A Taste of Jordan Algebras

Kevin McCrimmon

Department of Mathematics University of Virginia Charlottesville, Virginia

Dedicated to the memory of Jake and Florie – in mathematico parentis

To Jake (the Doktor-Vater) for his mathematical influence on my research, and to Florie (the Doktor-Mutter) for helping me (and all Jake's students) to get to know him as a warm human being. Future histories of mathematics should take into account the role of Doktor-Mutters in the fostering of mathematics.

1. INTRODUCTION

1. Introduction

On several occasions I and colleagues have found ourselves teaching a 1-semester course for students at the second year of graduate study in mathematics who want to gain a general perspective on Jordan algebras, their structure and their role in mathematics, or want to gain direct experience with nonassociative algebra. These students typically have a solid grounding in first-year graduate algebra and the Artin-Wedderburn theory of associative algebras, and a few have been introduced to Lie algebras (perhaps even Cayley algebras, in an offhand way), but otherwise they have not seen any nonassociative algebras. Most of them will not go on to do research in nonassociative algebra, so the course is not primarily meant to be a training or breeding ground for research, though the instructor often hopes one or two will be motivated to pursue the subject further.

This text is meant to serve as an accompaniment to such a course. It is designed first and foremost to be read. It is a direct mathematical conversation between the author and a reader whose mind (as far as nonassociative algebra goes) is a tabula rasa. In keeping with the tone of a private conversation, I give more heuristic material than is common in books at this level (pep talks, philosophical pronouncements on the proper way to think about certain concepts, random historical anecdotes, offhand mention of some mathematicians who have contributed to our understanding of Jordan algebras, etc.), and employ a few English words which do not standardly appear in mathematical works. It is important for the reader to develop a visceral intuitive feeling for the subject, to view the mathematics as a living and active thing: to see isomorphisms as cloning maps, isotopes as subtle rearrangements of an algebra's DNA, radicals as pathogens to be isolated and removed by radical surgery, annihilators as biological agents for killing off elements, Peircers as mathematical enzymes ("Jordan-ase") which break an algebra down into its Peirce spaces. Like Charlie Brown's kite-eating trees, Jordan theory has Zel'manov's tetrad-eating ideals (though we shall stay clear of these carnivores in our book).

The book is intended for students to read on their own without assistance by a teacher. In particular, I have tried to make the proofs complete and understandable, giving much more heuristic and explanatory comment than is usual in graduate texts. To help the reader through the proofs in Parts III, IV (and the proof-sketches in Part II, Chapter 8), I have tried to give each important result or formula a mnemonic label, so that when I refer to an earlier result, instead of saying "by Formula 21.3(*i*), which of course you will remember, ..." I can say "by Nuclear Slipping 21.3(i)", hoping to trigger long-repressed memories of a formula involving nuclear elements of alternative algebras.

While I wind up doing most of the talking, there is some room in Parts III and IV for the reader to participate (and stay mathematically fit) by doing exercises. The Exercises give slight extensions, or alternate proofs, of results in the text, and are placed immediately after the results; they give practice in proving variations on the previous mathematical theme. At the end of each chapter I gather a few problems and questions. The Problems usually take the form "Prove that something-or-other"; they involve deeper investigations or lengthier digressions than exercises, and develop more extensive proof skills on a new theme. The Questions are more open-ended, taking the form "What can you say about something-or-other" without giving a hint which way the answer goes; they develop proof skills in uncharted territories, in composing a mathematical theme from scratch (most valuable for budding researchers). Hints are given at the back of the book for some of the exercises, problems, and questions (though these should be consulted only after a good-faith effort to prove them).

Part I is in the nature of an extended colloquium talk, a brief survey of the life and times of Jordan algebras, to provide appreciation of the role Jordan algebras play on the broader stage of mathematics. I indicate several applications to other areas of mathematics: Lie algebras, differential geometry, and projective geometry. Since the students at this level cannot be assumed to be familiar with all these areas, the description has to be a bit loose; readers can glean from this partjust enough respect and appreciation to sanction and legitimate their investment in reading further.

Part II is designed to provide an overview of Jordan structure theory in its historical context. It gives a general historical survey from the origins in quantum mechanics in 1934 to Efim Zel'manov's breathtaking description of arbitrary simple algebras in 1983 (which later played a role in his Fields Medal work on the Burnside Problem). I give precise definitions and examples, but omit proofs. In keeping with its nature, I have not included any exercises.

