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Abstract

Jordan superalgebras defined by brackets on associative commutative su-
peralgebras are studied. It is proved that any such a superalgebra is imbedded
into a superalgebra defined by Poisson brackets. In particular, all Jordan super-
algebras of brackets are i-special. The speciality of these superalgebras is also
examined, and it is proved, in particular, that the Cheng—Kac superalgebra is
special.

Introduction

Let Γ = Γ0 + Γ1 be an associative commutative superalgebra over a ground field
F , chF 6= 2, with a bracket {, } : Γ× Γ → Γ. Consider the direct sum of two copies
of the vector space Γ

J = Γ + Γx

with the product
a · b = ab, a · bx = (ab)x,

(bx) · a = (−1)|a|(ba)x, ax · bx = (−1)|b|{a, b}
where a, b ∈ Γ0 ∪Γ1, juxtaposition stands for the product in Γ and (−1)|a| = (−1)k if
a ∈ Γk. We will refer to J = J(Γ, {, }) as a Kantor double of (Γ, {, }).

A bracket {, } is called Jordan if the Kantor double J is a Jordan superalgebra.
I. L. Kantor [K] proved that every Poisson bracket is Jordan.
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In [KMZ] it was shown that all Jordan superalgebras that correspond to the so
called ”superconformal algebras” are Kantor doubles or are embeddable in Kantor
doubles (the Cheng-Kac series). Moreover, the same is true for all simple finite-
dimensional Jordan superalgebras over a field of prime characteristic with a non-
semisimple even part (see [MZ]).

A Jordan superalgebra J is called special if it can be embedded into a Jordan
superalgebra of the type A+, which is obtained from an associative superalgebra A
via the new multiplication a·b = 1

2
(ab+(−1)|a||b|ba). Furthermore, J is called i-special

if it is a homomorphic image of a special one.

In [S2] it was proved that for every Poisson bracket the corresponding Jordan
Kantor double J(Γ, {, }) is i-special. Moreover, in this case J(Γ, {, }) is special if and
only if {{Γ,Γ},Γ} = 0.

In this paper we consider the speciality and i-speciality problems for the general
Jordan Kantor doubles. First, we prove that all Jordan brackets are embeddable into
Poisson brackets. In view of [S2] this implies that all Jordan Kantor doubles are
i-special. Then we examine speciality of Jordan superalgebras from [KMZ], [MZ].
In particular, we show that the Jordan superalgebras of the Cheng-Kac series are
special.

1 Embedding of Jordan brackets into Poisson brac-

kets

We start with some definitions and notations that will be used in the rest of the
paper.

By a superalgebra we mean a Z/2Z-graded algebra A = A0 + A1

Example. Let V be a vector space. The Grassmann (or exterior) algebra G(V )
is the quotient of the tensor algebra T (V ) modulo the ideal generated by symmetric
tensors v ⊗ w + w ⊗ v; v, w ∈ V . Clearly G(V ) = G0̄ + G1̄, where G0̄ (resp. G1̄ ) is
spanned by products of elements of V of even (resp. odd) length.

Let V be a vector space of countable dimension. By the Grassmann envelope of
a superalgebra A = A0̄ + A1̄ we mean the subalgebra G(A) = A0̄ ⊗G0̄ + A1̄ ⊗ G1̄ of
the tensor product A⊗G(V ).

Let V be a homogeneous variety of algebras, that is, a class of F -algebras satisfying
a certain set of homogeneous identities and all their partial linearizations (see [ZSSS]).

Definition 1.1 A superalgebra A = A0̄ + A1̄ is called a V-superalgebra if the
Grassmann envelope G(A) lies in V.
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In particular, if A = A0̄ + A1̄ is a V-superalgebra, then A0̄ ∈ V and A1̄ is a
V-bimodule over A0̄ (see [J]).

In this way one can define Lie superalgebras, Jordan superalgebras, etc. Clearly,
associative superalgebras are just Z/2Z-graded associative algebras.

If A is an associative superalgebra then the vector space A with a new operation
a · b = 1

2
(ab+ (−1)|a||b|ba) is a Jordan superalgebra which is denoted A(+). A Jordan

superalgebra is said to be special if it is embeddable into a superalgebra of type A(+).
Otherwise J is said to be exceptional. If J ⊆ A(+) and the associative superalgebra
A is generated by the subspace J then A is said to be an associative enveloping
superalgebra of J . A Jordan superalgebra is i-special if it is a homomorphic image of
a special Jordan superalgebra.

