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Abstract. In a recent paper by the author and Artem Golubkov, it was proved
that a strongly prime Lie PI-algebra with an algebraic adjoint representation over an
algebraically closed field of characteristic 0 is simple and finite dimensional. In this note
we derive this result from a more general one on strongly prime Lie PI-algebras with
abelian minimal inner ideals, which is closely related to the intrinsic characterization
of simple finitary Lie algebras with abelian minimal inner ideals.

Introduction

Theorem A. Let A be a prime associative algebra over a field F. By using classical

theory of associative PI-algebras (see Cohn’s book [5]), it is easy to show that if A is

algebraic and satisfies a polynomial identity, then A is simple and finite dimensional

over its center, this being an algebraic extension of F.

This can be reformulated as follows: Such an algebra A is simple, has finite capacity

(A is unital and 1 = e1 + · · ·+ en is a sum of orthogonal division idempotents, i.e., eiAei

is a division algebra), and its center is an algebraic extension of F.

Theorem J. Among the fundamental theorems proved by Zelmanov in [17], we find, as

a small treasure, the following Jordan analog of Theorem A. Let J be a prime nondegen-

erate Jordan algebra over a field F of characteristic not 2. If J is algebraic and satisfies

a polynomial identity which is not an s-identity, then J is simple, has finite capacity (J

is unital and 1 = e1 + · · · + en is a sum of orthogonal division idempotents, i.e., Uei
J

is a division Jordan algebra, uniquely determined up to isotopy), and its (associative)

center is an algebraic extension of F. Moreover, J is either finite dimensional over its

center or the Jordan algebra of a nondegenerate symmetric bilinear form on an infinite

dimensional vector space over an algebraic extension of F.
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Theorem L. Let L be a prime nondegenerate Lie algebra over a field F of characteristic

0. If L has an algebraic adjoint representation and satisfies a polynomial identity, then

L is simple and finite dimensional over its centroid, this being an algebraic extension

of F. This theorem is proved in [8] by considering first the particular case (referred to

as Theorem F) that F is algebraically closed (where the existence of a nonzero Engel

element is assured, thus allowing the use of Jordan techniques as explained later), and

then reducing the general case to this particular one via a tightened scalar extension

and Zelmanov’s theorem on local finiteness of Lie PI-algebras with an algebraic adjoint

representation [18].

In this note, we derive Theorem F from a more general result on strongly prime Lie

PI-algebras with abelian minimal inner ideals, which is closely related to the intrinsic

characterization of simple finitary Lie algebras with abelian minimal inner ideals given

in [6, Theorem 5.3]. In any strongly prime Lie PI-algebra with an algebraic adjoint

representation over a field of characteristic 0, abelian minimal inner ideals occur as soon

as we have nonzero Engel elements, a fact that is proved here by means of Theorem J and

the Lie-Jordan connection [7]. The existence of a nonzero Engel element is automatic

if the the algebra has a nontrivial finite grading, in particular, if the ground field is

algebraically closed, but does not hold in general. For the sake of completeness, we will

give an outline of the proof of Theorem J recalling the necessary definitions.

1. Common features of Lie and Jordan algebras

1. Throughout this note, and unless specified otherwise, we will be dealing with Lie

algebras L ([10], [12]), with [x, y] denoting the Lie product and adx the adjoint map

determined by x over a field F, and with linear Jordan algebras J ([13], [16]), with

Jordan product x · y, multiplication operators mx : y 7→ x · y, quadratic operators

Ux = 2m2
x − mx2 and triple product {x, y, z} = Ux+zy − Uxy − Uzy, over a field F of

characteristic different from 2.

An associative algebra A (over a field of characteristic different from 2) gives rise to

a Lie algebra A− with Lie product [x, y] := xy − yx, and a linear Jordan algebra A+

with Jordan product x · y := 1/2(xy + yx). A Jordan algebra J is said to be special if

it is isomorphic to a subalgebra of A+ for some associative algebra A.

