =QsM2, (MI)*=M_", for
M J'_ QSQ(,INg:SiUD z - D ,57 Mg = Q~zQS:Dg SU_DE’!”

(2.5.7) (y- Cancellatlon) Qy:B;‘7 NQS QéB" S (BE ~ S) Ba o5

(2.5.8) (n,y-Cancellation): Qn, =G 7Q, = QSGU for G :=aST+MZI = (G™7)*,
(2.5.9) (2-Cancellation): Q. =X "7Qs=Q:X° for X" =~*N"+yG7+B™ = (X 7)*,
and satisfy the following relations in Z/IPEON/) 4

(2.5.10) (N-Structure): QNT@) =N"Q=N"",

(2.5.11)  (S-Structure): STQ=+Q=5"T=0Q, ST 8

(25.12) (P-Glue 1): N7Q= +Q=N""+57Q=5"" = st(w) + QN,(w)ﬁ),
(2.5.13) (P-Glue 2): NTQINUS —|— STQ=N"T=Q,., &5 ()"

If we denote the homotope powers in the Jordan algebras (V=)@ (Vo)) by
G=3€V, q:=Qqls), a3:= Qq(n), @ :=G") (qr €V fork=2),

(2.6) )
$1=38, Sg=n, s = sk (sg €V fork>1),

then we have generic power-shifting relations

41t is not clear whether these hold generically in U ME(V) without imposing further conditions on the relation
between s and m. It is crucial for the arguments here that we consider only extensions V' O V which contain at least

g, even if not all of V. We will not bother to distinguish notationally between the generic Kf" = Q3Qs € UME(T/)
and the map N7 = Q3Qs|ve € End(V7), or between g"r and S7.



(2.6.1N) (N-Shifting): N%(qx) = qer2, N~7(s) = Spsa,

(2.6.15)  (S-Shifting):  S7(qk) = 2qk+1,  S™7(sk) = 28k+1,

(26.1Q) (Q-Shifting): gry1 = Qg(st), k41 = Qular),

(2.6.11)  (Inner Power Shifting): Dy, g = D, 1,40 = -+ = Ds, .qu1_;»
Dg, s = Dgyspy = - = Dgyyy .55

generic triality chains

(2.6.2ER) (Elemental Right Triality): {N°(a), sk, ¢} — {S7(a), sxs1, ¢} +{a, sky2, ¢} =0,

(2.6.2IR) (Inner Right Triality): D __ ~  — ~ ~ =0,

N"(a),sk S”(a),sk+1 a,Sk42
(2.6.20R) (Outer Right Triality): D~ N — D« S7 + D~ =0,

C,Sk C,Sk+1 C,Sk+2
(2.6.2EL) (Elemental Left Triality): {sg,N%(a),z} — {sk+1,57(a),z} + {Sk+2,a,2} =0,
(2.6.2IL) (Inner Left Triality): Dsk,N”(E) - Dsk“,S"(ﬁ) + DSH%g =0,
(2.6.20L) (Outer Left Triality): N 7D ~—-S8"7D < ~ =0,

Sk, C Sk41,C Sk42,C

and generic relations
(2.6.3) (Commutativity): N7ST =S"N™ = M,
(2.6.4) (Two N): (S7)?=2NT + DJ (D := Dy, s, D37 :=Dsg,),
(Two Q): S77Qsn = Qs,n S =2Qn + Qsy s
Here s dominates n (generically in \7), and on the dominion IQ(SHL = %n =+ %8 + Qs;" we have

the generic action formulas

(27.1) Qq(Fn+as+Qua) = gst+aqu+N7(a) € V7,
(2.7.2) N~=7(Fn+as+Qsa) = ys4+asz+Qna € Qs‘z/",
(27.3) S~ (Gnt+as+Qea) = 23551280+ Quna C In+QsV7, S™7(Q.V7) C Q1.

In the special case that the element s € V=7 has an inverse s~ € ‘7", we have § := Q4-1n, 2z :=
Qsa, ¥y = Q.0 =as+Qsa, v := Q0= yn+as+Qsa fori:=as ' +a, 0 :=~j+1u in 17“7 and the
denominator conditions (2.5.1-2) mean that Qq,quS—l,Qis,Qqﬂ],Qﬁ have denominator s € V7
with

N77=QQs1lv, N7 =Q,1Qqlv,

ST =QsQgs-1lv, ST =Q451Qslv, Qns=Q:sQ4s1Qs|v,
M7 = QzaQslv, G7:=QzaQslv, X7 :=Q:Qs|v,

M;7 = QsQqalv, G77:=QsQzalv X 7:=QsQslv.

(2.8)

In this case the monostructural transformations T = Q4,Qu, Qs on V determine monostructural
transformations T = Qy, Qy, Qz onV whose s-cancellation operators N' = T 5|y, B := T 5|y, X =
Ts.s|lv are structural transformations induced on V by restriction from principal structural transfor-
mations on 9, and G = Tz as|y is structural glue, forming a Bergmann triple whose resulting
Bergmann transformation is X.2n 6.8 = V’N ++G + B.

ProOOF: The denominator hypotheses on the element ¢ imply the denominator conditions (2.1)
on the operators: (2.5.1-2) hold for N7,S57 by @, = Qq.; = Qs(Q;Qs) = (QsQ4)Qs by(JP3),
and Qns = Q.45 = QsDgs = Ds Qs by (JP1). (2.5.3-4) are restatements of (2.5.1-2). (2.5.5)
comes from (JP3), (2.5.6) from @, , = QQ o Q:sQ5..Qs [by (JP3)] = M.°Qs = QsMZ for

sd,ly¢s a a
sz" = QSQQ =Dy4D ~— DQS@,E [by (0.1.2)] = DS@DS,E — Dn,Z’ and dually M‘E’ = Q675Q5 =

,a s,a



D~ Dgs— D= 0= Ds S7 =D~ . (2.5.7) comes from (0.1.6), (2.5.8) holds since Qn y = aQy s +

Qn.z» (2.5.9) since Qz = Qynty = V2Qn +¥Qny + Q. For (2.5.10), we know that the principal
structural transformation " = 75 ; of the Principal Example (1.5) satisfies the identities of (10), and
yields by restriction a structural transformation (not necessarily generic) on V. (2.5.11) holds since
(Dg,s,Dsq) = (87,577) is always Lie-structural by (0.1.1). (2.5.12) comes from (0.1.4), (2.5.13)
from (0.1.5).

