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Abstract

The Martinez construction of fractions from a Jordan algebra requires a Jordan derivation in-
volving certain quadratic multiplications on the original algebra. We study a general Bergmann
construction of such structural transformations in the context of Jordan pairs. The Bergmann
transformations corresponding to fractions are defined only on subpairs determined by sesqui-
principal inner ideals, dominions, and we give criterion for a creating structural transformations
on them. These results will be applied to the creation of Jordan algebras of fractions, and the
methods should have future application to the problem of creating fractions for Jordan pairs.1

Throughout, we consider algebraic systems over an arbitrary ring of scalars Φ. A Jordan pair, a
pair V = (V +, V −) of Φ-modules with compositions (x, a) 7→ Qx(a) ∈ V τ for (x, a) ∈ V τ × V −τ ,
τ = ±, which are quadratic in x and linear in a, and satisfy the following axioms strictly (in all
scalar extensions, equivalently, all their linearizations hold in V itself): for all x, y ∈ V τ , a, b ∈ V −τ

(JP1) Dx,aQx = QxDa,x, (JP2) DQxa,a = Dx,Qa(x), (JP3) QQxa = QxQaQx,

where as usual we set Qx,y := Qx+y − Qx − Qy, which gives the trilinear product {x, a, y} :=
Qx,y(a) =: Dx,a(y) with {V τV −τV τ} ⊆ V τ . We will economize on superscripts and use typography
instead, denoting, for a fixed τ = ±, elements of V τ by x, y, z, w and elements of V −τ by a, b, c. We
can turn V τ into a Jordan algebra (V τ )(a) via Uxy := QxQay, x(2,a) := Qxa.

We will use [3] as reference for most results about Jordan pairs, with some results on homotopes,
dominions, and universal envelopes from [5]. The following formulas are used frequently enough in
the paper for us to display them:
(0.1.1) Dx,aQy + QyDa,x = Q{x,a,y},y,
(0.1.2) Dx,Qay = D{x,a,y},a −Dy,Qax = Dx,aDy,a −Qx,yQa,

DQay,x = Da,{y,a,x} −DQax,y = Da,yDa,x −QaQy,x,
(0.1.3) QQxa,y = Qx,yDa,x −Dy,aQx = Dx,aQx,y −QxDa,y,
(0.1.4) Q{x,a,y} + QQxQay,y = QxQaQy + QyQaQx + Dx,aQyDa,x,
(0.1.5) QQxQay,Dx,ay = QxQaQyDa,x + Dx,aQyQaQx,
(0.1.6) Qαx+Qxa = Bα,x,aQx = QxBα,a,x, QBα,x,ay = Bα,x,aQyBα,a,x,

(Bα,x,a := α21 + αDx,a + QxQa),
(0.1.7) x(n+1,a) = Qxa(n,x), Dx(n,a),a(k,x) = Dx,a(n+k−1,x) = Dx(n+k−1,a),a,
(0.1.8) DQxQay,a(m−1,x) −DDx,ay,a(m,x) + Dy,a(m+1,x) = 0.

The multiplication envelope M(V) is the subalgebra End(V) := End(V + ⊕ V −) generated by
all Qx, Dx,a. We make use of the universal multiplication envelope UME(V), encoding the action
of linear multiplication operators from V on all possible bimodules, and the universal polynomial
envelope UPE(V), encoding the action of multiplications by V on all extensions Ṽ ⊇ V [5]. The
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generic indeterminates in UPE(V) will be denoted by ≈
x,

≈
a etc.; they can be specialized to elements

of any extension. The universal multiplication envelope can be thought of as the generic polynomials
in UPE(V) homogeneous of degree 1 in some ≈

x,
≈
a in UPE(V) [5, 2.4].

If the element s dominates n in V −σ in the sense that there are Nτ , Sτ ∈ End(V τ ) with Qn =
N−σQs = QsN

σ, Qn,s = S−σQs = QsS
σ, then [5, 3.2] the dominion K−σ

s�n := Φn + Φs + QsV
σ is

an inner ideal, whose elements x := γn + αs + Qsa, y := αs + Qsa, z := Qsa all have Q-operators
which can be “divided by Qs”,

(0.2.1) Qn,z = M−σ
a Qs = QsM

σ
a ,

(
M−σ

a :=S−σDs,a−Dn,a, Mσ
a :=Da,sS

−σ−Da,n

)
,

(0.2.2) Qn,y = G−σQs = QsG
σ

(
Gτ = αSτ + Mτ

a

)
,

(0.2.3) Qx = X−σQs = QsX
σ

(
Xτ = γ2Nτ + γGτ + Bτ

)
.

1 Bergmann Triples and Pairs

A structural pair T = (T+, T−), or structural transformation of a Jordan pair V, consists
of two linear transformations T τ ∈ End(V τ ) (the superscript indicates the domain and range)
satisfying

(1.1.1) QT τ (x) = T τQxT−τ .

for all x ∈ V τ and τ = ±. The structural transformations of a pair form a submonoid, the structure
monoid Str(V), of End(V +) × End(V −) under T1T2 := (T+

1 T+
2 , T−

2 T−
1 ). A structural T induces a

pair of inner ideals (I+, I−) = (T+(V +), T−(V −)) [since QIτ V −τ ⊆ Iτ ], as well as a homotopic
Jordan pair V(T ) = (V +, V −) under Q

(T )τ
x := QxT−τ , Dx,aT := Dx,T−τ (a). A second structural

S = (Sτ , S−τ ) then induces a homomorphism

(1.1.2) V(ST S) → V(T ).

Familiar examples of structural transformations are the pairs Tϕ := (ϕ+, (ϕ−)−1) determined by
an automorphism (ϕ+, ϕ−) of the pair, and the Bergmann transformations Bα,x,a, in particular
principal structural transformations Tx,a, determined by any x ∈ V τ , a ∈ V −τ ,

Bα,x,a := (Bα,x,a, Bα,a,x), Tx,a := B0,x,a = (QxQa, QaQx) for α ∈ Φ, x ∈ V τ , a ∈ V −τ

which result immediately from (JP3) and (0.1.6).
A structural transformation is inner if it is built from multiplications, T± ∈ M(V). The most

important structural transformations for us are the generic structural transformations T ∈
UME(V) which are built generically out of multiplications from V, satisfying (1.1.1) for generic
variables ≈

x, so that (1.1.1) continues to hold for the action of T in all extensions of V:

(1.1.1Gen) T τ ∈ UME(V), T−τ = (T τ )∗ with Q
T τ (

≈
x)

= T τQ≈
x
T τ ∗ ∈ UME(V).

The basic examples of generic transformations are the Bergmann and principal transformations.
A monostructural transformation is a single transformation T τ ∈ Hom(V −τ , V τ ) (the su-

perscript indicates the codomain) satisfying

(1.2.1) QT τ (a) = T τQaT τ .

for all a ∈ V −τ .2 The product of two monostructural transformations T+, T− gives a structural
transformation (T+T−, T−T+). Any monostructural T τ with domain V −τ yields an inner ideal
Iτ = T τ (V −τ ), and turns the domain V −τ into a homotopic Jordan triple system (V −τ )(T ) via

2These are odd in the sense of gradings: if we rewrite V +, V − as a Z2-grading V0̄, V1̄ then structural transformations
are even, T (Vī) ⊆ Vī, while monostructural transformations are odd, T τ (Vτ̄+1̄) ⊆ Vτ̄ .
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Pxy := QxT (y), Lx,y = Dx,T (y); in the important case of a principal monostructural transformation
T τ = Qt for t ∈ V τ , the elemental homotope (V −τ )(t) := (V −τ )(Qt) becomes a Jordan algebra via
x(2,t) := Qxt. For each element z−τ ∈ V −τ a monostructural T τ induces an algebra homomorphism

(1.2.2) T τ : (V −τ )(T (z−τ )) → (V τ )(z
−τ )

of the elemental homotopes, since T
(
U

(T (z))
x y

)
= T

(
QxQT (z)y

)
= TQxTQzTy = QT (x)QzT (y) =

U
(z)
T (x)T (y) and T (x(2,T (z))) = T (QxT (z)) = QT (x)z = T (x)(2,z).

An inner monostructural transformation T ∈M(V) is built out of multiplications from V, while
a generic monostructural T ∈ UME(V) satisfies (1.2.1) in UME(V). Note that because they are
built out of multiplications, the inner T τ send any ideal I into itself, and hence induce structural
or monostructural transformations on any quotient V. All generic, and most inner, structural or
monostructural transformations also induce structural or monostructural transformations on all
extensions Ṽ ⊇ V.3 The basic examples of generic monostructural transformations are the principal
Qt.

To put these structural transformations in a more general context, for any Jordan triple J the
structure monoid Str(J) consists of all pairs (T1, T2) ∈ End(J) × End(J)op such that PTi(x) =
TiPxTj (i = 1, 2, j = 3 − i), with canonical reversal involution (T1, T2)∗ = (T2, T1). In the case
J = Vpol of the polarized triple of a Jordan pair, if we set Gσ,τ := Str(J) ∩ (Hom(V τ , V σ) ×
Hom(V −σ, V −τ )op) we obtain a 2× 2-graded object with associative products Gσ,τ Ġτ,ρ ⊆ Gσ,ρ via
(T1, T2) ·(S1, S2) = (T1S1, S2T2) and involution Gστ ∗ = G−τ,−σ. Here the structural transformations
are G+,+ = Str(V) = G−,−∗, and the monostructural transformations are the symmetric elements
(T1, T1) ∈ Gσ,−σ.

Since the defining structural condition is quadratic in x, the structural transformations do not
form a linear space. In some situations it is possible to glue two structural transformations together
by means of “glue”. The archetypal example for monostructural transformations is Qx1 , Qx2 being
glued together by Qx1,x2 to form Qx1+x2 .

Bergmann Triple Proposition 1.3 We say G = (G+, G−) consisting of two linear transformations
Gτ : V τ → V τ is structural glue for two structural pairs T1, T2, and call (T1,G, T2) a Bergmann
triple, if the following two Bergmann Triple Gluing Relations hold for all x ∈ V τ :

(1.3.1) (T-Glue 1): T τ
i QxG−τ + GτQxT−τ

i = QT τ
i (x),Gτ (x) (i = 1, 2),

(1.3.2) (T-Glue 2): T τ
1 QxT−τ

2 + T τ
2 QxT−τ

1 + GτQxG−τ = QGτ (x) + QT τ
1 (x),T τ

2 (x).

In this case, for any scalars α1, α2 in a scalar extension Ω we we can glue the two pairs together via
G obtain a Bergmann transformation on VΩ

(1.3.3) Xα1,α2,T1,G,T2 : Xτ := α2
1T

τ
1 + α1α2G

τ + α2
2T

τ
2 .

Structurality of the Ti and the conditions T-Glue 1-2 are necessary and sufficient for Xα1,α2,T1,G,T2

to be structural for all scalars in all possible extensions Ω.