Let Γ = Γ0+Γ1 be a unital associative commutative superalgebra with a skewsym-
metric bilinear mapping {, } : Γ× Γ→ Γ, {Γi,Γj} ⊆ Γi+j which we call a bracket.

Consider the Kantor double J = Γ + Γx (see the Introduction) with the multipli-
cation

a · b = ab, a · bx = (ab)x,

(bx) · a = (−1)|a|(ba)x, ax · bx = (−1)|b|{a, b},
where a, b ∈ Γ0 ∪ Γ1 and juxtaposition stands for the multiplication in Γ. The
Z/2Z-gradation on Γ can be extended to a Z/2Z-gradation on J via J0 = Γ0 + Γ1x,
J1 = Γ1 + Γ0x.

A bracket {, } is said to be Jordan if the Kantor double J is a Jordan superalgebra.
For a Jordan bracket {, } the mapping D :7→ {a, 1} is a derivation of Γ (see [M]).
Moreover, in [M], [KM] it was proved that a bracket {, } is Jordan if and only if for
arbitrary elements a, b, c ∈ Γ0 ∪ Γ1, x ∈ Γ1 hold the identities

{a, b} = −(−1)|a||b|{b, a}, (1)

{a, bc} = {a, b}c+ (−1)|a||b|b{a, c} −D(a)bc, (2)

J(a, b, c) := {{a, b}c}+ (−1)|a||b|+|a||c|{{b, c}, a}+ (−1)|a||c|+|b||c|{{c, a}, b}
= −{a, b}D(c) + (−1)|a||b|+|a||c|{b, c}D(a) + (−1)|a||c|+|b||c|{c, a}D(b), (3)

{{x, x}, x} = −{x, x}D(x). (4)

Identity (4) is needed only in characteristic 3 case, otherwise it follows from (3) (see
[KM1]).

A Jordan bracket {, } is called a Poisson bracket if D(a) = 0 for any a ∈ Γ.
Observe that in this case Γ is a Lie superalgebra with respect to the bracket.

We will now prove that every Jordan bracket can be embedded into a Poisson
bracket.
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Proposition 1.1 Let {, } be a Jordan bracket on Γ. On the superalgebra of Lau-
rent polynomials Γ[t−1, t] consider a bracket

< tia, tjb >= ti+j−2(−(i− 1)aD(b) + (−1)|a||b|(j − 1)bD(a) + {a, b})

where a, b ∈ Γ0 ∪ Γ1. Then <,> is a Poisson bracket. Moreover, the Jordan superal-
gebra J = (Γ, {, }) is isomorphic to a subsuperalgebra Γ + tΓx of the Kantor double
J = (Γ[t−1, t], <,>).

Proof: First of all observe that < ta, tb >= {a, b}. Hence Γ + tΓx is a subsuper-
algebra of J(Γ[t−1, t], <,>) which is isomorphic to J(Γ, {, }).

Passing to Grassmann envelopes we see that it is sufficient to prove that <,> is
a Poisson bracket only for the case Γ = Γ0.

Let a, b, c ∈ Γ = Γ0, and let us check that <,> satisfies the Leibniz identity

< ti+jab, tkc > = ti+j+k−2(−(i+ j − 1)abD(c) + (k − 1)cD(ab) + {ab, c})
= ti+j+k−2(−(i+ j − 1)abD(c) + (k − 1)caD(b) +

+ (k − 1)cbD(a) + {a, c}b+ a{b, c}+ abD(c))

= ti+j+k−2a(−(j − 1)bD(c) + (k − 1)cD(b) + {b, c})
+ ti+j+k−2b(−(i− 1)aD(c) + (k − 1)cD(a) + {a, c})

= tia < tjb, tkc > +tjb < tia, tkc > .

