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Abstract

Given a complex Hilbert spaceH , we study the differential geometry of the manifoldA of normal algebraic
elements inZ = L(H). We representA as a disjoint union of connected subsetsM of Z. Using the algebraic
structure ofZ, a torsionfree affine connection∇ (that is invariant under the groupAut (Z) of automorphisms of
Z) is defined on each of these connected components and the geodesics are computed. In caseM consists of
elements that have a fixed finite rankr, (0 < r < ∞), Aut (Z)-invariant Riemann and K¨ahler structures are
defined onM which in this way becomes a totally geodesic symmetric holomorphic manifold. Similar results
are established for the manifold of algebraic elements in an abstract JB∗-triple.
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1 Introduction

In this paper we are concerned with the differential geometry of some infinite-dimensional Grassmann manifolds
in Z : = L(H), the space of bounded linear operatorsz : H → H in a complex Hilbert spaceH . Grassmann
manifolds are a classical object in Differential Geometry and in recent years several authors have considered them
in the Banach space setting. Besides the Grassmann structure, a Riemann and a K¨ahler structure has sometimes
been defined even in the infinite-dimensional setting. Let us recall some aspects of the topic that are relevant for
our purpose.

The study of the manifold of minimal projections in a finite-dimensional simple formally real Jordan algebra
was made by U. Hirzebruch in [6], who proved that such a manifold is a compact symmetric Riemann space of
rank 1, and that every such a space arises in this way. Later on, Nomura in [18, 19] established similar results
for the manifold of fixed finite rank projections in a topologically simple real Jordan-Hilbert algebra. In [8], the
authors studied the Riemann and K¨ahler structure of the manifold of finite rank projections inZ without the use
of any global scalar product. As pointed out there, the Jordan-Banach structure ofZ encodes information about
the differential geometry of some manifolds naturally associated to it, one of which is the manifold of algebraic
elements inZ. On the other hand, the Grassmann manifold of all projections inZ has been discussed by Kaup in
[10] and [13]. See also [1, 7] for related results.

It is therefore reasonable to ask whether a Riemann structure can be defined in the set of algebraic elements
in Z, and how does it behave when it exists. We restrict our considerations to the setA of all normal algebraic
elements inZ that have finite rank. Remark that the assumption concerning the finiteness of the rank can not be
dropped, as proved in [8]. Normality allows us to use spectral theory which is an essential tool. In the caseH = Cn,
all elements inZ are algebraic (as any square matrix is a root of its characteristic polynomial) and have finite rank.
Under the above restrictionsA is represented as a disjoint union of connected subsetsM of Z, each of which is
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invariant underAut (Z) (the group of all C∗-automorphisms ofZ). Using algebraic tools, a holomorphic manifold
structure and anAut (Z)-invariant affine connection∇ are introduced onM and its geodesics are calculated. One
of the novelties is that we take JB∗-triple system approach instead of the Jordan-algebra approach of [18, 19]. As
noted in [1] and [7], within this context the algebraic structure of JB∗-triple acts as a substitute for the Jordan
algebra structure. In caseM consists of elements that have a fixed finite rankr, (0 < r < ∞), the JB∗-triple
structure provides alocal scalar productknown as thealgebraic metricof Harris ([2], prop. 9.12). AlthoughZ is
not a Hilbert space, the use of the algebraic scalar product allows us to define anAut (Z)-invariant Riemann and
a Kähler structure onM . We prove that∇ is the Levi-Civita and the K¨ahler connection ofM , and thatM is a
symmetric holomorphic manifold on whichAut ◦(Z) acts transitively as a group of isometries.

The role that projections play in the study of the algebraZ = L(H) is taken by tripotents in the study of a
JB∗-triple system. A spectral calculus and a notion of algebraic element is available in the stetting of JB∗-triples,
and the manifold of all finite rank algebraic elements in a JB∗-tripleZ is studied in the final section.

2 Algebraic preliminaries.

For a complex Banach spaceX denote byXR the underlying real Banach space, and letL(X) andLR(X) re-
spectively be the Banach algebra of all bounded complex-linear operators onX and the Banach algebra of all
bounded real-linear operators onXR. A complex Banach spaceZ with a continuous mapping(a, b, c) 7→ {abc}
fromZ ×Z ×Z toZ is called aJB*-triple if the following conditions are satisfied for alla, b, c, d ∈ Z, where the
operatora�b ∈ L(Z) is defined byz 7→ {abz} and[ , ] is the commutator product:

1. {abc} is symmetric complex linear ina, c and conjugate linear inb.

2. [a�b, c�d] = {abc}�d− c�{dab}.

3. a�a is hermitian and has spectrum≥ 0.

4. ‖{aaa}‖ = ‖a‖3.

