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and Miguel Gómez Lozano 1
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2Departamento de Matemática Aplicada, Universidad Rey Juan Carlos,
28933 Móstoles. Madrid, Spain.
e-mail: esther.garcia@urjc.es

ABSTRACT: Complemented Lie algebras are introduced in this paper (a notion similar to that

studied by O. Loos and E. Neher in Jordan pairs). We prove that a Lie algebra is complemented

if and only if it is a direct sum of simple nondegenerate Artinian Lie algebras. Moreover, we

classify simple nondegenerate Artinian Lie algebras over a field of characteristic 0 or greater than

7, and describe the Lie inner ideal structure of simple Lie algebras arising from simple associative

algebras with nonzero socle.

Introduction

The module-theoretic characterization of semiprime Artinian rings (R is uni-
tal and completely reducible as a left R-module) cannot be translated to Jordan
systems by merely replacing left ideals by inner ideals: if we take, for instance,
the Jordan algebra M2(F )(+) of 2× 2-matrices over a field F , any nontrivial inner
ideal of M2(F )(+) has dimension 1, so it cannot be complemented as a F -subspace
by any other inner ideal. Nevertheless, O. Loos and E. Neher succeeded in getting
the appropriate characterization by introducing the notion of kernel of an inner
ideal [15]:

A Jordan pair V = (V +, V −) (over an arbitrary ring of scalars) is a direct sum
of simple Artinian nondegenerate Jordan pairs if and only if it is complemented
in the following sense: for any inner ideal B of V σ there exists an inner ideal C
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of V −σ such that each of them is complemented as a submodule by the kernel of
the other. In particular, a simple Jordan pair is complemented if and only if is
nondegenerate and Artinian.

Since there exists a suitable notion of inner ideal for Lie algebras [4], it seems
natural to think that the direct sum of simple nondegenerate Artinian Lie algebras
can be characterized in a way similar to that of the Jordan pairs. In fact, the half
of the work required to prove this conjecture was already done in [9], where we
showed that any abelian inner ideal of finite length of a nondegenerate Lie algebra
L (over a ring of scalars Φ in which 2, 3, 5 are invertible) is the right wing of a
short grading of L.

Let M be an inner ideal of a Lie algebra L. The kernel of M

Ker M = {x ∈ L : [M, [M, x]] = 0}

is a Φ-submodule of L. A partner of M is an inner ideal N of L such that

L = M ⊕KerN = N ⊕KerM.

A Lie algebra L is said to be (weakly) complemented if any (abelian) inner ideal
M of L has a (abelian) partner. Our main result (Theorem 3.7), which can be
regarded as a Lie equivalent of the module-theoretic characterization of semiprime
Artinian rings, proves the equivalence of the following conditions:

(i) L is complemented.

(ii) L is a direct sum of simple nondegenerate Artinian Lie algebras.

Moreover, complemented Lie algebras are weakly complemented.

A key tool used in the proof of this result is the notion of subquotient of a Lie
algebra with respect to an abelian inner ideal. These subquotients are Jordan pairs
which, on the one hand, inherit regularity conditions from the Lie algebra, and, on
the other hand, keep the inner ideal structure of L within them. This fact turns
out to be crucial for using results of the Jordan theory. For instance, it is used in
Theorem 3.5 to prove that any prime weakly complemented Lie algebra satisfies
the ascending and descending chain conditions on abelian inner ideals. While
any nondegenerate Artinian Jordan pair is a direct sum of finitely many simple
nondegenerate Artinian Jordan pairs, a nondegenerate Artinian Lie algebra only
has essential socle [5, Corollary 3.7]. In fact, there exist strongly prime finite
dimensional Lie algebras (over a field of characteristic p > 5) with nontrivial
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ideals [18, p. 152]. Therefore, unlike the Jordan case, nondegenerate Artinian Lie
algebras are not necessarily complemented: they are only weakly complemented.

In Section 4 we study the inner ideal structure of Lie algebras of traceless
operators of finite rank which are continuous with respect to an infinite dimensional
pair of dual vector spaces over a division algebra, and of Lie algebras of finite rank
skew operators on an infinite dimensional self dual vector space (extending the
work of G. Benkart [3] for the finite dimensional case, and a previous one of
the authors [8] for finitary Lie algebras). These results are used in the proof of
Theorem 5.3 which describes the simple nondegenerate Artinian Lie algebras over
a field of characteristic 0 or greater than 7. Summarizing, we can say that, as
conjectured by G. Benkart in the introduction of [4], inner ideals in Lie algebras
play a role analogous to Jordan inner ideals in the development of an Artinian
theory for Lie algebras.

1. Lie algebras and Jordan pairs

1.1 Basic notions. Throughout this paper, and at least otherwise specified,
we will be dealing with Lie algebras L [12; 17] (with [x, y] denoting the Lie bracket
and adx the adjoint map determined by x), associative algebras R (with product
denoted by juxtaposition, xy), Jordan algebras J (with Jordan product written by
x• y), and Jordan pairs V = (V +, V −) [13] (with Jordan triple products {x, y, z},
for x, z ∈ V σ, y ∈ V −σ, σ = ±) over a ring of scalars Φ containing 1

30 .