Now let us check the Jacobi identity. We have

<< tia, tjb >, tkc >=< ti+j−2(−(i− 1)aD(b) + (j − 1)bD(a) + {a, b}), tkc >
= ti+j+k−4(−(i+ j − 3)(−(i− 1)aD(b) + (j − 1)bD(a) + {a, b})D(c)

+ (k − 1)(−(i− 1)D(a)D(b)− (i− 1)aD2(b) + (j − 1)D(b)D(a)

+ (j − 1)bD2(a) +D({a, b}))c
− (i− 1){aD(b), c}+ (j − 1){bD(a), c}+ {{a, b}, c})

= ti+j+k−4((i+ j − 4)(i− 1)aD(b)D(c)− (i+ j − 4)(j − 1)bD(a)D(c)

+ (k − 1)(j − i)cD(a)D(b)− (k − 1)(i− 1)aD2(b)c

+ (k − 1)(j − 1)D2(a)bc− (i + j − 3){a, b}D(c)

+ (k − 1)D({a, b})c− (i− 1){a, c}D(b)− (i− 1)a{D(b), c}
+ (j − 1){b, c}D(a) + (j − 1)b{D(a), c}+ {{a, b}, c}).

Let us compute the coefficients of all summands in 1
ti+j+k−4J(tia, tjb, tkc).

The summand aD(b)D(c) has the coefficient

(i+ j − 4)(i− 1)− (k + i− 4)(i− 1) + (i− 1)(k − j) = 0.
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The summand aD2(b)c has the coefficient

−(k − 1)(i− 1) + (i− 1)(k − 1) = 0.

By symmetry, all the summands in J(tia, tjb, tkc) which do not contain the bracket
{, } are zero.

Now the difference −(i − 1)a{D(b), c} + (j − 1)b{D(a), c} after cyclic summing
gives zero.

The summand D(c){a, b} has the coefficient

−(i + j − 3) + (j − 1) + (i− 1) = 1,

and therefore

1

ti+j+k−4
J(tia, tjb, tkc) = D(c){a, b}+D(b){c, a}+D(a){b, c}

+ {{a, b}c}+ {{b, c}, a}+ {{c, a}, b} = 0.

By the property (4) of Jordan brackets Proposition is proved.

In [S2] it was shown that a Kantor double of a Poisson bracket is always i-special.
This and Proposition 1.1 immediately imply the following corollary.

Corollary 1.1 For an arbitrary Jordan bracket {, } on an associative commuta-
tive superalgebra Γ the superalgebra J(Γ, {, }) is i-special.

2 On speciality of bracket superalgebras

Let J = J0+J1 be a Jordan superalgebra. For an arbitrary element x ∈ J let R(x)
denote the operator of right multiplication by x. If x ∈ J1 then R(x)2 is a derivation
of the superalgebra J . Let D(J1, J1) denote the linear span of all derivations R(x)2,
x ∈ J1. Clearly D(J1, J1) is a Lie algebra.

Now our aim will be to prove the following proposition.

Proposition 2.1 Let J = J0 + J1 be a special Jordan superalgebra, I a nilpotent
ideal of the even part J0 which is finitely generated as an ideal and is invariant under
D(J1, J1). Then the ideal idJ(I) of the superalgebra J generated by I is nilpotent.

Corollary 2.1 Let J = J0 + J1 be a Jordan superalgebra which does not contain
nonzero nilpotent ideals. If J0 contains a nonzero nilpotent ideal which is D(J1, J1)-
invariant and finitely generated as an ideal then J is exceptional.
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Let J = J0 + J1 be a special Jordan superalgebra with an associative enveloping
superalgebra R = R0 +R1. Let I be an ideal of J0 which is invariant under D(J1, J1).
Let Is denote the linear span of all products a1 · · ·ak, k ≥ s, ai ∈ I, in the algebra R.

Lemma 2.1 IsRIsRIs ⊆ RI2sR.

Proof: First let us notice that

IsR0 ⊆ R0Is.

Indeed, the algebra R0 is generated by J0 and J1J1. For arbitrary elements
u1, . . . , uk ∈ I, k ≥ s, a ∈ J0; x, y ∈ J1 we have u1 · · ·uka = u1 · · ·uk−1(uka +
auk) − u1 · · ·uk−2(uk−1a + auk−1)uk + · · · + (−1)kau1 · · ·uk ∈ RIs. Furthermore,
xy = 1

2
([x, y] + (xy + yx)). The commutator [x, y], lies in J0 whereas the operator

J → J

u→ [u, xy + yx]

lies in D(J1, J1).
Hence u1 · · ·uk(xy + yx) = (xy + yx)u1 · · ·uk + [u1 · · ·uk, xy + yx] ∈ RIs.
This implies that

IsR0Is ⊆ R0I2s.