For the relations (2.6.1-4) involving the homotope powers, note that si,s2 € V=7 by hypothesis
and hence s"+29 = Q,Qz5"? = N~=7(s;) € V=7, and by (2.6) g2, ¢3 (though not ¢;) belong to
V, hence so does §*+2%9) = Q;Q,G%*) = N7(qy) for k > 2.°

For N-shifting (2.6.1N), N? = @qQS = Ués) takes g = ¢ to §**t2) = ¢, and dually
N=%(s) = Qséq = Us@ takes sy to spyo. Similarly, for S-shifting (2.6.1S) S7 = D4 s = () takes

g
gk t0 2qp4+1, and S77 =D, 5 = VD takes Sk t0 2sp41. Q-Shifting (2.6.1Q) and Inner Power Shifting
(2.5.41) follow from (0.1.7).

The terminology in the triality relations comes from whether s cancels a (hidden) ¢ from the
right or the left. Tnner Right Triality (2.6.2IR) follows from (0.1.8) since N7 (@) = Q3Qs, S = Dj .
Applying this operator to ¢ yields Elementary Right Triality (2.6.2ER), and interpreting Elementary
Right Triality as an operator on a yields Outer Right Triality (2.6.20R). Since these hold as elements
in UPS(TJ) and as operators in UME(?), we can apply the involution in Z/I./\/lé’(f/) to obtain Inner
Left Triality (2.6.2IL) and Outer Left Triality (2.6.20L), and then have Inner Left act on # to obtain
Elemental Left Triality (2.6.2EL).5

Commutativity (2.6.3) holds for 7 = o since Q3Qs(Dg,s) = (Dg,s)Q3Qs [by (JP1) twice] =
QQys,d@s [by (JP1)] = Qqs,¢ = Dgs,sDi,s — Dgo,q.5 [by (0.1.2)] = Dg, sS7 — D, n = My, , and dually
for 7 = —o we have QsQq(Ds,g) = (Ds5,4)QsQq = @5Qqs.q = Ds,qDs .0 = DQuiige = 5™ Digo —
Dy, g, = M,,°.

The first part Two N of Squaring (2.6.2) follows from (S7)? = (55)8)2 = 2@5@5 + ﬁ~qs,s [by

(0.1.2)] = 2N + Dy, ,, and dually (S=7)? = (Dgs)? = 2QsQq + D, 5, = 2N~ + D; 4,. For the
second part Two Q, S™7Qs, = (S77)2Qs = [QNf(r + Ds,qQ]Qs [by the first part] = 2Q, + QQ,g..s

[by n-cancellation (2.5.1), (JP1)] = 2Q, + Qss.s-

By (0.2) we know K., is an inner ideal, and (2.7.1) holds piecewise by definition (2.6) of g3, ¢4,
and the definition of N?. (2.7.2) holds by applying Qs to (2.7.1) by (2.6.1N) and Q;N? = @,.
(2.7.3) likewise follows piecewise from (2.6.1S) and S(Qsa) = Qs na [by (2.5.1)].

For the case (2.8) of invertible s, we can cancel Q, from Q;Q;s-1Qs = Q0.5.0.5-* = @ns =
QsS = 5Qs, from Qsin,aQs = QQsﬁ’Qsa = Qn,z = QsM, = M,Q,, from QSQq,ﬂQS = Qqu,Qsﬁ =
Qn,y = QSG = Gst and from QSQTJQS = QQSTJ = Qa; = QsX = XQs- u

This long list of ancillary relations provides the necessary tools in the following to make N

structural, without the help of ¢ or V, and to motivate our treatment of Jordan derivations in [6].
They also played a role in the treatment of domination and tight domination in [5]. The operators

5The dominion (K;:n)(‘i) is closed under the Jordan algebra structure on (V=°)(@ despite § € V°, and the sy,

are just powers of the element s in this subalgebra. V7 is clearly a Jordan subalgebra of (‘7")(5>, but the g for k > 2
are not powers in that subalgebra since q1 ¢ V7.

6Note that Outer Left OL does not result by interpreting EL as an operator identity: EL on 7 is IL, but EL on a
is the relation Q@ ~N? —Q ~+Q ~ = 0, which we shall not use. The relations OR, OL will be the most
Sk, T

0y Sk41,T Sk42,T
important for us (cf. 5.1.1-2).



M7 will play an important role in our development. The problem of creating “fractions” is the

situation where ¢, u, v € V are merely figments of our imagination, and all that exists is their traces
N,G,S on V and n,z,x in V. The most general problem would be that of creating a “holomorph”
V O V where all suitable structural transformations become “inner”.

3 The Injective Case

In the construction of fractions ¢ = Q3 'n, the operator Q, begins its life in V as injective, and
graduates to an invertible life in V. In the invertible case (2.8) the operators N7 = Q3Qs, N77 =
Q:Qg, X7 = Q:Qs, X77 = Q,Q5 will be structural transformations on % leaving V invariant, and
S7 = 15575, S77 = 55)3 will be Lie-structural transformations leaving V invariant, so they will have
to be structural and Lie-structural on V to begin with. We wish to develop conditions guaranteeing
this structurality.

Strengthening (0.2), we say s € V™9 structurally dominates n € V=7 on V if there is a
structural NV = (N*,N7) and a Lie-structural S = (S7,577)) satisfying (for all w € V7,a €
V7, ~v,a € &, 7 = +0) the cancellation relations

(311) Qn=N"7Qs=QsN° (N results by cancelling Qs),
(3.1.2) Qns=57Qs =Qs5°, (S results by cancelling Q),
(3.1.3) Qnr(w)=N"QuN~T (N is structural),

(3.1.4) Qsr(w)w =95"Qu +QuS™" (8 is Lie-structural),

(3.1.5) (WNV,G,B) is a Bergmann triple,

(3.1.6) (S,N) is a Bergmann pair.

Thus NV, B, X as in (1.3) and (2.5.3,7,9) are all structural. (3.1.3) guarantees NV is a structural pair
(B always is by (0.1.6)), so (3.1.5) amounts to saying that G = aS + M, is structural glue.

We say s generically structurally dominates n if N7 = (N~79)* € QuQy, S7 = (S77)* €
Dy v satisfy (3.1.1-5) generically, i.e., it generically dominates as in [5, (3.1), hence (3.1.1-2) where
(3.1.4) is automatic for an inner derivation] with generic structural transformations N, G, B on V
forming a generic Bergmann triple.

In the presence of injectivity, the mere dominance (3.1.1-2) goes a long way towards structural
domination.

Injectivity Theorem 3.2 If the operator Qs is injective on V7, then the structural conditions
(3.1.1-2) alone guarantee that s structurally dominates n on the subpair (V7,QsV 7). Indeed, the
structural conditions (3.1.3-4) and gluing condition (3.1.5-6) always hold for T = —o on the subpair,
and (3.1.1-6) holds for T = o on the subpair if the map Qs is injective.