1.2 Nondegeneracy and primeness. Let V = (V +, V −) be a Jordan pair. An
element x ∈ V σ, σ = ±, is called an absolute zero divisor if Qx = 0, and V is
said to be nondegenerate if it has no nonzero absolute zero divisors, semiprime if
QB±B∓ = 0 implies B = 0, and prime if QB±C∓ = 0 implies B = 0 or C = 0,
for any ideals B = (B+, B−), C = (C+, C−) of V . Similarly, given a Lie algebra
L, x ∈ L is an absolute zero divisor if ad2

x = 0, L is nondegenerate if it has no
nonzero absolute zero divisors, semiprime if [I, I] = 0 implies I = 0, and prime if
[I, J ] = 0 implies I = 0 or J = 0, for any ideals I, J of L. A Jordan pair or Lie
algebra is strongly prime if it is prime and nondegenerate. A Lie algebra is simple
if it is nonabelian and contains no proper ideals.

1.3 Ideals of nondegenerate (strongly prime) Jordan pairs inherit nondegen-
eracy (strong primeness) [13, JP3; 16]. The same is true for Lie algebras: every
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ideal of a nondegenerate (strongly prime) Lie algebra is nondegenerate (strongly
prime) [21, Lemma 4; 10, 0.4, 1.5].

1.4 [11, Theorem 1.6]. A Lie algebra L (over an arbitrary ring of scalars)
is strongly prime if and only if [x, [y, L]] = 0 implies x = 0 or y = 0, for every
x, y ∈ L.

1.5 Inner ideals and Jordan elements. Given a Jordan pair V = (V +, V −),
an inner ideal of V is any Φ-submodule B of V σ such that {B, V −σ, B} ⊂ B.
Similarly, an inner ideal of a Lie algebra L is a Φ-submodule B of L such that
[B, [B, L]] ⊂ B. An abelian inner ideal is an inner ideal B which is also an abelian
subalgebra, i.e., [B,B] = 0.

1.6 There is a natural connection between Lie algebras and Jordan pairs via
the notion of abelian inner ideal. Any pair (B,C) of abelian inner ideals of a Lie
algebra L becomes a Jordan pair under the triple products defined by

{b1, c, b2} : = [[b1, c], b2] for all b1, b2 ∈ B and c ∈ C

{c1, b, c2} : = [[c1, b], c2] for all c1, c2 ∈ C and b ∈ B.

1.7 x ∈ L is called a Jordan element if ad3
x = 0. By [4, 1.7(iii)], any Jordan

element x ∈ L satisfies the following analogue of the Jordan identity:

ad2
ad2

x y = ad2
x ad2

y ad2
x

for any y ∈ L. Clearly, any element of an abelian inner ideal is a Jordan element.
Conversely, [4, 1.8], any Jordan element yields the abelian inner ideals [b] :=
[b, [b, L]] and (b) := Φb + [b].

1.8 Annihilators. Given a subset S of L, the annihilator or centralizer of S

in L, AnnL S, consists of the elements x ∈ L such that [x, S] = 0. By the Jacobi
identity, AnnL S is a subalgebra of L and an ideal whenever S is so. Clearly,
AnnL L = Z(L), the center of L.

1.9 Let I be an ideal of a nondegenerate Lie algebra L. Then, by [7, 2.5]

(i) AnnL I = {a ∈ L | [a, [a, I]] = 0}. Moreover,

(ii) I ∩AnnL I = 0.

(iii) The factor Lie algebra L/ AnnL I is nondegenerate.
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(iv) I is essential as an ideal iff AnnL I = 0 iff I is essential as an inner ideal.

(v) L is prime iff if the annihilator of every nonzero ideal of L is zero.

1.10 Socle and chain conditions. (i) Recall that the socle of a nondegenerate
Jordan pair V is SocV = (Soc V +, Soc V −) where Soc V σ is the sum of all minimal
inner ideals of V contained in V σ [14]. The socle of a nondegenerate Lie algebra
L is Soc L, defined as the sum of all minimal inner ideals of L [5].

(ii) By [14, Theorem 2] (for the Jordan pair case) and [5, Theorem 3.6] (for
the Lie case), the socle of a nondegenerate Jordan pair or Lie algebra is the direct
sum of its simple ideals. Moreover, each simple component of Soc L is either inner
simple or contains an abelian minimal inner ideal [4, Theorem 1.12].

(iii) A Lie algebra L or Jordan pair V is said to be Artinian if it satisfies the
descending chain condition on all inner ideals.

(iv) A properly ascending chain 0 ⊂ M1 ⊂ M2 ⊂ · · · ⊂ Mn of inner ideals of
a Lie algebra L has length n. The length of an inner ideal M is the supremum of
the lengths of chains of inner ideals of L contained in M .

1.11 Idempotents and von Neumann regular elements. (i) Following [5], a
pair of elements (e, f) of L is said to be an idempotent if they satisfy:

ad3
e = ad3

f = 0, [[e, f ], e] = 2e and [[e, f ], f ] = −2f.

Notice that the last two conditions imply that (e, [e, f ], f) is a sl(2)-triple.

(ii) The term idempotent was borrowed from the terminology of Jordan pairs
(cf. [13, 5.1]): an idempotent of a Jordan pair V is a pair (e+, e−) ∈ V + × V −

such that Qe+e− = e+ and Qe−e+ = e−.

