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1. Introduction

On several occasions I and colleagues have found ourselves teach-
ing a 1-semester course for students at the second year of graduate
study in mathematics who want to gain a general perspective on Jor-
dan algebras, their structure and their role in mathematics, or want
to gain direct experience with nonassociative algebra. These students
typically have a solid grounding in first-year graduate algebra and the
Artin-Wedderburn theory of associative algebras, and a few have been
introduced to Lie algebras (perhaps even Cayley algebras, in an off-
hand way), but otherwise they have not seen any nonassociative al-
gebras. Most of them will not go on to do research in nonassociative
algebra, so the course is not primarily meant to be a training or breed-
ing ground for research, though the instructor often hopes one or two
will be motivated to pursue the subject further.

This text is meant to serve as an accompaniment to such a course.
It is designed first and foremost to be read. It is a direct mathematical
conversation between the author and a reader whose mind (as far as
nonassociative algebra goes) is a tabula rasa. In keeping with the tone
of a private conversation, I give more heuristic material than is common
in books at this level (pep talks, philosophical pronouncements on the
proper way to think about certain concepts, random historical anec-
dotes, offhand mention of some mathematicians who have contributed
to our understanding of Jordan algebras, etc.), and employ a few Eng-
lish words which do not standardly appear in mathematical works. It
is important for the reader to develop a visceral intuitive feeling for the
subject, to view the mathematics as a living and active thing: to see
isomorphisms as cloning maps, isotopes as subtle rearrangements of an
algebra’s DNA, radicals as pathogens to be isolated and removed by
radical surgery, annihilators as biological agents for killing off elements,
Peircers as mathematical enzymes (“Jordan-ase”) which break an alge-
bra down into its Peirce spaces. Like Charlie Brown’s kite-eating trees,
Jordan theory has Zel’manov’s tetrad-eating ideals (though we shall
stay clear of these carnivores in our book).

The book is intended for students to read on their own without
assistance by a teacher. In particular, I have tried to make the proofs
complete and understandable, giving much more heuristic and explana-
tory comment than is usual in graduate texts. To help the reader
through the proofs in Parts III, IV (and the proof-sketches in Part II,
Chapter 8), I have tried to give each important result or formula a
mnemonic label, so that when I refer to an earlier result, instead of
saying “by Formula 21.3(i), which of course you will remember, ...” I
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can say “by Nuclear Slipping 21.3(i)”, hoping to trigger long-repressed
memories of a formula involving nuclear elements of alternative alge-
bras.

While I wind up doing most of the talking, there is some room in
Parts III and IV for the reader to participate (and stay mathemati-
cally fit) by doing exercises. The Exercises give slight extensions, or
alternate proofs, of results in the text, and are placed immediately
after the results; they give practice in proving variations on the previ-
ous mathematical theme . At the end of each chapter I gather a few
problems and questions. The Problems usually take the form “Prove
that something-or-other”; they involve deeper investigations or length-
ier digressions than exercises, and develop more extensive proof skills
on a new theme. The Questions are more open-ended, taking the form
“What can you say about something-or-other” without giving a hint
which way the answer goes; they develop proof skills in uncharted terri-
tories, in composing a mathematical theme from scratch (most valuable
for budding researchers). Hints are given at the back of the book for
some of the exercises, problems, and questions (though these should be
consulted only after a good-faith effort to prove them).

Part I is in the nature of an extended colloquium talk, a brief survey
of the life and times of Jordan algebras, to provide appreciation of the
role Jordan algebras play on the broader stage of mathematics. I indi-
cate several applications to other areas of mathematics: Lie algebras,
differential geometry, and projective geometry. Since the students at
this level cannot be assumed to be familiar with all these areas, the
description has to be a bit loose; readers can glean from this partjust
enough respect and appreciation to sanction and legitimate their in-
vestment in reading further.

Part II is designed to provide an overview of Jordan structure theory
in its historical context. It gives a general historical survey from the
origins in quantum mechanics in 1934 to Efim Zel’manov’s breathtaking
description of arbitrary simple algebras in 1983 (which later played a
role in his Fields Medal work on the Burnside Problem). I give precise
definitions and examples, but omit proofs. In keeping with its nature,
I have not included any exercises.

Parts III and IV are designed to provide direct experience with
nonassociativity, and either one (in conjunction with Part I) could serve
as a basis for a one-semester course. Throughout, I stick to linear
Jordan algebras over rings of scalars containing 1/2, but give major
emphasis to the quadratic point of view.

Part III gives a development of Jacobson’s classical structure theory
for Jordan algebras with capacity, in complete detail and with full
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proofs. It is suitable for a one-semester course aiming to introduce
students to the methods and techniques of nonassociative algebra. The
details of Peirce decompositions, Peirce relations, and coordinatization
theorems are the key tools leading to the Classical Structure Theorem.

Part IV gives a full treatment of Zel’manov’s Exceptional Theorem,
that the only simple i-exceptional Jordan algebras are the Albert alge-
bras, closing the historical search for an exceptional setting for quantum
mechanics. This part is much more concerned with understanding and
translating to the Jordan setting some classical ideas of associative
theory, including primitivity; it is suitable for a one-semester course
aiming to introduce students to the modern methods of Jordan alge-
bras. The ultrafilter argument, that if primitive systems come in only
a finite number of flavors then a prime system must come in one of
those pure flavors, is covered in full detail; ultrafilters provide a useful
tool that many students at this level are unacquainted with.