If a complex vector spaceZ admits a JB*-triple structure, then the norm and the triple product determine each
other. For, x, y, z ∈ Z we writeL(x, y)(z) = (x2y)(z) andQ(x, y)(z) : = {xzy}. Note thatL(x, y) ∈ L(Z)
whereasQ(x, y) ∈ LR(Z), and that the operatorsLa = L(a, a) andQa = Q(a, a) commute. Aderivationof a
JB*-tripleZ is an elementδ ∈ L(Z) such thatδ{zzz} = {(δz)zz}+{z(δz)z}+{zz(δz)} and anautomorphism
is a bijectionφ ∈ L(Z) such thatφ{zzz} = {(φz)(φz)(φz)} for z ∈ Z. The latter occurs if and only ifφ is
a surjective linear isometry ofZ. The groupAut (Z) of automorphisms ofZ is a real Banach-Lie group whose
Banach-Lie algebra is the setDer (Z) of all derivations ofZ. The connected component of the identity inAut (Z)
is denoted byAut ◦(Z). Two elementsx, y ∈ Z areorthogonalif x�y = 0 ande ∈ Z is called atripotent if
{eee} = e, the set of which is denoted byTri (Z). For e ∈ Tri (Z), the set of eigenvalues ofe2e ∈ L(Z) is
contained in{0, 1

2 , 1} and the topological direct sum decomposition, called thePeirce decompositionof Z,

Z = Z1(e)⊕ Z1/2(e)⊕ Z0(e). (1)

holds. HereZk(e) is thek- eigenspace ofe2e and thePeirce projectionsare

P1(e) = Q2(e), P1/2(e) = 2(e2e−Q2(e)), P0(e) = Id− 2e2e+Q2(e).

We will use thePeirce rules{Zi(e)Zj(e)Zk(e)} ⊂ Zi−j+k(e) whereZl(e) = {0} for l 6= 0, 1/2, 1. In particular,
every Peirce space is a JB∗-subtriple ofZ andZ1(e)2Z0(e) = {0}. We note thatZ1(e) is a complex unital
JB*-algebra in the producta ◦ b : = {aeb} and involutiona# : = {eae}. Let

A(e) : = {z ∈ Z1(e) : z# = z}.

Then we haveZ1(e) = A(e) ⊕ iA(e). A tripotent e in a JB∗-triple Z is said to beminimal if e 6= 0 and
P1(e)Z = C e, and we letMin (Z) be the set of them. Ife ∈ Min (Z) then‖e‖ = 1. A JB∗-tripleZ may have no
non-zero tripotents.
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Let e = (e1, · · · , en) be a finite sequence of non-zero mutually orthogonal tripotentsej ∈ Z, and define for
all integers0 ≤ j, k ≤ n the linear subspaces

Zj,j(e) = Z1(ej) 1 ≤ j ≤ n,
Zj,k(e) = Zk,j(e) = Z1/2(ej) ∩ Z1/2(ek) 1 ≤ j, k ≤ n, j 6= k,

Z0,j(e) = Zj,0(e) = Z1(ej) ∩
⋂
k 6=j

Z0(ek) 1 ≤ j ≤ n,

Z0,0(e) =
⋂
j

Z0(ej).

(2)

Then the following topologically direct sum decomposition, called the Peirce decomposition relative toe, holds

Z =
⊕

0≤j≤k≤n
Zj,k(e). (3)

The Peirce spaces multiply according to the rules{Zj,mZm,nZn,k} ⊂ Zj,k, and all products that cannot be brought
to this form (after reflecting pairs of indices if necessary) vanish. In terms of this decomposition, the Peirce spaces
of the tripotente : = e1 + · · ·+ en are

Z1(e) =
⊕
j,k

Zj,k(e) =
( ⊕

1≤j≤n
Zj,j(e)

)
⊕
( ⊕

1≤j,k≤n
j 6=k

Zj,k(e)
)
,

Z1/2(e) =
⊕

1≤j≤n
Z0,j(e), Z0(e) = Z0,0(e).

(4)

Recall that every C*-algebraZ is a JB*-triple with respect to the triple product2{abc} : = (ab∗c+ cb∗a). In
that case, every projection inZ is a tripotent and more generally the tripotents are precisely the partial isometries in
Z. C∗-algebra derivations and C∗-automorphisms are derivations and automorphisms ofZ as a JB∗-triple though
the converse is not true.

We refer to [11], [13], [16], [20] and the references therein for the background of JB∗-triples theory.

3 Manifolds of algebraic elements inL(H).

From now on,Z will denote the C∗-algebraL(H). An elementa ∈ Z is said to bealgebraicif it satisfies the
equationp(a) = 0 for some non identically null polynomialp ∈ C[X ]. By elementary spectral theoryσ(a), the
spectrum ofa in Z, is a finite set whose elements are roots of the algebraic equationp(λ) = 0. In casea is normal
we have

a =
∑

λ∈σ(a)

λ eλ (5)

whereλ andeλ are, respectively, the spectral values and the corresponding spectral projections ofa. If 0 ∈ σ(a)
thene0, the projection ontoker(a), satisfiese0 6= 0 but in (5) the summand0 e0 is null and will be omitted. In
particular, in (5) the numbersλ are non-zero pairwise distinct complex numbers and theeλ are pairwise orthogonal
non-zero projections. We say thata hasfinite rankif dim a(H) < ∞, which always occurs ifdim(H) < ∞. Set
rλ : = rank (eλ). Thena has finite rank if and only ifrλ < ∞ for all λ ∈ σ(a)\{0} (the case0 ∈ σ(a) and
dim kera =∞ may occur).

Thus, every finite rank normal algebraic elementa ∈ Z gives rise to: (i) a positive integern which is the cardi-
nal ofσ(a)\{0}, (ii) an ordered n-uple(λ1, · · · , λn) of numbers inC\{0} which is the set of the pairwise distinct
non-zero spectral values ofa, (iii) an ordered n-uple(e1, · · · , en) of non-zero pairwise orthogonal projections, and
(iii) an ordered n-uple(r1, · · · , rn) whererk ∈ N\{0}.