1.12 Recall (cf. [5]) that an element x ∈ L is called von Neumann regular if
x is a Jordan element and satisfies x ∈ ad2

x L.

(i) Any von Neumann element e of L can be extended to an idempotent
(e, f). In fact (see [19, V.8.2] or [5, Proposition 2.3]), for each h ∈ [e, L] such that
[h, e] = 2e, there exists f ∈ L satisfying [e, f ] = h, ad3

f = 0 and [h, f ] = −2f .

(ii) Any idempotent (e, f) yields a 5-grading L = Lh
−2⊕Lh

−1⊕Lh
0 ⊕Lh

1 ⊕Lh
2 ,

where each Lh
i is the eigenvalue of the ad-semisimple element h := [e, f ] relative

to the eigenvalue i, i = 0, ±1,±2. Moreover, Lh
2 = [e] and Lh

−2 = [f ].

1.13 Kernels and subquotients. Let V = (V +, V −) be a linear Jordan pair
and B ⊂ V + an inner ideal of V . Following [15], the kernel of B is the set
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KerV B = {x ∈ V − : QBx = 0}. Then (0, KerV B) is an ideal of the Jordan
pair (B, V −) and the quotient S = (B, V −)/(0, KerV B) = (B, V −/ KerV B) is
called the subquotient of V with respect to B. The kernel and the corresponding
subquotient of an inner ideal B ⊂ V − are defined similarly.

There is no problem in extending the notion of kernel to inner ideals of Lie
algebras, replacing the Jordan triple product {x, y, z} by the left double commu-
tator [[x, y], z]. However, to yield a good subquotient, i.e., one which is a Jordan
pair, we must restrict ourselves to abelian inner ideals.

1.14 Let M be an inner ideal of a Lie algebra L. The kernel of M is the set

KerL M = {x ∈ L : [M, [M, x]] = 0}.

If M is abelian, then we have by [9, Lemma 2.3]:

(i) KerL M = {x ∈ L : [m, [m,x]] = 0 for every m ∈ M}, and

(ii) [M,L] + [[L,M ], KerL M ] + [[KerL M, M ], L] ⊂ KerL M .

1.15 [9, Proposition 2.5]. For any abelian inner ideal M of L, the pair of
Φ-modules V = (M, L/ KerL M) with the triple products given by

{m, a, n} : = [[m, a], n] for every m,n ∈ M and a ∈ L

{a,m, b} : = [[a,m], b] for every m ∈ M and a, b ∈ L,

where x denotes the coset of x relative to the submodule KerL M , is a Jordan pair
called the subquotient of L with respect to M .

1.16 [9, Proposition 2.8]. Let M be an abelian inner ideal of a Lie algebra
L, K = KerL M the kernel of M , and V = (M, L/K) the subquotient of L relative
to M .

(i) A Φ-submodule B of M is an inner ideal of L if and only if it is an inner
ideal of V .

(ii) If C is an inner ideal of L, then C = (C + K)/K is an inner ideal of V .

(iii) If L is nondegenerate (strongly prime), then V is nondegenerate (strongly
prime).

If L is nondegenerate, then,

(iv) V has nonzero socle if and only if M contains minimal inner ideals. In
fact, Soc M = Soc L ∩M , and
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(v) M has finite length if and only if V is Artinian. In this case, M ⊂ Soc L

and V ∼= (M, I/ KerI M), where I is any ideal of L containing M .

(vi) If L is strongly prime and M is nonzero and of finite length, then V is a
simple nondegenerate Artinian Jordan pair.

2. Partnered inner ideals

2.1 Definition. An inner ideal M of a Lie algebra L will be said to be
partnered if there exists an inner ideal N of L such that

L = M ⊕KerL N = N ⊕KerL M.

Then N is called a partner of M . By symmetry of the definition, N is also
partnered with M as a partner.

2.2 Let V = (V +, V −) a Jordan pair. According to [15], an inner ideal
B ⊂ V σ is said to be complemented if there exists an inner ideal C ⊂ V −σ (called
a complement of B) such that

V σ = B ⊕KerV C and V −σ = C ⊕KerV B.

While there is no risk of confusion between the notion of complementation
for inner ideals of a Jordan pair and the usual one for Φ-submodules (since B and
C do not share the same room), the terms complemented and complement seem
us not to be suitable when referred to inner ideals of a Lie algebra (N does not
complement M as a Φ-submodule).

2.3 Lemma. Let L = L−n ⊕ · · · ⊕ L−1 ⊕ L0 ⊕ L1 ⊕ · · · ⊕ Ln be a (2n + 1)-
grading of a Lie algebra L. If L is nondegenerate, then the abelian inner ideals Ln

and L−n are partnered by each other

Proof. By [9, 2.6(ii)], KerL Ln = L−(n−1) ⊕ · · · ⊕ L0 ⊕ L1 · · · ⊕ Ln, so L =
L−n ⊕KerL Ln. Similarly, L = Ln ⊕KerL L−n.

2.4 Proposition. Let L be a nondegenerate Lie algebra and I an ideal of
L. Then KerL I = AnnL I. If I is partnered, then L = I ⊕ AnnL I and I is the
only partner of I.