Proof: On the one hand we have

3Most inner structural transformations are structural by the Jordan pair axioms, but it is possible for a transfor-
mation built from outer multiplications to be accidentally structural on V but not on all eV: in V = V(A+), eV =

V( eA+) for A := Φ〈x, y〉/I, eA := Φ〈x, y, z〉/eI = A〈z〉 quotients of the free associative algebras on x, y, z by

the ideals I, eI generated by the elements [[x, y], x], [[x, y], y] the multiplication T = [Vx, Vy ] = Ad[x,y] is triv-

ially structural on V since it vanishes identically ([x, y] is by construction in the center of A), but not on eA

because UT (z)z = [x, y]zz[x, y]z + z[x, y]zz[x, y] − [xy]zzz[x, y] − z[x, y]z[x, y]z /∈ eA[x, y] + [x, y] eA ⊇ T ( eA) since

z[x, y]z[x, y]z /∈ eA[x, y] + [x, y] eA.
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QXτ (x) = Qα2
1T τ

1 (x) + Qα2
1T τ

1 (x),α1α2Gτ (x) + Qα1α2Gτ (x) + Qα2
1T τ

1 (x),α2
2T τ

2 (x)

+Qα2
2T τ

2 (x),α1α2Gτ (x) + Qα2
2T τ

2 (x)

= α4
1QT τ

1 (x) + α3
1α2QT τ

1 (x),Gτ (x) + α2
1α

2
2

(
QGτ (x) + QT τ

1 (x),T τ
2 (x)

)
+α1α

3
2QT τ

2 (x),Gτ (x) + α4
2QT τ

2 (x),

and on the other hand

XτQxX−τ = α4
1T

τ
1 QxT−τ

1 + α3
1α2

(
T τ

1 QxG−τ + GτQxT−τ
1

)
+α2

1α
2
2

(
T τ

1 QxT−τ
2 + T τ

2 QxT−τ
1 + GτQxG−τ

)
+α1α

3
2

(
T τ

2 QxG−τ + GτQxT−τ
2

)
+ α4

2T
τ
2 QxT−τ

2 .

By identifying coefficients of like powers αi
1α

j
2 we see structurality and the gluing conditions suffice

for structurality of X , and these conditions are necessary for structurality in the extensions where
αi = ti are indeterminates in Ω = Φ[t1, t2] by independence of the powers of t1, t2. �

For generic structural transformations Ti ∈ UME(V) we have obvious notions of generic glue,
generic Bergmann triple, generic Bergmann transformation satisfying (1.3) generically.
The archetypal example of a generic Bergmann triple is the principal triple (Tx1,a,G, Tx2,a) with
generic glue G := (Qx1,x2Qa, QaQx1,x2) for xi ∈ V τ , a ∈ V −τ . Clearly these Ti are structural
transformations, and G is structural glue as in (1.3.1-2) since for σ = ±τ we have generically in ≈

x

that

(TG1) T σ
i Q≈

x
G−σ + GσQ≈

x
T−σ

i = Q
T σ

i (
≈
x),Gσ(

≈
x)

,

(TG2) T σ
i Q≈

x
T−σ

j + T σ
j Q≈

x
T−σ

i + GσQ≈
x
G−σ = Q

Gσ(
≈
x)

+ Q
T σ

i (
≈
x),T σ

j (
≈
x)

which follow directly from the linearizations

(TG1′) Qxi
Q≈

c
Qxi,xj

+ Qxi,xj
Q≈

c
Qxi

= Q
Qxi,xj

(
≈
c),Qxi

(
≈
c)

,

(TG2′) Qxi
Q≈

c
Qxj

+ Qxj
Q≈

c
Qxi

+ Qxi,xj
Q≈

c
Qxi,xj

= Q
Qxi,xj

(
≈
c)

+ Q
Qxi

(
≈
c),Qxj

(
≈
c)

of (JP3) for all ≈c = Q≈
a

≈
x (when σ = τ) and ≈

c = ≈
x (when σ = −τ). Here the resulting Bergmann

operator Xα1,α2,T1,G,T2 = Tα1x1+α2x2,a is principal.
The Bergmann terminology comes from the fact that for the special case T1 = (Id, Id), T2 =

(QxQa, QaQx), G = (Dx,a, Da,x) the Bergmann transformation X is just the ordinary Bergmann
transformation Bx,a. Here it is a matter of gluing a structural transformation to the identity struc-
tural transformation using as glue a Lie-structural transformation or Lie-structural pair

(1.4) D = (D+, D−) : QDτ (x),x = DτQx + QxD−τ (x ∈ V τ , τ = ±).

Bergmann Pair Proposition 1.5 We say a Lie-structural transformation D is structural glue
for a structural transformation T , and call (D, T ) a Bergmann pair, if the following two Bergmann
Pair Gluing Relations hold for all x ∈ V τ :

(1.5.1) (P-Glue 1): T τQxD−τ + DτQxT−τ = QT τ (x),D(x),

(1.5.2) (P-Glue 2): T τQx + QxT−τ + DτQxD−τ = QDτ (x) + QT τ (x),x.

In this case, for any scalars α1, α2 in a scalar extension Ω we we can glue the two pairs together via
G obtain a Bergmann transformation on VΩ

(1.5.3)
Bα1,α2,D,T := Xα2

1I,α1α2D,α2
2T := α2

1I + α1α2D + α2
2T ,

Bα,D,T := Bα,1,D,T := α2I + αD + T .
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Structurality of T , Lie-structurality of D, and the conditions P-Glue 1-2 are necessary and sufficient
for Xα1,α2 to be structural for all scalars in all possible extensions Ω.

Proof: This follows from the above Triple Proposition for T1 = 1V , T2 = T, G = D since here
T1 is automatically structural, (T-Glue 1) for i=1 is precisely the Lie-structural condition (1.3.4),
(T-Glue 1) for i=2 is (P-Glue 1), and (T-Glue 2) is (P-Glue 2). �

The Lie-structural transformations form a subalgebra, the Lie structure algebra StrL(V), of
End(V +) × End(V −)op under [D1,D2] := ([D+

1 , D+
2 ], [D−

2 , D−
1 ]). We again have obvious notions of

generic Lie-structural transformation D and generic Bergmann pair (T ,D) for a generic
structural transformation T . The archetypal example of a generic Bergmann pair is, of course, the
principal pair Dx,a = (Dx,a, Da,x), Tx,a = (QxQa, QaQx), with Bα,x,a = (Bα,x,a, Bα,a,x) the usual
generic Bergmann transformation. If x happens to be invertible, then Bα,x,a reduces to a principal
structural transformation Tx,ã = (QxQαx−1+a, Qαx−1+aQx).

2 Cancellation Operators

It is clear from the definitions that the restriction to an invariant subpair V ⊆ Ṽ of a structural
transformation, monostructural transformation, Bergmann triple, or pair on Ṽ remains such on V,
but the restriction of a generic structural transformation need not remain generic: being generic
on V means it remains so on all extensions of V, which may not be extensions of Ṽ and so are not
guaranteed to remain structural. On the other hand, if the monostructural transformation does
not leave the subpair invariant, we can sometimes shove it down into the subpair. In the case of
Ore fractions [4, 1, 2], q̃ = Q−1

s n ∈ Ṽ does not leave V invariant, but for a reduced denominator
QsQ̃q̃, Q̃q̃Qs, D̃q̃,s, D̃s,q̃ all leave V invariant. Here we begin a convention that our denominators s

and our inner ideals K will always belong to V −σ. We say a transformation T̃ σ ∈ Hom(Ṽ −σ, Ṽ σ) has
denominator s ∈ V −σ if Qs shoves T̃ (or rather, they shove each other) down to endomorphisms
on V in the sense that

(2.1) (Transformation Denominator): N−σ := QsT̃
σ ∈ End(V −σ), Nσ := T̃ σQs ∈ End(V σ),

which implies that the Nτ are s-cancellation operators which result by cancelling Qs on the right
and left from the operator T−σ := QsT̃

σQs,

(2.2) T−σ = N−σQs = QsN
σ ∈ Hom(V σ, QsV

σ).

[More precisely, QsT̃
σ, T̃ σQs, QsT̃

−σQs leave V invariant, and N−σ, Nσ, T−σ are their restrictions
to V.] If Qs is actually invertible, then T̃ σ = Q−1

s N−σ = NσQ−1
s (hence the description of Qs as

“denominator”). We say T̃ σ has generic denominator s if Nτ ∈ UME(V) satisfy (2.1) generically
in UME(V) and N−τ = (Nτ )∗. Note that the cancellation operators are in general not uniquely
determined, but in many important cases there are natural inner or generic operators Nτ , Sτ to
choose. For example, (0.2) shows that if s dominates n then Nτ , Sτ , Ma, Gτ , Xτ are cancellation
operators for T−σ = Qn, Qn,s, Qn,z, Qn,y, Qx.

If T̃ σ is monostructural to begin with, then the induced T−σ is monostructural on Ṽ leaving V
invariant, and its s-cancellation operator (N−σ, Nσ) is a structural transformation on V,

(2.3) QN−σ(x) = N−σQxNσ, QNσ(a) = NσQaN−σ (x ∈ V −σ, a ∈ V σ),

since QQs
eT (x) = QsQeT (x)Qs = QsT̃QxT̃Qs on Ṽ becomes QN−σ(x) = N−σQxNσ on V, and dually

Q
eTQsa = T̃QsQaQsT̃ becomes QNσ(a) = NσQaN−σ. If T̃ σ is a generic monostructural transforma-

tion, then (2.2) holds in UME(Ṽ) (not necessarily in UME(V)).
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The archetypal example for our development is the restriction to V of a principal structural
transformation by an element q̃ of an ambient pair Ṽ. Following the example of reduced Ore
fractions, we say that an element q̃ ∈ Ṽσ for Ṽ ⊇ V has denominator s ∈ V −σ if its multiplication
operators QsQ̃q̃, Qq̃Qs, Dq̃,s, Ds,q̃ all leave V invariant, and its homotope powers fall in V:

(2.4) (Elemental Denominator):
QsQ̃q̃, Ds,q̃ ∈ End(V −σ), Q̃q̃Qs, Dq̃,s ∈ End(V σ),
s2 := Qs(q̃) ∈ V −σ, q2 := Q̃q̃(s), q3 := Q̃q̃Qs(q̃) ∈ V σ.

(this is a much stronger condition than merely T̃ = Q̃q̃ having denomiator s). We call n := s2 the
numerator of q̃ (q̃ has many numerators and denominators).

Pseudo-Principal Example 2.5 Suppose Ṽ ⊇ V and the element q̃ ∈ Ṽσ has denominator s ∈ V −σ

as in (2.4), so by restriction we have cancellation operators Nτ , Sτ ∈ End(V τ ) (τ = ±σ) and
elements s2, q2, q3 given by
(2.5.0) n := s2 := Qs(q̃), q2 := Qq̃(s), q3 := Qq̃(n) ∈ V σ,
(2.5.1) N−σ := QsQq̃|V , Nσ := Qq̃Qs|V ,
(2.5.2) S−σ := Ds,q̃|V , Sσ := Dq̃,s|V .

Then for generic z := Qs
≈
a, y := ≈

αs + z, x := ≈
γn + y,

≈
a ∈

≈
V σ,

≈
w ∈

≈
V τ ,

≈
α,

≈
γ ∈

≈
Φ the unrestricted

generic maps Nτ , Sτ , Mτ
≈
a
, Bτ , Gτ , Xτ are cancellation operators in UME(Ṽ) :

(2.5.3) (n-Cancellation): Qn = N−σQs = QsN
σ, (Nτ )∗ = N−τ ,

(2.5.4) (n, s-Cancellation): Qn,s = S−σQs = QsS
σ, (Sτ )∗ = (S−τ ),

(2.5.5) (z-Cancellation): Qz = QsQ≈
a
Qs,

(2.5.6) (n, z-Cancellation): Qn,z = M−σ
≈
a

Qs = QsM
σ
≈
a
, (Mτ

≈
a
)∗ = M−τ

≈
a

, for
M−σ

≈
a

:= QsQq̃,
≈
a

= S−σD−σ

s,
≈
a
−D

n,
≈
a
, Mσ

≈
a

:= Q
q̃,
≈
a
Qs = Dσ

≈
a,s

Sσ −D≈
a,n

,

(2.5.7) (y-Cancellation): Qy=B−σ
≈
α,s,

≈
a
Qs = QsB

σ

α,
≈
a,s

, (B≈
α,
≈
a,s

)∗=B≈
α,s,

≈
a

(2.5.8) (n, y-Cancellation): Qn,y = G−σQs = QsG
σ for Gτ := ≈

αSτ+Mτ
≈
a

= (G−τ )∗,
(2.5.9) (x-Cancellation): Qx = X−σQs = QsX

σ for Xτ = γ2Nτ+γGτ+Bτ = (X−τ )∗,

and satisfy the following relations in UPE(Ṽ) :4

(2.5.10) (N -Structure): Q
Nτ (

≈
w)

= NτQ≈
w
N−τ ,

(2.5.11) (S-Structure): SτQ≈
w

+ Q≈
w
S−τ = Q

Sτ (
≈
w),

≈
w
,

(2.5.12) (P-Glue 1): NτQ≈
w

+ Q≈
w
N−τ + SτQ≈

w
S−τ = Q

Sτ (
≈
w)

+ Q
Nτ (

≈
w),

≈
w
,

(2.5.13) (P-Glue 2): NτQ≈
w
S−τ + SτQ≈

w
N−τ = Q

Nτ (
≈
w),Sτ (

≈
w)

.