The spectral resolution ofa is unique except for the order of the summands in (5), therefore these three n-uples
are uniquely determined up to a permutation of the indices(1, · · · , n). The operatora can be recovered from the
set of the first two ordered n-uples,a being given by (5).
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Given the n-uplesΛ: = (λ1, · · · , λn) andR : = (r1, · · · , rn) in the above conditions, we let

M(n, Λ, R) : = {
∑
k

λkek : ejek = 0 for j 6= k, rank (ek) = rk, 1 ≤ j, k ≤ n } (6)

be the set of the elements (5) where the coefficientsλk and ranksrk are given and theek range over non-zero,
pairwise orthogonal projections of rankrk. For instance, forn = 1, Λ = {1} andR = {r} we obtain the
manifold of projections with a given finite rankr, that was studied in [8]. For the n-upleΛ = (λ1, · · · , λn)
we setΛ∗ : = (λ̄1, · · · , λ̄n). The involutionz 7→ z∗ onZ induces a mapM(n,Λ, R) → M(n,Λ∗, R) where
M(n,Λ, R)∗ = {z∗ : z ∈ M} = M(n,Λ∗, R), andΛ ⊂ R if and only if M(n,Λ, R) consists of hermitian
elements.

For a normal algebraic elementa =
∑
λ∈σ(a)\{0} λeλ we define itssupportto be the projection

a = suppa : =
∑

λ∈σ(a)\{0}
eλ = e1 + · · ·+ en.

It is clear thath( supp(a)) = supph(a) holds for allh ∈ Aut ◦(Z), which combined with theAut ◦(Z)-invariance
of Peirce projectorsPk gives the following useful formula

Pk
(

supph(a)
)

= Pk
(
h supp(a)

)
= hPk

(
supp(a)

)
h−1, (k = 1, 1/2, 0). (7)

Proposition 3.1 Let A be the set of all normal algebraic elements of finite rank inZ, and letM(n,Λ, R) be
defined as in (6). Then

A =
⋃

n,Λ, R

M(n, Λ, R) (8)

is a disjoint union ofAut ◦(Z)-invariant connected subset ofZ on which the groupAut ◦(Z) acts transitively.

PROOF.
We have seen before thatA ⊂

⋃
n,Λ, RM(n, Λ, R). Conversely, leta belong to someM(n, Λ, R) hence we

havea =
∑
k λkek for some orthogonal projectionsek. ThenId = (e1 + · · ·+ en) + f wheref is the projection

ontoker(a) in case0 ∈ σ(a) andf = 0 otherwise. The above properties of theek, f yield easilyap(a) = 0 or
p(a) = 0 according to the cases, wherep ∈ R[X ] is the polynomialp(z) = (z−λ1). · · · .(z−λn). Hencea ∈ A.
Clearly (21) is union of disjoint subsets.

Fix one of the setsM : = M(n, Λ, R) and take any paira, b ∈M . Then

a = λ1p1 + · · ·+ λnpn, b = λ1q1 + · · ·+ λnqn.

In case0 ∈ σ(a), setp0 : = Id −
∑
k pk andq0 : = Id −

∑
k qk. Since rankpk = rank qk, the projectionspk and

qk are unitarily equivalent and so arep0 andq0. Let us choose orthonormal basisBpk andBqk in the rangespk(H)
andqk(H) for k = 0, 1, · · · , n. Then

⋃
k B

p
k and

⋃
k B

q
k are two orthonormal basis inH . The unitary operator

U ∈ Z that exchanges these basis satisfiesUa = b. In particularM is the orbit of any of its points under the action
of the unitary group ofH . Since this group is connected and its action onZ is continuous,M is connected. 2

Let a ∈ Z be a normal algebraic element with finite rank anda = supp(a) its support. In the Peirce decom-
position

Z = Z1(a) ⊕ Z1/2(a)⊕ Z0(a)

every Peirce spaceZk(a)s is invariant under the natural involution∗ of Z, and we letZk(a)s denote its selfadjoint
part, (k = 1, 1/2, 0). In what follows, the mapZ × Z → Z given by(x, y) 7→ g(a, x)y, and the partial maps
obtained by fixing one of the variables, will play an important role. For every fixed valuex ∈ Z1/2(a), we get
an operatorg(a, x)(·) which is an inner JB∗-triple derivation ofZ, hence we have an operator-valued continuous
real-linear mapZ1/2(a) → Der (Z). Moreoverg(a, x)(·) is a C∗-algebra derivation if and only ifx ∈ Z1/2(a)s
(see 3.3). Fory = a fixed, we get the mapx 7→ g(a, x)a for which we introduce the notation

Φa(x) : = g(a, x)a = {axa} − {xaa} =
(
Q(a, a)− L(a, a)

)
x, x ∈ Z.

First we discussZ1/2(a).
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Proposition 3.2 Leta ∈ Z be a normal algebraic element of finite rank, and leta = e1 + · · ·+ en be its support.
ThenZ1/2(a) consists of the operators

u =
∑
k

uk, uk ∈ Z1/2(ek), ek uj = uj ek = 0, j 6= k, (1 ≤ j, k ≤ n). (9)

If u ∈ Z1/2(a)s, then we have the additional conditionuk ∈ Z1/2(ek)s.