Parts III and IV are designed to provide direct experience with nonassociativity, and either one (in conjunction with Part I) could serve as a basis for a one-semester course. Throughout, I stick to linear Jordan algebras over rings of scalars containing 1/2, but give major emphasis to the quadratic point of view.

Part III gives a development of Jacobson's classical structure theory for Jordan algebras with capacity, in complete detail and with full

1. INTRODUCTION

proofs. It is suitable for a one-semester course aiming to introduce students to the methods and techniques of nonassociative algebra. The details of Peirce decompositions, Peirce relations, and coordinatization theorems are the key tools leading to the Classical Structure Theorem.

Part IV gives a full treatment of Zel'manov's Exceptional Theorem, that the only simple i-exceptional Jordan algebras are the Albert algebras, closing the historical search for an exceptional setting for quantum mechanics. This part is much more concerned with understanding and translating to the Jordan setting some classical ideas of associative theory, including primitivity; it is suitable for a one-semester course aiming to introduce students to the modern methods of Jordan algebras. The ultrafilter argument, that if primitive systems come in only a finite number of flavors then a prime system must come in one of those pure flavors, is covered in full detail; ultrafilters provide a useful tool that many students at this level are unacquainted with.

I have dedicated the book to Nathan and Florie Jacobson, both of whom passed away during this book's long gestation period. They had an enormous influence on my mathematical development. I am greatly indebted to my colleague Kurt Meyberg, who carefully read through Part III and made many suggestions which vastly improved the exposition. I am also deeply indebted to my colleague Wilhelm Kaup, who patiently corrected many of my misconceptions about the role of Jordan theory in differential geometry, improving the exposition in Part I and removing flagrant errors. My colleague John Faulkner helped improve my discussion of applications to projective geometries. I would also like to thank generations of graduate students at Virginia who read and commented upon the text, especially my students Jim Bowling, Bernard Fulgham, Dan King, and Matt Neal.

Index of Notations

General Typographical Conventions

• Rings of scalars (unital, commutative, associative rings) are indicated by capital Greek letters Φ, Ω . Scalars are denoted by lower case Greek letters: $\alpha, \beta, \gamma, \ldots$ Almost all our algebraic systems will be algebras or modules over a fixed ring of scalars Φ , which will almost always contain an element $\frac{1}{2}$.

• Mere sets are indicated by italic capital letters X, Y, Z at the end of the alphabet, index sets also by I, J, S.

• Modules and linear spaces are denoted by italic capital letters: A, B, C, J, V, W, \ldots The zero subspace will be denoted by boldface **0** to distinguish it from the element (operator, vector, or scalar) 0. This signals a subtle and not-too-important distinction between the set **0** = {0} consisting of a single element zero, and the element itself. The range f(A) of some function on a set A will always be a set, while the value f(a) will be an element.

• Algebraic systems are denoted by letters in small caps: general linear algebras by A, B, C, ideals by I, J, K. Associative algebras are indicated by D when they appear as coordinates for Jordan algebras. Jordan algebras are indicated by J, J_i , J', etc.

• Maps or functions between sets or spaces are denoted by italic lower case letters f, g, h, \ldots , morphisms between algebraic systems often by lower case Greek letters $\varphi, \sigma, \tau, \rho$, sometimes upper case italic letters T, S.

• Functors and functorial constructions are denoted by script capital letters $\mathcal{F}, \mathcal{G}, \mathcal{H}, \mathcal{T}, \ldots$

Specific Notations

• The identity map on a set X is denoted by $\mathbf{1}_X$. The projection of a set on a quotient set is denoted by $\pi : X \to X/\sim$; the coset or equivalence class of $x \in X$ is denoted by $\pi(x) = \overline{x} = [x]$.

• Cartesian products of sets are denoted $X \times Y$. Module direct sums are indicated by $V \oplus W$. Algebra direct sums, where multiplication as well as addition is performed componentwise, are written $A \boxplus B$ to distinguish them from mere module direct sums.

