A Taste of Jordan Algebras

Kevin McCrimmon

Department of Mathematics
University of Virginia
Charlottesville, Virginia

Dedicated to the memory of Jake and Florie in mathematico parentis
To Jake (the Doktor-Vater) for his mathematical influence on my research, and to Florie (the Doktor-Mutter) for helping me (and all Jake's students) to get to know him as a warm human being. Future histories of mathematics should take into account the role of DoktorMutters in the fostering of mathematics.

1. Introduction

On several occasions I and colleagues have found ourselves teaching a 1 -semester course for students at the second year of graduate study in mathematics who want to gain a general perspective on Jordan algebras, their structure and their role in mathematics, or want to gain direct experience with nonassociative algebra. These students typically have a solid grounding in first-year graduate algebra and the Artin-Wedderburn theory of associative algebras, and a few have been introduced to Lie algebras (perhaps even Cayley algebras, in an offhand way), but otherwise they have not seen any nonassociative algebras. Most of them will not go on to do research in nonassociative algebra, so the course is not primarily meant to be a training or breeding ground for research, though the instructor often hopes one or two will be motivated to pursue the subject further.

This text is meant to serve as an accompaniment to such a course. It is designed first and foremost to be read. It is a direct mathematical conversation between the author and a reader whose mind (as far as nonassociative algebra goes) is a tabula rasa. In keeping with the tone of a private conversation, I give more heuristic material than is common in books at this level (pep talks, philosophical pronouncements on the proper way to think about certain concepts, random historical anecdotes, offhand mention of some mathematicians who have contributed to our understanding of Jordan algebras, etc.), and employ a few English words which do not standardly appear in mathematical works. It is important for the reader to develop a visceral intuitive feeling for the subject, to view the mathematics as a living and active thing: to see isomorphisms as cloning maps, isotopes as subtle rearrangements of an algebra's DNA, radicals as pathogens to be isolated and removed by radical surgery, annihilators as biological agents for killing off elements, Peircers as mathematical enzymes ("Jordan-ase") which break an algebra down into its Peirce spaces. Like Charlie Brown's kite-eating trees, Jordan theory has Zel'manov's tetrad-eating ideals (though we shall stay clear of these carnivores in our book).

The book is intended for students to read on their own without assistance by a teacher. In particular, I have tried to make the proofs complete and understandable, giving much more heuristic and explanatory comment than is usual in graduate texts. To help the reader through the proofs in Parts III, IV (and the proof-sketches in Part II, Chapter 8), I have tried to give each important result or formula a mnemonic label, so that when I refer to an earlier result, instead of saying "by Formula $21.3(i)$, which of course you will remember, ..." I
can say "by Nuclear Slipping 21.3(i)", hoping to trigger long-repressed memories of a formula involving nuclear elements of alternative algebras.

While I wind up doing most of the talking, there is some room in Parts III and IV for the reader to participate (and stay mathematically fit) by doing exercises. The Exercises give slight extensions, or alternate proofs, of results in the text, and are placed immediately after the results; they give practice in proving variations on the previous mathematical theme. At the end of each chapter I gather a few problems and questions. The Problems usually take the form "Prove that something-or-other"; they involve deeper investigations or lengthier digressions than exercises, and develop more extensive proof skills on a new theme. The Questions are more open-ended, taking the form "What can you say about something-or-other" without giving a hint which way the answer goes; they develop proof skills in uncharted territories, in composing a mathematical theme from scratch (most valuable for budding researchers). Hints are given at the back of the book for some of the exercises, problems, and questions (though these should be consulted only after a good-faith effort to prove them).

Part I is in the nature of an extended colloquium talk, a brief survey of the life and times of Jordan algebras, to provide appreciation of the role Jordan algebras play on the broader stage of mathematics. I indicate several applications to other areas of mathematics: Lie algebras, differential geometry, and projective geometry. Since the students at this level cannot be assumed to be familiar with all these areas, the description has to be a bit loose; readers can glean from this partjust enough respect and appreciation to sanction and legitimate their investment in reading further.

Part II is designed to provide an overview of Jordan structure theory in its historical context. It gives a general historical survey from the origins in quantum mechanics in 1934 to Efim Zel'manov's breathtaking description of arbitrary simple algebras in 1983 (which later played a role in his Fields Medal work on the Burnside Problem). I give precise definitions and examples, but omit proofs. In keeping with its nature, I have not included any exercises.