Let us show that IsRiIsRjIs ⊆ RI2sR.
If i = 0 or j = 0 then the inclusion was proved above.
If i = j = 1 then RiIsRj ⊆ R0 and it remains to refer to the inclusion above.

Lemma is proved.

Corollary 2.2 In the assumptions of Lemma 2.1, for any k ≥ 0 holds the inclu-
sion

(RIsR)3k ⊆ RI2ksR.

Proof: The Lemma gives the base of induction for k = 1. Assume that the
assertion is true for k − 1, then

(RIsR)3k = ((RIsR)3k−1

)3 ⊆ (RI2k−1sR)3 ⊆ RI2·2k−1sR = RI2ksR.

For elements a, b ∈ R denote a · b = 1
2
(ab+ ba). Let I ·n denote the n-th power of

the ideal I in J .

Lemma 2.2 For an arbitrary k ≥ 1 we have I ·2 · · · I ·2︸ ︷︷ ︸
k

⊆ RI ·k+1, where juxtapo-

sition stands for the multiplication in R.
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Proof: The assertion is obvious for k = 1. By the induction assumption I ·2 · · · I ·2︸ ︷︷ ︸
k

⊆

RI ·kI ·2. If u ∈ I ·k, a, b ∈ I, then u(a·b) = u·(a·b)+ 1
2
[u, a·b] and clearly u·(a·b) ∈ I ·k+1.

Now, [u, a · b] = [u · a, b] + [u · b, a], u · a ∈ I ·k+1, u · b ∈ I ·(k+1) and it remains to notice
that (u · a)b = 2(u · a) · b− b(u · a) ∈ RI ·k+1. Lemma is proved.

Lemma 2.3 Suppose that the ideal I of J0 is generated (as an ideal) by m ele-
ments a1, . . . , am. Then I3(m+2) ⊆ R0I

·3.

Proof: Let A be the subalgebra of R0 generated by J0. Let us show first that Im+2

lies in the ideal of A generated by I ·2. Let u1, . . . , um+2 ∈ I. We have u1 · · ·um+2 =
1
2
u1 · · ·um[um+1, um+2] = ±u1 · · · ûi · · ·um+1[ui, um+2] mod idA(I ·2).

If a, b ∈ I, x ∈ J0 then [a · x, b] = [a, b · x] + [x, a · b] = [a, b · x] mod idA(I ·2).
Hence, without loss of generality we can assume that u1, . . . , um+1 ∈ {a1, . . . , am} and
therefore ui = uj for some 1 ≤ i 6= j ≤ m+1. This implies that u1 · · ·um+1 ∈ idA(I ·2).

Now let us show that

(idA(I ·2))3 ⊆ idA(I ·3)

Since for arbitrary elements a, b ∈ J0 we have ab = a·b+ 1
2
[a, b] and [I ·2, [a, b]] ⊆ I ·2

it is sufficient to prove that

I ·2J0I
·2J0I

·2 ⊆ idA(I ·3).

Choose arbitrary elements u1, u2, u3 ∈ I ·2 and a, b ∈ J0.

We have {I ·2, J0, I
·2} ⊆ (I ·2 · J0) · I ·2 + (I ·2 · I ·2) · J0 ⊆ I ·3. This implies that the

expression u1au2bu3 + idA(I ·3)/idA(I ·3) is skew symmetric in u1, u2, u3.

We have also I ·2I ·2 ⊆ I ·2 · I ·2 + [I ·2 · I, I] ⊆ idA(I ·3) and I ·2II ·2 ⊆ (I ·2 · I)I ·2 +
II ·2I ·2 ⊆ idA(I ·3).

Hence u1(au2b+ bu2a)u3 ⊆ I ·2II ·2 ⊆ idA(I ·3).
Therefore the expression u1au2bu3 + idA(I ·3)/idA(I ·3) is skewsymmetric in a and

b.
Now u1au2bu3 = 4(u1 · a)(u2 · b)u3 = 4(u2 · b)(u1 · a)u3 mod idA(I ·3).
Finally, u1au2bu3 = 4((u1 · a) · (u2 · b))u3 ∈ I ·2I ·2 = (0) mod idA(I ·3).

The inclusions Im+2 ⊆ idA(I ·2), (idA(I ·2))3 ⊆ idA(I ·3) imply I3(m+2) ⊆ (Im+2)3 ⊆
(idA(I ·2))3 ⊆ idA(I ·3).

Lemma is proved.