• Subsets are denoted $X \subseteq Y$, with strict inclusion denoted by $X \subset Y$ or X < Y; subspaces of linear spaces are denoted $A \leq B$, while kernels (submodules of modules, ideals of algebras) are indicated by $B \triangleleft A$. Left, right, and *-ideals of algebras are denoted by $I \triangleleft_{\ell} A$, $I \triangleleft_{r} A$, $B \stackrel{*}{\triangleleft} A$.

• Involutions on algebras are indicated by a star * (though involutions on coordinate algebras of matrix algebras are often denoted $x \to \bar{x}$). $\mathcal{H}(A, *)$ denotes the hermitian elements $x^* = x$ of an algebra A under an involution *.

• Products in algebras are denoted by $x \cdot y$ or just xy (especially for associative products); the special symbol $x \bullet y$ is used for the bilinear product in Jordan algebras. The left and right multiplication operators by an element x in a linear algebra are denoted L_x , R_x or ℓ_x , r_x or λ_x , ρ_x . The quadratic and trilinear products in Jordan algebras are denoted by $U_x y$ and $\{x, y, z\}$, with operators U_x , $V_{x,y}$ (in Jordan triples P_x , $L_{x,y}$, in Jordan pairs Q_x , $D_{x,y}$).

• Unit elements of algebras are denoted by 1. We will speak of a *unit element* and *unital algebras* rather than identity element and algebras with identity; we will reserve the term *identity* for *identical relations* or *laws* (such as the Jordan identity or associative law). \widehat{A} will denote the formal unital hull Φ -algebra $\Phi 1 \oplus A$ obtained by formal adjunction of a unit element.

• $n \times n$ matrices and hermitian matrices are denoted \mathcal{M}_n and \mathcal{H}_n . Matrices are denoted by $X = (x_{ij})$; their traces and determinants are denoted by tr(X), det(X) respectively, and the transpose is indicated by X^{tr} . If the matrix entries come from a ring with involution, the *adjoint* (the conjugate transpose with *ij*-entry $\overline{x_{ji}}$) is denoted rather anonymously by a star, X^* .

• Blackboard bold is used for the standard systems \mathbb{N} (natural numbers 1, 2, ...), \mathbb{I} (the even-more-natural numbers 0, 1, 2, ... used as indices or cardinals), \mathbb{Z} (the ring of integers), the fields \mathbb{Q} (rational numbers), \mathbb{R} (real numbers), \mathbb{C} (complex numbers), the real division rings \mathbb{H} (Hamilton's quaternions), \mathbb{K} (Cayley's octonions), \mathbb{O} (split octonions), \mathbb{A} (the Albert algebra, a formally-real exceptional Jordan algebra).

Contents

1.	Introduction	iii
Part	I. A Colloquial Survey of Jordan Theory	1
1.	Origin of the Species	3
2.	The Jordan River	7
3.	Links with Lie Algebras and Groups	11
4.	Links with Differential Geometry	15
5.	Links with the Real World	17
6.	Links with the Complex World	24
7.	Links with the Infinitely Complex World	27
8.	Links with Projective Geometry	30
9.	Conclusion	38
Part	II. The Historical Perspective: An Historical	
Surv	ey of Jordan Structure Theory	39
Chap	ter 1. Jordan Algebras in Physical Antiquity	41
1.	The matrix interpretation of quantum mechanics	41
2.	The Jordan Program	42
3.	The Jordan Operations	42
4.	The Jordan Axioms	46
5.	The Basic Examples	48
6.	Special and Exceptional	51
7.	Classification	51
Chap	ter 2. Jordan Algebras in the Algebraic Renaissance	55
1.	Linear Algebras over General Scalars	56
2.	Categorical Nonsense	57
3.	Commutators and Associators	59
4.	Lie and Jordan Algebras	61
5.	The 3 Basic Examples Revisited	62
6.	Jordan Matrix Algebras	63
7.	Forms Permitting Composition	65
8.	Composition Algebras	68
9.	Split Composition Algebras	70