PROOF.
Let u ∈ Z be selfadjoint. The relationu ∈ Z1/2(a) is equivalent tou = 2{aau} which now reads

u = 2{aau} = aa∗u+ ua∗a =
∑
k

(eku+ uek) =
∑
k

uk

where

uk : = eku+ uek for 1 ≤ k ≤ n. (10)

Note thatej, ek ∈ Z1(a), hence by the Peirce multiplication rules{ejuek} ∈ {Z1(a)Z1/2(a)Z1(a)} = {0},
that isejuek + ekuej = 0 for all 1 ≤ j, k ≤ n. Multiplying the latter byej with j 6= k yieldsejuek = 0 for
j 6= k, (1 ≤ j, k ≤ n). Therefore by (10),

2{ekekuk} = ek(eku+ uek) +(eku+ uek)ek =
(eku+ uek) + 2ekuek = (eku+ uek) = uk

which showsuk ∈ Z1/2(ek) and clearlyuk = u∗k for 1 ≤ k ≤ n. Multiplying in (10) by ej with j 6= k we get
ukej = ejuk = 0 and in particularej2uk = uk2ej = 0 for j 6= k.

Conversely, letuk satisfy the properties in (9). Thenu : =
∑

k uk is selfadjoint andeku = ek (
∑

j uj) =
ekuk. Similarlyuek = ukek, hence2{aau} = aa∗u+ ua∗a = (

∑
j ej)u + u (

∑
j ej) =

∑
j(eju+ uej) = u,.

Using the∗-invariance ofZ1/2(a) every element in this space can be written in the formu = u1 + iu2 with
u1, u2 ∈ Z1/2(a)s and the result follows easily. 2

The following result should be compared with ([1], th. 3.1)

Proposition 3.3 Let a ∈ Z be a normal algebraic element of finite rank anda : = supp(a). Then for any
u ∈ Z1/2(a), the operatorg(a, u) : = a2u− u2a is an inner C∗-derivation ofZ if and only ifu is selfadjoint.

PROOF.
Let a =

∑
k λkek anda =

∑
k ek be the spectral resolution and the support ofa. Supposeu = u∗. By (3.2)u has

the formu =
∑
uk with uk ∈ Z1/2(ek)s andek2uj = uj2ek = 0 for all j 6= k. Therefore

g(a, u) =
∑
k

(ek2uk − uk2ek) =
∑
k

g(ek, uk). (11)

Here theek are projections inZ anduk ∈ Z1/2(ek)s, hence by ([1], th. 3.1) eachg(ek, uk) is an inner C∗-
derivation ofZ and so is the sum. Conversely, sincea is a projection, wheneverg(a, u) is a C∗-algebra derivation
we haveu ∈ Z1/2(a)s again by ([1], th. 3.1). 2

Now consider the joint Peirce decomposition ofZ relative to the family(e1, · · · , en) wherea = λ1e1 + · · ·+
λnen is the spectral resolution ofa. Remark that

⊕
1≤k≤n i A(ek) ⊂ Z1(a) is a direct summand ofZ, hence so is

the space
X : =

( ⊕
1≤k≤n

i A(ek)
)
⊕ Z1/2(a).

Proposition 3.4 Let a ∈ Z be a normal algebraic element of finite rank anda : = supp(a). ThenΦa is a
surjective complex linear homeomorphism ofZ1/2(a). If a is hermitian thenΦa is a surjective real linear homeo-
morphism ofX that preserves the subspace

⊕
1≤k≤n i A(ek).
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PROOF.
Let x = iv + u ∈ X wherev ∈

⊕
1≤k≤n A(ek) andu ∈ Z1/2(a). The Peirce multiplication rules give for

v =
∑

j vj with vj ∈ A(ej) andu =
∑

k uk according to (3.2)

{aZ1/2(a)a} = {0},

{aiv a} = −i{
∑
j

ej
∑
k

vk
∑
l

λlel} = −i
∑
k

λkvk,

{u aa} = i{
∑
j

uj
∑
k

ek
∑
l

λlel} =
i

2

∑
k

λkuk.

Therefore

Φa(x) = −2i
∑
k

λkvk −
1
2

∑
k

λkuk ∈
( ⊕

1≤k≤n
Z1(ek)

)
⊕ Z1/2(a). (12)

It is now clear thatΦa preservesZ1/2(a). If a is hermitian thenΛ ⊂ Rn andΦa also preserves
⊕

1≤k≤n i A(ek).
MoreoverΦa(x) = 0 with x ∈ X is equivalent to

∑
λkvk = 0 =

∑
λkuk which is equivalent tov = 0 = u since

the coefficients satisfyλk ∈ σ(a)\{0}. We can recoverx from Φa(x), hence the result follows. 2

Recall that a subsetM ⊂ Z is called areal analytic(respectively,holomorphic) submanifold if to everya ∈M
there are open subsetsP,Q ⊂ Z and a closed real-linear (resp. complex) subspaceX ⊂ Z with a ∈ P and
φ(P ∩M) = Q ∩ X for some bianalytic (resp. biholomorphic) mapφ : P → Q. If to everya ∈ M the linear
subspaceX = TaM , called thetangent spaceto M at a, can be chosen to be topologically complemented inZ
thenM is called adirect submanifoldof Z.

