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Abstract. In this paper strongly prime Banach-Lie algebras with
extremal elements are described in a way similar to that of the clas-
sical Banach-Lie algebras of compact operators on Hilbert spaces.

1. Introduction

A finite-dimensional Lie algebra L over an algebraically closed field

F of characteristic 0 is semisimple if and only if it is non-degenerate,

[x, [x, L]] = 0 implies x = 0 for all x in L, and linearly spanned by

its extremal elements, i.e., elements e in L such that [e, [e, L]] = Fe.

Similarly, an infinite-dimensional simple Lie algebra over F is finitary,

according to Baranov’s definition [1], if and only if it is non-degenerate

and contains extremal elements [6, Corollary 5.5]. It should be noted

that the notion of extremal element in Lie algebras is similar to those

of rank-one element in associative algebras (eAe = Fe, e 6= 0) and

reduced element in Jordan algebras (UeJ = Fe, e 6= 0) [14].

Banach-Lie algebras of compact operators on infinite-dimensional

complex Hilbert spaces [5], and topologically simple L∗-algebras [4],

are natural examples of prime non-degenerate (here called strongly

prime) Banach-Lie algebras containing extremal elements: any of these

Banach-Lie algebras contains a minimal ideal, its socle, which is a

simple finitary Lie algebra.

In Theorem 7.3 we describe the strongly prime infinite-dimensional

complex Banach-Lie algebras with extremal elements as Lie algebras

of bounded linear operators on Banach spaces (which are self-dual or

form part of a Banach pairing) containing an ideal which is a simple
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finitary Lie algebra. This result could be regarded as a Lie version of

those given in [3, Section 31, Theorem 6] for primitive Banach algebras

with minimal one-sided ideals, and in [15, Theorem 1.1] for prime non-

degenerate Jordan-Banach algebras with nonzero socle. In fact, we

must give an special credit to this last paper, where we have found

inspiration for some of the arguments used in the proof of our main

result. Finally, we show that via conjugations and anti-conjugations,

Banach-Lie algebras of compact operators on Hilbert spaces can be also

modelled in terms of Banach pairings and self-dual Banach spaces.

2. Preliminaries

2.1. Throughout this section we will be dealing with Lie algebras L,

with [x, y] denoting the Lie bracket and adx the adjoint map determined

by x, over a field F of characteristic 0 [13].

2.2. An element x ∈ L is an absolute zero divisor if ad2
x = 0; L is

non-degenerate if it has no nonzero absolute zero divisors, semiprime

if [I, I] = 0 implies I = 0, and prime if [I, J ] = 0 implies I = 0 or

J = 0, for any ideals I, J of L. A Lie algebra is strongly prime if it is

prime and non-degenerate, and simple if it is nonabelian and contains

no proper ideals.

2.3. Every ideal of a non-degenerate (strongly prime) Lie algebra is

non-degenerate (strongly prime) [16, Lemma 4] and [10, (0.4), (1.5)].

2.4. The annihilator or centralizer of a subset S of L is the set AnnL S

consisting of the elements x ∈ L such that [x, S] = 0. By the Jacobi

identity, AnnL S is a subalgebra of L and an ideal whenever S is so.

Clearly, AnnL L = Z(L), the center of L. If L is semiprime, then

I∩AnnL I = 0 for any ideal I of L. The annihilator of a non-degenerate

ideal I of L has the following quadratic expression: AnnL I = {a ∈
L | [a, [a, I]] = 0} [7, (2.5)].

Lemma 2.5. Let L be a Lie algebra containing a nonabelian minimal

ideal M . Then L is strongly prime if and only if [a, [M,a]] 6= 0 for any

nonzero a ∈ L.
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Proof. Suppose that L is strongly prime and that [a, [M, a]] = 0 for

some a ∈ L. Then a ∈ AnnL M = 0 by 2.4. Suppose conversely that

[a, [M, a]] 6= 0 for any nonzero a ∈ L. Then L is non-degenerate, and

since M is minimal, for any ideal I of L either M ⊂ I or M ∩ I = 0;

but M ∩ I = 0 implies [x, [M,x]] = 0 for any x ∈ I and hence I = 0

by hypothesis, so M ⊂ I for any nonzero ideal I of L, which clearly

implies that L is prime since M is not abelian. ¤

2.6. An inner ideal of a Lie algebra L is a subspace B of L such that

[B, [B,L]] ⊂ B [2]. An abelian inner ideal is an inner ideal which is

also an abelian subalgebra. An element x ∈ L is said to be extremal if

it generates a one-dimensional inner ideal, that is, ad2
x L = Fx.

2.7. The socle of a non-degenerate Lie algebra L is defined as the

sum of all minimal inner ideals of L. By [6, Theorem 2.5], Soc L is an

ideal of L and a direct sum Soc L =
⊕

α Mα of simple ideals Mα of L.

Furthermore each simple component Mα of Soc L is either inner simple

or contains an abelian minimal inner ideal [2, Theorem 1.12].

2.8. An element x in L is called a Jordan element if ad3
x = 0. Clearly,

any element of an abelian inner ideal is a Jordan element. Con-

versely, by [2, (1.8)], any Jordan element b yields the abelian inner

ideal [b, [b, L]]. A good reason for this terminology is the following

analogue of the fundamental identity for Jordan algebras:

ad2
ad2

x y = ad2
x ad2

y ad2
x

for any y ∈ L. Another reason is given in the next proposition [9,

Theorem 2.4].

Proposition 2.9. Let a ∈ L be a Jordan element. Then L with the

new product defined by x ·a y := 1
2
[[x, a], y] is a nonassociative algebra

denoted by L(a), such that

(i) KerL a := {x ∈ L|[a, [a, x]] = 0} is an ideal of L(a).

(ii) La := L(a)/ KerL a is a Jordan algebra, called the Jordan alge-

bra of L at a.