2. An element x ∈ J is called an absolute zero divisor if Ux = 0. We say J is

nondegenerate if it has no nonzero absolute zero divisors, semiprime if B2 = 0 implies

B = 0, and prime if B · C = 0 implies B = 0 or C = 0, for any ideals B, C of J .
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Similarly, given a Lie algebra L, x ∈ L is an absolute zero divisor of L if ad2
x = 0 (for

Lie algebras over a field of characteristic 2, standard definition of absolute zero divisor

or cover of a thin sandwich requires ad2
x = 0 = adxadyadx, y ∈ L); L is nondegenerate

if it has no nonzero absolute zero divisors, semiprime if [B, B] = 0 implies B = 0, and

prime if [B, C] = 0 implies B = 0 or C = 0, for any ideals B, C of L. Nondegeneracy for

both Jordan and Lie algebras implies semiprimeness, but the converse does not hold.

A Jordan or Lie algebra is said to be strongly prime if it is prime and nondegenerate.

Simplicity, for both Jordan and Lie algebras, means nonzero product and the absence

of nonzero proper ideals.

3. Inner Ideals. An inner ideal of a Jordan algebra J is a vector subspace B of J such

that {B, J,B} ⊆ B. Similarly, an inner ideal of a Lie algebra L is a vector subspace B

of L such that [[B,L], B] ⊆ B. An abelian inner ideal of L is an inner ideal B which is

also an abelian subalgebra, i.e. [B, B] = 0.

For any element a ∈ J , UaJ is an inner ideal of J , as follows from the Fundamental

Jordan Identity UUxy = UxUyUx, x, y ∈ J . Hence a nonzero subspace B of a nondegen-

erate algebra J is a minimal inner ideal if and only if B = UbJ for any nonzero b ∈ J .

As will be seen in Section 4, only a special kind of elements in Lie algebras yield inner

ideals in a similar way.

4. Centers. For a Lie algebra L, the center of L, denoted by Z(L), is the set of all

z ∈ L such that [z, x] = 0 for all x ∈ L. For a Jordan algebra J , the center of J is

simply the nucleus:

Z(J) = {z ∈ J : (z, x, y) = (x, z, y) = (x, y, z) = 0, x, y ∈ J},
with (a, b, c) = (a · b) · c− a · (b · c) for all a, b, c ∈ J .

2. Theorem J

Throughout this section J will denote a Jordan algebra over a field F of characteristic

different from 2.

5. Division Jordan algebras. Let J be a Jordan algebra with 1. An element x ∈ J

is called invertible if there exists y ∈ J such that x ·y = 1 and x2 ·y = x. In this case Ux

is invertible and the inverse of x, denoted by x−1 is uniquely determined: x−1 = U−1
x x

[16, II.6.1.1-7]. A unital Jordan algebra in which every nonzero element is invertible is

called a division Jordan algebra. If J = A+ for an associative algebra A, then A+ is a

division Jordan algebra if and only if A is a division associative algebra [16, II.6.1.5].
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6. Division idempotents. An idempotent e of a Jordan algebra J is called a division

idempotent if the principal inner ideal UeJ is minimal, equivalently, UeJ is a division

Jordan algebra with e as unit [16, I.5.1 ]. We note that if J is strongly prime, then the

division Jordan algebra determined by a division idempotent is uniquely determined up

to isotopy. (See [16, II.7.2] for definition.)

7. Capacity. A Jordan algebra J is said to have capacity n if J is unital and 1 can be

written as a sum of n orthogonal division idempotents. By Jacobson’s capacity theorem

[16, I.5.2], any nondegenerate Jordan algebra having finite capacity is a direct sum of

ideals each of which is a simple Jordan algebra of finite capacity.

8. Semiprimitive Jordan algebras. A Jordan algebra is said to be semiprimitive if

has no quasi-invertible ideals (see [16, III.1.3.1] for definition), i.e., its Jacobson radical

vanishes. Any semiprimitive Jordan algebra is nondegenerate [16, III.1.6.1].