Proof. Let x ∈ KerL I. Then [[x, I], I] = 0 and hence ad2
[x,I](I) = 0, which

implies [x, I] = 0 by nondegeneracy of I (1.3). Therefore, KerL I ⊂ AnnL I; the
reverse inclusion is trivial.
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Let C be a partner of I in L, i.e., L = I⊕KerL C = C⊕KerL I. Since AnnL I

is an ideal of L, for any c ∈ C we have

ad2
c(AnnL I) ⊂ C ∩AnnL I = C ∩KerL I = 0.

Hence c ∈ AnnL AnnL I by 1.9(i). Then, by the modular law, L = C ⊕ AnnL I

implies C = AnnL AnnL I. Then C is an ideal and therefore,

KerL C = AnnL C = AnnL AnnL AnnL I = AnnL I.

Thus, L = I ⊕AnnL I, and I = AnnL AnnL I is the only partner of I.

2.5 Proposition. Let L be a strongly prime Lie algebra and B an inner
ideal of L. If KerL B 6= 0, then B is abelian. If B is partnered, then the following
conditions are equivalent:

(i) B is abelian,

(ii) B is proper,

(iii) any partner of B is abelian.

Proof. Note first that for any inner ideal B of a Lie algebra L,

[[B, [B,B]], L] ⊂ [B, B].

Indeed, let b1, b2, b3 ∈ B and a ∈ L. Then

[[b1, [b2, b3]], a] = [[b1, a], [b2, b3]] + [b1, [[b2, b3], a]] = [[[b1, a], b2], b3]

+ [b2, [[b1, a], b3]] + [b1, [[b2, a], b3]] + [b1, [b2, [b3, a]]] ⊂ [B,B].

Now if 0 6= x ∈ KerL B, then [x, [[B, [B, B]], L]] ⊂ [x, [B, B]] ⊂ [[x,B], B] = 0,
and hence [B, [B,B]] = 0 by (1.4). Now, [[B, B], [[B, B], L]] ⊂ [[B,B], B] = 0, and
since L is nondegenerate, [B, B] = 0, i.e., B is abelian.

(i) ⇒ (ii). Strongly prime (nontrivial) Lie algebras are not abelian.

(ii) ⇒ (iii). Let C be a partner of B. If C is not abelian, then KerL C = 0 by
above. Hence B = B ⊕KerL C = L, a contradiction.

(iii) ⇒ (i). If B is not abelian, then KerL B = 0, and C = C ⊕KerL B = L,
again a contradiction.

2.6 Definition. An abelian inner ideal will be said to be strongly partnered
if it has an abelian partner.
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Any nondegenerate associative or Jordan pair is regular von Neumann if and
only if every principal inner ideal is complemented. The same happens for Lie
algebras, where the notion of complementation has been replaced by partnership.

2.7 Proposition. Let L be a nondegenerate Lie algebra and e ∈ L a
Jordan element. Then e is von Neumann regular if and only if the abelian inner
ideal [e] = ad2

e L is strongly partnered.

Proof. If e is von Neumann regular, then it can be extended to an idempotent
(e, f) with associated 5-grading L = L−2 ⊕ L−1 ⊕ L0 ⊕ L1 ⊕ L2, L2 = [e] and
L−2 = [f ]. It follows from (2.3) that [f ] is a partner of [e].

Suppose conversely that [e] is partnered by the abelian inner ideal N . Then
L = [e] ⊕ KerL N and hence there exist b ∈ L and x ∈ KerL N such that e =
[e, [e, b]] + x. By 1.14(ii), [x, [x,N ]] ⊂ KerL N (because N is abelian). Moreover,
x = e− [e, [e, b]] ∈ (e) implies [x, [x, L]] ⊂ [e]. Thus [x, [x,N ]] ⊂ [e] ∩KerL N = 0.
On the other hand, since KerL[e] = KerL(e) by [9, 2.13], [x, [x, KerL[e]]] = 0.
Therefore, [x, [x, L]] = [x, [x,N ⊕KerL[e]]] = 0, which implies x = 0 by nondegen-
eracy of L, so e = [e, [e, b]] is von Neumann regular.

2.8 Let M, N be abelian inner ideals of L which are partnered by each other.
Then

(1M , ϕ) : (M, L/ KerL M) → (M, N),

where ϕ is the canonical linear isomorphism of L/ KerL M onto N , is an isomor-
phism of Jordan pairs (cf. (1.6) and (1.15)).

3. Complemented Lie algebras

3.1 Definition. A Lie algebra L will be called complemented if any inner
ideal of L has a partner, and L will be called weakly complemented if any abelian
inner ideal of L has an abelian partner.

At first sight, a complemented Lie algebra seems not to be necessarily weakly
complemented. However, as will be seen later, complemented Lie algebras are
actually weakly complemented.

3.2 Lemma. Let L be a Lie algebra such that any abelian inner ideal has a
partner. Then L is nondegenerate.

Proof. Let x ∈ L be an absolute zero divisor. Then M := Φx is an abelian
inner ideal of L with KerL M = L. Let N be a partner of M . Then L = N ⊕
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KerL M = N ⊕L implies N = 0, hence L = M ⊕KerL N implies M = 0, so x = 0
and L is nondegenerate.