2.10. Let L be a complex Lie algebra. By an algebra-norm of L we

mean any norm || · || on the complex vector space L making continuous
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the bracket product, i.e., there exists a positive number k such that

||[x, y]|| ≤ k||x||||y|| for all x, y ∈ L. A normed Lie algebra is a complex

Lie algebra L endowed with an algebra norm. If the norm is complete,

then L is called a Banach-Lie algebra.

3. Lie algebras with extremal elements

All the vector spaces considered in this section are infinite-dimensional

over an algebraically closed field F of characteristic 0.

3.1. Let (X,Y, 〈·, ·〉) be a pair of dual vectors spaces over F, i.e., X,Y

are vector spaces over F, and 〈·, ·〉 : X × Y → F is a non-degenerate

bilinear form. (Note that any vector space X gives rise to the canon-

ical pair (X, X∗), where X∗ is the dual of X.) We associate with

(X,Y, 〈·, ·〉) the following algebras:

(i) The associative algebra LY (X) of all the linear operators a :

X → X having a (unique) adjoint a# : Y → Y , i.e., 〈ax, y〉 =

〈x, a#y〉 for all x ∈ X, y ∈ Y . Note that LX∗(X) = End X.

(ii) The ideal FY (X) of all linear operators a ∈ LY (X) having finite

rank.

(iii) The general linear algebra glY (X) := LY (X)(−).

(iv) The finitary linear algebra fglY (X) := FY (X)(−).

(v) The special linear algebra fslY (X) := [fglY (X), fglY (X)]. Clearly,

fglY (X) and fslY (X) are ideals of glY (X).

In the case that X coincides with Y , we will write gl(X, 〈·, ·〉),
fgl(X, 〈·, ·〉) and fsl(X, 〈·, ·〉) instead of glX(X), fglX(X) and fslX(X).

3.2. Given x ∈ X and y ∈ Y , let y∗x denote the linear operator

defined by y∗x(x′) = 〈x′, y〉x, for all x′ ∈ X. It is easy to see that

y∗x ∈ FY (X), with adjoint x∗y. Moreover, y∗x ∈ fslY (X) if and only

if 〈x, y〉 = 0 [8, Theorem 1.7].

The following proposition reviews some well-known results on the

structure of the three Lie algebras listed above. Nevertheless, we pro-

vide an elementary proof for the sake of completeness and to present

some arguments which will be frequently used in what follows.
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Proposition 3.3. Assume that (X,Y, 〈·, ·〉) is an infinite-dimensional

pair of dual vector spaces over F. Then

(i) fslY (X) is an infinite-dimensional centroid-simple Lie algebra

over F.
(ii) If L is a subalgebra of glY (X) containing fslY (X), then L has

extremal elements and Z(L) is either 0 or F IdX .

(iii) If further L ∩ F IdX = 0, then L is strongly prime.

Proof. (i) See [1, Proposition 6.1].

(ii) If a ∈ L is not a multiple of the identity map on X, then there

exists x ∈ X such that the vectors x and ax are linearly independent.

Take y ∈ Y such that 〈x, y〉 = 0 and 〈ax, y〉 = 1. Then y∗x ∈ fslY (X) ⊂
L and [a, y∗x] = y∗ax− (a#y)∗x 6= 0, so a is not a central element. We

also note that b = y∗x is an extremal element of L [7, Proposition

6.4(i].

(iii) Since fslY (X) is a simple ideal of L, to prove that L is strongly

prime it suffices to show by 2.5 that for any a ∈ glY (X) which is

not a multiple of the identity, [[a, fslY (X)], a] 6= 0. Take x ∈ X such

that x and ax are linearly independent, and let y ∈ Y be such that

〈x, y〉 = 0 and 〈ax, y〉 = 1. Then the vectors y and a#y are also linearly

independent; otherwise, a#y = αy would imply 〈ax, y〉 = 〈x, a#y〉 =

〈x, αy〉 = 0, which is a contradiction. Put b := y∗x. Since 〈x, y〉 = 0,

b ∈ fslY (X). Moreover, [[a, b], a] = 2aba − a2b − ba2 = 2a(y∗x)a −
a2(y∗x)− (y∗x)a2 = 2(a#y)∗ax− y∗a2x− (a2#

y)∗x. Take x′ ∈ X such

that 〈x′, y〉 = 0 and 〈x′, a#y〉 = 1 (which is possible because y and a#y

are linearly independent) and compute its image under the operator

[[a, b], a]. We get [[a, b], a]x′ = 2ax − 〈x′, a2#
y〉x 6= 0, since x and ax

are linearly independent. ¤

3.4. Let X be a vector space over F endowed with a non-degenerate

symmetric (respectively, alternate) bilinear form 〈·, ·〉. Then (X, X, 〈·, ·〉)
is a pair of dual vector spaces and the adjoint becomes an involution,

denoted by ∗, in the associative algebra L(X) := LX(X), making the

ideal F(X) ∗-invariant. Associated with the self-dual vector space X

we have the following Lie algebras:
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(i) The orthogonal algebra o(X, 〈·, ·〉) := Skew(L(X), ∗) if 〈·, ·〉 is

symmetric. Respectively, the symplectic algebra sp(X, 〈·, ·〉) :=

Skew(L(X), ∗) if 〈·, ·〉 is alternate.

(ii) The finitary orthogonal algebra fo(X, 〈·, ·〉) := Skew(F(X), ∗) =

[Skew(F(X), ∗), Skew(F(X), ∗)] if 〈·, ·〉 is symmetric. Respec-

tively, the finitary symplectic algebra fsp(X, 〈·, ·〉) := Skew(F(X), ∗) =

[Skew(F(X), ∗), Skew(F(X), ∗)], if 〈·, ·〉 is alternate.

3.5. If 〈·, ·〉 is symmetric, then for any x, y ∈ X the linear operator

[x, y] := x∗y − y∗x belongs to fo(X, 〈·, ·〉). In fact, these operators

linearly span fo(X, 〈·, ·〉). If 〈·, ·〉 is alternate, then fsp(X, 〈·, ·〉) is the

linear span of the operators x∗x.