Fix one of the setsM = M(n,Λ, R) and a pointa ∈ M with spectral resolutiona =
∑
k λkek. By the

orthogonality properties of theek, the successive powers ofa have the expression

al = λl1e1 + · · ·+ λlnen, 1 ≤ l ≤ n,

where the determinantdet(λlk) 6= 0 does not vanish since it is a Vandermonde determinant and theλk are pairwise
distinct. Thus theek are polynomials ina whose coefficients are rational functions of theλk. SupposeM is a
differentiable manifold, and let us obtain its tangent spaceTaM . Consider a smooth curvet 7→ a(t) through
a ∈M , t ∈ I, for a neighbourhoodI of 0 ∈ R anda(0) = a. Eacha(t) has a spectral resolution

a(t) = λ1e1(t) + · · ·+ λnen(t),

therefore the mapst 7→ ek(t), (1 ≤ k ≤ n), are smooth curves in the manifoldsM(rk) of the projections inZ that
have fixed finite rankrk = rank (ek), whose tangent spaces atek = ek(0) areZ1/2(ek) (see [1] or [8]). Therefore

uk : =
d

dt
|t=0ek(t) ∈ Z1/2(ek), 1 ≤ k ≤ n.

Since the spectral projections ofa(t) corresponding to different spectral valuesλk 6= λj are orthogonal, we have
ej(t) ek(t) = 0 for all t ∈ I, and taking the derivative att = 0,

ej uk = uk ej = 0, j 6= k, 1 ≤ j, k ≤ n. (13)

By 19, the tangent vector tot 7→ a(t) at t = 0, that is,u : = d
dt |t=0a(t) =

∑
k λkuk satisfies

{a au} = {
∑
j

ej
∑
k

ek
∑
l

λlul} =
∑
j,k,l

λl {ejekul} =

∑
k,l

λl{ekekul} =
1
2

∑
k,l

λl(ekul + ulek) =
∑
l

λl{elelul} =
1
2

∑
l

λlul =
1
2
u

henceu ∈ Z1/2(a), andTaM can be identified with a vector subspace ofZ1/2(a). In factTaM = Z1/2(a) as it
easily follows from the following result that should be compared with ([1] th. 3.3)
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Theorem 3.5 The setsM = M(n,Λ, R) defined in (6) are holomorphic direct submanifolds ofZ. The tangent
space at the pointa ∈M is the Peirce subspaceZ1/2(a) wherea = supp(a), and a local chart ata given by

f : u 7→ f(u) : = (exp g(a, u))a (14)

with g(a, u) = a2u− u2a.

PROOF.
M ⊂ Z is invariant underAut ◦(Z). Fix anya ∈ M and letX : =

(⊕
1≤k≤n i A(ek)

)
⊕ Z1/2(a). ThusZ =

X ⊕Y for a certain subspaceY . The mappingX ⊕Y → Z defined by(x, y) 7→ F (x, y) : = (exp g(a, x))y ∈ Z
is a real-analytic and its Fr´echet derivative at(0, a) is invertible. In fact this derivative is

∂F

∂x
|(0,a)(u, v) = g(a, u)a = Φa(u),

∂F

∂y
|(0,a)(u, v) =

(
exp g(a, 0)

)
v = v,

which is invertible according to (3.4). By the implicit function theorem there are open setsU, V with 0 ∈ U ⊂ X
anda ∈ V ⊂ Y such thatW : = F (U × V ) is open inZ andF : U × V →W is bianalytic.

To simplify notation setX1 = Z1/2(a) ⊂ X . Thenf = F |X1 establishes a real analytic homeomorphism
between the setsN1 : = U ∩X1 andM1 : = f(N1). SinceX1 is a direct summand inX (hence also inZ), the
imageM1 = f(N1) is a direct submanifold.

The operatorg(a, x) = a2x − x2a is an inner JB∗triple derivation ofZ, henceh : = exp g(a, u) is a
JB∗-triple automorphism ofZ. Actually h lies in Aut ◦(Z), the identity connected component. But it is known
([10]) thatAut (Z) has two connected components and that the elements in the identity component are C∗-algebra
automorphisms ofZ since they have the formz 7→ UzU∗ for someU in the unitary group ofH . In particularh
preserves normality, spectral values and ranks hence it preservesM and so

M1 = f(N1) = {(exp g(a, u))a : u ∈ N1} ⊂M.

To complete the proof, it suffices to show thatf = F |X1 is a biholomorphic mapping. The Fr´echet derivative off
ata is

f ′|a(u) = g(a, u)a = {a, u, a} − {u, a, a}, u ∈ Z1/2(a).

Therefore∂f ′u = {a, u, a} and∂f ′u = −{u, a, a} are the (uniquely determined) complex-linear and complex-
antilinear components off ′u. The Peirce rules give{a, u a} = 0 for all u ∈ Z1/2(a), hencef is holomorphic and
the same argument holds for the inversef 1 map. 2

Remark that if the algebraic elementa is a projection thena = a andM as a differentiable manifold is the one
constructed in ([1] th. 3.3) and [8].

4 The Jordan connection onM(n, Λ, R)

Let a ∈ M : = M(n, Λ, R) and seta = supp(a). Recall that a vector fieldX onM is a map fromM to the
tangent bundleTM . ThusXa, the value ofX ata ∈M , satisfiesXa ∈ TaM ≈ Z1/2(a). We letD(M) be the Lie
algebra of smooth vector fields onM . Since the tangent spaceTaM at a ∈ M has been identified withZ1/2(a),
we shall consider every vector field onM as aZ-valued function such that the value ata is contained inZ1/2(a).
Let Y ′a be the Fréchet derivative ofY ∈ D(M) at a. ThusY ′a is a bounded linear operatorZ1/2(a) → Z, hence
Y ′aXa ∈ Z and it makes sense to take the projectionP1/2(a)Y ′aXa ∈ Z1/2(a) ≈ TaM .