PrROOF: We are given dominance (3.1.1-2), and must verify that (3.1.3-4) and gluing (3.1.5-
6) [i.e., T-Glue 1-2 (1.3.1-2) for T; = N, T, = B,G = oS + M, and P-Glue 1-2 (1.5.1-2) for
Ti=N,73=1,G =D = 8] hold as maps on V? when 7 = —0, and as maps on Q;V° when 7 = ¢
and we can cancel Q.

We claim that whenever 77,7z, G result by cancelling Qs as in (2.2),

(321) QI = T;(TQS =Qt, QGT=G7Qs= Qtl’tQ

then structurality (1.1) for 7; and (T-Glue 1-2) for 71, G, 75 will hold on the subpair (V7,QsV7), so
(71,G,73) will be a Bergmann triple on the subpair [note that the inner ideal @,V is invariant under
such T =T; ?,G77 since T"7(Q:V7) = Qs(T° (V7)) C QsV?]. This will apply to (71,G,72) :=
(N,G,B) with t; = n,t2 = y as in (3.1.1), (3.1.3), (3.1.5), (0.1.6), (0.2.2) and to (S,N), ie., to
(71,6, Tz) := (N,S,1) with t; = n,t; = s as in (3.1.2), (3.1.4), (3.1.6).

To include G and S in the notation, we agree Qr, := Q¢,, Qp :=y, Qr := Qs, and (not quite
true Qg -operators) Qg = Quy 15, Qs = Qiy,1, = Qn,s, S0 that Q;T7 =T 7Q, = Qr and for any
two T, 17" € {11, T, B, I,G, S} we have that the maps Qr(z), Qr(a), 7/(x), T Q2T satisfy
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Qr-20.0) = Qor) = Qa.17() = Qs (Qreo)) Qs
(3.2.2) T7Q0.T"7 =T °Q:sQuQsT"" = QrQuQr = Qs (T QT ~7)Qs,
QT-(0.0),77(Q.b) = Q.00 = Q0.(T7(1)).Q. (17 (b)) = Qs (Qre ), 177 (v)) Qs-

First, structurality (1.1.1) of 7 holds whenever 7 results by cancelling @, from Q; for a true
element ¢ [i.e., for T = T;,N,B, X with ¢t = ¢;,n,y,z as in (3.2.1),(3.1.1),(0.1.6),(0.2.3)]: setting
F™(w) := Qrrw) — T7QuwT'~" for T" = T we have by subtracting the second row of (2) from the
first that F~7(Qsb) = Qo — Qr@QeQr = QsF7(b)Qs = 0 by (JP3) when Qr = Q, for t € V,
which shows F~7(w) = 0 as map on V7 when w = Q:b € Q;V7, and Q,F°(w) = 0 as map on
QsV? when w = b € V7, so that if we can cancel Qg then F(w) = 0 on Q,V?. In particular,
T =T, N,B, X are structural.

The T-Gluing conditions (1.3.1-2) for any such (71,3, T2) [hence the P-Gluing conditions (1.5.1-
2) for (N,S) via (71,6, T3) = (N,S,1)] can be formulated in terms of F'7(z) := T7 Q.G +
GTQ.T 7 — Qrr(2),67(a), F¥7(2) = T1QuTy " + T3 QuTr ™ 4+ G7QuG ™7 — Qi (x) — Qrr (2),17 (2)
where for F'7 subtracting the third row of (2) when T,T" = T;,G from the sum of the second
rows when T,7" = T;,G and G, T; [where Qr, = Q¢,, Qa = Q, +,] guarantees that F'~7(Q,b) =
QsF7(0)Qs equals Q¢ QuQy, 1, + Qt,,1,QQt, — QQti(b)Qth(b) = 0 by linearized (JP3). Similarly,
for F27 taking the sum of three second rows of (2) when T, 7" = T1,T4 and Ty, T} and G,G and
then subtracting off the sum of the third row of (2) when T, 7" = T, T> and the first row of (2) when
T = G |with Qr, = Qy,, Qe = Qu, 1, as before] guarantees that F~7(Q:b) = QsF7(b)Qs equals
Q1 QvQt, + Q1 QuvQty + Qi 1, Qo Q1 s — Qq,, ., 1) — Ry, (0).Qr, () = 0 by linearized (JP3). Thus
again F~7(QsV°) =0on V7 and F(V?) =0 on Qs;V7 as long as we can cancel Q. In particular,
(N, G,B) and (1,8, N) are Bergmann triples, so (S, ) is a Bergmann pair on (V°,Q:V=°).7 W

We have not been able to obtain Inner Shifting (2.6.11), Inner Right Triality (2.6.2IL), or Squaring
(2.6.4) directly from injectivity.

4 The Gluing Conditions

We will spend the rest of the paper finding conditions (suitable for application to fractions) that
guarantee (N, G, B) is a Bergmann triple and (S, ) is a Bergmann pair on the entire pair (V7,V 7).
Besides structurality (3.1.1-4) we still need glue (3.1.5) = (1.3) and (1.5). This modest proposal
about glue translates, by T-Glue n (1.3.n) (n = 1,2), into conditions n;k on S and N, which we
will group according to the glue number n = 1,2, the parity 7 = 4o, the power k of the scalar ¥,
and (in T-Glue 1 1.3.1) the structural transformation "= N, B, together with the pair conditions
P-Glue 1-2, for a total of 18 conditions.® For T-Glue 1 (1.3.1) we first demand conditions relating N/
to the glue G. We make heavy use of the operators M”™ € End(V") (M7 := Dy sS°—Dgn, M, 7 :=
S77Ds q—Dy q).

N-Gluing Conditions (4N): for all ba € Vo, z € V7
NTQu(aS™™ + Mg 7) 4+ (aS™7 + My T)QqN ™" — Qo () (as—r a7y = 0-
az”) NeQyM, 7 + MJQuN ™7 — Qo vy, mz ) =0,
(3" N77QuMJ + M, 7Q,N" — QN-o(2) M7 () = 05
(1%") N7QyS™ + ST QN7 = Qno(e),so() = 0, } PGl 1
(1y"h N77Q:S7 + S77Q: N7 — QN-o(2),5(2) = 0.