Proof of Proposition 2.1. Suppose that the ideal I of J0 is D(J1, J1)-invariant
and generated (as an ideal) by m elements. Suppose further that I ·n = (0), n ≥ 2.
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Find integers s1, s2 such that 2s1 ≥ n − 1, 2s2 ≥ 3(m + 2). By Corollary 2.2
applied to the ideal I ·3 we have

(RI ·3R)3s1 ⊆ R(I ·3)2s1R ⊆ R(I ·3)n−1R

⊆ R(I ·2)n−1R ⊆ RI ·nR = (0).

Similarly, by Lemma 2.3,

(RIR)3s2 ⊆ RI2s2R ⊆ RI3(m+2)R ⊆ RI ·3R.

Let s = s1 + s2. Then

(RIR)3s = ((RIR)3s2 )3s1 ⊆ (RI ·3R)3s1 = (0),

which proves the Proposition.

Corollary 2.3 Let Γ = Γ0 + Γ1 be an associative commutative finitely generated
superalgebra such that Γ1Γ1 6= (0). Let {, } be a Jordan bracket on Γ. Suppose that the
Kantor double superalgebra J = J(Γ, {, }) does not contain nonzero nilpotent ideals.
Then the superalgebra J is exceptional.

Proof: Let I the ideal of J0 generated by Γ1Γ1 6= (0). Since Γ1Γ1 is the product
in the superalgebra J , to check that I is D(J1, J1)-invariant it is sufficient to prove
that Γ1D(J1, J1) ⊆ Γ1. We have

D(J1, J1) = D(Γ1,Γ1) +D(Γ1,Γ0x) +D(Γ0x,Γ0x).

It is easy to see that Γ1D(Γ1,Γ1) = Γ1D(Γ1,Γ0x) = (0) and that Γ1D(Γ0x,Γ0x) ⊆
Γ ∩ J1 = Γ1.

If Γ is generated by m even elements a1, . . . , am and n odd elements b1, . . . , bn,
then I is generated (as a J0-ideal) by all products bibj , 1 ≤ i < j ≤ n.

It is easy to see that I = Γ1Γ1 + Γ1Γ1Γ1x and that for any k

I ·k = Γ1Γ1 · · ·Γ1︸ ︷︷ ︸
2k

+ Γ1 · · ·Γ1︸ ︷︷ ︸
2k+1

x.

Hence, if 2k ≥ n+1 then I ·k = (0). By Corollary 1 the superalgebra J is exceptional.

Let now F be an algebraically closed field of characteristic p > 2, and let O(m) =
F [a1, . . . , am | ap1 = · · · = apm = 0] be the algebra of truncated polynomials. Further-
more, let G(n) =< 1, ξ1, . . . , ξn | ξiξj + ξjξi = 0, 1 ≤ i, j ≤ n > be the Grassmann
algebra on n variables. The tensor product

O(m,n) = O(m)⊗F G(n) = O(m)⊗F G0(n) +O(m)⊗F G1(n)
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is an associative commutative superalgebra.

In [MZ] it was proved that an arbitrary simple finite dimensional Jordan super-
algebra J over F with a nonsemisimple part J0 is isomorphic to one of the following
superalgebras:

1) a Kantor double J = J(O(m,n), {, }) of an appropriate Jordan bracket on
O(m,n),

2) a superalgebra of a Cheng-Kac type (see below for more details).

Corollary 2 implies that for n ≥ 2 the simple superalgebras J(O(m,n), {, }) are
exceptional.

A classification along the same lines: Kantor doubles and Cheng-Kac superal-
gebras, is developed in [KMZ] for infinite dimensional Jordan superalgebras of zero
characteristic that correspond to the so called ”superconformal algebras” ([KL], [CK]).
Speciality problems for these superalgebras can be treated similarly.

Let Γ be again an arbitrary associative commutative superalgebra with a Jordan
bracket {, }, D(a) = {a, 1}. The bracket {, } is said to be of vector type if {a, b} =
D(a)b − aD(b). In [M],[KM] and in [S1] it was proved that the Kantor double of
a bracket of vector type is a special superalgebra. Furthermore, in [M],[KM] two
important examples of classical and Grassmann Poisson brackets were treated and
it was showed that in both cases the Kantor double superalgebras are exceptional.
Since both classical and Grassman Poisson brackets are not nilpotent, the last result
follows from the following speciality criterium for the Kantor double of a Poisson
bracket obtained in [S2]: a Poisson bracket {, } : Γ × Γ → Γ is special if and only if
{{Γ,Γ},Γ} = (0).