3.6. Let 〈·, ·〉 be symmetric or alternate. For a hyperbolic pair we mean

a pair (x, y) of isotropic vectors of X such that 〈x, y〉 = 1. A hyperbolic

plane is any 2-dimensional subspace of X having a basis consisting of a

hyperbolic pair. Since F is algebraic closed, a 2-dimensional subspace

H of X is a hyperbolic plane if and only if it is non-degenerate.

Lemma 3.7. Let a ∈ o(X, 〈·, ·〉) be such that any isotropic vector x ∈
X is an eigenvector for a. Then a = 0.

Proof. Let (x1, y1) and (x2, y2) be mutually orthogonal hyperbolic pairs.

Note that axi = λixi implies ayi = −λiyi. Moreover, since both x1 +x2

and x1 + y2 are isotropic, a(x1 + x2) = λ1x1 + λ2x2 implies λ1 = λ2,

and a(x1 + y2) = λ1x1 − λ2y2 implies λ1 = −λ2. Thus λ1 = λ2 = 0.

Hence a = 0, since X is spanned by isotropic vectors. ¤
The following two propositions are the analogues of 3.3 for Lie alge-

bras of linear operators of the orthogonal and the symplectic types. As

in the case of 3.3, we provide elementary proofs of these results.

Proposition 3.8. Let (X, 〈·, ·〉) be an infinite-dimensional self-dual

vector space with symmetric inner product. Then (i) fo(X, 〈·, ·〉) is

an infinite-dimensional centroid-simple Lie algebra over F. (ii) Any

subalgebra L of o(X, 〈·, ·〉) containing fo(X, 〈·, ·〉) is strongly prime and

has extremal elements.

Proof. (i) See [1, Proposition 6.4]. (ii) Since fo(X, 〈·, ·〉) is a simple ideal

of L, to prove that L is strongly prime it suffices to show by 2.5 that for
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any nonzero a ∈ o(X, 〈·, ·〉), [[a, fo(X, 〈·, ·〉)], a] 6= 0. By 3.7, there exists

an isotropic vector x ∈ X such that x and ax are linearly independent.

Let z ∈ X be such that 〈x, z〉 = 1 and 〈ax, z〉 = 0. Then H := Fx+Fz

is a hyperbolic plane, and since 〈ax, x〉 = 0, ax ∈ H⊥. Thus the vectors

x, z and ax are linearly independent. Take y ∈ X such that y ∈ H⊥ and

〈y, ax〉 = 1, and put b := [x, y] = x∗y − y∗x. Then b ∈ fo(X, 〈·, ·〉) ⊂ L

and [[a, b], a] = 2a(x∗y − y∗x)a − a2(x∗y − y∗x) − (x∗y − y∗x)a2 =

−2(ax)∗ay + 2(ay)∗ax − x∗a2y + y∗a2x − (a2x)∗y + (a2y)∗x. If ax is

isotropic, then [[a, b], a]x = −2ax+〈x, a2y〉x 6= 0 since the vectors x and

ax are linearly independent. Suppose then that ax is anisotropic. Since

the field F is algebraically closed we may assume that 〈ax, ax〉 = 1.

Taking y = ax we obtain [[a, b], a]x = −2ax− 〈x, a2x〉ax + 〈x, a3x〉x =

−2ax + ax = −ax 6= 0, since 〈x, a3x〉 = −〈ax, a(ax)〉 = 0. Therefore,

in both cases [[a, b], a] 6= 0 as required. Finally, let x, y ∈ X be two

nonzero isotropic and mutually orthogonal vectors. Then it follows

from [7, Proposition 6.4(ii)] that [x, y] is an extremal element of L. ¤

Proposition 3.9. Let (X, 〈·, ·〉) be an infinite-dimensional self-dual

vector space with alternate inner product. Then (i) fsp(X, 〈·, ·〉) is an

infinite-dimensional centroid-simple Lie algebra over F. (ii) Any sub-

algebra L of sp(X, 〈·, ·〉) containing fsp(X, 〈·, ·〉) is strongly prime and

has extremal elements.

Proof. (i) See [1, Proposition 6.4]. (ii) Since fsp(X, 〈·, ·〉) is a simple

ideal of L, to prove that L is strongly prime it suffices to show by 2.5

that for any nonzero a ∈ sp(X, 〈·, ·〉), [[a, fsp(X, 〈·, ·〉)], a] 6= 0. Let a

be a nonzero element of L. Then a is not a multiple of the identity,

so there exists x ∈ X such that x and ax are linearly independent.

Let y ∈ X be such that 〈x, y〉 = 0 and 〈ax, y〉 = 1, and put b := x∗x.

Then b ∈ fsp(X, 〈·, ·〉) ⊂ L and [[a, b], a] = 2a(x∗x)a− a2x∗x−x∗xa2 =

−2(ax)∗ax− x∗a2x− (a2x)∗x. Hence [[a, b], a]y = 2ax− 〈y, a2x〉x 6= 0,

since x and ax are linearly independent. Finally, it follows from [7,

Proposition 6.4(iii)] that x∗x is an extremal element of L. ¤

Theorem 3.10. Let L be an infinite-dimensional Lie algebra over F.
Then L is strongly prime and contains an extremal element if and only

if it is, up to isomorphism, one of the following:
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(i) fslY (X) ≤ L ≤ glY (X) with L ∩ F IdX = 0, where (X, Y ) is an

infinite-dimensional pair of dual vector spaces over F.
(ii) fo(X, 〈·, ·〉) ≤ L ≤ o(X, 〈·, ·〉), where (X, 〈·, ·〉 is an infinite-

dimensional self-dual vector space over F with symmetric inner

product.

(iii fsp(X, 〈·, ·〉) ≤ L ≤ sp(X, 〈·, ·〉), where (X, 〈·, ·〉 is an infinite-

dimensional self-dual vector space over F with alternate inner

product.