CONTENTS	\$
----------	----

10. Classification	72
 Chapter 3. Jordan Algebras in the Enlightenment 1. Forms of Algebras 2. Inverses and Isotopes 3. Twisted Hermitian Algebras 4. Spin and Quadratic Factors 	75 75 76 78
4. Spin and Quadratic Factors 5. Cubic Factors	80 83
6. Classification	85
Chapter 4. The Classical Theory	89
1. U-Operators	89
2. Quadratic Axioms 3. Inverses	90 02
4. Isotopes	92 94
5. Inner Ideals	94
6. Nondegeneracy	95
7. i-Special and i-exceptional	98
8. Artin-Wedderburn-Jacobson Structure Theorem	99
Chapter 5. The Final Classical Formulation	103
1. Capacity	103
2. Classification	104
Chapter 6. The Classical Methods	107
1. Peirce Decompositions	107
2. Coordinatization	108
3. Minimum Condition	111
Chapter 7. The Russian Revolution: 1977-1983	115
1. The Lull Before the Storm	115
2. The First Tremors	110 119
4 Aftershocks	110
	100
Chapter 8. Zel'manov's Exceptional Methods	123 193
2 Absorbers	123 125
3. The Primitive Heart	126
4. The Big Primitive Classification	129
5. Semiprimitive Imbedding	133
6. The Ultraproduct Argument	134
Part III. The Classical Theory	139

x

CONTENTS	xi
Chapter 1. The Category of Jordan Algebras	143
1. Categories	143
2. The Category of Linear Algebras	144
3. The Category of Unital Algebras	148
4. Unitalization	149
5. The Category of Algebras with Involution	150
6. The Category of Jordan Algebras	151
7. The Centroid	155
8. Problems for Chapter 1	161
Chapter 2. The Category of Alternative Algebras	165
1. The Category of Alternative Algebras	165
2. Nuclear Involutions	166
3. Composition Algebras	168
4. The Cayley-Dickson Construction	173
5. The Hurwitz Theorem	176
6. Problems for Chapter 2	180
Chapter 3. Three Special Examples	181
1. Full Type	181
2. Hermitian Type	184
3. Quadratic Form Type	188
4. Reduced Spin Factors	192
5. Problems for Chapter 3	195
Chapter 4. Jordan Algebras of Cubic Forms	199
1. Cubic Maps	199
2. The General Construction	201
3. The Freudenthal Construction	206
4. The Tits Constructions	207
5. Problems for Chapter 4	210
Chapter 5. Two Basic Principles	213
1. The Macdonald and Shirshov-Cohn Principles	213
2. Fundamental Formulas	214
3. Nondegeneracy	219
4. Problems for Chapter 5	224
Chapter 6. Inverses	225
1. Jordan Inverses	225
2. Linear and Nuclear Inverses	231
3. Problems for Chapter 6	233
Chapter 7. Isotopes	235

CONTENTS

 Nuclear Isotopes Jordan Isotopes Quadratic Factor Isotopes Cubic Factor Isotopes Matrix Isotopes Problems for Chapter 7 	235 237 239 240 243 247
 Chapter 8. Peirce Decomposition 1. Peirce Decompositions 2. Peirce Multiplication Rules 3. Basic Examples of Peirce Decompositions 4. Peirce Identity Principle 5. Problems for Chapter 8 	$251 \\ 251 \\ 255 \\ 257 \\ 261 \\ 263$
Chapter 9. Off-Diagonal Rules1. Peirce Specializations2. Peirce Quadratic Forms3. Problems for Chapter 9	265 265 268 271
 Chapter 10. Peirce Consequences 1. Diagonal Consequences 2. Diagonal Isotopes 3. Problems for Chapter 10 	273 273 275 278
 Chapter 11. Spin Coordinatization 1. Spin Frames 2. Strong Spin Coordinatization 3. Spin Coordinatization 4. Problems for Chapter 11 	279 279 283 285 287
Chapter 12. Hermitian Coordinatization1. Cyclic Frames2. Strong Hermitian Coordinatization3. Hermitian Coordinatization	289 289 294 295
 Chapter 13. Multiple Peirce Decompositions 1. Decomposition 2. Recovery 3. Multiplication 4. The Matrix Archetype 5. The Peirce Principle 6. Modular Digression 7. Problems for Chapter 13 	299 299 303 303 306 307 310 312 315