7Actually, the third row of (2) for T = S,T' = 1 shows that S is Lie-structural on the subpair (V7,QsV~7)
whenever it results from cancelling Qs from Qs n for any n as in (3.1.2) [not assuming (3.1.1)].
8The reader may well be thinking of the scene in Independence Day when the alien is cut loose from its spacesuit.
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Next we require conditions relating B to the glue G. In a following proposition we will see that
these conditions hold automatically for a Lie-structural transformation S connected to N by (3.1.1-

4), though by a lengthy detailed computation, and so do not require anything new in the condition
(3.1.5).

B-Gluing Conditions (4B): for all ba € Vo, z € V°
B;,aQw(OéS_T + Ma_T) + (O(ST + M;—)QWB;IZ — QNT(w)’(aST+M;')(w) =0.

(1% QuQsQuM; 7 + MIQyQ:Qu — Qq.q.b.115() = 0,
(157 QsQuQaMS + M;7QuQuQs — Q. rri= () = 0>
(15 Das@M7 + MIQuDsa + QuQsQeS ™7 + 57 QuQ:Qu

—Q@D, .b,Da.57(b) T @D, 0,00 b — QQ.Q.b.57 ) = 0,
(157" Dy aQeMZ + M;7QuDa s + QsQuQuS” + S™7Q:QuQs
—Qp, 2,5 9Dy a(@) T @D, uz.Dyuzr — RQ.Quz,5-7(z) = 0;
1% QuM;7 + MZQy + Do QoS 4+ S°QuDs.a — Qpnz(v) — @b, b,57 () = 0,
(157%)  QeMg +M;7Qu+ DuQuS” + 5 QuDus = Quasio(ey ~ Qs umsot) =
8207)3) gzgo ++S€Ugl; _%S;(i)(f),x i’ 0 } Lie Structural
Finally, for T-Glue 2 (1.3.2) we require conditions relating B to the glue G.

N-B-Gluing Conditions (4NB): for all ba € Vo, z € V7
NTQuBL o+ B o QuN ™"+ (aS™+M7)Qu(aS™ T+ My ™) = Q(ast+M1)(w) — QN7 (w),(aS7+ M) (w) = 0
(279) NQpQsQu + QuQsQeN ™7 + M7QuM, 7 — Quizv) — ONe(1),0.Q.0) = 0,
277%)  N77Q:QuQs + QsQuQuN7 + My " Qu M7 — Q oy — QN-2(2),0.Q.(x) = 0,
(271) NeQyDs,a+Da sQuN~7+MJQpS™7+S57Qp My 7 —Qnro (b),57 (5) —QNe (b), D0 .. (b) = 0,
2771 N77QuDas+Ds,aQu N7 +M; 7 Qa8 +877Qu M7 Q-0 (1) 5o (2) ~Q@N-7(2),D, () = 0,
(27%) N7Qy+ QpyN~7 4+ S7°QupS™7 — Qso ) — Onoy,p =0,
(

o P-Glue 2
2777 N TTQu 4 QuN +57QuS5" — Qso(a) — Qn-o(a)x = O

The major goal of our paper is to determine a small number of conditions besides (3.1.1-4) that
will guarantee these 18 gluing conditions. As alluded to earlier, the conditions (4B) are easily dis-
posed of: the operators N do not appear, and the B-Gluing formulas (1%0, k) hold automatically
for any suitable derivation. One suspects this follows immediately from properties of the Bergmann
operator, but I could only prove it by breaking the operator into its constituent pieces.

Bergmann Glue Proposition 4.1 The B-Gluing Conditions (4B) hold for any Lie-structural
transformation S of V as in (3.1.4) connected with n by the cancellation relation (3.1.2).

PRrROOF: To help the reader through the following tortuous verifications, we indicate the migra-
tion of terms via superscripts, with A, ¥ e 4 denoting a term which about be cancelled out by its
twin, and we also create terms * and their anti-terms *x at will.

Formula (1‘]73’0) follows (omitting superscripts, which are clear by context) from
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QaQ:Qy(SDLI-DZ) + (DELS = DEX)QQsQa — Q% 1. 5oy + Qo060 )
= QuQs[QpSM+SQ{™] Dy o + Do s [SQP +Q05E)] Q5Q0 — Qu[QsS ™) QyDs
— D4 Qo [SQ ] Qu + [~QuQ:Q D~ Dan QR +Q5 o 1y 1 1)

9**
(@) 0.4).50..56) Q00,5000 0 (0] T Qs (.5)(8).D0.0®)
= [QuQsQsw), D™ +D, sQs) v Qs /5 Q(s) S(S()) Q;: Q.(S(b)),Da. g(b)]

~[QuQsQu D 4QuQ,n QDS 7**)+Da,nQstQ<4>+DaszanQ“** Q3.0 umtt

(9x)
QQaQs n(0),Da, s(b)]

[by structurality (3.1.4) on (1/7%),(2/8%); cancellation (3.1.2) on (7**),(8**),(9**)] which vanishes
by linearizations b — S(b),b and s — s,n of (0.1.5).

Formula (15%°) follows dually (though not by a dual proof, since the formulas (1z) are all sym-
metric under reversal; because of asymmetry (s,n € V~7) the “dual” proofs are really “inside-out”).
We compute

(1) (2) (3) (4) (5) (6)
Q5QaQu[DasS—Dan] + [SDsa=Dna] Q2QaQs = Q4.0 2.5D. o (x) + RQuur Dua(a)
_ (1) (3) (7%)
= [@:QuQ2Di21S + 5[D1aQeQuQ:”] ~ [Q0) 0, (0).5(D. () + Q5200 (@)D ()
(Txx) (4)
+Q(SQ )Qa 13) Db a(w [QSQGQJL’DG,TL + Dn,anQaQs QQ Qa(I) Dn a(:v):l
_ (1) (5) (3) (7x)
- [Q QGQQCDGS QQ Qa 'p) Dy a(m)}S_FS[ sanQa QQ Qa(z), Dy, a(x)]
(7T*x)A (6)a
+Q(Q5 n)Q (m) Dé a w) + [QS nQaQaz + Ds aQIQa QstnQa(m)’Ds,a(w)]
y structurality (3.1.4) on ; cance .1.2) on ; linearize s — §,m on
b li 3.1.4 5/T* 1(3.1.2 7)1 ized (0.1.4 2/4/6
(1/5)v 3/7x)e °
= — [Ds0QeQu(Q:9)] YV = [(5Q9)QuQuDas] ™™ + [D4.0Q0QuQST + Q5.0 QuQu DAL]

[by (0.1.5) on (1/5), (3/7*)], which vanishes by cancellation (3.1.2).
The formula (15") is

D.. @y [SD—-DZ)) + [D 3325—Dé4%]Qsta +QuQ:QVS + 5QuQ. QL
~QF) 5.0asw) + @b, 000~ Qoauns0)
= Da,s[Q,S”Swa |Dsa + QaQs[ D5+5Q4 ] + (@515 + 5@V QsQu — Qu [RS8 Qs
~Qs[SQY"]Qa — Q1) )0, s ~ [Qou1.50) TP anisens) T Qoni@.s)®
+[- Da,szDgz,()z — DanQuDS + QDa (5 Dan(®)]
= [ a,sQ@s(v), yDY 4 QuQs Qf;(éjob* + Qs)p@sQa o
~Q5) )00 (5 ~ Q000 0).50) ~ Qo (s b]
~[Des QD24 Do QDL+ Qa0 Q) +Qan,sQ£3°**>— B Qo s

[by structurality (3.1.4) on (1/3),(5/10%),(6/11*); cancellation (3.1.2) on (11**),(12**)], which van-
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ishes by the linearizations b — S(b),b and s — s,n of (0.1.4).