Proof. By 3.3, 3.8 and 3.9, the Lie algebras L listed above are strongly

prime and contain extremal elements. Suppose conversely that L is

an infinite-dimensional strongly prime Lie algebra over F containing

extremal elements. Then we have by [6, Corollary 5.5] that Soc L is a

simple finitary Lie algebra over F. Hence, by Baranov’s classification

[1, Corollary 1.2], Soc L is isomorphic to one the Lie algebras fslY (X),

fo(X, 〈·, ·〉) or fsp(X, 〈·, ·〉). Use now the fact that L ⊂ Der Soc L,

via the adjoint representation, and the computation (see [7, Theorem

6.2]) of the algebra of derivations of each one of the finitary simple Lie

algebras to complete the proof. ¤

Remarks 3.11. The above theorem was proved in [7, Theorem 6.7] by

assuming the existence of Jordan reduced elements, a more restrictive

notion of that of extremal element and that requieres the existence of

a nontrivial 3-grading.

4. Banach-Lie algebras of special type

4.1. Following [3], a Banach pairing is a pair of dual vector spaces

(X,Y, 〈·, ·〉) over C such that both X and Y are endowed with pre-

fixed complete norms making the bilinear form 〈·, ·〉 continuous. As

a consequence of the closed graph theorem, every a ∈ LY (X) is a

norm-continuous operator on X, so LY (X) is a subalgebra of the Ba-

nach (associative) algebra BL(X) of all bounded linear operators on

X. Although LY (X) needs not be complete for the operator norm, it

has a natural structure of Banach algebra under the norm | · |′ defined

by |a|′ = max{|a|, |a#|}, where | · | denotes the operator norm. As a

consequence, we have



BANACH-LIE ALGEBRAS WITH EXTREMAL ELEMENTS 9

Proposition 4.2. Let (X, Y, < ., . >) be a Banach pairing. Then

glY (X) is a Banach-Lie algebra for the norm defined by |a|′ = max{|a|, |a#|},
with | · | denoting the operator norm.

A similar result to the statement of the next proposition was proved

in [15, Case 1 or Proposition 2.1] for Jordan-Banach algebras. In fact,

the proof we give here follows the pattern of that for the Jordan case.

Proposition 4.3. Let (X, Y, < ., . >) be an infinite-dimensional pair

of dual vector spaces over C, and let L be a Lie algebra such that

fslY (X) ≤ L ≤ glY (X) and L ∩ C IdX = 0.

Suppose further that L is a Banach-Lie algebra for a norm || · ||. Then

(X,Y,< ., . >) can be endowed with a Banach pairing structure making

the injection of (L, || · ||) into (glY (X), | · |′) continuous.

Proof. Let x ∈ X and y ∈ Y be such that 〈x, y〉 = 0, and let a ∈ L.

Then y∗x ∈ fslY (X) ⊂ L and we have

[[y∗x, a], y∗x] = 2〈ax, y〉y∗x, and hence |〈ax, y〉| ≤ k||y∗x||||a||, (1)

for some positive number k. Indeed, since (y∗x)(y∗x) = 〈x, y〉y∗x = 0,

we have [[y∗x, a], y∗x] = 2(y∗x)a(y∗x) = 2(y∗x)(y∗ax) = 2〈ax, y〉y∗x.

Given x0 ∈ X and y0 ∈ Y such that 〈x0, y0〉 = 1, we have

X = Cx0⊕{y0}⊥, {x0}⊥⊥ = Cx0, Y = Cy0⊕{x0}⊥ and {y0}⊥⊥ = Cy0.

(2)

From now on fix x0 ∈ X and y0 ∈ Y as above, and let π : X → {y0}⊥
be the projection of X onto {y0}⊥ along Cx0, i.e., π(αx0 + x1) = x1,

for all α ∈ C and x1 ∈ {y0}⊥. Let ϕ : L → {y0}⊥ be the mapping

defined by ϕ(a) = π(ax0) for all a ∈ L. Then

ϕ is onto and Ker(ϕ) =
⋂

y1∈{x0}⊥
Ker(ad2

y∗1x0
). (3)

Indeed, given x1 ∈ {y0}⊥, take a = y∗0x1. Since < x1, y0 >= 0, a ∈
fsl(X) ⊂ L and satisfies ϕ(a) = π(ax0) = π(< x0, y0 > x1) = π(x1) =

x1 by the definition of π, which proves that ϕ is onto. The equality



10 ANTONIO FERNÁNDEZ LÓPEZ

relative to Ker(ϕ) follows from the following chain of equivalences, for

any a ∈ L, obtained by using (1) and (2):

ϕ(a) = 0 ⇔ ax0 ∈ Cx0 = {x0}⊥⊥ ⇔ a ∈
⋂

y1∈{x0}⊥
Ker(ad2

y∗1x0
).

Since the operators ad2
b are continuous for any b ∈ L, it follows from

(3) that Ker(ϕ) is a closed subspace of L, so we can carry over the

complete quotient norm of L/ Ker(ϕ) to {y0}⊥ to define a complete

norm on the subspace {y0}⊥

p(x1) := inf{||a|| : a ∈ L and π(ax0) = x1}, (4)

for all x1 ∈ {y0}⊥. Since X = Cx0 ⊕ {y0}⊥ by (2), we can extend the

norm p to a complete norm, also denoted by p, on the whole X

p(αx0 + x1) := |α|+ p(x1), for all α ∈ C and x1 ∈ {y0}⊥. (5)

Since the adjoint involution defines an isomorphism of glY (X) onto

glX(Y ), we can consider the Banach-Lie algebra L# with norm ||a#|| :=
||a|| for any a ∈ L. Then we obtain as above a complete norm q on Y

given by

q(βy0 + y1) := |β|+ q(y1), (6)

for all β ∈ C and y1 ∈ {x0}⊥, where q(y1) = inf{||b|| : b ∈ L and ρ(b#y0) =

y1}, with ρ(βy0 + y1) = y1 being the projection of Y = Cy0 ⊕ {x0}⊥
onto {x0}⊥.