3.3 Theorem. Suppose that L is complemented and let I be an ideal of L.
Then I is a complemented Lie algebra.

Proof. Let B be an inner ideal of I. Since L is nondegenerate by (3.2),
L = I ⊕ AnnL(I), and B is in fact an inner ideal of L. Let C be a partner of B

in L and π1 : I ⊕ AnnL(I) → I denote the projection of L onto I. For any inner
ideal M of L, π1(M) is an inner ideal of I satisfying the conditions:

KerI π1(M) = KerL M ∩ I = π1(KerL M).

Hence, by the modular law, L = B ⊕ KerL C implies I = B ⊕ (KerL C ∩ I) =
B ⊕KerI π1(C), and L = C ⊕KerL B implies I = π1(L) = π1(C)⊕ π1(KerL B) =
π1(C)⊕KerI B. Therefore, π1(C) is a partner of B in I.

3.4 Proposition. Suppose that L is weakly complemented. For any abelian
inner ideal M of L, the subquotient V = (M,L/ KerL M) is a complemented Jor-
dan pair.

Proof. Let B be an inner ideal of V contained in M . Then B is an abelian
inner ideal of L and therefore it has an abelian partner, say C, in L. Let π :
L → L/ KerL M denote the canonical projection. We claim that π(C) = (C +
KerL C)/ KerL C is a complement of B in V . By (1.16)(ii), π(C) is an inner ideal
of V . Moreover, for any m ∈ M , m ∈ KerV π(C) if and only if

[[C, m], C] ⊂ KerL M ∩ C ⊂ KerL B ∩ C = 0.

Therefore, KerV π(C) = KerL C ∩M . Hence, by the modular law,

M = M ∩ (B ⊕KerL C) = B ⊕ (M ∩KerL C) = B ⊕KerV π(C).

On the other hand, L = C ⊕ KerL B implies L/ KerL M = π(C) + π(KerL B) ⊂
π(C)+KerV B, but this sum is direct by [15, Lemma 3.1] since V is nondegenerate.

Via the isomorphism (M, L/ KerL M) ∼= (L/ KerL N, N), cf. (2.8), one proves
as before that any inner ideal of V contained in L/ KerL M has also a complement.

3.5 Theorem. Any prime weakly complemented Lie algebra L satisfies the
ascending and descending chain conditions on abelian inner ideals.
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Proof. Let {Mi} be a descending or ascending chain of abelian inner ideals
of L. Then M =

⋃
Mi is an abelian inner ideal determining the subquotient

V = (M, L/ KerL M). But V is a complemented Jordan pair by (3.4), and hence
V coincides with its socle by [15, 5.9]. Since V is also strongly prime by (3.2)
and (1.16)(iii), it is necessarily simple. Then, by [15, 5.2], V satisfies both chain
conditions on inner ideals. Since every Mi is an inner ideal of V , the chain {Mi}
becomes stationary.

3.6 Lemma. Let L = ⊕Mα be a direct sum of ideals each of which is a
simple nondegenerate Artinian Lie algebra. Then any inner ideal B of L is of the
form B = ⊕Bα, where for each index α, either Bα = Mα or Bα is an abelian
inner ideal of Mα.

Proof. For each index α, denote by πα the projection of L = ⊕Mα onto
Mα. Then Bα := πα(B) is an inner ideal of Mα. If Bα = Mα, then Mα =
[Mα, [Mα,Mα]] = [B, [B,Mα]] ⊂ B. Suppose then that Bα is a proper inner ideal
of Mα. Then Bα is abelian by [4, Lemma 1.13]. Moreover, Mα is simple Artinian,
so the subquotient (Bα,Mα/ KerMα Bα) coincides with its socle, and any element
bα ∈ Bα is von Neumann regular in Mα [14, Theorem 1]: for each bα ∈ Bα there
exists x ∈ Mα such that bα = [bα, [x, bα]] ∈ [B, [Mα, B]] ⊂ B, which completes the
proof.

3.7 Theorem. For a Lie algebra L, the following notions are equivalent:

(i) L is complemented.

(ii) L is a direct sum of ideals each of which is a simple nondegenerate Artinian
Lie algebra.

Moreover,

(iii) Complemented Lie algebras are weakly complemented.

Proof. (i) ⇒ (ii). Assume that L is complemented. It follows from (2.4) that
the lattice I(L) of its ideals is a Boolean algebra, and from standard techniques
(see [15, 5.1]) that I(L) is also atomic, so L =

⊕
Mα, where each Mα is a simple

complemented Lie algebra (3.3). But Mα is weakly complemented by (2.5), and
hence Artinian and nondegenerate by (3.5) and (3.2).

(ii) ⇒ (i). Consider first the case that L is simple, and let B be an inner
ideal of L. If B = L then B is self-partnered, so we may assume that B is proper.
Then B is an abelian by [4, Lemma 1.13], and has finite length since L is Artinian.
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Hence, by [9, Theorem 3.8], there exists a short grading L = L−n⊕· · ·⊕L0⊕· · ·⊕Ln

such that B = Ln, which implies that B is partnered by (2.3). Consider now the
general L =

⊕
Mα, a direct sum of ideals each which is a simple nondegenerate

Artinian Lie algebra, and let B be an inner ideal of L. By (3.6), B =
⊕

Bα, where
for each index α, either Bα = Mα or Bα is an abelian inner ideal of Mα. By the
simple case we have previously analyzed, each Bα has a partner Cα in Mα. Then
C :=

⊕
Cα is a partner of B in L, and L is complemented.