Dually, the formula (1;"’1) becomes

Ds an [Dglgs_Dt(fgL] [SD.S(%_D?(:%} QzDa s + Q QaQ(S)S + SQmQa (6)

(7)
5,a%,8Dg o () + QDS a®,Dpax QQ Qaz,S(z)

= [Ds.0QeDiN+QsQuQ]S + S[Ds 0 Qe DE+Q:QuQS”]
-[Ds aQTD¢(12n+Dn «Q:Di— g) (@) Dnal@)] ~ g) w,S(Dyaz) Q(C?)Qnm S(x)
= [D2aQuDE4Q:QuQY - Q0" . ~Q5%, 18 + 8[DsaQuDiA+Q:QuQ ~ QY . ~QS" ]
~[D14QeDan+DraQuDas=Qp, o (0).50ne)) QS e
[by structurality (3.1.4) on (7),(9)]
= [QuQuQ.) P 848 [-0.04Q4] Qa2 = Q@I+ Q% on0a] Y
+Q§?S'CQ):)an,x [by linearized (0.1.4) x,a,y — {s,n},a,z on (2/4/8)]

(3/6/7b/9b)¥

which vanishes by cancellation (3.1.2) on A, V¥, ».

The formula (1‘]73’2) becomes Qy[SDso—Dh.a| + [Da,sS—Dan|Qb + DasQuS + SQuDs. —
Qb,[Da o S—Dan](0)—Q@Da b,5(b) = [@S+S5Qb] Ds.atDa,s [QuS+SQs] —Qu,p. . (5()— [QbDPn,atDanQs—
A

Qb,00.0)" — Qs(b),Du.(6) = @st)sDs,a + DasQsv)b — Qpa. . (5))b—@D. . (b),5() [Dy structurality
(3.1.4) twice, (0.1.1) on A], which vanishes by the linearization b — b, S(b) of (3.1.4).

Dually, the formula (1;‘7’2) becomes Q) [DG,SS—DWJ + [SDS’a—Dn’a]Qm—&—DS,aQIS—i—SQajD
_C2ac,[S'D9 a—Dn.al(z) — QDsﬁa;c,S*f’(x) = [QmDa,s + Ds aQw}S + S[ S, an + Qm a s] - Qa: S(Ds,a(x))

_QDS,a(z S(z) — [Qx an + Dn,aQaﬁ - Qm,Dn,ax] - QDé a(z),x S + SQDS a(x),x QS Dg qx),x
QDS,aw,S(z) [by (0.1.1)] on A, which vanishes by the linearization & — Dmx of structurality

(3.1.4).

Note that the final conditions (1;0’3) are just the conditions (3.1.4) that S be a Lie-structural
transformation on V. [ ]

5 The Main Theorem

Our main result is that the 18 Gluing Conditions (4N, 4B, 4NB) which guarantee that (N, G, B) is
a Bergmann triple and (S, N) is a Bergmann pair, in particular that X is structural, can be reduced
to a small number of connections between N and S.

Structural Domination Theorem 5.1 The Gluing Conditions (4N), (4B), (4NB) for (3.1.5) will
follow from the Structural Domination Conditions (3.1.1), (3.1.2), (3.1.4) on s,n and the two Gluing
Conditions (P-Glue 1) = (1%‘7’1), (P-Glue 2) = (2%2),

(511) (P—Glue ].) N QuST™T+5Q,N"T = QNT(w)7ST(w),

(512) (P_Glue 2) NTQU) + QwNiT + STQU)SiT = QS"(w) =+ QNT(w),wa

if we assume that the following additional conditions hold for elements g2, q3 € V7 with s;11 = Qsq;
and all a € V7 :
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(5.1.3)  (TwoN) S7ST=2N"+Dj (D := Dy, D;° := Dsy,),
(5.1.4)  (Right Triality (k =1) DgoN°—Dy,S°+Dq.s, =0,

(5.1.5)  (Right Triality (k =2) DunN° — D, S + Dy, =0,
(5.1.4%*)  (Outer Left Triality (k =1) N~°D, =5 "Dy a+Ds,.q =0,
(5.1.5%)  (Outer Left Triality (k =2) N~7D;% —S D, + D;’, =0.

$3,a

If these hold generically in a,b rather than as maps on V, then we can omit (5.1.4*—5%).
Thus (N, G, B) will be a Bergmann triple and (S,N') a Bergmann pair if (P-Glue 1-2), (3.1.1-4),
and (5.1.3-5%) all hold.

PrROOF:  The dual (5.1.4%) holds automatically if (5.1.4) is generic, and similarly for (5.1.5).
We already know by the Bergmann Glue Proposition 4.1 that (4B) follows from (3.1.2), (3.1.4), so
we are concerned only to derive (4N), (4NB). We noted in the proof of (2.6.4) that (3.1.1) and Two
N imply Two Q (5.3.4) (which is also the case w = s,7 = —o of (5.1.2)):

(5.1.3) (Two Q) SQun = QsnS = 2Qn + Qu, .

We first show that the N-Gluing Conditions (4N) (1%0’]6), k = 0,1, follow from the above (5.1-
5%). For k = 1 the relations (157") are just (P-Glue 1). For k = 0 the relation (15°) follows from
(3.1.4), (5.1.1-2)7, (5.1.4*-5*), (5.1.4-5) since it reduces to
NQy[SDs.a—Dh.a| + [Da,sS—Dan|QsN — QN(b),Da..S(b) — @N (), Dan(v)
= (NQuS)" Dsa = (NQ8) ' D + Do (SQuN) Y = Dy (@)

—QN 0,50 (50) ~ AN, Dt

= [=SQ I N4QR 5] Psa = [FQNCY =SQ S+QGE Q)] D
+Das[ = NQP + QNG sy — Dan [ = NQI™ = SQI™S + Q) + Q)]
[Da,s S\??b;;(b)+QN(b ) DPs.a Qfg?bN](b),S(b)]
-[- Q(Da N)bTPan Igbl);).b+Qg\67?l)>)vb ]
[by (5.1.1)¢ for (1),(3), (5.1.2)° for (2),(4), and linearized (0.1.1) for (5),(6)]

= 5Qu[SDeVA— DD 4, [SDﬁi?”fDS?”} - SQE?”“SDn .