The bilinear form 〈·, ·〉 : X × Y → C is continuous for the norms p

and q defined above. Since both (X, p) and (Y, q) are Banach spaces, it

suffices to show that 〈·, ·〉 is separately continuous. Fix y ∈ Y and let

x be any vector of X. By (2), y = βy0 + y1 and x = αx0 + x1, where

α, β ∈ C, y1 ∈ {x0}⊥ and x1 ∈ {y0}⊥. By (3), there exists a ∈ L such

that π(ax0) = x1. Thus 〈x, y〉 = αβ + 〈x1, y1〉 = αβ + 〈ax0, y1〉. Taking

modules on both sides of this equation and using (1) we get

|〈x, y〉| ≤ |α||β|+ |〈ax0, y1〉| ≤ |α||β|+ k||y∗1x0||||a||
for some positive number k. Then taking the infimum over all a ∈ L

such that π(ax0) = x1 we obtain

|〈x, y〉| ≤ |α||β|+ k||y∗1x0||p(x1) ≤ max{|β|, k||y∗1x0||}p(x),
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which proves that fixed y ∈ Y the linear form x 7→ 〈x, y〉 is continuous.

Dually, fixed x ∈ X, the linear form y 7→ 〈x, y〉 is continuous.

Let us finally see that the injection of (L, || · ||) into (glY (X), | · |′)
is continuous. By the closed-graph theorem, we need only show that

if {an} → 0 in (L, || · ||) and {an} → a in glY (X), | · |′)), then a = 0.

Fix a nonzero vector x ∈ X and let y ∈ {x}⊥. Then the inequality

|〈anx, y〉| ≤ k||y∗x||||an|| implies {〈anx, y〉} → 0. On the other hand,

since {an} → a with respect to the operator norm, {anx} → ax in

(X, p). Hence {〈anx, y〉} → 〈ax, y〉 by the continuity of the bilinear

form just proved. Therefore 〈ax, y〉 = 0 for all y ∈ {x}⊥, so ax ∈
{x}⊥⊥ = Cx. Since x is any nonzero vector of X, this proves that a is

a multiple of the identity on X, so a ∈ L∩C IdX = 0, which completes

the proof. ¤

5. Banach-Lie algebras of orthogonal type

5.1. A Banach pairing (X,Y, 〈·, ·〉) with X = Y is called a self-dual

Banach space and is denoted by (X, 〈·, ·〉). Note that in our definition

of self-dual Banach space, 〈·, ·〉 is assumed to be bilinear, while in other

contexts [3, Definition 36.3], 〈·, ·〉 is assumed to be sesquilinear.

Proposition 5.2. Let (X, , 〈·, ·〉) be an infinite-dimensional self-dual

complex vector space with respect to a symmetric bilinear form, and let

L be a Lie algebra such that fo(X, 〈·, ·〉) ≤ L ≤ o(X, 〈·, ·〉). Suppose

further that L is a Banach-Lie algebra for a norm || · ||. Then X can

be equipped with a complete norm making the bilinear form 〈·, ·〉 and

the injection of (L, || · ||) into (o(X, 〈·, ·〉), | · |) continuous.

Proof. Recall that for any x, y ∈ X, [x, y] = x∗y − y∗x ∈ fo(X, 〈·, ·〉).
Moreover, [x, y] = 0 if and only if x, y are linearly dependent.

Let x ∈ X be a nonzero isotropic vector and let H be a hyperbolic

plane of X containing x. By [8, (12)], for any a ∈ o(X, 〈·, ·〉) and any

isotropic vector z ∈ H⊥,

ad2
[x,z] a = 2〈ax, z〉[x, z], and hence |〈ax, z〉| ≤ k||[x, z]||||a|| (7)
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for some positive constant k. Let x, a and H be as above, and denote

by Iso(H⊥) the set of all the isotropic vectors of H⊥. We have

a ∈
⋂

z∈Iso(H⊥)

Ker(ad2
[x,z]) ⇔ ax ∈ Cx. (8)

Indeed, it follows from (7) that a ∈ Ker(ad2
[x,z]) for all z ∈ Iso(H⊥) if

and only if ax is orthogonal to any z ∈ Iso(H⊥), equivalently, if and

only if ax ∈ H⊥⊥ = H, since any vector of H⊥ is a sum of isotropic

vectors. Now ax = αx + βy, together with 〈ax, x〉 = 0 and 〈x, y〉 = 1,

implies ax ∈ Cx; the reverse implication is clear.

Fix a hyperbolic plane H of X and a hyperbolic basis (x, y) of H.

Since 〈x, y〉 = 1, X = Cx ⊕ {y}⊥ by (2), so we can consider the

corresponding projection π : X → {y}⊥. Define ϕ : L → {y}⊥ by

ϕ(a) = π(ax) for all a ∈ L. Then

Ker(ϕ) =
⋂

z∈Iso(H⊥)

Ker(ad2
[x,z]) and Im(ϕ) = H⊥. (9)

By (8), ϕ(a) = 0 ⇔ ax ∈ Cx ⇔ a ∈ ⋂
z∈Iso(H⊥) Ker(ad2

[x,z]). On the

other hand, given z ∈ H⊥, take a = [y, z]. Then a ∈ fo(X, 〈·, ·〉) ⊂ L

and it satisfies ax = (y∗z)x−(z∗y)x = 〈x, y〉z−〈x, z〉y = z. Conversely,

since 〈ax, x〉 = 0 for any a ∈ o(X, 〈·, ·〉), ax ∈ {x}⊥ = Cx + H⊥, and

hence π(ax) ∈ H⊥.