Definition 4.1 We define a connection∇ onM by

(∇XY )a : = P1/2( supp(a))Y ′aXa, X, Y ∈ D(M), a ∈M.

Note that ifa is a projection, thena = supp(a) and∇ coincides with the affine connection defined in ([1] def 3.6)
and [8]. It is a matter of routine to check that∇ is an affine connection onM , that it isAut ◦(Z)- invariant and
torsion-free, i. e.,

g (∇XY ) = ∇g(X) g (Y ), g ∈ Aut ◦(Z),

where(g X)a : = g′a (Xg−1
a

) for all X ∈ D(M), and

T (X,Y ) : = ∇XY −∇YX − [XY ] = 0, X, Y ∈ D(M).
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Theorem 4.2 Let the manifoldsM be defined as in (6). Then the∇-geodesics ofM are the curves

γ(t) : = (exp t g(a, u))a, t ∈ R, (15)

wherea ∈M andu ∈ Z1/2(a).

PROOF.
Recall that the geodesics of∇ are the curvest 7→ γ(t) ∈ M that satisfy the second order ordinary differential
equation (

∇γ̇(t) γ̇(t)
)
γ(t)

= 0.

Let u ∈ Z1/2(a). Theng(a, u) = a2u − u2a is an inner JB∗-triple derivation ofZ, and, as established in the
proof of (3.5),h(t) : = exp t g(a, u) is an inner C∗-automorphism ofZ. Thush(t)a ∈M andt 7→ γ(t) is a curve
in the manifoldM . Clearlyγ(0) = a and taking the derivative with respect tot at t = 0 we get by the Peirce rules

γ̇(t) = g(a, u)γ(t) = h(t)g(a, u)a, γ̇(0) = g(a, u)a ∈ Z1/2(a),

γ̈(t) = g2(a, u)γ(t) = h(t)g(a, u)2a, γ̈(0) = g(a, u)γ̇(0) ∈ Z1(a) ⊕ Z0(a).

In particularP1/2(a)g(a, u)2a = 0. The definition of∇ and the relation (7) give(
∇γ̇(t) γ̇(t)

)
γ(t)

= P1/2( suppγ(t))
(
γ̇(t)′γ(t) γ̇(t)

)
= P1/2( suppγ(t)) γ̈(t) =

P1/2

(
supph(t)a

)
h(t)g(a, u)a = h(t)P1/2

(
supp(a)

)
g(a, u)2a = 0

for all t ∈ R. Using the representationu =
∑

k uk given by (9) one getsg(a, u)a = − 1
2

∑
k λkuk, and as

λ ∈ σ(a)\{0} the mappingu 7→ g(a, u)a is a linear homeomorphism ofZ1/2(a). Since geodesics are uniquely
determined by the initial pointγ(0) = a and the initial velocityγ̇(0) = g(a, u)a, the above shows that family of
curves in (15) witha ∈M andu ∈ TaM ≈ Z1/2(a) are all geodesics of the connection∇. 2

Recall thata = supp(a) is a finite rank projection, hence by ([8], th. 1.1) the JB∗-subtripleZ1/2(a) has
finite rank and the tangent spaceTaM ≈ Z1/2(a) is linearly homeomorphic to a Hilbert space under anAut ◦(Z)-
invariant scalar product (say〈· , ·〉). Thus we can define a Riemann metric onM by

ga(X,Y ) : = 〈Xa, Ya〉, X, Y ∈ D(M), a ∈M. (16)

Remark thatg is hermitian, i.e. we havega(iX, iY ) = ga(X,Y ), and that it has been defined in algebraic terms,
hence it isAut ◦(Z)-invariant. Moreover,∇ is compatible with the Riemann structure, i. e.

X g(Y,W ) = g(∇X Y, W ) + g(Y, ∇XW ), X, Y,W ∈ D(M).

Therefore,∇ is the only Levi-Civita connection onM . On the other hand, let the mapJ : Z1/2(a)→ Z1/2(a) be
given byJz : = iz. ClearlyJ2 = −Id , henceJ defines (the usual) complex structure on the tangent space toM
and∇ is J-hermitian

∇X (iY ) = i∇X Y, X, Y ∈ D(M),

hence∇ is the only hermitian connection onM . Thus the Levi-Civita and the hermitian connection are the same
in this case, and so∇ is the Kähler connection onM .

For a tripotente ∈ Tri (Z), the Peirce reflection arounde is the linear mapSe : = Id − P1/2(e) or in detail
z = z1 + z1/2 + z0 7→ Se(z) = z1 − z1/2 + z0 wherezk are the Peircee-projections ofz, (k = 1, 1/2, 0). Recall
thatSe is an involutory triple automorphism ofZ with Se(e) = e, and that ife is a projection (taken as a tripotent)
thenSe is a C∗-algebra automorphism ofZ. This applies toa = supp(a), hence to eacha ∈ M we getSa,
an involutory automorphism of the manifoldM which in this way becomes a symmetric holomorphic Riemann
(Kähler) manifold. Note that in generala /∈M even ifa ∈M , henceSa may have no fixed points inM .

It would be interesting to know if any two pointsa, b in M can be joined by a geodesic and whether geodesics
are minimizing curves for the Riemann distance. The answers to these questions are affirmative whenM consists
of projections of the same finite rank (see [8]).
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5 Algebraic elements in JB∗-triples

The role that projections play in the study of algebras is taken by tripotents in the study of triple systems. A
spectral calculus and a notion of algebraic elements is available in the stetting of JB∗-triples. In what follows we
shall consider the manifold of all finite rank algebraic elements in a JB∗-tripleZ.