xii

CONTENTS	xiii
 Jordan Coordinate Conditions Peirce Specializations Peirce Quadratic Forms Connected Idempotents 	315 316 318 319
 Chapter 15. Hermitian Symmetries 1. Hermitian Frames 2. Hermitian Symmetries 3. Problems for Chapter 15 	325 325 327 331
Chapter 16. The Coordinate Algebra 1. The Coordinate Triple	333 333
Chapter 17. Jacobson Coordinatization1. Strong Coordinatization2. General Coordinatization	337 337 340
 Chapter 18. Von Neumann Regularity 1. vNr Pairing 2. Structural Pairing 3. Problems and Questions for Chapter 18 	343 343 346 349
Chapter 19. Inner Simplicity1. Minimal inner ideals2. Problems for Chapter 19	$351 \\ 351 \\ 354$
 Chapter 20. Capacity 1. Capacity Existence 2. Connected Capacity 3. Problems for Chapter 20 	357 357 358 360
 Chapter 21. Herstein-Kleinfeld-Osborn Theorem 1. Alternative Algebras Revisited 2. A Brief Tour of the Alternative Nucleus 3. Herstein-Kleinfeld-Osborn Theorem 4. Problems and Questions for Chapter 21 	$361 \\ 361 \\ 364 \\ 367 \\ 372$
Chapter 22. Osborn's Capacity 2 Theorem1. Commutators2. Capacity Two	377 377 379
Chapter 23. Classification	387
Part IV. Zel'manov's Exceptional Theorem	391
Chapter 1. The Radical	395

CONTENTS

1.	Invertibility	395
2.	Quasi-Invertibility	397
3.	Proper Quasi-Invertibility	402
4.	Elemental Characterization	407
5.	Radical Inheritance	408
6.	Radical Surgery	409
7.	Problems and Questions for Chapter 1	411
Chap	ter 2. Begetting and Bounding Idempotents	413
1.	I-gene	413
2.	Algebraic implies <i>I</i> -genic	414
3.	I-genic Nilness	415
4.	I-Finiteness	416
5.	Problems for Chapter 2	418
Chap	ter 3. Bounded Spectra Beget Capacity	419
1.	Spectra	419
2.	Bigness	421
3.	Evaporating Division Algebras	422
4.	Spectral Bounds and Capacity	423
5.	Problems for Chapter 3	426
Chap	ter 4. Absorbers of Inner Ideals	429
1.	Linear Absorbers	429
2.	Quadratic Absorbers	432
3.	Absorber Nilness	434
4.	Problems for Chapter 4	441
Chap	ter 5. Primitivity	443
1.	Modularity	443
2.	Primitivity	446
3.	Semiprimitivity	448
4.	Imbedding Nondegenerates in Semiprimitives	449
5.	Problems for Chapter 5	454
Chap	ter 6. The Primitive Heart	457
1.	Hearts and Spectra	457
2.	Primitive Hearts	458
Chap	ter 7. Filters and Ultrafilters	461
1.	Filters in General	461
2.	Filters from Primes	462
3.	Ultimate Filters	463
4.	Problems for Chapter 7	465

xiv

CONTENTS	XV
 Chapter 8. Ultraproducts 1. Ultraproducts 2. Examples 3. Problems for Chapter 8 	$ \begin{array}{r} 467 \\ 467 \\ 469 \\ 473 \end{array} $
Chapter 9. The Final Argument1. Dichotomy2. The Prime Dichotomy3. Problems for Chapter 9	$475 \\ 475 \\ 476 \\ 478$
Part V. Appendices	479
Appendix A. Cohn's Special Theorems1. Free Gadgets2. Cohn Symmetry3. Cohn Speciality	481 481 482 483
 Appendix B. Macdonald's Theorem 1. The Free Jordan Algebra 2. Identities 3. Normal Form for Multiplications 4. The Macdonald Principles 5. Albert <i>i</i>-Exceptionality 6. Problems for Appendix B 	487 487 489 491 495 497 502
 Appendix C. Jordan Algebras of Degree 3 1. Jordan matrix algebras 2. The general construction 3. The Freudenthal Construction 4. The Tits Construction 5. Albert division algebras 6. Problems for Appendix C 	$503 \\ 503 \\ 506 \\ 511 \\ 513 \\ 519 \\ 521$
Appendix D. The Density Theorem1. Semisimple Modules2. The Jacobson-Bourbaki Density Theorem	523 523 525
Appendix E. Hints1. Hints for Part III2. Hints for Part IV	527 527 536
 Appendix F. Indexes 1. Pronouncing Index 2. Index of Named Theorems 3. Index of Definitions 	$541 \\ 541 \\ 543 \\ 544$