Since the operators ad2
b are continuous for any b ∈ L, it follows from

(9) that Ker(ϕ) is a closed subspace of L, so we can carry over the

complete quotient norm of L/ Ker(ϕ) to H⊥, i.e, we define a complete

norm on the subspace H⊥ by

p(z) := inf{||a|| : a ∈ L and π(ax) = z}, (10)

for all z ∈ H⊥. We extend p to a complete norm, also denoted by p, of

the whole X = H ⊕H⊥as follows

p(h + z) :=
√

q(h)2 + p(z)2, (11)

for all h = αx + βy ∈ H and z ∈ H⊥, where q(h) = max{|α|, |β|}.
Let us now show that the symmetric bilinear form 〈·, ·〉 : X×X → C

is continuous for the norm p. Since the sum X = H⊕H⊥ is orthogonal

and H is finite-dimensional, we need only see that the restriction of
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〈·, ·〉 to H⊥ × H⊥ is continuous. Moreover, since H⊥ is a Banach

space, it suffices to show that it is separately continuous. Fix a nonzero

vector v ∈ H⊥ and let ṽ denote the linear form z 7→ 〈z, v〉, z ∈ H⊥.

Since ϕ is onto by (9), for any z ∈ H⊥ there exists a ∈ L such that

π(ax) = z. Suppose first that v is isotropic. Then we have by (7)

that |〈ax, z〉| ≤ k||[x, z]||||a||. Taking the infimum over all a ∈ L such

that π(ax) = z we obtain |〈z, v〉| ≤ k||[x, z]||p(z), which proves the

continuity of the mapping ṽ when v is isotropic. The general case of

an arbitrary v ∈ H⊥ reduces to the previous isotropic one taking into

account that any v ∈ H⊥ is a sum of isotropic vectors of H⊥.

Let us finally see that the injection of (L, || · ||) into (o(X, 〈·, ·〉), | · |)
is continuous. Assume that {an} converges to 0 with respect to || · ||,
and to some a ∈ o(X, 〈·, ·〉) with respect to the operator norm | · |.
By the closed-graph theorem, we need only show that a = 0, which

in virtue of 3.7 is equivalent to verify that any isotropic vector is an

eigenvector for a. Fix a nonzero isotropic vector u ∈ X, let H be a

hyperbolic plane containing u, and let z be an arbitrary isotropic vector

of H⊥. By (7), |〈au, z〉| ≤ k||[u, z]||||a|| for some positive constant k.

Then {an} → 0 in (L, || · ||) yields 〈anu, z〉 → 0. Hence 〈au, z〉 = 0 by

the continuity of the bilinear form 〈·, ·〉 and the convergence of {an}
to a in (o(X, 〈·, ·〉), | · |). Since any vector of H⊥ is a sum of isotropic

vectors, we have actually proved that au ∈ H⊥⊥ = H, and since also

〈au, u〉 = 0, au ∈ H ∩ {u}⊥ = Cu, as required. ¤

6. Banach-Lie algebras of symplectic type

Proposition 6.1. Let (X, , 〈·, ·〉) be an infinite-dimensional self-dual

complex vector space with respect to an alternate bilinear form, and let

L be a Lie algebra such that fsp(X, 〈·, ·〉) ≤ L ≤ sp(X, 〈·, ·〉). Suppose

further that L is a Banach-Lie algebra for a norm || · ||. Then X can

be equipped with a complete norm making the bilinear form 〈·, ·〉 and

the injection of (L, || · ||) into (sp, 〈·, ·〉(X), | · |) continuous.

Proof. For x, y ∈ X, set [x, y] := x∗y + y∗x. Since (x∗y)∗ = −y∗x,

[x, y] ∈ fsp(X, 〈·, ·〉). In particular, x∗x = 1
2
[x, x] ∈ fsp(X, 〈·, ·〉) for all

x ∈ X.
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Let x, z ∈ X be orthogonal and a ∈ sp(X, 〈·, ·〉). Then

1

2
ad2

[x,z] a = 〈z, ax〉[x, z] + 〈z, az〉x∗x + 〈x, ax〉z∗z. (12)

Set b = [x, z]. Since any vector of X is isotropic and since x, z are

orthogonal, b2 = 0. Hence

1

2
ad2

b a = −bab = −b(x∗az + z∗ax) = −x∗(baz)− z∗(bax).

Since ba = (x∗z+z∗x)a = −(ax)∗z−(az)∗x, baz = −〈z, ax〉z−〈z, az〉x
and bax = −〈x, ax〉z−〈x, az〉x. Thus 1

2
ad2

b a = 〈z, ax〉x∗z+〈z, az〉x∗x+

〈x, ax〉z∗z+〈x, az〉z∗x = 〈z, ax〉[x, z]+〈z, az〉x∗x+〈x, ax〉z∗z, as claimed.

In particular, for any x ∈ X and a ∈ sp(X, 〈·, ·〉), we have

ad2
x∗x a = 2〈x, ax〉x∗x. (13)

Let H be a hyperbolic plane of X and x a nonzero vector in H. For

any z ∈ H⊥, let ξz denote the linear operator ad2
[x,z] : L → L. Then for

a ∈ L, we have

ax ∈ Cx ⇔ a ∈
⋂

z∈H⊥

ξ−1
z (Cx∗x). (14)

By (12), a ∈ ξ−1
z (Cx∗x) for any z ∈ H⊥ if and only if ax ∈ H⊥⊥ ∩

{x}⊥ = H ∩ {x}⊥ = Cx, as required.

Fix a hyperbolic plane H of X and a hyperbolic basis (x, y) of H.

Since 〈x, y〉 = 1, X = Cx ⊕ {y}⊥ by (2), so we can consider the

corresponding projection π : X → {y}⊥. As in (3), define ϕ : L →
{y}⊥ by ϕ(a) = π(ax) for all a ∈ L. Then

Ker(ϕ) =
⋂

z∈H⊥

ξ−1
z (Cx∗x) and Im(ϕ) = {y}⊥ = Cy ⊕H⊥. (15)

By (14), π(ax) = 0 ⇔ ax ∈ Cx ⇔ a ∈ ⋂
z∈H⊥ ξ−1

z (Cx∗x), which

proves the equality relative to the kernel. On the other hand, since

{y}⊥ = Cy ⊕H⊥, y = y∗y(x) and [y, z](x) = z for any z ∈ H⊥ imply

that Im(ϕ) = {y}⊥.