I have dedicated the book to Nathan and Florie Jacobson, both
of whom passed away during this book’s long gestation period. They
had an enormous influence on my mathematical development. I am
greatly indebted to my colleague Kurt Meyberg, who carefully read
through Part III and made many suggestions which vastly improved
the exposition. I am also deeply indebeted to my colleague Wilhelm
Kaup, who patiently corrected many of my misconceptions about the
role of Jordan theory in diferential geometry, improving the exposition
in Part I and removing flagrant errors. My colleague John Faulkner
helped improve my discussion of applications to projective geometries.
I would also like to thank generations of graduate students at Virginia
who read and commented upon the text, especially my students Jim
Bowling, Bernard Fulgham, Dan King, and Matt Neal.
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Index of Notations
General Typographical Conventions

• Rings of scalars (unital, commutative, associative rings) are indi-
cated by capital Greek letters Φ,Ω. Scalars are denoted by lower case
Greek letters: α, β, γ, . . . Almost all our algebraic systems will be alge-
bras or modules over a fixed ring of scalars Φ, which will almost always
contain an element 1

2
.

• Mere sets are indicated by italic capital letters X, Y, Z at the end
of the alphabet, index sets also by I, J, S.

• Modules and linear spaces are denoted by italic capital letters:
A,B,C, J, V,W, . . .. The zero subspace will be denoted by boldface
0 to distinguish it from the element (operator, vector, or scalar) 0.
This signals a subtle and not-too-important distinction between the
set 0 = {0} consisting of a single element zero, and the element itself.
The range f(A) of some function on a set A will always be a set, while
the value f(a) will be an element.

• Algebraic systems are denoted by letters in small caps: general
linear algebras by A,B,C, ideals by I,J,K. Associative algebras are
indicated by D when they appear as coordinates for Jordan algebras.
Jordan algebras are indicated by J,Ji,J

′, etc.
• Maps or functions between sets or spaces are denoted by italic

lower case letters f, g, h, . . ., morphisms between algebraic systems of-
ten by lower case Greek letters ϕ, σ, τ, ρ, sometimes upper case italic
letters T, S.

• Functors and functorial constructions are denoted by script cap-
ital letters F ,G,H, T , . . ..

Specific Notations

• The identity map on a set X is denoted by 1X . The projection
of a set on a quotient set is denoted by π : X → X/ ∼; the coset or
equivalence class of x ∈ X is denoted by π(x) = x = [x].

• Cartesian products of sets are denoted X×Y . Module direct sums
are indicated by V ⊕W . Algebra direct sums, where multiplication as
well as addition is performed componentwise, are written A � B to
distinguish them from mere module direct sums.

• Subsets are denoted X ⊆ Y , with strict inclusion denoted by
X ⊂ Y or X < Y ; subspaces of linear spaces are denoted A ≤ B,
while kernels (submodules of modules, ideals of algebras) are indicated
by B � A. Left, right, and ∗-ideals of algebras are denoted by I �� A,

I �r A, B
∗
� A.
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• Involutions on algebras are indicated by a star ∗ (though invo-
lutions on coordinate algebras of matrix algebras are often denoted
x → x̄). H(A, ∗) denotes the hermitian elements x∗ = x of an algebra
A under an involution ∗.

• Products in algebras are denoted by x ·y or just xy (especially for
associative products); the special symbol x • y is used for the bilinear
product in Jordan algebras. The left and right multiplication operators
by an element x in a linear algebra are denoted Lx, Rx or #x, rx or λx, ρx.
The quadratic and trilinear products in Jordan algebras are denoted
by Uxy and {x, y, z}, with operators Ux, Vx,y (in Jordan triples Px, Lx,y,
in Jordan pairs Qx, Dx,y).

• Unit elements of algebras are denoted by 1. We will speak of
a unit element and unital algebras rather than identity element and
algebras with identity; we will reserve the term identity for identical

relations or laws (such as the Jordan identity or associative law). Â
will denote the formal unital hull Φ-algebra Φ1⊕A obtained by formal
adjunction of a unit element.

• n× n matrices and hermitian matrices are denoted Mn and Hn.
Matrices are denoted by X = (xij); their traces and determinants are
denoted by tr(X), det(X) respectively, and the transpose is indicated
by X tr. If the matrix entries come from a ring with involution, the
adjoint (the conjugate transpose with ij-entry xji) is denoted rather
anonymously by a star, X∗.

• Blackboard bold is used for the standard systems N (natural num-
bers 1, 2, . . .), I (the even-more-natural numbers 0, 1, 2, . . . used as in-
dices or cardinals), Z (the ring of integers), the fields Q (rational num-
bers), R (real numbers), C (complex numbers), the real division rings H

(Hamilton’s quaternions), K (Cayley’s octonions), O (split octonions),
A (the Albert algebra, a formally-real exceptional Jordan algebra).
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