Definition 5.1 An elementa ∈ Z is calledalgebraicif there exits a decomposition

a = λ1e1 + · · ·+ λnen (17)

where(ek) is a family of pairwise orthogonal tripotents inZ and(λk) are complex coefficients.

For an algebraic elementa ∈ Z the above decomposition can always be chosen in such a way that everyek is
non-zero and theλk are real numbers with0 < λ1 < · · ·λn, and under these additional conditions the spectral
representation ofa is unique. Clearlya has finite rank if and only if every so does everyek.

Remark that forZ = L(H), normal algebraic elements in the C∗-algebraZ are algebraic elements inZ as a
JB∗-triple. Given a positive integern ∈ N, an increasing n-uple of non-zero real numbersΛ = (λ1, · · · , λn) and
an n-upleR = (r1, · · · , rn) where0 < rk ∈ N, we define

N(n, Λ, R) : = {
∑
k

λkek : ej2ek = 0 for j 6= k, rank (ek) = rk, 1 ≤ j, k ≤ n } (18)

to be the set of the elements (17) where the coefficientsλk and ranksrk are given and theek range over non-zero,
pairwise orthogonal tripotents inZ such that rank(ek) = rk. The setA of finite rank algebraic elements inZ is
the disjoint unionA = ∪n,Λ, RN(n, Λ, R).

Lemma 5.2 LetZ be an irreducible JBW∗-triple. Then each of setsN = N(, nΛ, R) is anAut ◦(Z)-invariant
connected subset ofZ on which the groupAut ◦(Z) acts transitively.

PROOF.
Irreducible JBW∗-triples are Cartan factors and we may assume thatZ is a notspecialas otherwisedimZ < ∞
and the result is known [16]. ThusZ is a J∗-algebra in the sense of Harris [4] that is, a weak*-operator closed
complex linear subspace ofL(H,K) that is closed under the operation of taking triple products, for suitable
complex Hilbert spacesH,K with dimH ≤ dimK. Tripotents are the partial isometriese : H → K that lie inZ.

We make a type by type proof. LetZ = L(H,K) be a type I Cartan factor and leta, b ∈ N . In particular

a = λ1e1 + · · ·+ λnen, b = λ1e
′
1 + · · ·+ λne

′
n

LetHk, H
′
k ⊂ H be the domains of the partial isometriesek ande′k, and similarly letKk,K

′
k ⊂ K denote their

respective ranges. Sinceek ande′k have the same finite rankrk, they are unitarily equivalent, that is there are
unitary operatorsUk : Hk → H ′k andVk : Kk → Kk such thate′k = VkekUk. Since theek are pairwise orthogonal
we haveHk ⊥ Hj andKk ⊥ Kj for k 6= j and

⊕
Uk,

⊕
Vk are unitary operators on

⊕
Hk and

⊕
Kk that

can be extended to unitary operatorsU : H → H andV : K → K if needed. The mappingZ → Z given by
z 7→ V zU is a JB∗-triple automorphism that lies inAut ◦(Z) [10] and clearly satisfiesb = V aU . HenceAut ◦(Z)
acts transitively onN ,N is connected and invariant under that group.

Cartan factors of types II and III can treated in the same way. The case of spin factors may be discussed with a
different approach, but we shall not go into details. 2

Now consider the joint Peirce decomposition ofZ relative to the family(e1, · · · , en) wherea = λ1e1 + · · ·+
λnen is the spectral resolution ofa. Let thesupportof a be tripotenta = suppa : = e1 + · · ·+ en, and note that

X : =
( ⊕

1≤k≤n
i A(ek)

)
⊕ Z1/2(a).

is a topologically complemented subspace inZ.
Fix one of the setsN = N(n,Λ, R) and a pointa ∈ N with spectral resolutiona =

∑
k λkek. From the

propertiesek2ej = 0 for j 6= k, the successive odd powers ofa have the expression

al = λ2l+1
1 e1 + · · ·+ λ2l+1

n en, 0 ≤ l ≤ n− 1,
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where the determinantdet(λ2l+1
k ) 6= 0 does not vanish since it is a Vandermonde determinant and theλk are

pairwise distinct. Thus theek are polynomials ina whose coefficients are rational functions of theλk. Suppose
N is a differentiable manifold, and let us obtain its tangent spaceTaN . Consider a smooth curvet 7→ a(t) in N
througha, t ∈ I, for a neighbourhoodI of 0 ∈ R anda(0) = a. Eacha(t) has a spectral resolution

a(t) = λ1e1(t) + · · ·+ λnen(t),

therefore the mapst 7→ ek(t), (1 ≤ k ≤ n), are smooth curves in the manifoldsN(rk) of the tripotents inZ that
have fixed finite rankrk = rank (ek), whose tangent spaces atek = ek(0) are respectivelyi A(ek) ⊕ Z1/2(ek)
(see [1] or [8]). Therefore

zk : =
d

dt
|t=0 ek(t) = ivk + uk : ∈ i A(ek)⊕ Z1/2(ek), 1 ≤ k ≤ n.