If we denote the homotope powers in the Jordan algebras (V −σ)(q̃), (V σ)(s) by

(2.6)
q̃1 = q̃ ∈ Ṽ σ, q2 := Q̃q̃(s), q3 := Q̃q̃(n), qk := q̃(k,s) (qk ∈ V σ for k ≥ 2),

s1 = s, s2 = n, sk := s(k,q̃) (sk ∈ V −σ for k ≥ 1),

then we have generic power-shifting relations
4It is not clear whether these hold generically in UME(V) without imposing further conditions on the relation

between s and n. It is crucial for the arguments here that we consider only extensions V ′ ⊇ V which contain at least

q̃, even if not all of eV. We will not bother to distinguish notationally between the generic
≈
Nσ = Qq̃Qs ∈ UME(eV)

and the map Nσ = Qq̃Qs|V σ ∈ End(V σ), or between
≈
Sτ and Sτ .
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(2.6.1N) (N -Shifting): Nσ(qk) = qk+2, N−σ(sk) = sk+2,

(2.6.1S) (S-Shifting): Sσ(qk) = 2qk+1, S−σ(sk) = 2sk+1,

(2.6.1Q) (Q-Shifting): qk+1 = Q̃q̃(sk), sk+1 = Qs(qk),

(2.6.1I) (Inner Power Shifting): Dsk,q̃1 = Dsk−1,q2 = . . . = Dsj ,qk+1−j
,

Dq̃1,sk
= Dq2,sk−1 = . . . = Dqk+1−j ,sj

,

generic triality chains

(2.6.2ER) (Elemental Right Triality): {Nσ(≈a), sk,
≈
c} − {Sσ(≈a), sk+1,

≈
c}+ {≈a, sk+2,

≈
c} = 0,

(2.6.2IR) (Inner Right Triality): D
Nσ(

≈
a),sk

−D
Sσ(

≈
a),sk+1

+ D≈
a,sk+2

= 0,

(2.6.2OR) (Outer Right Triality): D≈
c ,sk

Nσ −D≈
c ,sk+1

Sσ + D≈
c ,sk+2

= 0,

(2.6.2EL) (Elemental Left Triality): {sk, Nσ(≈a),≈x} − {sk+1, S
σ(≈a),≈x}+ {sk+2,

≈
a,

≈
x} = 0,

(2.6.2IL) (Inner Left Triality): D
sk,Nσ(

≈
a)
−D

sk+1,Sσ(
≈
a)

+ D
sk+2,

≈
a

= 0,

(2.6.2OL) (Outer Left Triality): N−σD
sk,

≈
c
− S−σD

sk+1,
≈
c

+ D
sk+2,

≈
c

= 0,

and generic relations

(2.6.3) (Commutativity): NτSτ = SτNτ = Mτ
q2

,
(2.6.4) (Two N): (Sτ )2 = 2Nτ + Dτ

2 (Dσ
2 := Dq2,s, D−σ

2 := Ds,q2),
(Two Q): S−σQs,n = Qs,nSσ = 2Qn + Qs3,s.

Here s dominates n (generically in Ṽ), and on the dominion
≈
Ks�n =

≈
Φn +

≈
Φs + Qs

≈
V σ we have

the generic action formulas

(2.7.1) Qq̃(
≈
γn+≈

αs+Qs
≈
a) = ≈

γq3+
≈
αq4+Nσ(≈a) ∈

≈
V σ,

(2.7.2) N−σ(≈γn+≈
αs+Qs

≈
a) = ≈

γs4+
≈
αs3+Qn

≈
a ∈ Qs

≈
V σ,

(2.7.3) S−σ(≈γn+≈
αs+Qs

≈
a

σ
) = 2≈γs3+2≈αn+Qs,n

≈
a ⊆

≈
Φn+Qs

≈
V σ, S−σ(Qs

≈
V σ) ⊆ Qs

≈
V σ.

In the special case that the element s ∈ V −σ has an inverse s−1 ∈ Ṽ σ, we have q̃ := Qs−1n, z :=
Qs

≈
a, y := Qsũ = ≈

αs+Qs
≈
a, x := Qsṽ = ≈

γn+≈
αs+Qs

≈
a for ũ := αs−1 +a, ṽ := γq̃+ ũ in

≈
V σ, and the

denominator conditions (2.5.1-2) mean that Qq̃, Qq̃,s−1 , Q
q̃,
≈
a
, Qq̃,ũ, Qṽ have denominator s ∈ V −σ

with

(2.8)

N−σ = Qq̃Qs−1 |V , Nσ = Qs−1Qq̃|V ,

S−σ = QsQq̃,s−1 |V , Sσ = Qq̃,s−1Qs|V , Qn,s = QsQq̃,s−1Qs|V ,

Mσ
a := Qq̃,aQs|V , Gσ := Qq̃,ũQs|V , Xσ := QṽQs|V ,

M−σ
a := QsQq̃,a|V , G−σ := QsQq̃,ũ|V X−σ := QsQṽ|V .

In this case the monostructural transformations T̃ = Qq̃, Qũ, Qṽ on Ṽ determine monostructural
transformations T = Qn, Qy, Qx on V whose s-cancellation operators N = Tq̃,s|V , B := Tũ,s|V , X :=
Tṽ,s|V are structural transformations induced on V by restriction from principal structural transfor-
mations on Ṽ, and G := Tq̃,ũ;s|V is structural glue, forming a Bergmann triple whose resulting
Bergmann transformation is Xγ2N,γG,B = γ2N + γG + B.

Proof: The denominator hypotheses on the element q̃ imply the denominator conditions (2.1)
on the operators: (2.5.1-2) hold for Nτ , Sτ by Qn = QQsq̃ = Qs(Qq̃Qs) = (QsQq̃)Qs by(JP3),
and Qn,s = QQsq̃,s = QsDq̃,s = Ds,q̃Qs by (JP1). (2.5.3-4) are restatements of (2.5.1-2). (2.5.5)
comes from (JP3), (2.5.6) from Qn,z = Q

Qsq̃,Qs
≈
a

= QsQq̃,aQs [by (JP3)] = M−σ
≈
a

Qs = QsM
σ
≈
a

for

M−σ
≈
a

= QsQq̃,
≈
a

= Ds,q̃Ds,
≈
a
−D

Qsq̃,
≈
a

[by (0.1.2)] = Ds,q̃Ds,
≈
a
−D

n,
≈
a
, and dually Mσ

≈
a

= Q
q̃,
≈
a
Qs =
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D≈
a,s

Dq̃,s−D≈
a,Qsq̃

= D≈
a,s

Sσ −D≈
a,n

. (2.5.7) comes from (0.1.6), (2.5.8) holds since Qn,y = αQn,s +
Qn,z, (2.5.9) since Qx = Qγn+y = γ2Qn + γQn,y + Qy. For (2.5.10), we know that the principal
structural transformation N = Tq̃,s of the Principal Example (1.5) satisfies the identities of (10), and
yields by restriction a structural transformation (not necessarily generic) on V. (2.5.11) holds since
(Dq̃,s, Ds,q̃) = (Sσ, S−σ) is always Lie-structural by (0.1.1). (2.5.12) comes from (0.1.4), (2.5.13)
from (0.1.5).

For the relations (2.6.1-4) involving the homotope powers, note that s1, s2 ∈ V −σ by hypothesis
and hence s(k+2,q̃) = QsQq̃s

(k,q̃) = N−σ(sk) ∈ V −σ, and by (2.6) q2, q3 (though not q1) belong to
V σ, hence so does q̃(k+2,s) = Qq̃Qsq̃

(k,s) = Nσ(qk) for k ≥ 2. 5

For N -shifting (2.6.1N), Nσ = Q̃q̃Qs = U
(s)
q̃ takes qk = q̃(k,s) to q̃(k+2,s) = qk+2, and dually

N−σ(sk) = QsQ̃q̃ = U
(q̃)
s takes sk to sk+2. Similarly, for S-shifting (2.6.1S) Sσ = Dq̃,s = V

(s)
q̃ takes

qk to 2qk+1, and S−σ = Ds,q̃ = V
q̃)
s takes sk to 2sk+1. Q-Shifting (2.6.1Q) and Inner Power Shifting

(2.5.4I) follow from (0.1.7).

The terminology in the triality relations comes from whether sk cancels a (hidden) q̃ from the
right or the left. Inner Right Triality (2.6.2IR) follows from (0.1.8) since Nσ(≈a) = Qq̃Qs, Sσ = Dq̃,s.

Applying this operator to ≈
c yields Elementary Right Triality (2.6.2ER), and interpreting Elementary

Right Triality as an operator on ≈
a yields Outer Right Triality (2.6.2OR). Since these hold as elements

in UPE(Ṽ) and as operators in UME(Ṽ), we can apply the involution in UME(Ṽ) to obtain Inner
Left Triality (2.6.2IL) and Outer Left Triality (2.6.2OL), and then have Inner Left act on ≈

x to obtain
Elemental Left Triality (2.6.2EL).6

Commutativity (2.6.3) holds for τ = σ since Qq̃Qs(Dq̃,s) = (Dq̃,s)Qq̃Qs [by (JP1) twice] =
QQq̃s,q̃Qs [by (JP1)] = Qq2,q̃ = Dq2,sDq̃,s−Dq2,Qsq̃ [by (0.1.2)] = Dq2,sS

σ−Dq2,n = Mσ
q2

, and dually
for τ = −σ we have QsQq̃(Ds,q̃) = (Ds,q̃)QsQq̃ = QsQq2,q̃ = Ds,q̃Ds,q2 − DQsq̃,q2 = S−σDs,q2 −
Dn,q2 = M−σ

q2
.

The first part Two N of Squaring (2.6.2) follows from (Sσ)2 = (D̃q̃,s)2 = 2Q̃q̃Q̃s + D̃
eQq̃s,s [by

(0.1.2)] = 2Nσ + Dq2,s, and dually (S−σ)2 = (D̃q̃,s)2 = 2Q̃sQ̃q̃ + D̃s, eQq̃s = 2N−σ + Ds,q2 . For the
second part Two Q, S−σQs,n = (S−σ)2Qs =

[
2N−σ + Ds,q2

]
Qs [by the first part] = 2Qn + QQsq2,s

[by n-cancellation (2.5.1), (JP1)] = 2Qn + Qs3,s.

By (0.2) we know Ks�n is an inner ideal, and (2.7.1) holds piecewise by definition (2.6) of q3, q4,
and the definition of Nσ. (2.7.2) holds by applying Qs to (2.7.1) by (2.6.1N) and QsN

σ = Qn.

(2.7.3) likewise follows piecewise from (2.6.1S) and S(Qs
≈
a) = Qs,n

≈
a [by (2.5.1)].