Proposition 2.2 Let Γ = Γ0 + Γ1 be a finitely generated associative commutative
superalgebra with a Jordan bracket {, } such that the superalgebra J(Γ, {, }) does not
contain nonzero nilpotent ideals. Suppose that either (i) Γ1 = (0) or (ii) Γ1 contains
an element ξ such that Γ1 = Γ0ξ and {Γ0, ξ} = (0), {ξ, ξ} = −1. Then the su-
peralgebra J(Γ, {, }) is special if and only if the restriction of {, } to Γ0 is of vector
type.

Remark. Proposition 2.2 takes care of all superalgebras of the type
J(O(m,n), {, }), n = 0 or 1, from the classification list of [MZ].

Proof: Let Γ = Γ0 + Γ1 be a finitely generated associative commutative super-
algebra with a Jordan bracket {, }. Suppose that the Kantor double superalgebra
J = Γ+Γx is special and does not contain nonzero nilpotent ideals. Let R = R0 +R1

be an associative enveloping superalgebra of J, J ⊆ R(+). Factoring out the Baer
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radical of R we can assume that R does not contain nonzero nilpotent ideals. For ele-
ments u, v ∈ R let uv denote their product in R and let [u, v] = uv−vu, u◦v = uv+vu.
We will also denote by · the product in the superalgebra J .

We will use the following identities from [S2] which can be verified in an associative
algebra by a straightforward computation:

[a ◦ x, b ◦ x] = [a, x2] ◦ b− [b, x2] ◦ a + ([a, b] ◦ x) ◦ x+ [[a, x], [b, x]], (5)

[u, [r, s]] = ((u ◦ r) ◦ s− (u ◦ s) ◦ r). (6)

Let a, b ∈ J0. Our aim is to prove that < a, b >= {a, b} −D(a) · b+ a ·D(b) = 0.
It is easy to see that < a, b >= − < b, a > and <,> satisfies the Leibniz identity,
that is, < a, b·2 >= 2 < a, b > ·b. Now, for an arbitrary element u ∈ J we have by (6)

[u, [a, b]] = 4((u · a) · b− (u · b) · a) = 0,

Hence [a, b] lies in the center of the algebra R. Moreover,

2[a, b]2 = [a, [a, b·2]]− [a, [a, b]] ◦ b = 0.

Since R does not contain nonzero nilpotent ideals, it follows that [a, b] = 0.
Furthermore, observe that [a, x2] = 2[a·x, 1·x] = 4{a, 1} = 4D(a) and [a·x, b·x] =

2{a, b}. Since [a, b] = 0, we get from (5)

2{a, b} = 2D(a) · b− 2D(b) · a+ 1/4 [[a, x], [b, x]],

which yields

< a, b >=
1

8
[[a, x], [b, x]].

Consider 2[a, x]2 = [a, [a, x2]]− [a, [a, x]]◦x. The second summond is zero by (6), and
the first one is equal to 4[a,D(a)] = 0. Hence [a, x]2 = 0 and [a, x][b, x]+[b, x][a, x] = 0.
Now by (6) again,

16 < a, b >2= [[[a, x]2, [b, x]], [b, x]] − [a, x] ◦ [[[a, x], [b, x]], [b, x]] = 0.

Let I be the ideal generated in J0 by all the elements < a, b >; a, b ∈ Γ0. Since
the algebra Γ is finitely generated it implies that the even part Γ0 is also finitely
generated. Let Γ0 =< a1, . . . , am >. Then the ideal I is generated (as an ideal) by
elements < ai, aj >, 1 ≤ i < j ≤ m.

If Γ = Γ0 then J0 = Γ0. If Γ = Γ0 + Γ0ξ, {ξ, ξ} = −1, then J0 = Γ0 + Γ0ξx,
(ξx) · (ξx) = 1. In the latter case J0 ' Γ0 ⊕ Γ0. In both cases J0 is an associative
commutative algebra. This implies that the ideal I is nilpotent.
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For elements a, b, c ∈ Γ0 consider

< a, b >c= (a · cx) · (b · cx)− ((a · cx) · cx) · b+ a · ((b · cx) · cx)

= {ac, bc} − {ac, c}b+ a{bc, c} =< a, b > c2 ∈ I.