Since the operators ad2
b are continuous for any b ∈ L, and since finite-

dimensional subspaces are closed, it follows from (15) that Ker(ϕ) is a
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closed subspace of L, so we can carry over the complete quotient norm

of L/ Ker(ϕ) to {y}⊥ as follows

p(u) := inf{||a|| : a ∈ L and π(ax) = u}, (16)

for all u ∈ {y}⊥. Since X = Cx⊕{y}⊥ by (2), we can extend the norm

p to a complete norm, also denoted by p, on the whole X

p(αx + u) := |α|+ p(u), for all α ∈ C and u ∈ {y}⊥. (17)

Let us now show that the alternate form 〈·, ·〉 is continuous with

respect to the norm p defined in (17). Again it is enough to prove that

for any w ∈ X, the linear form defined by w̃(x′) = 〈w, x′〉 for all x′ ∈ X

is continuous. Since X = Cx⊕ {y}⊥ = Cx⊕ Cy ⊕H⊥, we can divide

the proof into three cases.

Consider first the case that w = x. For any α, β ∈ C and any z ∈ H⊥,

we have x̃(αx+βy+z) = 〈x, αx+βy+z〉 = β. Now by (15) there exist

λ ∈ C and a ∈ L such that ax = λx + βy + z, and hence 〈x, ax〉 = β.

Then it follows from (13) that |β| = |〈x, ax〉| ≤ k||x∗x||||a|| for some

positive number k. Hence

|x̃(αx+βy+z)| = |β| ≤ k||x∗x||p(βy+z) ≤ max{k||x∗x||, 1}p(αx+βy+z),

which proves the continuity of x̃. The case that w = y is straightfor-

ward: for any α ∈ C and for any u ∈ {y}⊥, we have |ỹ(αx + u)| =

|α| ≤ |α|+ p(u) = p(αx+u). The remaining case that w ∈ H⊥ goes as

follows. Since X = Cx + {y}⊥ and w̃|Cx = 0, it suffices to show that

the restriction of w̃ to {y}⊥ is continuous. Let v ∈ {y}⊥ and take by

(15) a in L such that π(ax) = v. Now we have by (12),

1

2
ad2

[x,w] a = 〈w, ax〉[x,w] + 〈w, aw〉x∗x + 〈x, ax〉w∗w.

Then taking norms in the above formula we obtain

|〈w, ax〉|||[x,w]|| ≤ ||1
2

ad2
[x,w] a||+ |〈w, aw〉|||x∗x||+ |〈x, ax〉|||w∗w||,

where by the continuity of the Lie product,

||1
2

ad2
[x,w] a|| ≤ k||[x, w]||2||a||
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for some positive number k, and where by (13) and the above formula,

|〈w, aw〉| ≤ 1

||w∗w|| ||
1

2
ad2

w∗w a|| ≤ k

2
||w∗w||||a||.

Similarly, |〈x, ax〉| ≤ k
2
||x∗x||||a||. Hence

|w̃(v)| = |〈w, π(ax)〉| = |〈w, ax〉| ≤ k(x,w)||a||

for some positive number k(x,w) depending on x and w but inde-

pendent of a, and taking now the infimum over all a ∈ L such that

π(ax) = v we get |w̃(v)| ≤ k(x,w)p(v), which proves the continuity of

w̃.

Let us finally see that the injection of (L, || · ||) into (sp(X, 〈·, ·〉), | · |)
is continuous. Let {an} → 0 in (L|| · ||) and an → a in (sp(X, 〈·, ·〉), | · |),
and fix x ∈ X. It follows from (13) that {〈x, anx〉} → 0, and hence

〈x, ax〉 = 0, by the continuity of the bilinear form and the convergence

of {an} to a with respect to the operator norm |·|. Thus ax is orthogonal

to x for any x ∈ X, which implies a = 0. ¤

7. Banach-Lie algebras with extremal elements

Lemma 7.1. Let L be a Banach-Lie algebra and let a ∈ L be a Jordan

element of L. Then the Jordan algebra La attached to a becomes a

Banach-Jordan algebra for the quotient norm.

Proof. Straightforward. ¤

Lemma 7.2. Let L be a non-degenerate Banach-Lie algebra. Then L

has extremal elements if and only if it contains abelian minimal inner

ideal.

Proof. We need only prove that every abelian minimal inner ideal B of

L is one-dimensional. Take a nonzero element b ∈ B. Then B = ad2
b L

and there exists c ∈ L such that [b, [c, b]] = 2b. Then, by [9, 2.15(ii)], Lb

is a unital Jordan algebra having c as a unity element, with no proper

inner ideals [9, (2.14)]. Hence Lb is a division Jordan algebra. Since

Lb is also a Banach-Jordan algebra by 7.1, Lb = Cc, so B = ad2
b L =

ad2
b Cc = Cb. ¤
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Theorem 7.3. Let (L, || · ||) be an infinite-dimensional Banach-Lie

algebra. Then L is strongly prime and contains extremal elements if

and only if any one of the following statements holds:

(i) There exists an infinite-dimensional Banach pairing (X,Y, 〈·〉)
such that fslY (X) ≤ L ≤ glY (X) and L ∩ C IdX = 0 and the

injection (L, || · ||) into (glY (X), | · |′) is continuous.

(ii) There exists an infinite-dimensional self-dual Banach space (X, 〈·, ·〉)
with respect to a symmetric bilinear form such that fo(X, 〈·, ·〉) ≤
L ≤ o(X, 〈·, ·〉), and the injection of (L, || · ||) into (o(X, 〈·, ·〉), | ·
|) is continuous.