+[-Da Sal)' 5+Da3?32 1QuS — [Qsw)D n 9%+ D, nQS ) ‘1 -[-D ((14231)5+ D¢(14gf)]Qb

+Da0n QTS + [QF 80 sy — Qoo rosn] T [~ Qe syo + Qe 0]
[by (5.1.4%) for (1a), (5.1.4) for (3a),(5c), (5.1.5%) for (2a), (5.1.5) for (4a),(6a)]
= [SQ ™ +QP"S] Doy o + [~QuDEDY -DE* Q5™ ]

+Dass [SQL Y + Q58] = Q5 (e — @ s 0)
= Qs),bDsg,0 + Da,ssQ5(6),6 = @Da oy (S(6)),6 — @D oy (8),5(0)
[by (3.1.4) on (1a2/2al),(4al/3a2); (0.1.1) on 4], which vanishes by linearized (0.1.1)].
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The formula (1&0’0) follows dually from (3.1.4), (5.1.1-2)77, (5.1.4*-5%), (5.1.4-5):

NQ:DES + NQuD = SDuaQS"N + Do N + Q00 s, o) = @ty b o
= [NQY , .5- Sczf‘;“i .M INQED o, N
~(ND.0) ™ Qa8 + SQu(Da s N)*” = (NDp o) ®” Qs — Qu (Do N) ™
QW) 5(saey) — Qo) D (2) [by (0.1.1) on (1),(2),(3),(4)]
= [ %?Es a,x}),8 Q]\?l(?a: S({s,a :r})]

(8a) (8d)a (8)
[SQ{n a,x}, ‘LS + QS{n a,x},S(x) + QN({n a,x}),x + QN(],) {n,a 1}]

—[SDRE" -DGP)QuS = SQu [Dan SOV +DEEY) — [SDE -DED])Qu
+Qa[D5+DED] + QS\?):) S({s,a,a}) Q%Z),{n,a,x} [by (5.1.1)= on (7),
(5.1.2)77 on (8), (5.1.4*) on (1b), (5.1.5*) on (2b), (5.1.4) on (3b), (5.1.5) on (4b)]

(7a8b) (8¢c) . (161) (3b1) (8a) (9)
Q ~NDatSDn.al(2).5() T EOND, @) T S[~Dn.aQs QaDa.n +Q{n,a,m}’w] S

—8[Dsy aQP"V+Q.DEP1M 4 [Q, DY 1Dy, 1, PV S + [Dy, nQPP+Q, DD

(7a8b)A (8cl)a (8c2)v
= Qb w5 T | SDSB ()~ @D, S4<x) )

7S[Q{337a7$}7$} 1o + [Q{S37a7$}1$] S + Qilsi),(:,m},x

[by (5.1.4%) on (7a8b), (5.1.5%) on (8c), and (0.1.1) on (9),(10),(11),(12)], which vanishes by lin-
earized (3.1.4).

Now we turn to the remaining condition (4NB): (2£7F). The case k = 2 is our assumption (5.1.2).
For k = 0 the formula (27:9) follows from (3.1.1), (3.1.2), (3.1.4), (5.1.2)7, (5.1.4%), (5.1.4) (5.1.3') via

NQQ:Q+QuQu@N® + Doy [SQ8] VDo + Q5 sy — Dars [SQ] Dy
~Dun[@65]' ' Dot @) 500y + [Pon@Dua=Qp, ] — Qo 00 0.0
= NQvQ:Q5+Q.Q.QuN® + D, ,[-NQP" -, N<3b>+Q(‘°’C“+Q53d2) o) Dsa
+HQGD s.50) — QuQsQS() — Qsny@Q4 “Q?(‘f,) o]
+Das [-Q53) y QS Dy at D [-Q5) , +SQ8 ] D,
[QD 2S(b),D b)+QD7:)n S(b),Da. b)fQEg:)nS)(b) (b)]
Q0 - 2,0 + 0] + [0 0.0~ v + 200
[by (5.1.2)7 on (3); (0.1.4) on (4),(8); (3.1.4) on (5),(6); (3.1.1) on (9%)]
= [NQV-Q5)]Q:Qu+QuQs[QeNP-QL) ] — (D, SN)QbD@“MDa «Qu(ND, )]

- [_ngc)gs,nb, sty TPasQs(6)6 D0 +Dan Qs s Dia’ =Q1) (569,50,
(7%) (11) (T#x) (8a) (8b) (8c9xx)
Da.o(b),Da n(S(b ] Q[D ROBS [_QaQnQb ~QvQnQa +2QQaQn(b),b]

9) (12) (5b)
[ a sQN(b) st a QQ QN (b),b QQaQs(b),N(b)] + Da,sz [SDn,a]
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+[Dan8] ™ QyD, by (3.1.2) for (4a)]
= [~QNOD-8Qi" S+QYIN, ] QuQu + QuQ: [-NQSV —=SQ S+QG0T ]
+[(=DanSC D4 DELD)QuDy 0+ Da s Qb (—SDa "+ DEE) ] + [QuQn s Qi
Q5 0@ns Q5" =Q0  sya] T [FQu@n@Q Y =@ QE" + 20557 )]
+H[~QuQ:Q\ )T ~ Q) s QRS QD2 N .5 ) + Das@u[SDU]
+[DanS QD0 = (@5 0 n, vty T Qi (9, Dey )
[by (5.1.2)7 for (1),(2) and the linearization of (0.1.4) y — b,5(b),a — s,n for (11), y — b,S(b)
for (12); (5.1.4) for (3a), (7**); (5.1.4%) for (3b)]
= [D, sszDf'gQ +D, szD;Z’f’Q) gf*l?b) D, ég(b)] o
+[= (595" +Q540),) QsnQa—QuQen (~QS®+Q51) Q510 siya]™
[ ObOn (1a8b) QaQan(72a8a)+Q(Q8§9Q*:()b),b](15)
[by (3.1.1) for (1a),(2a), (3.1.2) for (1b),(2b)]
= [~QuQus s Qo= QQus s Qut Qa0 . 175) " + [Q6(5Qun) QutQu (QunS) Qs
~QQ.Q...S(b)b) 40 42 [~ QbQnQu—QuQnQv+Qq.q. (b)) @
[by (3.1.4) for (14), linearized (0.1.4) s — s, s3 for (13)]
= Qu[~Qs;,5TQs.nS—2Qn] Qv +Qb [~ Qs s+5Qs.n—2Qn| QutQQ, (0., ..~ Q.. S+2Q0](5).b

which vanishes by assumption (5.1.3").