For the case (2.8) of invertible s, we can cancel Qs from QsQq̃,s−1Qs = QQsq̃,Qss−1 = Qn,s =
QsS = S Qs, from QsQq̃,aQs = QQsq̃,Qsa = Qn,z = QsMa = MaQs, from QsQq̃,ũQs = QQsq̃,Qsũ =
Qn,y = QsG = GQs, and from QsQṽQs = QQsṽ = Qx = QsX = XQs. �

This long list of ancillary relations provides the necessary tools in the following to make N
structural, without the help of q̃ or Ṽ, and to motivate our treatment of Jordan derivations in [6].
They also played a role in the treatment of domination and tight domination in [5]. The operators

5The dominion (K−σ
s�n)(q̃) is closed under the Jordan algebra structure on (eV −σ)(q̃) despite q̃ 6∈ V σ , and the sk

are just powers of the element s in this subalgebra. V σ is clearly a Jordan subalgebra of (eV σ)(s), but the qk for k ≥ 2
are not powers in that subalgebra since q1 /∈ V σ .

6Note that Outer Left OL does not result by interpreting EL as an operator identity: EL on
≈
x is IL, but EL on

≈
a

is the relation Q
sk,

≈
x

Nσ − Q
sk+1,

≈
x

+ Q
sk+2,

≈
x

= 0, which we shall not use. The relations OR, OL will be the most

important for us (cf. 5.1.1-2).
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Mτ
a will play an important role in our development. The problem of creating “fractions” is the

situation where q̃, ũ, ṽ ∈ Ṽ are merely figments of our imagination, and all that exists is their traces
N,G, S on V and n, z, x in V. The most general problem would be that of creating a “holomorph”
Ṽ ⊇ V where all suitable structural transformations become “inner”.

3 The Injective Case

In the construction of fractions q̃ = Q−1
s n, the operator Qs begins its life in V as injective, and

graduates to an invertible life in Ṽ. In the invertible case (2.8) the operators Nσ = Qq̃Qs, N−σ =
QsQq̃, Xσ = QṽQs, X−σ = QsQṽ will be structural transformations on Ṽ leaving V invariant, and
Sσ = D̃s,q̃, S−σ = D̃q̃,s will be Lie-structural transformations leaving V invariant, so they will have
to be structural and Lie-structural on V to begin with. We wish to develop conditions guaranteeing
this structurality.

Strengthening (0.2), we say s ∈ V −σ structurally dominates n ∈ V −σ on V if there is a
structural N = (N+, N−) and a Lie-structural S = (Sσ, S−σ)) satisfying (for all w ∈ V τ , a ∈
V σ, γ, α ∈ Φ, τ = ±σ) the cancellation relations

(3.1.1) Qn = N−σQs = QsN
σ (N results by cancelling Qs),

(3.1.2) Qn,s = S−σQs = QsS
σ, (S results by cancelling Qs),

(3.1.3) QNτ (w) = NτQwN−τ (N is structural),
(3.1.4) QSτ (w),w = SτQw + QwS−τ (S is Lie-structural),
(3.1.5) (N ,G,B) is a Bergmann triple,
(3.1.6) (S,N ) is a Bergmann pair.

Thus N ,B,X as in (1.3) and (2.5.3,7,9) are all structural. (3.1.3) guarantees N is a structural pair
(B always is by (0.1.6)), so (3.1.5) amounts to saying that G = αS +Ma is structural glue.

We say s generically structurally dominates n if Nσ = (N−σ)∗ ∈ QV QV , Sσ = (S−σ)∗ ∈
DV,V satisfy (3.1.1-5) generically, i.e., it generically dominates as in [5, (3.1), hence (3.1.1-2) where
(3.1.4) is automatic for an inner derivation] with generic structural transformations N ,G,B on V
forming a generic Bergmann triple.

In the presence of injectivity, the mere dominance (3.1.1-2) goes a long way towards structural
domination.

Injectivity Theorem 3.2 If the operator Qs is injective on V σ, then the structural conditions
(3.1.1-2) alone guarantee that s structurally dominates n on the subpair (V σ, QsV

−σ). Indeed, the
structural conditions (3.1.3-4) and gluing condition (3.1.5-6) always hold for τ = −σ on the subpair,
and (3.1.1-6) holds for τ = σ on the subpair if the map Qs is injective.

Proof: We are given dominance (3.1.1-2), and must verify that (3.1.3-4) and gluing (3.1.5-
6) [i.e., T-Glue 1-2 (1.3.1-2) for T1 = N , T2 = B,G = αS + Ma and P-Glue 1-2 (1.5.1-2) for
T1 = N , T2 = 1,G = D = S] hold as maps on V σ when τ = −σ, and as maps on QsV

σ when τ = σ
and we can cancel Qs.

We claim that whenever T1, T2,G result by cancelling Qs as in (2.2),
(3.2.1) QsT

σ
i = T−σ

i Qs = Qti
, QsG

σ = G−σQs = Qt1,t2

then structurality (1.1) for Ti and (T-Glue 1-2) for T1,G, T2 will hold on the subpair (V σ, QsV
σ), so

(T1,G, T2) will be a Bergmann triple on the subpair [note that the inner ideal QsV
σ is invariant under

such T = T−σ
i , G−σ since T−σ(QsV

σ) = Qs(T σ(V σ)) ⊆ QsV
σ]. This will apply to (T1,G, T2) :=

(N ,G,B) with t1 = n, t2 = y as in (3.1.1), (3.1.3), (3.1.5), (0.1.6), (0.2.2) and to (S,N ), i.e., to
(T1,G, T2) := (N ,S,1) with t1 = n, t2 = s as in (3.1.2), (3.1.4), (3.1.6).

To include G and S in the notation, we agree QTi
:= Qti

, QB := y, QI := Qs, and (not quite
true Qx-operators) QG := Qt1,t2 , QS := Qt1,t2 := Qn,s, so that QsT

σ = T−σQs = QT and for any
two T, T ′ ∈ {T1, T2, B, I,G, S} we have that the maps QT (x), QT (x), T ′(x), TQxT ′ satisfy
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(3.2.2)

QT−σ(Qsb) = QQT (b) = QQsT σ(b) = Qs

(
QT σ(b)

)
Qs,

T−σQQsbT
′σ = T−σQsQbQsT

′σ = QT QbQT ′ = Qs

(
T σQbT

′−σ
)
Qs,

QT−σ(Qsb),T ′σ(Qsb) = QQT b,QT ′b = QQs(T σ(b)),Qs(T ′σ(b)) = Qs

(
QT σ(b),T ′σ(b)

)
Qs.

First, structurality (1.1.1) of T holds whenever T results by cancelling Qs from Qt for a true
element t [i.e., for T = Ti,N ,B,X with t = ti, n, y, x as in (3.2.1),(3.1.1),(0.1.6),(0.2.3)]: setting
F τ (w) := QT τ (w) − T τQwT ′−τ for T ′ = T we have by subtracting the second row of (2) from the
first that F−σ(Qsb) = QQT b − QT QbQT ′ = QsF

σ(b)Qs = 0 by (JP3) when QT = Qt for t ∈ V ,
which shows F−σ(w) = 0 as map on V σ when w = Qsb ∈ QsV

σ, and QsF
σ(w) = 0 as map on

QsV
σ when w = b ∈ V σ, so that if we can cancel Qs then Fσ(w) = 0 on QsV

σ. In particular,
T = Ti,N ,B,X are structural.

The T-Gluing conditions (1.3.1-2) for any such (T1,G, T2) [hence the P-Gluing conditions (1.5.1-
2) for (N ,S) via (T1,G, T2) = (N ,S,1)] can be formulated in terms of F 1,τ

i (x) := T τ
i QxG−τ +

GτQxT−τ
i − QT τ

i (x),Gτ (x), F 2,τ (x) := T1QxT−τ
2 + T τ

2 QxT−τ
1 + GτQxG−τ − QGτ (x) − QT τ

1 (x),T τ
2 (x),

where for F 1,τ
i subtracting the third row of (2) when T, T ′ = Ti, G from the sum of the second

rows when T, T ′ = Ti, G and G, Ti [where QTi = Qti , QG = Qt1,t2 ] guarantees that F−σ(Qsb) =
QsF

σ(b)Qs equals Qti
QbQt1,t2 + Qt1,t2QbQti

− QQti
(b),Qt1,t2 (b) = 0 by linearized (JP3). Similarly,

for F 2,τ taking the sum of three second rows of (2) when T, T ′ = T1, T
′
2 and T2, T

′
1 and G, G and

then subtracting off the sum of the third row of (2) when T, T ′ = T1, T2 and the first row of (2) when
T = G [with QTi

= Qti
, QG = Qt1,t2 as before] guarantees that F−σ(Qsb) = QsF

σ(b)Qs equals
Qt1QbQt2 + Qt2QbQt1 + Qt1,t2QbQt1,t2 − QQt1,t2 (b) − QQt1 (b),Qt2 (b) = 0 by linearized (JP3). Thus
again F−σ(QsV

σ) = 0 on V σ and F (V σ) = 0 on QsV
σ as long as we can cancel Qs. In particular,

(N ,G,B) and (1,S,N ) are Bergmann triples, so (S,N ) is a Bergmann pair on (V σ, QsV
−σ).7 �

We have not been able to obtain Inner Shifting (2.6.1I), Inner Right Triality (2.6.2IL), or Squaring
(2.6.4) directly from injectivity.

4 The Gluing Conditions

We will spend the rest of the paper finding conditions (suitable for application to fractions) that
guarantee (N ,G,B) is a Bergmann triple and (S,N ) is a Bergmann pair on the entire pair (V σ, V −σ).
Besides structurality (3.1.1-4) we still need glue (3.1.5) = (1.3) and (1.5). This modest proposal
about glue translates, by T-Glue n (1.3.n) (n = 1, 2), into conditions nτ,k

T on S and N , which we
will group according to the glue number n = 1, 2, the parity τ = ±σ, the power k of the scalar αk,
and (in T-Glue 1 1.3.1) the structural transformation T = N,B, together with the pair conditions
P-Glue 1-2, for a total of 18 conditions.8 For T-Glue 1 (1.3.1) we first demand conditions relating N
to the glue G. We make heavy use of the operators Mτ ∈ End(V τ ) (Mσ

a := Da,sS
σ−Da,n,M−σ

a :=
S−σDs,a−Dn,a).

N-Gluing Conditions (4N): for all b, a ∈ V σ, x ∈ V −σ

NτQw(αS−τ + M−τ
a ) + (αS−τ + M−τ

a )QqN
−τ −QNσ(w),(αS−τ+M−τ

a ) = 0.

(1σ,0
N ) NσQbM

−σ
a + Mσ

a QbN
−σ −QNσ(b),Mσ

a (b) = 0,

(1−σ,0
N ) N−σQxMσ

a + M−σ
a QxNσ −QN−σ(x),M−σ

a (x) = 0,

(1σ,1
N )

(1−σ,1
N )

NσQbS
−σ + SσQbN

−σ −QNσ(b),Sσ(b) = 0,
N−σQxSσ + S−σQxNσ −QN−σ(x),S−σ(x) = 0.

}
P-Glue 1

7Actually, the third row of (2) for T = S, T ′ = 1 shows that S is Lie-structural on the subpair (V σ , QsV −σ)
whenever it results from cancelling Qs from Qs,n for any n as in (3.1.2) [not assuming (3.1.1)].

8The reader may well be thinking of the scene in Independence Day when the alien is cut loose from its spacesuit.
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Next we require conditions relating B to the glue G. In a following proposition we will see that
these conditions hold automatically for a Lie-structural transformation S connected to N by (3.1.1-
4), though by a lengthy detailed computation, and so do not require anything new in the condition
(3.1.5).