9. I-algebras. A Jordan algebra J over a field F is said to be algebraic if every element

x ∈ J is a root of a nontrivial polynomial in F[ξ]. As proved in [16, I.8.1 (Algebraic I

Proposition)], any algebraic Jordan algebra J is an I-algebra, i.e., every non-nil inner

ideal of J contains a nonzero idempotent.

Theorem 2.1. (McCrimmon) Any semiprimitive I-algebra having no infinite family of

nonzero orthogonal idempotents is unital and has finite capacity.

Proof. See [16, I.8.1 (I-Finite Capacity Theorem)] for a sketch of the proof. ¤

10. Jordan PI-algebras. A Jordan polynomial p(x1, . . . , xn) of the free Jordan F-

algebra J(X) is said to be an s-identity if it vanishes in all special Jordan algebras, but

not in all Jordan algebras. A Jordan algebra J satisfying a polynomial identity which

is not an s-identity is called a Jordan PI-algebra.

Lemma 2.2. (Zelmanov) Let J be a strongly prime Jordan PI-algebra. Then J has no

infinite family of nonzero orthogonal idempotents.

Proof. Let e ∈ J be a nonzero idempotent. It follows from [1, Corollary 3.3] that the

unital Jordan algebra UeJ inherits strong primeness of J . Moreover, if UeJ is strictly

contained in J , then UeJ is special by [17, Lemma 20]. This reduces the proof of the

lemma to the case that J is special, which is proved in [17, Lemma 19]. ¤

Theorem 2.3. (Zelmanov) Let J be a strongly prime algebraic Jordan PI-algebra over

the field F. Then J is simple and has finite capacity. Moreover, its center is an algebraic

field extension of F.



STRONGLY PRIME ALGEBRAIC LIE PI-ALGEBRAS 5

Proof. Since J is nondegenerate and PI, it follows from Zelmanov PI-Radical Theorem

[17, Theorem 4] that J does not contain nonzero nil ideals. This and the fact that J

is an I-algebra (9) imply that J is semiprimitive (otherwise the Jacobson radical of J

would contain a nonzero idempotent, a contradiction). Moreover, we have by Lemma

2.2 that J has no infinite family of nonzero orthogonal idempotents. Therefore J has

finite capacity by Theorem 2.1. Since J is prime, it is actually simple by Jacobson’s

capacity theorem, and its center is an algebraic extension of F. ¤

Remark 2.4. Zelmanov actually proves in [17, Lemma 25] that a prime semiprimitive

algebraic Jordan PI-algebra is locally finite over its centroid. He first shows that such

a Jordan algebra has finite capacity and then applies Jacobson’s capacity theorem to

reduce the proof to each of the four kinds of simple Jordan algebras of finite capacity.

3. Theorem A

Let J = A+ for an associative algebra A. By the elemental characterization of

semiprimeness of associative algebras (aAa = 0 ⇒ a = 0), A is semiprime if and only if

A+ is nondegenerate, and by [9, Theorem 1.1], A is prime (resp. simple) if and only if A+

is strongly prime (resp. simple). It is clear that A is unital if and only if A+ is unital, A

and A+ share the same idempotents, and the relation of orthogonality for idempotents

is the same in A as in A+. Moreover, for any idempotent e ∈ A, (eAe)+ = UeA
+

and, by (5), eAe is a division associative algebra if and only if (eAe)+ is a division

Jordan algebra. These facts altogether prove that Theorem J is a Jordan extension of

Theorem A.

4. The Lie-Jordan connection

Throughout this section L will denote a Lie algebra over a field F of characteristic

different from 2 and 3.

11. Engel and Jordan Elements. An element a ∈ L is called Engel if ada is a

nilpotent operator. In this case, the nilpotence index of ada is called the index of a.

Engel elements of index at most 3 are called Jordan elements. It is easy to verify that

any element a of an associative algebra A such that a2 = 0 is a Jordan element of the

Lie algebra A−.