(iii) Note that if B is actually abelian, then each Bα is abelian and hence so
is Cα by (2.5), which proves that complemented Lie algebras are weakly comple-
mented.

3.8 Remarks. While any nondegenerate Artinian Jordan pair is a direct sum
of finitely many simple Artinian Jordan pairs, and hence it is complemented and
coincides with its socle, a nondegenerate Artinian Lie algebra only has essential
socle [5, Corollary 3.7]. In fact, there exist strongly prime finite dimensions Lie
algebras (over a field of characteristic p > 5) with nontrivial ideals [18, p. 152].
Therefore, unlike the Jordan case, nondegenerate Artinian Lie algebras are not
necessarily complemented.

Nevertheless, nondegenerate Artinian Lie algebras L are actually weakly com-
plemented, as discussed in (ii) ⇒ (i) above: if B is an abelian inner ideal of L,
then B has an abelian partner by [9, Theorem 3.8] and (2.3), since it has finite
length.

4. Inner ideal structure of Lie algebras of finite rank operators

We examine in this section the inner ideal structure of simple nondegenerate
Lie algebras L arising from simple associative algebras R with nonzero socle. This
extends the case where R is Artinian (due to Benkart [3]), and that where L

is a finitary Lie algebra over a field of characteristic zero (due to the authors
[8]), equivalently, R satisfies a generalized polynomial identity and so the division
associative algebra uniquely determined by R is finite dimensional over its center
[2, Theorem 6.1.6].

4.1 Inner ideals of Lie algebras of traceless finite rank operators. Let P =
(X,Y, g) be a pair of dual vector spaces over a division algebra ∆. A linear operator
a : X → X is continuous relative to (X,Y, g) if there exists a# : Y → Y such that
g(ax, y) = g(x, a#y), for all x ∈ X, y ∈ Y . We denote by LY (X) the (associative)



13

algebra of all continuous operators a : X → X, and by FY (X) the ideal of those
continuous operators having finite rank.

By [2, Theorem 4.3.8], R is a simple associative algebra coinciding with its
socle if and only if it is isomorphic to some FY (X). Moreover, LY (X) can be
regarded as the Martindale symmetric ring quotients of FY (X).

(i) For x ∈ X, y ∈ Y , write y∗x to denote the linear operator defined by y∗x(x′) =
g(x′, y)x for all x′ ∈ X. Then y∗x ∈ FY (X).

(ii) Given the subspaces V,W of X,Y respectively, we write W ∗V to denote the
linear span of the operators w∗v, for all v ∈ V , w ∈ W .

4.2 Proposition. Let ∆ be a division associative algebra over a field of
characteristic not 2 or 3, and let P = (X, Y, g) be an infinite dimensional pair of
dual vector spaces over ∆. A subspace B of [FY (X),FY (X)] is a proper inner
ideal if and only if B = W ∗V , where V, W are orthogonal.

Proof. By [8, 2.5(i)], W ∗V is a proper inner ideal of L. Conversely, set
R := FY (X) and L := [FY (X),FY (X)] and consider a proper inner ideal B of L.
Since X is infinite dimensional over ∆, Z(R) = 0. Moreover, by [3, Lemma 3.13
and 3.14], [B, B] = 0 and b2 = 0 for any b ∈ B. Then, for any b, c ∈ B and a ∈ R,
we have [[b, a], c] = bac + cab ∈ B, which implies that B is an inner ideal of the
of the Jordan algebra R(+) (with Jordan product x • y = 1

2 (xy + yx)). But inner
ideals of R(+) are of the form W ∗V , for some subspace W of Y and some subspace
V of X [6, Theorem 3]. Finally, since b2 = 0 for any b ∈ B, g(V, W ) = 0.

4.3 Let (X, Y, g) be a pair of dual vector spaces over ∆ and set R = FY (X).
For e, f ∈ LY (X), eRf = (f#Y )∗(eX). Moreover, the subspaces V = eX and
W = f#Y are orthogonal if and only if fe = 0. Hence the following statements
are equivalent:

(i) R is Artinian,

(ii) R has no infinite sequence of nonzero orthogonal idempotents,

(iii) (X,Y, g) has no pairs of subspaces (V,W ), where V ≤ X and W ≤ Y are
infinite dimensional and orthogonal, g(V, W ) = 0.

4.4 Corollary. Let L be a Lie algebra of the form [R, R]/Z(R) ∩ [R, R],
where R is a simple associative algebra coinciding with its socle. Then L is Ar-
tinian if and only if R is Artinian.
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Proof. If R is Artinian, then L is Artinian by [3, Corollary 5.2]. The reverse
implication follows from (4.3).

4.5 Inner ideals of Lie algebras of finite rank skew-symmetric operators.
Recall [2, Theorem 4.6.8] that a simple associative algebra R with an involution
∗ has nonzero socle if and only if it is ∗-isomorphic to the algebra of finite rank
continuous operators (FX(X), ∗), where X is a left vector space endowed with a
nondegenerate Hermitian or skew-Hermitian form h (h(x, y) = εh(y, x), ε = ±1)
over a division algebra with involution (∆,−). Moreover, the involution ∗ is the
adjoint involution with respect to h. Actually, we may assume, without loss of
generality, that either h is symmetric (in this case ∆ is a field with the identity as
involution), or h is skew-Hermitian [8, 3.4].