Parts III and IV are designed to provide direct experience with nonassociativity, and either one (in conjunction with Part I) could serve as a basis for a one-semester course. Throughout, I stick to linear Jordan algebras over rings of scalars containing $1 / 2$, but give major emphasis to the quadratic point of view.

Part III gives a development of Jacobson's classical structure theory for Jordan algebras with capacity, in complete detail and with full
proofs. It is suitable for a one-semester course aiming to introduce students to the methods and techniques of nonassociative algebra. The details of Peirce decompositions, Peirce relations, and coordinatization theorems are the key tools leading to the Classical Structure Theorem.

Part IV gives a full treatment of Zel'manov's Exceptional Theorem, that the only simple i-exceptional Jordan algebras are the Albert algebras, closing the historical search for an exceptional setting for quantum mechanics. This part is much more concerned with understanding and translating to the Jordan setting some classical ideas of associative theory, including primitivity; it is suitable for a one-semester course aiming to introduce students to the modern methods of Jordan algebras. The ultrafilter argument, that if primitive systems come in only a finite number of flavors then a prime system must come in one of those pure flavors, is covered in full detail; ultrafilters provide a useful tool that many students at this level are unacquainted with.

I have dedicated the book to Nathan and Florie Jacobson, both of whom passed away during this book's long gestation period. They had an enormous influence on my mathematical development. I am greatly indebted to my colleague Kurt Meyberg, who carefully read through Part III and made many suggestions which vastly improved the exposition. I am also deeply indebeted to my colleague Wilhelm Kaup, who patiently corrected many of my misconceptions about the role of Jordan theory in diferential geometry, improving the exposition in Part I and removing flagrant errors. My colleague John Faulkner helped improve my discussion of applications to projective geometries. I would also like to thank generations of graduate students at Virginia who read and commented upon the text, especially my students Jim Bowling, Bernard Fulgham, Dan King, and Matt Neal.

Index of Notations

General Typographical Conventions

- Rings of scalars (unital, commutative, associative rings) are indicated by capital Greek letters Φ, Ω. Scalars are denoted by lower case Greek letters: $\alpha, \beta, \gamma, \ldots$ Almost all our algebraic systems will be algebras or modules over a fixed ring of scalars Φ, which will almost always contain an element $\frac{1}{2}$.
- Mere sets are indicated by italic capital letters X, Y, Z at the end of the alphabet, index sets also by I, J, S.
- Modules and linear spaces are denoted by italic capital letters: A, B, C, J, V, W, \ldots. The zero subspace will be denoted by boldface $\mathbf{0}$ to distinguish it from the element (operator, vector, or scalar) 0. This signals a subtle and not-too-important distinction between the set $\mathbf{0}=\{0\}$ consisting of a single element zero, and the element itself. The range $f(\mathrm{~A})$ of some function on a set A will always be a set, while the value $f(a)$ will be an element.
- Algebraic systems are denoted by letters in small caps: general linear algebras by A, B, C, ideals by I, J, K. Associative algebras are indicated by D when they appear as coordinates for Jordan algebras. Jordan algebras are indicated by $\mathrm{J}, \mathrm{J}_{i}, \mathrm{~J}^{\prime}$, etc.
- Maps or functions between sets or spaces are denoted by italic lower case letters f, g, h, \ldots, morphisms between algebraic systems often by lower case Greek letters $\varphi, \sigma, \tau, \rho$, sometimes upper case italic letters T, S.
- Functors and functorial constructions are denoted by script capital letters $\mathcal{F}, \mathcal{G}, \mathcal{H}, \mathcal{T}, \ldots$.