(iii) There exists an infinite-dimensional self-dual Banach space (X, 〈·, ·〉)
with respect to an alternate bilinear form such that fsp(X, 〈·, ·〉) ≤
L ≤ sp(X, 〈·, ·〉), and the injection of (L, ||·||) into (o(X, 〈·, ·〉), |·
|) is continuous.

Proof. By 3.10, each one of the Banach-Lie algebras L listed above is

strongly prime and contains extremal elements. Suppose conversely

that L is an infinite-dimensional strongly prime Banach-Lie algebra

with extremal elements. Then, again by 3.10, L can be represented as a

Lie algebra of either special type (i), orthogonal type (ii), or symplectic

type (iii). Now we apply 4.3, 5.2 and 6.1, respectively. ¤

7.4. A Banach-Lie algebra is said to be topologically simple if it is

not abelian and it does not contain proper closed ideals. Topologically

simple non-degenerate Lie algebras are strongly prime. Natural exam-

ples of topologically simple Banach-Lie algebras containing extremal

elements are fslY (X), fo(X, 〈·, ·〉) and fsp(X, 〈·, ·〉), where in all the

cases overline denotes the norm-operator closure. From 7.3, we obtain

the following partial converse.

Corollary 7.5. Any infinite-dimensional Banach-Lie algebras (L, || ·
||) which is non-degenerate, topologically simple and contains extremal

elements admits one of the following representations:

(i) fslY (X) ≤ (L, || · ||) ≤ (fslY (X), | · |′),
(ii) fo(X, 〈·, ·〉) ≤ (L, || · ||) ≤ ((fo(X, 〈·, ·〉), | · |)
(iii) fsp(X, 〈·, 〉) ≤ (L, || · ||) ≤ ((fsp(X, 〈·, ·〉), | · |)
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where in all the cases the injections are continuous.

Note, however, that the Banach-Lie algebras (L, || · ||) listed in (i),

(ii) and (iii) of are not necessarily topologically simple.

8. Banach-Lie algebras of compact operators on Hilbert

spaces

Let H be an infinite-dimensional complex Hilbert space. Follow-

ing the monograph of P. De La Harpe [5], we denote by gl(H, C∞)

the Banach-Lie algebra of all compact operators on H, by o(H, C∞)

the orthogonal Banach-Lie algebra of compact operators on H, and

by fsp(H, C∞) the symplectic Banach-Lie algebra of compact opera-

tors on H. In this section we show that these Banach-Lie algebras of

compact operators on Hilbert spaces can be described in terms of Ba-

nach pairings and self-dual Banach spaces, via conjugations and anti-

conjugations.

8.1. Let H be a complex Hilbert space with inner product denoted

by (·, ·). A conjugation of H is a conjugate linear isometry which is

also involutive, i.e., a map θ : H → H satisfying (x, θy) = (y, θx) and

θ2x = x for all x, y ∈ H. An anti-conjugation is a map ζ : H → H

satisfying (x, ζy) = −(y, ζx) and ζ2x = −x for all x, y ∈ H. By

[12, (7.5.6)], the existence and uniqueness (up to linear isometries) of

conjugations and anti-conjugations is granted in infinite-dimensional

Hilbert spaces.

Proposition 8.2. Let (H, (·, ·)) be an infinite-dimensional complex

Hilbert space and fix a conjugation θ : H → H. Then.

(i) For all x, y ∈ H, 〈x, y〉 := (x, θy) defines a non-degenerate

symmetric bilinear form which makes H into a self-dual Banach

space with respect to the Hilbert norm.

(ii) gl(H, 〈·, ·〉) coincides with the Banach-Lie algebra of bounded

linear operators BL(H)(−). In fact, a# = θa∗θ for all a ∈
BL(H), where a∗ is the Hilbert adjoint.

(iii) gl(H, C∞) = fgl(H, 〈·, ·〉) = fsl(H, 〈·, ·〉) and therefore it is a

topologically simple non-degenerate Banach-Lie algebra with ex-

tremal elements.
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(iv) o(H, C∞) = fo(H, 〈·, ·〉) and therefore it is a topologically simple

non-degenerate Banach-Lie algebra with extremal elements.

Proof. (i) For any x, y ∈ H, we have 〈x, y〉 = (x, θy) = (y, θx) = 〈y, x〉,
which proves that the bilinear form 〈·, ·〉 is symmetric; the nondegen-

eracy is clear and the continuity follows from the Cauchy-Schwartz

inequality and the fact that θ is an isometry.

(ii) By the closed graph theorem, for a linear operator a on H the

following are equivalent: (1) a ∈ gl(H, 〈·, ·〉), (2) a ∈ BL(H), (3) a has

an adjoint with respect to the Hilbert product. Moreover, in this case,

〈ax, y〉 = (ax, θy) = (x, a∗θy) = (x, θθa∗θy) = 〈x, θa∗θy〉.
(iii) and (iv). By a well-known result of P. R. Halmos [11], gl(H, C∞)

and o(H, C∞) coincide with their derived ideals, and hence with the

closures, with respect to the operator norm, of the special Lie alge-

bra fsl(H, 〈·, ·〉) and the finitary orthogonal algebra fo(H, 〈·, ·〉) respec-

tively, since compact operators on Hilbert spaces are limits of sequences

of finite-rank operators with respect to the norm topology. Then, it

follows from 7.3 and 7.4 that both gl(H, C∞) and o(H, C∞) are topo-

logically simple non-degenerate Banach-Lie algebras with extremal el-

ements. ¤

Proposition 8.3. Let (H, (·, ·)) be an infinite-dimensional complex

Hilbert space and fix an anti-conjugation ζ : H → H. Then

(i) 〈x, y〉 := (x, ζy) for all x, y ∈ H defines a non-degenerate al-

ternate bilinear form which makes H into a self-dual Banach

space with respect to the Hilbert norm.

(ii) fsp(H, C∞) = fsp(H, 〈·, ·〉), and therefore it is a topologically

simple non-degenerate Banach-Lie algebra with extremal ele-

ments.

Proof. It is similar to that of 8.2. ¤
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