4.6 Let X be a left vector space endowed with a nondegenerate Hermitian
or skew-Hermitian form h over a division algebra with involution (∆,−). For
x, y ∈ X,

(i) x∗y ∈ FX(X) with (x∗y)∗ = εy∗x (ε = ±1), and

(ii) [x, y] := x∗y − εy∗x ∈ Skew(FX(X), ∗).
Given V, W subspaces of X, we write

(iii) V ∗W to denote the linear span of the operators v∗w, for all v ∈ V , w ∈ W ,

(iv) [V,W ] to denote the linear span of the skew-traces [vi, wi], vi ∈ V , wi ∈ W .

4.7 Proposition. Let (∆,−) be a division associative algebra with involu-
tion over a field of characteristic not 2 or 3, X an infinite dimensional left vector
space endowed with a nondegenerate symmetric or skew-Hermitian form h over
(∆,−), and L = [Skew(FX(X), ∗),Skew(FX(X), ∗)]. Then a subspace B of L is
a proper inner ideal of L if and only if B is of one of the following types:

(i) B = [V, V ] where V is a totally isotropic subspace of X,

(ii) ∆ is a field with the identity as involution, h is symmetric, and B = [x,H⊥],
where H is hyperbolic plane and x is a nonzero isotropic vector of H.

Moreover, the length of [x,H⊥] is 1 if and only if H⊥ is anisotropic; otherwise
[x,H⊥] has length 2.

Proof. By [8, 3.6(i) and 3.7(i)], both [V, V ] and [x,H⊥] are proper inner ideals
of L. Conversely, set R := FX(X) and K := Skew(FX(X), ∗).

We will use a direct limit argument to reduce the question to the case when
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X is finite dimensional. Let Xα be a finite dimensional subspace of X such that
dimZ(∆) Xα > 4, and the restriction hα of h to Xα ×Xα is nondegenerate. Then
X = Xα ⊕ X⊥

α . Set Rα := LXα
(Xα) and denote by Lα the set of all a ∈ L

such that aX⊥
α = 0. Then Lα is a subalgebra of L isomorphic to [Kα,Kα], Kα =

Skew(Rα, ∗). Since B is proper, we can take a directed set {Rα} such R is the direct
limit of the Rα and no Lα is contained in B. Then each Bα := B ∩Lα is a proper
inner ideal of Lα

∼= [Kα,Kα]. By [3, 4.21 and 4.26], Bα is abelian, and by [3, 4.23],
b3 = 0 for any b ∈ Bα. Since Z(Rα) is a field, Bα ∩Z(Rα) = 0 and we can regard
Bα as an abelian inner ideal of the simple Lie algebra [Kα,Kα]/[Kα, Kα]∩Z(Rα),
via the isomorphism: Bα

∼= (Bα + Z(Rα))/Z(Rα). Now we consider two cases.

(Case 1) b2 = 0 for any b ∈ Bα and for all indexes α. Then it follows from
the proof of [3, Theorem 5.5] that Bα = eαRαe∗α, where eα is an idempotent of
Rα such that e∗αeα = 0. It is easy to see that Vα := eαXα is a totally isotropic
vector subspace. Moreover, by [8, 3.6(ii)], Bα = eαRαe∗α = [Vα, Vα]. Since the Rα

form a directed set, so do the Vα. Thus, V := ∪Vα is a totally isotropic subspace
of X, and B = [V, V ].

(Case 2) b2 6= 0 for some b ∈ Bα and some index α. Then it follows from
the proof of [3, Theorem 5.5] that ∆ is a field B with the identity as involution.
Hence, we have by [8, 3.8(ii)] (where only char(F ) 6= 2 is used in the proof)
that B = [x,H⊥] as in (ii). Moreover, by [8, 3.7(iv)], B = [x,H⊥] is minimal,
equivalently, has length 1, if and only if H⊥ is anisotropic; otherwise B has length
2 (any inner ideal of L = fo(X, h) strictly contained in [x,H⊥] is of the form
∆[x, z] for some isotropic vector z ∈ H⊥).

4.8 A right ideal I of an associative algebra with involution (R, ∗) will be
called isotropic if I∗I = 0. Then (R, ∗) will be called isotropic if contains nonzero
isotropic right ideals.

4.9 Lemma. Let X be a left vector space endowed with a nondegenerate Her-
mitian or skew-Hermitian form h over a division algebra with involution (∆,−),
and let (R, ∗) be the associative algebra FX(X) with the adjoint involution. Then
a right ideal I of R is isotropic if and only if I = X∗V for some totally isotropic
subspace V of X.

Proof. Right ideals of FX(X) are of the form I = X∗V , where V is a subspace
of X. Now I∗I = (V ∗X)(X∗V ) = X∗h(V, V )X = 0 if and only if V is totally
isotropic.
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4.10 Corollary. Let (∆,−) be an associative algebra with involution over
a field of characteristic not 2 or 3, X an infinite dimensional left vector space
endowed with a nondegenerate symmetric or skew-Hermitian form h over (∆,−),
R = FX(X), and L = [Skew(FX(X), ∗), Skew(FX(X), ∗)], with ∗ being the adjoint
involution. Then the following conditions are equivalent:

(i) (X,h) does not contain infinite dimensional totally isotropic subspaces.