B-Gluing Conditions (4B): for all b, a ∈ V σ, x ∈ V −σ

Bτ
α,aQw(αS−τ + M−τ

a ) + (αSτ + Mτ
a )QwB−τ

α,a −QNτ (w),(αSτ+Mτ
a )(w) = 0.

(1σ,0
B ) QaQsQbM

−σ
a + Mσ

a QbQsQa −QQaQsb,Mσ
a (b) = 0,

(1−σ,0
B ) QsQaQxMσ

a + M−σ
a QxQaQs −QQsQax,M−σ

a (x) = 0,

(1σ,1
B ) Da,sQbM

−σ
a + Mσ

a QbDs,a + QaQsQbS
−σ + SσQbQsQa

−QDa,sb,Da,sSσ(b) + QDa,sb,Da,nb −QQaQsb,Sσ(b) = 0,

(1−σ,1
B ) Ds,aQxMσ

a + M−σ
a QxDa,s + QsQaQxSσ + S−σQxQaQs

−QDs,ax,S−σDs,a(x) + QDs,ax,Dn,ax −QQsQax,S−σ(x) = 0,

(1σ,2
B ) QbM

−σ
a + Mσ

a Qb + Da,sQbS
−σ + SσQbDs,a −Qb,Mσ

a (b) −QDa,sb,Sσ(b) = 0,

(1−σ,2
B ) QxMσ

a + M−σ
a Qx + Ds,aQxSσ + S−σQxDa,s −Qx,M−σ

a (x) −QDs,ax,S−σ(x) = 0,
(1σ,3

B )
(1−σ,3

B )
QbS

−σ + SσQb −QSσ(b),b = 0,
QxSσ + S−σQx −QS−σ(x),x = 0.

}
Lie Structural

Finally, for T-Glue 2 (1.3.2) we require conditions relating B to the glue G.

N-B-Gluing Conditions (4NB): for all b, a ∈ V σ, x ∈ V −σ

NτQwB−τ
α,a+Bτ

α,aQwN−τ +(αSτ+Mτ
a )Qw(αS−τ+M−τ

a )−Q(αSτ+Mτ
a )(w)−QNτ (w),(αSτ+Mτ

a )(w) = 0.

(2σ,0) NσQbQsQa + QaQsQbN
−σ + Mσ

a QbM
−σ
a −QMσ

a (b) −QNσ(b),QaQs(b) = 0,

(2−σ,0) N−σQxQaQs + QsQaQxNσ + M−σ
a QxMσ

a −QM−σ
a (x) −QN−σ(x),QsQs(x) = 0,

(2σ,1) NσQbDs,a+Da,sQbN
−σ+Mσ

a QbS
−σ+SσQbM

−σ
a −QMσ

a (b),Sσ(b)−QNσ(b),Da,s(b) = 0,

(2−σ,1) N−σQxDa,s+Ds,aQxNσ+M−σ
a QxSσ+S−σQxMσ

a−QM−σ
a (x),S−σ(x)−QN−σ(x),Ds,a(x) = 0,

(2σ,2)

(2−σ,2)
NσQb + QbN

−σ + SσQbS
−σ −QSσ(b) −QNσ(b),b = 0,

N−σQx + QxNσ + S−σQxSσ −QS−σ(x) −QN−σ(x),x = 0.

 P-Glue 2

The major goal of our paper is to determine a small number of conditions besides (3.1.1-4) that
will guarantee these 18 gluing conditions. As alluded to earlier, the conditions (4B) are easily dis-
posed of: the operators N±σ do not appear, and the B-Gluing formulas (1±Bσ, k) hold automatically
for any suitable derivation. One suspects this follows immediately from properties of the Bergmann
operator, but I could only prove it by breaking the operator into its constituent pieces.

Bergmann Glue Proposition 4.1 The B-Gluing Conditions (4B) hold for any Lie-structural
transformation S of V as in (3.1.4) connected with n by the cancellation relation (3.1.2).

Proof: To help the reader through the following tortuous verifications, we indicate the migra-
tion of terms via superscripts, with N,H, •,� denoting a term which about be cancelled out by its
twin, and we also create terms ∗ and their anti-terms ∗∗ at will.

Formula (1σ,0
B ) follows (omitting superscripts, which are clear by context) from
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QaQsQb

(
SD

(1)
s,a−D

(2)
n,a

)
+

(
D

(3)
a,sS −D

(4)
a,n

)
QbQsQa −Q

(5)
QaQsb,Da,sSσ(b) + Q

(6)
QaQsb,Da,n(b)

= QaQs

[
QbS

(1)+SQ
(7∗)
b

]
Ds,a + Da,s

[
SQ

(3)
b +QbS

(8∗)]QsQa −Qa

[
QsS

(7∗∗)]QbDs,a

−Da,sQb

[
SQ

(8∗∗)
s

]
Qa +

[
−QaQsQbD

(2)
n,a−Da,nQbQsQ

(4)
a +Q

(6)
QaQs(b),Da,n(b)

]
−

[
Q

(5)
QaQs(b),Da,sS(b)+Q

9∗)
QaQsS(b),Da,s(b)

]
+ Q

(9∗∗)
Qa(QsS)(b),Da,s(b)

=
[
QaQsQS(b),bD

(1/7∗)
s,a +Da,sQS(b),bQsQ

(2/8∗)
a −Q

(5)
QaQs(b),Da,s(S(b))−Q

(9∗)
QaQs(S(b)),Da,s(b)

]
−

[
QaQsQbD

(2)
n,a+QaQs,nQbD

(7∗∗)
s,a +Da,nQbQsQ

(4)
a +Da,sQbQs,nQ

(8∗∗)
a −Q

(6)
QaQs(b),Da,n(b)

−Q
(9∗∗)
QaQs,n(b),Da,s(b)

]
,

[by structurality (3.1.4) on (1/7*),(2/8*); cancellation (3.1.2) on (7**),(8**),(9**)] which vanishes
by linearizations b → S(b), b and s → s, n of (0.1.5).

Formula (1−σ,0
B ) follows dually (though not by a dual proof, since the formulas (1B) are all sym-

metric under reversal; because of asymmetry (s, n ∈ V −σ) the “dual” proofs are really “inside-out”).
We compute

QsQaQx

[
D

(1)
a,sS−D

(2)
a,n

]
+

[
SD

(3)
s,a−D

(4)
n,a

]
QxQaQs −Q

(5)
QsQax,SDs,a(x) + Q

(6)
QsQax,Dn,a(x)

=
[
QsQaQxD

(1)
a,s]S + S

[
Ds,aQxQaQ

(3)
s

]
−

[
Q

(5)
QsQa(x),S(Ds,a(x)) + Q

(7∗)
S(QsQa(x)),Ds,a(x)

]
+Q

(7∗∗)
(SQs)Qa(x),Ds,a(x) −

[
QsQaQxD

(2)
a,n + Dn,aQxQaQ

(4)
s −Q

(6)
QsQa(x),Dn,a(x)

]
=

[
QsQaQxD

(1)
a,s −Q

(5)
QsQa(x),Ds,a(x)

]
S + S

[
Ds,aQxQaQ

(3)
s −Q

(7∗)
QsQa(x),Ds,a(x)

]
+Q

(7∗∗)N
(Qs,n)Qa(x),Ds,a(x) +

[
Qs,nQaQxD

(2)
a,s + Ds,aQxQaQ

(4)
s,n −Q

(6)N
Qs,nQa(x),Ds,a(x)

]
[by structurality (3.1.4) on (5/7*); cancel (3.1.2) on (7**); linearized (0.1.4) s → s, n on (2/4/6)]

= −
[
Ds,aQxQa(QsS)

](1/5)H −
[
(SQs)QaQxDa,s

](3/7∗)• +
[
Ds,aQxQaQ

(4)H
s,n + Qs,nQaQxD

(2)•
a,s

]
[by (0.1.5) on (1/5), (3/7*)], which vanishes by cancellation (3.1.2).

The formula (1σ,1
B ) is

Da,sQb

[
SD

(1)
s,a−D

(2)
n,a

]
+

[
D

(3)
a,sS−D

(4)
a,n

]
QbDs,a + QaQsQ

(5)
b S + SQbQsQ

(6)
a

−Q
(7)
Da,sb,Da,sS(b) + Q

(8)
Da,sb,Da,nb −Q

(9)
QaQsb,S(b)

= Da,s

[
Q

(1)
b S+SQ

(3)
b

]
Ds,a + QaQs

[
Q

(5)
b S+SQ

(10∗)
b

]
+

[
Q

(11∗)
b S + SQ

(6)
b

]
QsQa −Qa

[
Q

(10∗∗)
s S

]
Qb

−Qb

[
SQ

(11∗∗)
s

]
Qa −Q

(7)
Da,s(b),Da,s(S(b)) −

[
Q

(9)
QaQs(b),S(b)+Q

(12∗)
QaQs(S(b)),b

]
+ Q

(12∗∗)
Qa(QsS)(b),b

+
[
−Da,sQbD

(2)
n,a −Da,nQbD

(4)
s,a + Q

(8)
Da,s(b),Da,n(b)

]
=

[
Da,sQS(b),bD

(1/3)
a,s + QaQsQ

(5/10∗)
S(b),b + QS(b),bQsQ

(6/11∗)
a

−Q
(7)
Da,s(b),Da,s(S(b)) −Q

(9)
QaQs(b),S(b) −Q

(12∗)
QaQs(S(b)),b

]
−

[
Da,sQbD

(2)
n,a+Da,nQbD

(4)
s,a+QaQn,sQ

(11∗∗)
b +QbQn,sQ

(10∗∗)
a −Q

(8)
Da,s(b),Da,n(b)−Q

(12∗∗)
QaQn,s(b),b

]
[by structurality (3.1.4) on (1/3),(5/10*),(6/11*); cancellation (3.1.2) on (11**),(12**)], which van-
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ishes by the linearizations b → S(b), b and s → s, n of (0.1.4).

Dually, the formula (1−σ,1
B ) becomes

Ds,aQx

[
D

(1)
a,sS−D

(2)
a,n

]
+

[
SD

(3)
s,a−D

(4)
n,a

]
QxDa,s + QsQaQ

(5)
x S + SQxQaQ

(6)
s

−Q
(7)
Ds,ax,SDs,a(x) + Q

(8)
Ds,ax,Dn,ax −Q

(9)
QsQax,S(x)

=
[
Ds,aQxD

(1)
a,s+QsQaQ

(5)
x

]
S + S

[
Ds,aQxD

(3)
a,s+QxQaQ

(6)
s

]
−

[
Ds,aQxD

(2)
a,n+Dn,aQxD

(4)
a,s−Q

(8)
Ds,a(x),Dn,a(x)

]
−Q

(7)
Ds,ax,S(Ds,ax) −Q

(9)
QsQax,S(x)

= [Ds,aQxD
(1)
a,s+QsQaQ

(5)
x −Q

(7a)
Ds,ax−Q

(9a)
QsQax,x

]
S + S

[
Ds,aQxD

(3)
a,s+QxQaQ

(6)
s −Q

(7b)
Ds,ax−Q

(9b)
QsQax,x

]
−

[
Ds,aQxDa,n+Dn,aQxDa,s−QDs,a(x),Dn,a(x)

](2/4/8)+Q
(9c)
S(QsQax),x

[by structurality (3.1.4) on (7),(9)]

=
[
QxQaQs

](1/5/7a/9a)N
S+S

[
−QsQaQx

](3/6/7b/9b)H−
[
−QaQxQN

s,n−Qs,nQxQH
a +QI

Qs,nQax,x

](2/4/8)

+Q
(9c)I

(SQs)Qax,x [by linearized (0.1.4) x, a, y → {s, n}, a, x on (2/4/8)]

which vanishes by cancellation (3.1.2) on N,H,I.