Formula (2779) follows dually by an equally tortuous computation: it follows from (3.1.1),
(3.1.2), (3.1.4), (5.1.2)77, (5.1.4%), (5.1.4), (5.1.3") since it reduces to

[NQuQuQ:tQuQuQuN]" + 5[D.u@:Das] 5+ Q%) )
+[~D1.0Q DasS~5D0Q Dun QW) b )] + [PiaQeDan—Qo, o))"
~Qi10).0.0.(0)
= [NQ.QQu+Q:Q" Qe N + S[-Q:Q7Y Q2 Q- Q" Q. +QR4  +Q5%Y, 1) 1S
+[=8Q5 ) SHQND, (01,0 ~ NQE, () = Qe () V]
JF[Dn,aQ%)DmS* (g?)a(z) Du.a( @) S+ 8[=Ds D, .Q D, n+ng)a (2),Dn a(m)]
Den)(5Dnae) + [~OnQE Y Qe=QuQi Qut QG 0]
[Ny Qa<z)+Q1§22 Qo) T QOr0n(@).e
[by (5.1.2)=% on (3); (0.1.4) on (2), (7); (3.1.4) on (6); (3.1.1) on (8**)]
N[QeQuQS=Q57 ]+ [ Qe = Q5" L IN + [Qun Q" Qu4 Dy QL Da s
~Q5 ]S = 8[QQE Qo+ DsnQP Dy o ]

D a(x)
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(2d1) (2d2) (2d3) (2d4)a (2d5)¥
+H[ = NQGG e — Qe N + @5(Q.Qua),5(x) T QN(Q Qaz)x T QN(z) Q.Qus)

(7a) (7b) (7c8%x) 8)v (8%)A
[ QnQ ¢ Qz - QzQ Qn + 2QQ:Q{J,I,$] [QN(I ),QsQazx + QN(QSQ(:,I)J]

(3b6¢) _
+Q[ND5 = SD a)(2),Ds.a () [by linearized (5.1.2)~7 on (2d); (3.1.2) on (2a), (2b)]

= N[QQUQ=Q57 =50 nal " + [QVQ—Q5Y )~ )N
@28 Qun+DeaQY Dan Q5 .0 2] S + S[QunQi* Qu+ D1 w QY™ Do
—QSffoaz,m] +[- QnQ(MQx—Qng7b)Qn+2Qgig:; N +Q8ji)Qaz,S(:r)_ gi’j:)(x),Ds,a(x)
[by linearized (0.1.4) s — s,n on (9),(10); (3.1.2) on (2d3); and (5.1.4*) on (3b6c)]
= —N[DsaQS 4 Do 4 QuQ M Qu] — [D,0Q8* " Do o +Q. Q5 QN + Q. Qu 20V +Q15%]
+[205°V+Q0% ) QuQu + DyuQu[Da, s NV 4+ D] + [NDLZW* + DO%Y]Q.D
~[Q5(ar ) T Remromse) [~ QnQI Qe — QQIQn + 2047511
QG 2,50~ @Dly (o). ) [by (0.1:4) on (11),(12);
(5.1.3) on (9a),(10a); (3.1.4) on (9¢),(10c); (5.1.4) on (9b) and (5.1.4%) on (10b) |
= [ = NQIM 4200 - QI M QuQs + QoQa [~QUN I 2 QI T
Q08" Qun s+ Qur QP Qurt DaQ" Do+ D a Q8™ Da = Q5 )]

9¢10cl Tc8cx
*széniésg,s}czam,z +2Q5°%") [by (5.1.3") on (9¢10c1)]

= — QR+, JQurs + [QQu . Qure] +2Q0,Qure =0
[by (3.1.1) on (13), (14), and by linearized (0.1.4) s — s, s3 on (15)].
For k = 1 the formulas (2%°'!) are much easier. (27!) follows from (3.1.4), (5.1.2)7, (5.1.4%),
(5.1.4) since it reduces to
NQyDEL + DEAQN + D4 sSQLYS + SQVSD, 0 — Dan@fYS — SQIY Dy
Q5. sw.sm T U, n(b) 5~ AN, D
= V" + 50475 — Q5] " Do + D QN + 50 - Qs ™
(@) v+ Q5 v+ QB wye + Dan[SQPY = Q5]
+[- QSGbal)) +Qp S| Do + [in,n(b),sw) + QDa,n(S(b)),b] Q(%:*ns (b),b
[by (3.1.4) for (5),(6), (0.1.1) for (7)]
= [-QuN"+Q¥ )] Dsa+ Das [_NQZZ+QRI(b),b](H) = [Das @iy QN () P ](12)

*%Oxx)e® a az)e b b2)e
—Q5 )+ [DEEVT N+DEEDQy + Qo [N DL +DE)

6a)
[ aan (b),b Qs (b), b Dn, G+QD

[by (5.1.2)7 for (10),(11), (0.1.1) for (12), (5.1.4) for (5a), (8**9**), (5.1.4*) for (6b)], which
vanishes by (0.1.1) on e, ¢.

(10)

(8%) ¢
®),50) TRD. . (3(6)) )

a,n
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Dually, formula (279°1) follows from (3.1.4), (5.1.2)77, (5.1.4*), (5.1.4) since

NQW D, s + sz N+ S[DsQu + QuDas] s
) ©) (7) ®)
- [D” a x S + SQQ: Da n WD, . (z), S(z)} - QSD; a(2),S(x) QN(m),Dsya(r)

= N(Q50 2 = DeaQ”) + (@9, . — QuDE )N + S[QP) ) ]S
+(Q.DE ~ Q(L;li?A (@).)S +8(Dn, aQwE)a - 5355):(;; JJFQL?,)L:(:E S(e)
.l (571)): w(@),8() T QN(ac) Dea(a) T QS\?*DS o().2) QS(OD*E:QQC),%
+[QUS5) e+ VDo) [by (0.1.1) for (1)-(5)]
= — [NDLD* Qe QP D, o N] + Qu[DYEV*N+DL ] + [NDE*+DS) Qs - Q5Y ()

[by (3.1.4) for A, linearized (5.1.2)7¢ for ¥, (5.1.4*) for (5a), (11), (5.1.4) for (4a)], which vanishes
by (0.1.1) for D, . This completes the verification that the Gluing Conditions (4N), (4B), (4NB)
follow from (5.1.2-5). [ |

6 Redundancy

In the presence of scalars % and %, the complicated gluing conditions conditions become redundant.