(ii) (R, ∗) satisfies the descending chain condition on isotropic right ideals.

(iii) L is Artinian.

5. Simple nondegenerate Artinian Lie algebras

We give in this section a structure theorem for simple nondegenerate Artinian
Lie algebras over a field of characteristic 0 or greater than 7.

5.1 A Lie algebra L will be called a division Lie algebra if it is nonzero,
nondegenerate and has no nontrivial inner ideals.

5.2 Examples of division Lie algebras.

(i) Let ∆ be a division associative algebra such that [[∆,∆], ∆] 6= 0. Then
[∆,∆]/[∆,∆] ∩ Z(∆) is a division Lie algebra, [3, Corollary 3.15].

(ii) Let R be a simple associative algebra with involution ∗ and nonzero socle.
Suppose that Z(R) = 0 or the dimension of R over Z(R) is greater than 16, and set
K := Skew(R, ∗). Then L = [K, K]/[K,K] ∩ Z(R) is a division Lie algebra if and
only if (R, ∗) has no nonzero isotropic right ideals. This is a direct consequence
of the inner ideal structure of L: [3, Theorem 5.5] when R is Artinian, and (4.7)
when R is not Artinian.

5.3 Theorem. Let L be a simple Lie algebra over a field F of characteristic
0 or greater than 7. Then L is Artinian and nondegenerate if and only if it is one
of the following:

(i) A division Lie algebra.

(ii) A (finite dimensional over its centroid) simple exceptional Lie algebra.

(iii) [R, R]/[R,R] ∩ Z(R), where R is a simple Artinian associative algebra.

(iv) [K, K]/[K, K] ∩ Z(R), where K = Skew(R, ∗) and R is a simple associative
algebra with involution ∗ which coincides with its socle, such that Z(R) = 0
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or the dimension of R over Z(R) is greater than 16, and (R, ∗) satisfies the
descending chain condition on isotropic right ideals.

Proof. Let us first see that any of the Lie algebras listed above has the required
properties: (i) this is clear for division Lie algebras; (ii) any simple exceptional
Lie algebra L is finite dimensional over its centroid C, so it is Artinian, and
for the algebraic closure C of C, C ⊗ L is nondegenerate (see, for instance, [18,
Theorem 3]); (iii) [R,R]/[R,R] ∩ Z(R) is nondegenerate by [5, 5.2], and Artinian
by (4.4); (iv) [K, K]/[K, K]∩Z(R) is nondegenerate by [5, 5.9 ], and Artinian by
[3, Corollary 5.6] if R is Artinian, and by (4.10) if R is not Artinian.

Suppose, conversely, that L is a simple nondegenerate Artinian Lie algebra.
Then L contains minimal inner ideal and by [5, 6.3] it is one of the following: (i) a
division Lie algebra; (ii) a simple exceptional Lie algebra; (iii) [R, R]/[R, R]∩Z(R),
with R a simple associative algebra with nonzero socle; (iv) [K,K]/[K, K]∩Z(R),
where K = Skew(R, ∗) and R is a simple associative algebra such that Z(R) = 0
or the dimension of R over Z(R) is greater than 16, has an involution ∗, and
coincides with its socle. Therefore, we only need to deal with the cases (iii) and
(iv). By (4.4), if [R, R]/[R, R] ∩ Z(R) is Artinian then R is Artinian. Finally, it
follows from (4.10) that if [K,K]/[K,K] ∩ Z(R) is Artinian, then (R, ∗) satisfies
the descending chain condition on isotropic right ideals.
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of simple finitary Lie algebras. J. Lie Theory 16 (2006), 97-114.
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11. E. Garćıa and M. Gómez Lozano. An elemental characterization of
strong primeness in Lie algebras. J. Algebra, to appear.

12. N. Jacobson. Lie Algebras. Interscience Publishers, New York, 1962.

13. O. Loos. Jordan Pairs. Lecture Notes in Mathematics 460, Springer-Verlag,
New York, 1975.

14. O. Loos. On the socle of a Jordan pair. Collect. Math. 40, No. 2 (1989),
109-125.

15. O. Loos and E. Neher. Complementation of inner ideals in Jordan pairs.
J. Algebra 166 (1994), 255-295.

16. K. McCrimmon. Strong prime inheritance in Jordan systems. Algebras,
Groups and Geom. 1 (1984), 217-234.

17. E. Neher. Lie algebras graded by 3-graded root systems and Jordan pairs
covered by grids. Amer. J. Math. 118 (1996), 439-491.

18. A. A. Premet. Lie algebras without strong degeneration. Math USSR Soar-
nik 57 (1987), 151-164.

19. G.B. Seligman. Modular Lie Algebras. Ergebnisse Math. Grenzgebiete,
40, Springer-Verlag, Berlin and New York, 1967.

21. E. I. Zelmanov. Lie algebras with an algebraic adjoint representation.
Math. USSR Sbornik 49, No. 2 (1984), 537-552.