The formula (1σ,2
B ) becomes Qb

[
SDs,a−Dn,a

]
+

[
Da,sS−Da,n

]
Qb + Da,sQbS + SQbDs,a −

Qb,[Da,sS−Da,n](b)−QDa,sb,S(b) =
[
QbS+SQb

]
Ds,a+Da,s

[
QbS+SQb

]
−Qb,Da,s(S(b))−

[
QbDn,a+Da,nQb−

Qb,Da,nb

]N −QS(b),Da,s(b) = QS(b),bDs,a + Da,sQS(b),b −QDa,s(S(b)),b−QDa,s(b),S(b) [by structurality
(3.1.4) twice, (0.1.1) on N], which vanishes by the linearization b → b, S(b) of (3.1.4).

Dually, the formula (1−σ,2
B ) becomes Qx

[
Da,sS−Da,n

]
+

[
SDs,a−Dn,a

]
Qx+Ds,aQxS+SQxDa,s

−Qx,[SDs,a−Dn,a](x) − QDs,ax,S−σ(x) =
[
QxDa,s + Ds,aQx

]
S + S

[
Ds,aQx + QxDa,s

]
− Qx,S(Ds,a(x))

−QDs,a(x),S(x) −
[
QxDa,n + Dn,aQx − Qx,Dn,ax

]N = QDs,a(x),xS + SQDs,a(x),x − QS(Ds,ax),x −
QDs,ax,S(x) [by (0.1.1)] on N, which vanishes by the linearization x → x, Ds,ax of structurality
(3.1.4).

Note that the final conditions (1±σ,3
B ) are just the conditions (3.1.4) that S be a Lie-structural

transformation on V. �

5 The Main Theorem

Our main result is that the 18 Gluing Conditions (4N, 4B, 4NB) which guarantee that (N ,G,B) is
a Bergmann triple and (S,N ) is a Bergmann pair, in particular that X is structural, can be reduced
to a small number of connections between N and S.

Structural Domination Theorem 5.1 The Gluing Conditions (4N), (4B), (4NB) for (3.1.5) will
follow from the Structural Domination Conditions (3.1.1), (3.1.2), (3.1.4) on s, n and the two Gluing
Conditions (P-Glue 1) = (1±σ,1

N ), (P-Glue 2) = (2±σ,2),

(5.1.1) (P-Glue 1) NτQwS−τ + SτQwN−τ = QNτ (w),Sτ (w),

(5.1.2) (P-Glue 2) NτQw + QwN−τ + SτQwS−τ = QSτ (w) + QNτ (w),w,

if we assume that the following additional conditions hold for elements q2, q3 ∈ V σ with si+1 := Qsqi

and all a ∈ V σ :
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(5.1.3) (Two N) SτSτ = 2Nτ + Dτ
2 (Dσ

2 := Dq2,s, D
−σ
2 := Ds,q2),

(5.1.4) (Right Triality (k = 1) Da,sN
σ−Da,nSσ+Da,s3 = 0,

(5.1.5) (Right Triality (k = 2) Da,nNσ −Da,s3S
σ + Da,s4 = 0,

(5.1.4∗) (Outer Left Triality (k = 1) N−σDs,a−S−σDn,a+Ds3,a = 0,

(5.1.5∗) (Outer Left Triality (k = 2) N−σD−σ
n,a − S−σD−σ

s3,a + D−σ
s4,a = 0.

If these hold generically in a, b rather than as maps on V, then we can omit (5.1.4∗−5∗).
Thus (N ,G,B) will be a Bergmann triple and (S,N ) a Bergmann pair if (P-Glue 1-2), (3.1.1-4),

and (5.1.3-5∗) all hold.

Proof: The dual (5.1.4∗) holds automatically if (5.1.4) is generic, and similarly for (5.1.5).
We already know by the Bergmann Glue Proposition 4.1 that (4B) follows from (3.1.2), (3.1.4), so
we are concerned only to derive (4N), (4NB). We noted in the proof of (2.6.4) that (3.1.1) and Two
N imply Two Q (5.3.4) (which is also the case w = s, τ = −σ of (5.1.2)):

(5.1.3′) (Two Q) SQs,n = Qs,nS = 2Qn + Qs3,s.

We first show that the N-Gluing Conditions (4N) (1±σ,k
N ), k = 0, 1, follow from the above (5.1-

5∗). For k = 1 the relations (1±σ,1
N ) are just (P-Glue 1). For k = 0 the relation (1σ,0

N ) follows from
(3.1.4), (5.1.1-2)σ, (5.1.4∗-5∗), (5.1.4-5) since it reduces to

NQb

[
SDs,a−Dn,a

]
+

[
Da,sS−Da,n

]
QbN −QN(b),Da,sS(b) −QN(b),Da,n(b)

=
(
NQbS

)(1)
Ds,a −

(
NQb

)(2)
Dn,a + Da,s

(
SQbN

)(3) −Da,n

(
QbN

)(4)

−Q
(5)
N(b),Da,s(S(b)) −Q

(6)
N(b),Da,n(b)

=
[
−SQ

(1a)
b N+Q

(1b)N
N(b),S(b)

]
Ds,a −

[
−QbN

(2a)−SQ
(2b)
b S+Q

(2c)
S(b)+Q

(2d)H
N(b),b

]
Dn,a

+Da,s

[
−NQ

(3a)
b + Q

(3b)�
N(b),S(b)

]
−Da,n

[
−NQ

(4a)
b − SQ

(4b)
b S + Q

(4c)
S(b) + Q

(4d)•
N(b),b

]
[
Da,sQ

(5a)�)
N(b),S(b)+Q

(5b)N
N(b),S(b)Ds,a−Q

(5c)
[Da,sN ](b),S(b)

]
−

[
−Q

(6a)
[Da,nN ](b),b+Da,nQ

(6b)•
N(b),b+Q

(6c)H
N(b),bDn,a

]
[by (5.1.1)σ for (1),(3), (5.1.2)σ for (2),(4), and linearized (0.1.1) for (5),(6)]

= SQb

[
SD

(1a1)N
n,a −D

(1a2)
s3,a

]
+ Qb

[
SD

(2a1)
s3,a −D

(2a2)
s4,a

]
− SQ

(2b)N
b SDn,a

+
[
−D

(3a1)H)
a,n S+D

(3a2)
a,s3

]
QbS −

[
QS(b)D

(2c)�
n,a + Da,nQ

(4c)•
S(b)

]
−

[
−D

(4a1)
a,s3 S + D

(4a2)
a,s4

]
Qb

+Da,nSQ
(4b)H
b S +

[
Q

(5c1)�
Da,nS(b),S(b) −Q

(5c2)
Da,s3 (b),S(b)

]
+

[
−Q

(6a1)
Da,s3S(b),b + Q

(6a2)
Da,s4 (b),b

]
[by (5.1.4∗) for (1a), (5.1.4) for (3a),(5c), (5.1.5∗) for (2a), (5.1.5) for (4a),(6a)]

=
[
SQ

(1a2)
b +Q

(2a1)
b S

]
Ds3,a +

[
−QbD

(2a2)�)
s4,a −D

(4a2)�
a,s4 Qb+Q

(6a2)�
Da,s4 (b),b

]
+Da,s3

[
SQ

(4a1)
b + Q

(3a2)
b S

]
−Q

(6a1)
Da,s3 (S(b)),b −Q

(5b2)
Da,s3 (b),S(b)

= QS(b),bDs3,a + Da,s3QS(b),b −QDa,s3 (S(b)),b −QDa,s3 (b),S(b)

[by (3.1.4) on (1a2/2a1),(4a1/3a2); (0.1.1) on �], which vanishes by linearized (0.1.1)].
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The formula (1−σ,0
N ) follows dually from (3.1.4), (5.1.1-2)−σ, (5.1.4∗-5∗), (5.1.4-5):

NQxD
(1)
a,sS + NQxD

(2)
a,n − SDs,aQ

(3)
x N + Dn,aQ

(4)
x N + Q

(5)
N(x),SDs,a(x) −Q

(6)

N(x),D
(1)
n,a(x)

=
[
NQ

(1a)
{s,a,x},xS−SQ

(3a)
{s,a,x},xN

](7) +
[
NQ

(2a)
{s,a,x},x+Q

(4a)
{s,a,x},xN

](8)
−

(
NDs,a

)(1b)
QxS + SQx

(
Da,sN

)(3b) −
(
NDn,a

)(2b)
Qx −Qx

(
Da,nN

)(4b)

+Q
(5)
N(x),S({s,a,x}) −Q

(6)
N(x),Dn,a(x) [by (0.1.1) on (1),(2),(3),(4)]

=
[
−Q

(7a)
N({s,a,x}),S(x)−Q

(7b)N
N(x),S({s,a,x})

]
+

[
SQ

(8a)
{n,a,x},xS + Q

(8b)
S{n,a,x},S(x) + Q

(8c)
N({n,a,x}),x + Q

(8d)N
N(x),{n,a,x}

](8)
−

[
SD

(1b1)
n,a −D

(1b2)
s3,a

]
QxS − SQx

[
Da,nS(3b1)+D

(3b2)
a,s3

]
−

[
SD

(2b1)
s3,a −D

(2b2)
s4,a

]
Qx

+Qx

[
D

(4b1)
a,s3 +D

(4b2)
a,s4

]
+ Q

(5)N
N(x),S({s,a,x}) −Q

(6)H
N)x),{n,a,x} [by (5.1.1)−σ on (7),

(5.1.2)−σ on (8), (5.1.4∗) on (1b), (5.1.5∗) on (2b), (5.1.4) on (3b), (5.1.5) on (4b)]

= Q
(7a8b)

[−NDs,a+SDn,a

]
(x),S(x)

+ Q
(8c)
NDn,a(x),x + S

[
−Dn,aQ

(1b1)
x −QxD

(3b1)
a,n +Q

(8a)
{n,a,x},x

](9)
S

−S
[
Ds3,aQ

(2b1)
x +QxD

(3b2)
s3,a

](10) +
[
QxD

(4b1)
a,s3 +Ds3,aQ

(1b2)
x

](11)
S +

[
Ds4,aQ

(2b2)
x +QxD

(4b2)
a,s4

](12)
= Q

(7a8b)N
Ds3,a(x),S(x) +

[
Q

(8c1)N
SDs3,a(x),x −Q

(8c2)H
Da,s4 (x),x

]
−S

[
Q{s3,a,x},x

](10)N +
[
Q{s3,a,x},x

](11)N
S + Q

(12)H
{s4,a,x},x

[by (5.1.4∗) on (7a8b), (5.1.5∗) on (8c), and (0.1.1) on (9),(10),(11),(12)], which vanishes by lin-
earized (3.1.4).