Clearly, any element of an abelian inner ideal is a Jordan element. Conversely, by

[4, Lemma 1.8], any Jordan element a generates the principal abelian inner ideal ad2
aL.
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As in the Jordan case, this result follows from an analog of the Fundamental Jordan

Identity:

ad2
ad2

ax = ad2
aad2

xad2
a

which holds for any Jordan element a and any x ∈ L [4, Lemma 1.7(iii)]. This identity

is a good justification for the use of term Jordan element. Another reason for adopting

this terminology is the following:

12. Jordan Algebra at a Jordan Element. Let a be a Jordan element of a Lie

algebra L. It was proved in [7, Theorem 2.4] that the underlying vector space L with

the new product defined by x ·a y := [[x, a], y] is a nonassociative algebra, denoted by

L(a), such that

(i) KerLa := {x ∈ L : [a, [a, x]] = 0} is an ideal of L(a).

(ii) La := L(a)/KerLa is a Jordan algebra, called the Jordan algebra of L at a.

We denote by x 7→ x̄ the natural epimorphism of L(a) onto La and by U
(a)
x̄ the U -

operator of x̄ in La. As proved in [8], many properties of a Lie algebra can be transferred

to its Jordan algebras. Moreover, the nature of the Jordan element in question is

reflected in the structure of the attached Jordan algebra. These facts turn out to be

crucial for applications of Jordan theory to Lie algebras.

Lemma 4.1. Suppose that L is nondegenerate and let 0 6= a ∈ L be a Jordan element.

Then the following conditions are equivalent:

(i) ad2
aL is an abelian minimal inner ideal.

(ii) La is a division Jordan algebra.

In this case, a ∈ ad2
aL.

Proof. We know by [7, 2.15(i)] that for any Jordan element a ∈ L, the Jordan algebra La

inherits nondegeneracy from L, and by [7, 2.14] there is a one-to-one order-preserving

correspondence between the principal inner ideals of L contained in ad2
aL and the prin-

cipal inner ideals of La. Hence ad2
aL is minimal if and only if La does not contain proper

inner ideals; but it is the absence of inner ideals what characterizes the division Jordan

algebras [16, II.18.1.4]. Now it follows from [7, 2.15(ii)] that just assuming that La is

unital and L nondegenerate, there exists b ∈ L such that a = [[a, b]a]. This completes

the proof of the lemma. ¤

13. Division elements. Let L be a nondegenerate Lie algebra. A nonzero Jordan

element a ∈ L will be called a Jordan element if it satisfies the equivalent conditions of

Lemma 4.1.
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Lemma 4.2. Let 0 6= a ∈ L be a Jordan element of a nondegenerate Lie algebra L and

let e ∈ L be such that ē is a division idempotent of La. Then ad2
ae is a division element

of L.

Proof. U
(a)
ē La is a minimal inner ideal of La. Hence, by [7, 2.14], ad2

ad2
aeL is an abelian

minimal inner ideal of L, equivalently, ad2
ae is a division element of L, as required. ¤

5. Theorem F

Throughout this section L will denote a Lie algebra over a field F of characteristic 0.

14. Simple Lie algebras with abelian minimal inner ideals. Let L be a simple

Lie algebra containing abelian minimal inner ideals. It was proved in [6, 2.2], although

in a notation different from that used here, that the division Jordan algebra La de-

fined by a division element a ∈ L is independent of the choice of the element up to

isotopy, equivalently, the Jordan pair (La, La) is an invariant of the Lie algebra L up to

isomorphism of Jordan pairs. (See [15, 1.12] for definitions.)

15. Finitary algebras. Following [3], a Lie algebra L is said to be finitary (over F)

if it is isomorphic to a subalgebra of F(X)−, the Lie algebra consisting of all finite rank

operators on a vector space X over F.

Recall that an (associative, Jordan or Lie) algebra A is said to be locally finite if every

finitely generated subalgebra of A is finite dimensional.

Lemma 5.1. Finitary Lie algebras L are locally finite.