Redundancy Theorem 6.1 Conditions (5.1.3),(3.1.4) imply 2 (5.1.2), so when 3 € ® Condition
(5.1.2) [P-Glue 2] is a consequence of the other axioms in Structural Domination Theorem 5.1.
If N, S satisfy for T = o the two conditions

(6.1.1) (M condition): STNT = N7ST = M

Q27
(6.1.2) (Powers 2):  S9(q2) = 2q3, S™(5i) = 25i11, Dgy,s; = Dyo.sivis Dsivgs = Desiiran
(where i=1,2, and s1:= 5,82 :=n,83:= Qsq2),
then these together with (5.1.3), (5.1.2)" imply 3 (5.1.1)7, so if 3 € ® we can replace condition (5.1.1)
[P-Glue 1] in Theorem 5.1 by these conditions.
Here the M -condition (6.1.1) is equivalent to two conditions

(6.1.1) (Commutativity): NTST =STNT7,
(6.1.1)” (Cube Condition): STS™S™ = D47 +3S"NT (D47 := Dy, n, D77 := Dy q,).

Conditions (5.1.3), (6.1.2) imply 2[N7,57] = 0, so that if 3 € ® then automatically N7, S™
commute and C’ommutatz’vity (6.1.1) is satisfied.

Thus when & € ® we can replace the P-gluing conditions (P-Glue 1-2) = (5.1.1), (5.1.2) by the
elemental condztwns (6.1.1-2) and the triality conditions (5.1.4-5%).

Proor: First we redundify P-Glue 2 (5.1.2) by showing that 2(5.1.2) vanishes as a consequence
of Two N (5.1.3) and Lie-structurality (3.1.4): with the abbreviation D§ = D, s, D5 ° = D, 4, from
(5.1.3) and omitting superscripts for generic 7 = +o0, we compute the formula 2(5.1.2)" as

2[NQuw + QuN + SQuwS — Qs(w) — QN (w),w]

= (5%2-D)Qu+Qu (5>~ D) +25Qu S~ Q5 (w).5(w) ~Q(S> Do) (w)w  [using Two N (5.1.3) thrice]
= [SQQw+QwSQ+25QwS_QS(w),S(w)_Q52 yw) = [D2QuAQuwD2—Q p(w)w]”

= S[Q5)) 0 — Q48] + Q8% +245Q5S — QY sty — Q5
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[since S on (1/2), D on e are Lie-structural by (3.1.4), (0.1.1) on e]
(la)v (16)» (1c) (3) (2,4) (5)» 6)v
[QSQa(w w QS(U) (w) C2.5'(Cw w ] +Qw S? +SQ S — QS(w (w) QSQ(w w
[S is structural on (1)]

= Q(Sl(cu),)‘wS + QS’)’S2 - [Qgﬁg‘ + QwS(Q"“’)’]S =0. [S is structural on (2),(4)]

We always have
(6.2)  (87)*-Dy7—3N°S7 = M —N"S%, (S77)°~Dy =387 "N~ =M, "—S N7,
since for 7 = o we have by Two N (5.1.3) that (S°)3 — D,? — 3N?S° = (2N° + Dg)S° —

Dgyn —3N7S57 = (Dyg,,s57 — Dgy ) — N7S7 = Mg, — N°S7, while for 7 = —o we have (S77)° —

Dy —35°N~° =8 (2N~ +D;%) — Dy g, —35 N7 = (S Dy, — Dy g,) — SN~ =
M,” —SON~°.

From structurality (3.1.4) and Power (6.1.2) we obtain
(6.3) [S7,D3]=[S",Dy] =0,
(6.4) M, = D3ST™ — Dy = STDj — D},

For (6.3), [S7, Dy,.s;,] = Ds(gs),s; — Dgs,5(s;) [by structurality] = 2Dy, s, — 2Dy, s,., = 0 [by Power],
and dually [S™7, Ds, 4,] = 0. For (6.4), by (0.1.1) we have M7 = Dy, ;S — Dy, n = D3S7 — D5°,
and dually M~7 := D7 = S77D; 4, — Dy g, = D54, — D g, [by (6.2)] = D;s 4,577 — D57

Clearly (6.1.1) implies (6.1.1), and (6.1. 1)” [by (6.4)]. Conversely, by (6.4) Cubing (6.1.1)" im
plies M7 = N°9S7, M~7 = ST7N~7, so together with Commutativity (6.1.1)" they imply (6.1.1).
These guarantee that the M—condition (6.1.1) is equivalent to (6.1.1)" with (6.1.1)".

Now we can redundify (5.1.1) with the help of (5.1.3), (6.1.1), (6.1.2): we compute 3(5.1.1)7 as

[NQuS+SQuN=Qn(w).s50w)] + [2N)QuS+SQu(2N)~Q2n)(w),5(w)]
= [(NQuAQuN)MS=QF My, ] + [S(NQuAQuN) D =My, Q%] = QW) s
) (9) (10) (11
+[(88©-DSN)QuS — SQu(SSE—DI)] = [Q5 6y @D ). ()]

[by M (6.1.1) in (2),(4) and (5.1.3) for 2N]
= [-SQu"*s + Q(S”;{; + Q“C)‘ WS+ S[-5QE s + stg,; + Q(?’C)‘ o)

Mg Q) + QuME — QNI o) + [SSQUT S+SQI*
+D,Q >S+SQ&?)D J+[ = Q580 sty + @ty 5] [by P-Glue 2 (5.1.2) on (1), (2)]

_ (1c3ch) @ (4) (2) (7a) (7b)» (9a)» (9b)
_QSN(w)w+MQ2Qw — Qu M +D[SQ QS(U}) w] [_QS(UJ),w+Qw S]D
+Q(5j);) S(w) [S is structural (3.1.4) on e, 4, (7), (9)]
= [DEST — M&;}Qw + Qw [SiTD;T - MQET] - Q[Mq2+DQS](w),w
[by M (6.1.1) on 4, D5 structural on »|
= [D57]Qu + Qu[D5™7] = Qipyriw),ws [by (6.1.4)]
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which vanishes since D} is also structural by (0.1.1). This shows 3(5.1.1)" does indeed vanish.
Finally, note that Two N (5.1.3), (6.3) imply 2[N7,S7] = [S7S™ — D}, S7] = [S™, DI] vanishes
by (6.3). n
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