Now we turn to the remaining condition (4NB): (2±σ,k). The case k = 2 is our assumption (5.1.2).
For k = 0 the formula (2σ,0) follows from (3.1.1), (3.1.2), (3.1.4), (5.1.2)σ, (5.1.4∗), (5.1.4) (5.1.3′) via

NQbQsQ
(1)
a +QaQsQbN

(2) + Da,s

[
SQbS

](3)
Ds,a + Q

(4)
Da,s(S(b)) −Da,s

[
SQb

](5)
Dn,a

−Da,n

[
QbS

](6)
Ds,a+Q

(7)
Da,sS(b),Da,n(b) +

[
Da,nQbDn,a−QDa,n(b)

](8) −Q
(9)
N(b),QaQs(b)

= NQbQsQ
(1)
a +QaQsQbN

(2) + Da,s

[
−NQ

(3a)
b −QbN

(3b)+Q
(3c)N
S(b) +Q

(3d)
N(b),b

]
Ds,a

+
[
Q

(4a)
QaQsS(b),S(b) −QaQsQ

(4b)
S(b) −QS(b)QsQ

(4c)
a −Da,sQ

(4d)N
S(b) Ds,a

]
+Da,s

[
−Q

(5a)
S(b),b+QbS

(5b)
]
Dn,a+Da,n

[
−Q

(6a)
S(b),b+SQ

(6b)
b

]
Ds,a

+
[
Q

(7)
Da,sS(b),Da,n(b)+Q

(7∗)
Da,nS(b),Da,s(b)−Q

(7∗∗)
(Da,nS)(b),Da,s(b)

]
+

[
−QaQnQ

(8a)
b −QbQnQ

(8b)
a + Q

(8c)
QaQn(b),b

]
+

[
−Q

(9)
N(b),QaQs(b)−Q

(9∗)
b,QaQsN(b) + Q

(9∗∗)
b,QaQn(b)

]
[by (5.1.2)σ on (3); (0.1.4) on (4),(8); (3.1.4) on (5),(6); (3.1.1) on (9*)]

=
[
NQ

(1)
b −Q

(4c)
S(b)

]
QsQa+QaQs

[
QbN

(2)−Q
(4b)
S(b)

]
−

[(
Da,sN

)
QbD

(3a)
s,a +Da,sQb

(
NDs,a

)(3b)]
−

[
−Q

(4a)
QaQs,nb,S(b)+Da,sQS(b),bD

(5a)
n,a +Da,nQS(b),bD

(6a)
s,a −Q

(7)
Da,s(S(b)),Da,n(b)

−Q
(7∗)
Da,s(b),Da,n(S(b))

](11)−Q
(7∗∗)
[Da,nS](b),Da,s(b) +

[
−QaQnQ

(8a)
b −QbQnQ

(8b)
a +2Q

(8c9∗∗)
QaQn(b),b

]
+

[
Da,sQN(b),bD

(3d)
s,a −Q

(9∗)
QaQsN(b),b −Q

(9)
QaQs(b),N(b)

](12) + Da,sQb

[
SDn,a

](5b)
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+
[
Da,nS

](6b)
QbDa,s [by (3.1.2) for (4a)]

=
[
−QbN

(1a)−SQ
(1b)
b S+Q

(1c)N
N(b),b

]
QsQa + QaQs

[
−NQ

(2a)
b −SQ

(2b)
b S+Q

(2c)H
N(b),b

]
+

[(
−Da,nS(3a1)�+D

(3a2)
a,s3

)
QbDs,a+Da,sQb

(
−SD

(3b1)•
n,a +D

(3b2)
s3,a

)]
+

[
QaQn,sQ

(11a)
S(b),b

+QS(b),bQn,sQ
(11b)
a −Q

(11c)
QaQs,nS(b),b

]
+

[
−QaQnQ

(8a)
b −QbQnQ

(8b)
a + 2Q

(8c9∗∗)
QaQnb,b

]
+

[
−QaQsQ

(12a)H
N(b),b−QN(b),bQsQ

(12b)N
a +Q

(12c)J
Da,s(N(b)),Da,s(b)

]
+ Da,sQb

[
SD

(5b)•
n,a

]
+

[
Da,nS(6b)�

]
QbDs,a −

[
Q

(7∗∗a)J
Da,s(b),Da,sN(b) + Q

(7∗∗b)
Da,s(b),Da,s3 (b)

]
[by (5.1.2)σ for (1),(2) and the linearization of (0.1.4) y → b, S(b), a → s, n for (11), y → b, S(b)

for (12); (5.1.4) for (3a), (7**); (5.1.4∗) for (3b)]

=
[
Da,s3QbD

(3a2)
s,a +Da,sQbD

(3b2)
s3,a −Q

(7∗∗b)
Da,s(b),Da,s3 (b)

](13)
+

[
−

(
SQ

(1b)
b +Q

(11b)
S(b),b

)
Qs,nQa−QaQs,n

(
−QbS

(2b)+Q
(11a)
S(b),b

)
−Q

(11c)
QaQs,nS(b),b

](14)
+2

[
−QbQnQ

(1a8b)
a −QaQnQ

(2a8a)
b +Q

(8c9∗∗)
QaQn(b),b

](15)
[by (3.1.1) for (1a),(2a), (3.1.2) for (1b),(2b)]

=
[
−QaQs3,sQb−QbQs3,sQa+QQaQs3,s(b),b

](13) +
[
Qb

(
SQs,n

)
Qa+Qa

(
Qs,nS

)
Qb

−QQaQs,nS(b),b

](14) + 2
[
−QbQnQa−QaQnQb+QQaQn(b),b

](15)
[by (3.1.4) for (14), linearized (0.1.4) s → s, s3 for (13)]

= Qa

[
−Qs3,s+Qs,nS−2Qn

]
Qb+Qb

[
−Qs3,s+SQs,n−2Qn

]
Qa+QQa[Qs3,s−Qs,nS+2Qn](b),b

which vanishes by assumption (5.1.3′).

Formula (2−σ,0) follows dually by an equally tortuous computation: it follows from (3.1.1),
(3.1.2), (3.1.4), (5.1.2)−σ, (5.1.4∗), (5.1.4), (5.1.3′) since it reduces to

[
NQxQaQs+QsQaQxN

](1) + S
[
Ds,aQxDa,s

](2)
S + Q

(3)
SDa,s(x)

+
[
−Dn,aQ

(4)
x Da,sS−SDs,aQ

(5)
x Da,n+Q

(6)
SDs,a(x),Dn,a(x)

]
+

[
Dn,aQxDa,n−QDn,a(x)

](7)
−Q

(8)
N(x),QsQa(x)

=
[
NQxQ

(1a)
a Qs+QsQ

(1b)
a QxN

]
+ S

[
−QsQ

(2a)
a Qx−QxQ

(2b)
a Qs+Q

(2c)N
Ds,a(x)+Q

(2d)
QsQa(x),x

]
S

+
[
−SQ

(3a)N
Ds,a(x)S+Q

(3b)
NDs,a(x),Ds,a(x) −NQ

(3c)
Ds,a(x) −Q

(3d)
Ds,a(x)N

]
+

[
Dn,aQ

(4)
x Da,s−Q

(6a)
Ds,a(x),Dn,a(x)

]
S + S

[
−Ds,aQ

(5)
x Da,n+Q

(6b)
Ds,a(x),Dn,a(x)

]
−Q

(6c)
Ds,a(x),(SDn,a)(x) +

[
−QnQ

(7a)
a Qx−QxQ

(7b)
a Qn+Q

(7c)
QnQa(x),x

]
−

[
Q

(8)
N(x),QsQa(x)+Q

(8∗)
N(QsQax),x

]
+ Q

(8∗∗)
QnQa(x),x

[by (5.1.2)−σ on (3); (0.1.4) on (2), (7); (3.1.4) on (6); (3.1.1) on (8**)]

= N
[
QxQaQ

(1a)
s −Q

(3c)
Ds,a(x)

]
+

[
QsQ

(1b)
a Qx −Q

(3d)
Ds,a(x)

]
N +

[
Qs,nQ

(2a)
a Qx+Dn,aQ

(4)
x Da,s

−Q
(6a)
Ds,a(x),Dn,a(x)

](9)
S − S

[
QxQ

(2b)
a Qs,n + Ds,aQ

(5)
x Da,n −Q

(6b)
Ds,a(x),Dn,a(x)

](10)
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+
[
−NQ

(2d1)
QsQax,x −Q

(2d2)
QsQax,xN + Q

(2d3)
S(QsQax),S(x) + Q

(2d4)N
N(QsQax),x + Q

(2d5)H
N(x),QsQax

]
+

[
−QnQ

(7a)
a Qx −QxQ

(7b)
a Qn + 2Q

(7c8∗∗)
QnQax,x

]
−

[
Q

(8)H
N(x),QsQax + Q

(8∗)N
N(QsQax),x

]
+Q

(3b6c)
[NDs,a−SDn,a](x),Ds,a(x) [by linearized (5.1.2)−σ on (2d); (3.1.2) on (2a), (2b)]

= N
[
QxQ

(1a)
a Qs−Q

(3c)
Ds,a(x)−Q

(2d1)
QsQax,x

](11) +
[
QsQ

(1b)
a Qx−Q

(3d)
Ds,a(x)−Q

(2d2)
QsQax,x

](12)
N

+
[
QxQ

(9a)
a Qs,n+Ds,aQ

(9b)
x Da,n−Q

(9c)
Qs,nQax,x

]
S + S

[
Qs,nQ

(10a)
a Qx+Dn,aQ

(10b)
x Da,s

−Q
(10c)
Qs,nQax,x

]
+

[
−QnQ

(7a)
a Qx−QxQ

(7b)
a Qn+2Q

(7c8∗∗)
QnQax,x

]
+Q

(2d3)
Qs,nQax,S(x)−Q

(3b6c)
Ds3,a(x),Ds,a(x)

[by linearized (0.1.4) s → s, n on (9),(10); (3.1.2) on (2d3); and (5.1.4∗) on (3b6c)]

= −N
[
Ds,aQ

(11a)N
x Da,s+QsQ

(11b)
a Qx

]
−

[
Ds,aQ

(12a)H
x Da,s+QxQ

(12b)
a Qs

]
N +QxQa

[
2Q

(9a1)
n +Q

(9a2)
s3,s

]
+

[
2Q

(10a1)
n +Q

(10a2)
s3,s

]
QaQx + Ds,aQx

[
Da,sN

(9b1)H + D
(9b2)
a,s3

]
+

[
ND

(10b1)N
s,a + D

(10b2)
s3,a

]
QxDa,s

−
[
Q

(9c10c1)
S(Qs,nQax),x+Q

(9c10c2)�
Qs,nQax,S(x)

]
+

[
−QnQ

(7a)
a Qx −QxQ

(7b)
a Qn + 2Q

(7c8∗∗)
QnQax,x

]
+Q

(2d3)�
Qs,nQax,S(x)−Q

(3a6c)
Ds3,a(x),Ds,a(x) [by (0.1.4) on (11),(12);

(5.1.3′) on (9a),(10a); (3.1.4) on (9c),(10c); (5.1.4) on (9b) and (5.1.4∗) on (10b) ]

=
[
−NQ

(11b)
s +2Q

(10a1)
n −Q

(7a)
n

](13)N
QaQx + QxQa

[
−QsN

(12b)+2Q
(9a1)
n −Q

(7b)
n

](14)H
+

[
QxQ

(9a2)
a Qs3,s+Qs3,sQ

(10a2)
a Qx+Ds,aQ

(9b2)
x Da,s3+Ds3,aQ

(10b2)
x Da,s−Q

(3a6c)
Ds3,a(x),Ds,a(x)

](15)
−Q

(9c10c1)
[2Qn+Qs3,s]Qax,x + 2Q

(7c8c∗)
QnQax,x [by (5.1.3′) on (9c10c1)]

= −Q[2Qn+Qs3,s]Qax,x +
[
QQs3,sQax,x

]
+ 2QQnQax,x = 0

[by (3.1.1) on (13), (14), and by linearized (0.1.4) s → s, s3 on (15)].