Proof. Let L ≤ F(X)−. It is enough to see that the associative algebra F(X) is locally

finite, but this follows from Litoff’s theorem [11, IV.15.Theorem 3]. ¤

Finitary Lie algebras do not necessarily contain abelian minimal inner ideals. For

instance, the finitary orthogonal algebra defined by a vector space with an anisotropic

symmetric bilinear form over a field F does not contain any nonzero abelian inner ideal.

A simple Lie algebra over a field F is said to be central if its centroid is one-dimensional

over F. It was proved in [6, Theorem 5.3]:

Proposition 5.2. A central simple Lie algebra containing abelian minimal inner ideals

is finitary if and only if its associated division Jordan algebra is PI.

Remark 5.3. Using Zelmanov’s classification of division Jordan PI-algebras (see [16,

I.7.3, I.7.4]) and computing their isotopes in each one of the different four types [16,
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II.7.3.1, II.7.4.1, II.7.5.1, II.7.5.2], one checks that the isotope of a division Jordan PI-

algebra is again a division Jordan PI-algebra. This proves that the characterization

of central simple finitary Lie algebras with abelian minimal inner ideals given in the

preceding proposition makes sense.

16. Lie PI-algebras. A Lie algebra satisfying a nontrivial polynomial identity is

called a Lie PI-algebra.

Lemma 5.4. Let L be a strongly prime Lie PI-algebra over a field of characteristic 0

containing abelian minimal inner ideals. Then L is simple and finite dimensional over

its centroid.

Proof. Let B be an abelian minimal inner ideal of L and denote by S the ideal of L

generated by B. By [6, 1.14, 1-15], B is an (abelian) minimal inner ideal of S and S is

a simple Lie algebra. Let 0 6= b ∈ B. It follows from Lemma 4.1 and [8, Proposition

4.2(iv)] that Sb is a division Jordan PI-algebra. Hence, by Proposition 5.2, S is finitary

over its centroid and therefore locally finite by Lemma 5.1. Since S is also PI, S is

actually finite dimensional by [2, Theorem 2]. By primeness, L can be embedded in

Der(S) via the adjoint representation. Since any derivation on S is inner, L = S is

simple and finite dimensional over its centroid. ¤

Remark 5.5. Although the proof of the preceding lemma can seem to be elemental, it is

ultimately based on the structure theorem for simple Lie algebras with a finite grading,

given by Zelmanov in [19], which is the key tool to prove the intrinsic characterization

of simple finitary Lie algebras with abelian minimal inner ideals.

17. Algebraic Lie algebras. A Lie algebra L over a field F is said to be algebraic if

for each x in L the inner derivation adx is a root of a nonzero polynomial in F[ξ].

Lemma 5.6. Let L be a strongly prime algebraic Lie algebra over a field F of character-

istic 0 containing abelian minimal inner ideals. Then the centroid of L is an algebraic

field extension of F.

Proof. Let a ∈ L be a division element and let b ∈ L be such that a = [[a, b], a] (Lemma

4.1). By [8, Proposition 4.2(iii)], the division Jordan algebra La is algebraic over F.

Denote by Γ(L) the centroid of L and by Z(La) the center of La. By primeness of L, Γ(L)

is an integral domain and La can be regarded as an algebra over Γ(L). We claim that

the map f : Γ(L) → Z(La) given by γ 7→ γb̄ = γ(b), γ ∈ Γ(L), is a monomorphism of F-

algebras. Linearity of f is clear and γ(b) = 0 ⇔ [[a, γ(b)], a] = γ([[a, b], a]) = γ(a) = 0,
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which implies γ = 0 by primeness of L, so f is injective. Finally, for η, γ ∈ Γ(L), we

have

ηγ(b) = ηγ([[b, a], b] = [[η(b), a], γ(b)] = ηb̄ ·a γb̄,

which proves that f is an algebra homomorphism. Since Z(La) is an algebraic field

extension of F, Γ(L) ≤ Z(La) is an algebraic extension of F; but Γ(L) is a domain, so

Γ(L) is an algebraic field extension, as required. ¤

Proposition 5.7. Let L be a strongly prime algebraic Lie PI-algebra over a field F of

characteristic 0 containing a nonzero Engel element. Then:

(i) L contains abelian minimal inner ideals.