Since Γ0 and Γ0x are invariant under D(Γ0x,Γ0x) this implies that the ideal I is
invariant under D(Γ0x,Γ0x).

If Γ = Γ0 then ID(J1, J1) ⊆ I. In the case Γ = Γ0 + Γ0ξ we have D(J1, J1) =
D(Γ0x,Γ0x) +D(Γ0x,Γ0ξ) +D(Γ0ξ,Γ0ξ).

From Γ0D(Γ0ξ,Γ0ξ) = Γ0D(Γ0x,Γ0ξ) = (0) it follows that ID(J1, J1) ⊆ I.

By Proposition 2.1 we have I = (0), that is,

{a, b} = D(a)b− aD(b)

for arbitrary elements a, b ∈ Γ0.

Now suppose that the restriction {, }|Γ0 is of vector type. If Γ = Γ0 then speciality
of J(Γ, {, }) follows from the results of [M], [S1].

Let Γ = Γ0 +Γ0ξ, {Γ0, ξ} = (0), {ξ, ξ} = −1. Denote D = R(x)2. In this case the
superalgebra J(Γ, {, }) is embeddable into the Cheng-Kac superalgebra CK(Γ0, D)
(see below), which is special by Proposition 3.1 (also below). Proposition is proved.

3 Cheng-Kac Superalgebras

Recall the definition of Cheng-Kac Jordan superalgebras (see [MZ]). Let Z be an
associative commutative algebra with a derivation D : Z → Z.

Let A = Z +
∑3

i=1 Zwi, M = xZ +
∑3

i=1 xiZ be two free Z-modules of rank 4.
The multiplication on A is Z-linear, wiwj = 0 for i 6= j, w2

1 = w2
2 = 1, w2

3 = −1.
Denote xi×i = 0, x1×2 = −x2×1 = x3, x1×3 = −x3×1 = x2, −x2×3 = x3×2 = x1.
The bimodule structure A×M →M is defined via

g wjg

xf x(fg) xj(fg
d)

xif xi(fg) xi×j(fg)

The bracket on M is defined via
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xg xjg

xf fdg − fgd −wj(fg)

xif wi(fg) 0

In [MZ] it was proved that the superalgebra CK(Z,D) = A+M is Jordan.

If Γ = Γ0 + Γ0ξ, {Γ0, ξ} = (0), {ξ, ξ} = −1, D(a) = {a, 1}, then the Kantor
double superalgebra J = J(Γ, {, }) is generated by Γ0 and the elements w1 = ξx, x
with w2

1 = 1. Clearly, J is embeddable into CK(Γ0, D).

Proposition 3.1 A Cheng-Kac Jordan superalgebra CK(Z,D) is special.

Proof: LetW denote the algebra of differential operators on Z, that is, the algebra
of linear transformations on Z generated by all right multiplications R(a), a ∈ Z, and
by the derivation D. Consider the algebra R = M4(W ) of 4×4 matrices over W with
the Z/2Z-gradation

R0 =


W 0 W 0
0 W 0 W
W 0 W 0
0 W 0 W

, R1 =


0 W 0 W
W 0 W 0
0 W 0 W
W 0 W 0

.

Our embedding of the superalgebra CK(Z,D) will extend the King-McCrimmon
embedding of the Kantor double of the vector type bracket {a, b} = D(a)b − aD(b)
into M2(W ) (see [KM]).

For an element a ∈ Z let

ϕ(a) =


a 0 0 0
0 a 0 0
0 0 a 0
0 0 0 a

, ϕ(w1) =


−1 0 0 0

0 −1 0 0
0 0 1 0
0 0 0 1

,
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ϕ(w2) =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

, ϕ(w3) =


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

,

ϕ(x) =


0 0 0 2D
0 0 −1 0
0 −2D 0 0
1 0 0 0

, ϕ(x1) =


0 0 0 −1
0 0 0 0
0 −1 0 0
0 0 0 0

,

ϕ(x2) =


0 −1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

, ϕ(x3) =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

.

A straightforward computation shows that ϕ extends to a homomorphism. Propo-
sition is proved.

Corollary 3.1 The Cheng-Kac Lie superalgebra (see [CK]) embedds into a su-
peralgebra of 8× 8 matrices over the Weyl algebra < t−1, t, d

dt
>.
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