For k = 1 the formulas (2±σ,1) are much easier. (2σ,1) follows from (3.1.4), (5.1.2)σ, (5.1.4∗),
(5.1.4) since it reduces to

NQbD
(1)
s,a + D

(2)
a,sQbN + Da,sSQ

(3)
b S + SQ

(4)
b SDs,a −Da,nQ

(5)
b S − SQ

(6)
b Dn,a

−Q
(7)
Da,s(S(b)),S(b) + Q

(8)
Da,n(b),S(b) −Q

(9)
N(b),Da,s(b)

=
[
NQ

(1)
b + SQ

(4)
b S −Q

(7a)
S(b)

](10)
Ds,a + Da,s

[
Q

(2)
b N + SQ

(3)
b S −Q

(7b)
S(b)

](11)
−

[
Q

(9)
Da,s(b),N(b)+Q

(9∗)
Da,s(N(b)),b

](12) + Q
(9∗∗)
(Da,sN)(b),b + Da,n

[
SQ

(5a)
b −Q

(5b)
S(b),b

]
+

[
−Q

(6a)
Sb,b + Q

(6b)
b S

]
Dn,a +

[
Q

(8)
Da,n(b),S(b) + Q

(8∗)
Da,n(S(b)),b

]
−Q

(8∗∗)
(Da,nS)(b),b

[by (3.1.4) for (5),(6), (0.1.1) for (7)]

=
[
−QbN

I+QN
N(b),b

](10)
Ds,a + Da,s

[
−NQH

b +QJ
N(b),b

](11) − [
Da,sQ

J
b,N(b)+QN

N(b),bDs,a

](12)
−Q

(8∗∗9∗∗)•
Da,s3 (b),b +

[
D

(5a1)H
a,s N+D

(5a2)•
a,s3

]
Qb + Qb

[
ND

(6b1)I
s,a +D

(6b2)•
s3,a

]
+

[
−Da,nQ

(5b)
S(b),b−Q

(6a)
S(b),bDn,a+Q

(8)
Da,n(b),S(b)+Q

(8∗)
Da,n(S(b)),b

]�

[by (5.1.2)σ for (10),(11), (0.1.1) for (12), (5.1.4) for (5a), (8**9**), (5.1.4∗) for (6b)], which
vanishes by (0.1.1) on •,�.
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Dually, formula (2−σ,1) follows from (3.1.4), (5.1.2)−σ, (5.1.4∗), (5.1.4) since

NQ
(1)
x Da,s + D

(2)
s,aQxN + S

[
Ds,aQx + QxDa,s

](3)
S

−
[
Dn,aQ

(4)
x S + SQ

(5)
x Da,n −Q

(6)
Dn,a(x),S(x)

]
−Q

(7)
SDs,a(x),S(x) −Q

(8)
N(x),Ds,a(x)

= N
(
Q

(1a)H
Ds,a(x),x −Ds,aQ

(1b)
x

)
+

(
Q

(2a)H
Ds,a(x),x −QxD

(2b)
s,a

)
N + S

[
Q

(3)H
Ds,a(x),x

]
S

+
(
QxD

(4a)
a,n −Q

(4b)N
Dn,a(x),x

)
S + S

(
Dn,aQ

(5a)
x −Q

(5b)N
Dn,a(x),x

)
+Q

(6)N
Dn,a(x),S(x)

−
[
Q

(7)H
SDs,a(x),S(x) + Q

(8)H
N(x),Ds,a(x) + Q

(9∗)H
NDs,a(x),x

]
+Q

(10∗)N
S(Dn,ax),x

+
[
Q

(10∗∗)
−SDn,a(x),x + Q

(9∗∗)
NDs,a(x),x

](11) [by (0.1.1) for (1)-(5)]

= −
[
ND

(1b)•
s,a Qx+Q

(2b)�
x Ds,aN

]
+ Qx

[
D

(4a1)�
a,s N+D

(4a2)
a,s3

]
+

[
ND

(5a1)•
s,a +D

(5a2)
s3,a

]
Qx −Q

(11)
Ds3,a(x),x

[by (3.1.4) for N, linearized (5.1.2)−σ for H, (5.1.4∗) for (5a), (11), (5.1.4) for (4a)], which vanishes
by (0.1.1) for Ds3,a. This completes the verification that the Gluing Conditions (4N), (4B), (4NB)
follow from (5.1.2-5). �

6 Redundancy

In the presence of scalars 1
2 and 1

3 , the complicated gluing conditions conditions become redundant.

Redundancy Theorem 6.1 Conditions (5.1.3), (3.1.4) imply 2 (5.1.2), so when 1
2 ∈ Φ Condition

(5.1.2) [P-Glue 2] is a consequence of the other axioms in Structural Domination Theorem 5.1.
If N,S satisfy for τ = ±σ the two conditions

(6.1.1) (M condition): SτNτ = NτSτ = Mτ
q2

,

(6.1.2) (Powers 2): Sσ(q2) = 2q3, S−σ(si) = 2si+1, Dq3,si
= Dq2,si+1 , Dsi,q3 = Dsi+1,q2

(where i = 1, 2, and s1 := s, s2 := n, s3 := Qsq2),

then these together with (5.1.3), (5.1.2)τ imply 3 (5.1.1)τ , so if 1
3 ∈ Φ we can replace condition (5.1.1)

[P-Glue 1] in Theorem 5.1 by these conditions.
Here the M -condition (6.1.1) is equivalent to two conditions

(6.1.1)′ (Commutativity): NτSτ = SτNτ ,

(6.1.1)′′ (Cube Condition): SτSτSτ = D′
2
τ + 3SτNτ

(
D′

2
σ := Dq2,n, D′

2
−σ := Dn,q2

)
.

Conditions (5.1.3), (6.1.2) imply 2[Nτ , Sτ ] = 0, so that if 1
2 ∈ Φ then automatically Nτ , Sτ

commute and Commutativity (6.1.1)′ is satisfied.
Thus when 1

6 ∈ Φ we can replace the P-gluing conditions (P-Glue 1-2) = (5.1.1), (5.1.2) by the
elemental conditions (6.1.1-2) and the triality conditions (5.1.4-5∗).

Proof: First we redundify P-Glue 2 (5.1.2) by showing that 2(5.1.2) vanishes as a consequence
of Two N (5.1.3) and Lie-structurality (3.1.4): with the abbreviation Dσ

2 = Dq2,s, D
−σ
2 = Ds,q2 from

(5.1.3) and omitting superscripts for generic τ = ±σ, we compute the formula 2(5.1.2)τ as

2
[
NQw + QwN + SQwS −QS(w) −QN(w),w

]
= (S2−D̂)Qw+Qw(S2−D2)+2SQwS−QS(w),S(w)−Q(S2−D2)(w),w [using Two N (5.1.3) thrice]

=
[
S2Qw+QwS2+2SQwS−QS(w),S(w)−QS2(w),w

]
−

[
D2Qw+QwD2−QD(w),w

]•
= S

[
Q

(1)
S(w),w −Q

(2)N
w S

]
+ Q

(3)
w S2 + 2NSQ

(4)
w S −Q

(5)
S(w),S(w) −Q

(6)
S2(w),w
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[since S on (1/2), D on • are Lie-structural by (3.1.4), (0.1.1) on •]

=
[
Q

(1a)H
S2(w),w + Q

(1b)I
S(w),S(w) −Q

(1c)
S(w),wS

]
+ Q

(3)
w S2 + SQ

(2,4)
w S −Q

(5)I
S(w),S(w) −Q

(6)H
S2(w),w

[S is structural on (1)]

= Q
(1c)J
S(w),wS + Q

(3)�
w S2 −

[
Q

(2,4a)J
Sw,w + QwS(2,4b)�

]
S = 0. [S is structural on (2),(4)]

We always have

(6.2) (Sσ)3−D′
2
σ−3NσSσ = Mσ

q2
−NσSσ, (S−σ)3−D′

2
−σ−3S−σN−σ = M−σ

q2
−S−σN−σ,

since for τ = σ we have by Two N (5.1.3) that (Sσ)3 − D′
2
σ − 3NσSσ = (2Nσ + Dσ

2 )Sσ −
Dq2,n − 3NσSσ = (Dq2,sS

σ −Dq2,n) −NσSσ = Mσ
q2
−NσSσ, while for τ = −σ we have (S−σ)3 −

D′
2
−σ − 3S−σN−σ = S−σ(2N−σ + D−σ

2 ) −Dn,q2 − 3S−σN−σ = (S−σDs,q2 −Dn,q2) − S−σN−σ =
M−σ

q2
− S−σN−σ.

From structurality (3.1.4) and Power (6.1.2) we obtain

(6.3) [Sτ , Dτ
2 ] = [Sτ , D′

2
τ ] = 0,

(6.4) Mτ
q2

= Dτ
2Sτ −D′

2
τ = SτDτ

2 −D′
2
τ .

For (6.3), [Sσ, Dq2,si
] = DS(q2),si

−Dq2,S(si) [by structurality] = 2Dq3,si
− 2Dq2,si+1 = 0 [by Power],

and dually [S−σ, Dsi,q2 ] = 0. For (6.4), by (0.1.1) we have Mσ
q2

= Dq2,sS
σ −Dq2,n = Dσ

2 Sσ −D′
2
σ,

and dually M−σ := D−σ
q2

= S−σDs,q2 −Dn,q2 = Ds,q2S
−σ −Dn,q2 [by (6.2)] = Ds,q2S

−σ −D′
2
−σ.

Clearly (6.1.1) implies (6.1.1)′, and (6.1.1)′′ [by (6.4)]. Conversely, by (6.4) Cubing (6.1.1)′′ im-
plies Mσ

q2
= NσSσ, M−σ = S−σN−σ, so together with Commutativity (6.1.1)′ they imply (6.1.1).

These guarantee that the M-condition (6.1.1) is equivalent to (6.1.1)′ with (6.1.1)′′.

Now we can redundify (5.1.1) with the help of (5.1.3), (6.1.1), (6.1.2): we compute 3(5.1.1)τ as[
NQwS+SQwN−QN(w),S(w)

]
+

[
(2N)QwS+SQw(2N)−Q(2N)(w),S(w)

]
=

[
(NQw+QwN)(1)S−Q

(2)
w Mq2

]
+

[
S(NQw+QwN)(3)−Mq2Q

(4)
w

]
−Q

(5)
N(w),S(w)

+
[
(SS(6)−D

(7)
2 )QwS − SQw(SS(8)−D

(9)
2 )

]
−

[
Q

(10)
SS(w),w−Q

(11)
D2(w),S(w)

]
[by M (6.1.1) in (2),(4) and (5.1.3) for 2N ]

=
[
−SQ

(1a)N
w S + Q

(1b)•
S(w) + Q

(1c)�
N(w),w

]
S + S

[
−SQ

(3a)H
w S + Q

(3b)•
S(w) + Q

(3c)�
N(w),w

]
+Mq2Q

(2)
w + QwM

(4)
q2 −Q

(5)�
N(w),S(w) +

[
SSQ

(6)H
w S+SQ

(8)N
w SS

+D2Q
(7)
w S+SQ

(9)
w D2

]
+

[
−Q

(10)•
SS(w),S(w) + Q

(11)
D2(w),S(w)

]
[by P-Glue 2 (5.1.2) on (1), (2)]

= Q
(1c3c5)�
SN(w),w + Mq2Q

(4)
w −Q

(2)
w Mq2 + D

[
SQ

(7a)
w −Q

(7b)I
S(w),w

]
+

[
−Q

(9a)I
S(w),w + Q

(9b)
w S

]
D

+Q
(11)I
D2(w),S(w) [S is structural (3.1.4) on •, �, (7), (9)]

=
[
Dτ

2Sτ −Mτ
q2

]
Qw + Qw

[
S−τD−τ

2 −M−τ
q2

]
−Q[Mq2+D2S](w),w

[by M (6.1.1) on �, D2 structural on I]

=
[
D′

2
τ
]
Qw + Qw

[
D′

2
−τ

]
−Q[D′

2
τ ](w),w, [by (6.1.4)]
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which vanishes since D′
2 is also structural by (0.1.1). This shows 3 (5.1.1)τ does indeed vanish.

Finally, note that Two N (5.1.3), (6.3) imply 2[Nτ , Sτ ] = [SτSτ −Dτ
2 , Sτ ] = [Sτ , Dτ

2 ] vanishes
by (6.3). �
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