Specific Notations

- The identity map on a set X is denoted by $\mathbf{1}_{X}$. The projection of a set on a quotient set is denoted by $\pi: X \rightarrow X / \sim$; the coset or equivalence class of $x \in X$ is denoted by $\pi(x)=\bar{x}=[x]$.
- Cartesian products of sets are denoted $X \times Y$. Module direct sums are indicated by $V \oplus W$. Algebra direct sums, where multiplication as well as addition is performed componentwise, are written $\mathrm{A} \boxplus \mathrm{B}$ to distinguish them from mere module direct sums.
- Subsets are denoted $X \subseteq Y$, with strict inclusion denoted by $X \subset Y$ or $X<Y$; subspaces of linear spaces are denoted $A \leq B$, while kernels (submodules of modules, ideals of algebras) are indicated by $\mathrm{B} \triangleleft \mathrm{A}$. Left, right, and $*$-ideals of algebras are denoted by $\mathrm{I} \triangleleft_{\ell} \mathrm{A}$, $\mathrm{I} \triangleleft_{r} \mathrm{~A}, \mathrm{~B} \stackrel{*}{\triangleleft} \mathrm{~A}$.
- Involutions on algebras are indicated by a star * (though involutions on coordinate algebras of matrix algebras are often denoted $x \rightarrow \bar{x})$. $\mathcal{H}(\mathrm{A}, *)$ denotes the hermitian elements $x^{*}=x$ of an algebra A under an involution $*$.
- Products in algebras are denoted by $x \cdot y$ or just $x y$ (especially for associative products); the special symbol $x \bullet y$ is used for the bilinear product in Jordan algebras. The left and right multiplication operators by an element x in a linear algebra are denoted L_{x}, R_{x} or ℓ_{x}, r_{x} or λ_{x}, ρ_{x}. The quadratic and trilinear products in Jordan algebras are denoted by $U_{x} y$ and $\{x, y, z\}$, with operators $U_{x}, V_{x, y}$ (in Jordan triples $P_{x}, L_{x, y}$, in Jordan pairs $Q_{x}, D_{x, y}$).
- Unit elements of algebras are denoted by 1 . We will speak of a unit element and unital algebras rather than identity element and algebras with identity; we will reserve the term identity for identical relations or laws (such as the Jordan identity or associative law). \widehat{A} will denote the formal unital hull Φ-algebra $\Phi 1 \oplus A$ obtained by formal adjunction of a unit element.
- $n \times n$ matrices and hermitian matrices are denoted \mathcal{M}_{n} and \mathcal{H}_{n}. Matrices are denoted by $X=\left(x_{i j}\right)$; their traces and determinants are denoted by $\operatorname{tr}(X), \operatorname{det}(X)$ respectively, and the transpose is indicated by $X^{t r}$. If the matrix entries come from a ring with involution, the adjoint (the conjugate transpose with $i j$-entry $\overline{x_{j i}}$) is denoted rather anonymously by a star, X^{*}.
- Blackboard bold is used for the standard systems \mathbb{N} (natural numbers $1,2, \ldots$), \mathbb{I} (the even-more-natural numbers $0,1,2, \ldots$ used as indices or cardinals), \mathbb{Z} (the ring of integers), the fields \mathbb{Q} (rational numbers), \mathbb{R} (real numbers), \mathbb{C} (complex numbers), the real division rings \mathbb{H} (Hamilton's quaternions), \mathbb{K} (Cayley's octonions), \mathbb{O} (split octonions), \mathbb{A} (the Albert algebra, a formally-real exceptional Jordan algebra).