(ii) The centroid of L is an algebraic field extension of F and L is simple and finite

dimensional over its centroid.

Proof. (i) Let a ∈ L be a nonzero Jordan element, whose existence is guaranteed by

Kostrikin’s Descendent Lemma [14, Lemma 2.1.1]. By [8, Proposition 4.2], La is a

strongly prime algebraic Jordan PI-algebra over F, and hence, by Theorem 2.3, La is

simple and has finite capacity. In particular, La contains a division idempotent, but, as

proved in Lemma 4.2, any division idempotent of La yields a division element in L and

therefore an abelian minimal inner ideal, as required.

(ii) It follows from (i) together with Lemmas 5.4 and 5.6. ¤

18. Extremal Elements. Let L be a Lie algebra over a field F. A nonzero element

a ∈ L is said to be extremal if ad2
aL = Fa, i.e., a generates a one-dimensional inner

ideal. As proved in [6, Lemma 5.4]:

Proposition 5.8. A simple Lie algebra over a field F containing an extremal element

is central.

Proposition 5.9. Let L be a strongly prime Lie PI-algebra over a field F of character-

istic 0 containing an extremal element. Then L is simple and finite dimensional over

F.

Proof. Let a ∈ L be an extremal element. By [6, 1-15], the ideal S generated by a is

simple as an algebra, and locally finite by [18, Lemma 15]. Since S is PI, S is actually

finite dimensional over its centroid [2, Theorem 2]. As in the proof of Lemma 5.4, we

conclude that L is simple and finite dimensional over F, since L is central as quoted

above. ¤
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Corollary 5.10. [8, Proposition 5.1] Let L be a strongly prime algebraic Lie PI-algebra

over an algebraically field F of characteristic 0. Then L is simple and finite dimensional

over F.

Proof. Since L is algebraic, it follows from [8, Corollary 2.3] that L contains a nonzero

Engel element. Hence L contains a division element by Proposition 5.7(i). But by [8,

Proposition 4.3], under the condition that F is algebraically closed, any division element

in L is extremal. Now Proposition 5.9 applies to finish the proof. ¤
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[8] A. Fernández López and A. Yu. Golubkov, Lie algebras with an algebraic adjoint representation

revisited, Manuscripta Math. 140 (2013), 363-376.
[9] I. N. Herstein, Topics in Ring Theory, U. of Chicago Lectures Notes, 1965.

[10] J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Grad. Texts in Math.
9, Springer-Verlag, Heidelberg-Berlin- New York, 1972.

[11] N. Jacobson, Structure of Rings, American Mathematical Society, 1956.
[12] N. Jacobson, Lie Algebras, Interscience Publishers, New York, 1962.
[13] N. Jacobson, Structure and Representations of Jordan Algebras, American Mathematical Society,

1968.
[14] A. I. Kostrikin, Around Burnside. A Series of Modern Surveys in Mathematics. Springer-Verlag,

Berlin, Heidelberg, New York, London, Paris, Tokyo, Hong Kong, 1990.
[15] O. Loos, Jordan Pairs, Lecture Notes in Math, vol. 460, Springer-Verlag, Heidelberg-Berlin- New

York, 1975.



STRONGLY PRIME ALGEBRAIC LIE PI-ALGEBRAS 11

[16] K. McCrimmon, A Taste on Jordan Algebras, Springer, 2004.
[17] E. I. Zelmanov, Absolute zero-divisors and algebraic Jordan algebras, Siberian Math. J. 23 (1982),

100-116.
[18] E. I. Zelmanov, Lie algebras with an algebraic adjoint representation Math. USSR Sb. 49 (1984),

537-552.
[19] E. I. Zelmanov, Lie algebras with a finite grading Math. USSR Sb. 52 (1985), 347-385.
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