Contents

1. Introduction iii
Part I. A Colloquial Survey of Jordan Theory 1
2. Origin of the Species 3
3. The Jordan River 7
4. Links with Lie Algebras and Groups 11
5. Links with Differential Geometry 15
6. Links with the Real World 17
7. Links with the Complex World 24
8. Links with the Infinitely Complex World 27
9. Links with Projective Geometry 30
10. Conclusion 38
Part II. The Historical Perspective: An Historical Survey of Jordan Structure Theory 39
Chapter 1. Jordan Algebras in Physical Antiquity 41
11. The matrix interpretation of quantum mechanics 41
12. The Jordan Program 42
13. The Jordan Operations 42
14. The Jordan Axioms 46
15. The Basic Examples 48
16. Special and Exceptional 51
17. Classification 51
Chapter 2. Jordan Algebras in the Algebraic Renaissance 55
18. Linear Algebras over General Scalars 56
19. Categorical Nonsense 57
20. Commutators and Associators 59
21. Lie and Jordan Algebras 61
22. The 3 Basic Examples Revisited 62
23. Jordan Matrix Algebras 63
24. Forms Permitting Composition 65
25. Composition Algebras 68
26. Split Composition Algebras 70
27. Classification 72
Chapter 3. Jordan Algebras in the Enlightenment 75
28. Forms of Algebras 75
29. Inverses and Isotopes 76
30. Twisted Hermitian Algebras 78
31. Spin and Quadratic Factors 80
32. Cubic Factors 83
33. Classification 85
Chapter 4. The Classical Theory 89
34. U-Operators 89
35. Quadratic Axioms 90
36. Inverses 92
37. Isotopes 94
38. Inner Ideals 94
39. Nondegeneracy 95
40. i-Special and i-exceptional 98
41. Artin-Wedderburn-Jacobson Structure Theorem 99
Chapter 5. The Final Classical Formulation 103
42. Capacity 103
43. Classification 104
Chapter 6. The Classical Methods 107
44. Peirce Decompositions 107
45. Coordinatization 108
46. Minimum Condition 111
Chapter 7. The Russian Revolution: 1977-1983 115
47. The Lull Before the Storm 115
48. The First Tremors 116
49. The Main Quake 118
50. Aftershocks 119
Chapter 8. Zel'manov's Exceptional Methods 123
51. I-Finiteness 123
52. Absorbers 125
53. The Primitive Heart 126
54. The Big Primitive Classification 129
55. Semiprimitive Imbedding 133
56. The Ultraproduct Argument 134
Part III. The Classical Theory 139
Chapter 1. The Category of Jordan Algebras 143
57. Categories 143
58. The Category of Linear Algebras 144
59. The Category of Unital Algebras 148
60. Unitalization 149
61. The Category of Algebras with Involution 150
62. The Category of Jordan Algebras 151
63. The Centroid 155
64. Problems for Chapter 1 161
Chapter 2. The Category of Alternative Algebras 165
65. The Category of Alternative Algebras 165
66. Nuclear Involutions 166
67. Composition Algebras 168
68. The Cayley-Dickson Construction 173
69. The Hurwitz Theorem 176
70. Problems for Chapter 2 180
Chapter 3. Three Special Examples 181
71. Full Type 181
72. Hermitian Type 184
73. Quadratic Form Type 188
74. Reduced Spin Factors 192
75. Problems for Chapter 3 195
Chapter 4. Jordan Algebras of Cubic Forms 199
76. Cubic Maps 199
77. The General Construction 201
78. The Freudenthal Construction 206
79. The Tits Constructions 207
80. Problems for Chapter 4 210
Chapter 5. Two Basic Principles 213
81. The Macdonald and Shirshov-Cohn Principles 213
82. Fundamental Formulas 214
83. Nondegeneracy 219
84. Problems for Chapter 5 224
Chapter 6. Inverses 225
85. Jordan Inverses 225
86. Linear and Nuclear Inverses 231
87. Problems for Chapter 6 233
Chapter 7. Isotopes 235
88. Nuclear Isotopes 235
89. Jordan Isotopes 237
90. Quadratic Factor Isotopes 239
91. Cubic Factor Isotopes 240
92. Matrix Isotopes 243
93. Problems for Chapter 7 247
Chapter 8. Peirce Decomposition 251
94. Peirce Decompositions 251
95. Peirce Multiplication Rules 255
96. Basic Examples of Peirce Decompositions 257
97. Peirce Identity Principle 261
98. Problems for Chapter 8 263
Chapter 9. Off-Diagonal Rules 265
99. Peirce Specializations 265
100. Peirce Quadratic Forms 268
101. Problems for Chapter 9 271
Chapter 10. Peirce Consequences 273
102. Diagonal Consequences 273
103. Diagonal Isotopes 275
104. Problems for Chapter 10 278
Chapter 11. Spin Coordinatization 279
105. Spin Frames 279
106. Strong Spin Coordinatization 283
107. Spin Coordinatization 285
108. Problems for Chapter 11 287
Chapter 12. Hermitian Coordinatization 289
109. Cyclic Frames 289
110. Strong Hermitian Coordinatization 294
111. Hermitian Coordinatization 295
Chapter 13. Multiple Peirce Decompositions 299
112. Decomposition 299
113. Recovery 303
114. Multiplication 303
115. The Matrix Archetype 306
116. The Peirce Principle 307
117. Modular Digression 310
118. Problems for Chapter 13 312
Chapter 14. Multiple Peirce Consequences 315
119. Jordan Coordinate Conditions 315
120. Peirce Specializations 316
121. Peirce Quadratic Forms 318
122. Connected Idempotents 319
Chapter 15. Hermitian Symmetries 325
123. Hermitian Frames 325
124. Hermitian Symmetries 327
125. Problems for Chapter 15 331
Chapter 16. The Coordinate Algebra 333
126. The Coordinate Triple 333
Chapter 17. Jacobson Coordinatization 337
127. Strong Coordinatization 337
128. General Coordinatization 340
Chapter 18. Von Neumann Regularity 343
129. vNr Pairing 343
130. Structural Pairing 346
131. Problems and Questions for Chapter 18 349
Chapter 19. Inner Simplicity 351
132. Minimal inner ideals 351
133. Problems for Chapter 19 354
Chapter 20. Capacity 357
134. Capacity Existence 357
135. Connected Capacity 358
136. Problems for Chapter 20 360
Chapter 21. Herstein-Kleinfeld-Osborn Theorem 361
137. Alternative Algebras Revisited 361
138. A Brief Tour of the Alternative Nucleus 364
139. Herstein-Kleinfeld-Osborn Theorem 367
140. Problems and Questions for Chapter 21 372
Chapter 22. Osborn's Capacity 2 Theorem 377
141. Commutators 377
142. Capacity Two 379
Chapter 23. Classical Classification 387
Part IV. Zel'manov's Exceptional Theorem 391
Chapter 1. The Radical 395
143. Invertibility 395
144. Quasi-Invertibility 397
145. Proper Quasi-Invertibility 402
146. Elemental Characterization 407
147. Radical Inheritance 408
148. Radical Surgery 409
149. Problems and Questions for Chapter 1 411
Chapter 2. Begetting and Bounding Idempotents 413
150. I-gene 413
151. Algebraic implies I-genic 414
152. I-genic Nilness 415
153. I-Finiteness 416
154. Problems for Chapter 2 418
Chapter 3. Bounded Spectra Beget Capacity 419
155. Spectra 419
156. Bigness 421
157. Evaporating Division Algebras 422
158. Spectral Bounds and Capacity 423
159. Problems for Chapter 3 426
Chapter 4. Absorbers of Inner Ideals 429
160. Linear Absorbers 429
161. Quadratic Absorbers 432
162. Absorber Nilness 434
163. Problems for Chapter 4 441
Chapter 5. Primitivity 443
164. Modularity 443
165. Primitivity 446
166. Semiprimitivity 448
167. Imbedding Nondegenerates in Semiprimitives 449
168. Problems for Chapter 5 454
Chapter 6. The Primitive Heart 457
169. Hearts and Spectra 457
170. Primitive Hearts 458
Chapter 7. Filters and Ultrafilters 461
171. Filters in General 461
172. Filters from Primes 462
173. Ultimate Filters 463
174. Problems for Chapter 7 465
Chapter 8. Ultraproducts 467
175. Ultraproducts 467
176. Examples 469
177. Problems for Chapter 8 473
Chapter 9. The Final Argument 475
178. Dichotomy 475
179. The Prime Dichotomy 476
180. Problems for Chapter 9 478
Part V. Appendices 479
Appendix A. Cohn's Special Theorems 481
181. Free Gadgets 481
182. Cohn Symmetry 482
183. Cohn Speciality 483
Appendix B. Macdonald's Theorem 487
184. The Free Jordan Algebra 487
185. Identities 489
186. Normal Form for Multiplications 491
187. The Macdonald Principles 495
188. Albert i-Exceptionality 497
189. Problems for Appendix B 502
Appendix C. Jordan Algebras of Degree 3 503
190. Jordan matrix algebras 503
191. The general construction 506
192. The Freudenthal Construction 511
193. The Tits Construction 513
194. Albert division algebras 519
195. Problems for Appendix C 521
Appendix D. The Density Theorem 523
196. Semisimple Modules 523
197. The Jacobson-Bourbaki Density Theorem 525
Appendix E. Hints 527
198. Hints for Part III 527
199. Hints for Part IV 536
Appendix F. Indexes 541
200. Pronouncing Index 541
201. Index of Named Theorems 543
202. Index of Definitions 544