Setv : =
∑

k λkvk andu : =
∑

k λkuk. FromZ1(ek)2Z0(ej) = {0}, we get

{a a iv} = i
∑
j,k,l

λl{ejekvl} = i
∑
k

λkvk = iv ∈ i
⊕
k

A(ek)

The spectral tripotents ofa(t) corresponding to different spectral valuesλk 6= λj are orthogonal, henceej(t)2ek(t) =
0 for all t ∈ I, and taking the derivative att = 0 we get

ej2uk = uk2ej = 0, j 6= k, 1 ≤ j, k ≤ n. (19)

Hence

{a au} = {
∑
j

ej
∑
k

ek
∑
l

λlul} =
∑
j,k,l

λl{ejekul} =
1
2

∑
k

λkuk =
1
2
u

which shows thatu ∈ Z1/2(a). By 19, the tangent vector tot 7→ a(t) att = 0 is z : = d
dt |t=0a(t) =

∑
k λk(ivk+

uk) = iv + u hence it satisfies

{a a z} = iv +
1
2
u ∈ i

⊕
A(ek)⊕ Z1/2(a),

henceTaN can be identified with a vector subspace ofi
⊕
A(ek) ⊕ Z1/2(a). In fact TaN coincides with that

space as it easily follows from the following result that should be compared with ([1] th. 3.3)

Theorem 5.3 The setsN = N(n,Λ, R) defined in (18) are real analytic direct submanifolds ofZ. The tangent
space at the pointa ∈ N is the Peirce subspaceX , wherea = supp(a), and a local chart ata given by

f : z 7→ f(z) : = (exp g(a, z))a (20)

with g(a, z) = a2z − z2a.

PROOF.
N ⊂ Z is invariant underAut ◦(Z). Fix anya ∈ N and letX : =

(⊕
1≤k≤n i A(ek)

)
⊕Z1/2(a). ThusZ = X⊕Y

for a certain subspaceY . The mappingX ⊕ Y → Z defined by(x, y) 7→ F (x, y) : = (exp g(a, x))y ∈ Z is a
real-analytic and its Fr´echet derivative at(0, a) is invertible as proved in (3.4). By the implicit function theorem
there are open setsU, V with 0 ∈ U ⊂ X anda ∈ V ⊂ Y such thatW : = F (U × V ) is open inZ and
F : U × V → W is bianalytic and the imageF (U) is a direct real analytic submanifold ofZ.

The operatorg(a, z) = a2z − z2a is an inner JB∗triple derivation ofZ, henceh : = exp g(a, z) is a JB∗-
triple automorphism ofZ. Actuallyh lies inAut ◦(Z), the identity connected component. In particularh preserves
the algebraic character and the spectral decomposition, hence it preservesN and so

F (N) = {(exp g(a, z))a : z ∈ U} ⊂ N.

This completes the proof. 2

Definition 5.4 For the tripotentse, e′ we sete ∼ e′ if and only ife ande′ have the samek-Peirce projectors for
k = 0, 1/2, 1.
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This notion was introduced by Neher who proved ([17], th.2.3) that

e ∼ e′ ⇐⇒ e ∈ Z1(e′) and e′ ∈ Z1(e), (21)

or equivalently if and only ife�e = e′�e′. Next we extend this relation to an equivalence in the manifoldN .

Definition 5.5 Let a, b be elements inN with spectral resolutionsa =
∑
k λkek andb =

∑
k λkfk respectively.

We say thata and b are equivalent (and writea ∼ b) if the joint Peirce decompositions ofZ relative to the
orthogonal familiesE = (ek) andF = (fk) are the same.

Note that∼ coincides with the equivalence of Neher when the algebraic elementsa andb are tripotents. By ([16],
th. 3.14), the Peirce spaces of the tripotentek can be expressed in terms of the joint Peirce decomposition ofZ
relative toE , hencea ∼ b if and only if ek ∼ fk for 1 ≤ k ≤ n.

Proposition 5.6 Let a, b be points inN such thata =
∑
λkek and b = (exp g(a, z)a for some tangent vector

z = iv + u ∈
(⊕

1≤k≤n i A(ek)
)
⊕ Z1/2(a). Thena ∼ b if and only ifu = 0.

PROOF.
Let b = (exp g(a, z)a =

∑
k λkfk be the spectral resolution ofb. Then eachfk is an odd polynomial inb, say

fk = pk(b), 1 ≤ k ≤ n. To simplify the notation, consider the indexk = 1 and omit the reference to it in the rest
of the proof. Ifa ∼ b thene ∼ f hence by (21) we must havef = {eef} that is

p(b) = {eep(b)} = p({eeb}) (22)

Clearly we haveρb ∼ a for all ρ ∈ T, which replaced above yields an identity between two polynomials inρ. Let
Xm, for some positive odd integerm, be the term ofp of lowest degree whose coefficient is not zero. Then (22)
entailsbm = {eebm}, that is(exp g(a, z))ma = {e e (expg(a, z))ma}. Taking the Fréchet derivative at the origin
g(a, ·) a = {e e g(a, ·) a}, which evaluated at the tangent vectorz = iv + u = i

∑
k vk +

∑
k uk and using the

Peirce rules as in the proof of (3.4) yieldsu = 0. The converse is easy. 2

In particular, there is a neighbourhood ofa in N in which the algebraic elementsb equivalent toa are those of
the formb = (exp g(a, iv)) a with v =

∑
k vk ∈

⊕
k A(ek), which gives the expression of the fibre ofN through

a.

Proposition 5.7 Let a ∈ N be an algebraic element inZ with spectral resolutiona =
∑
k λkek. Then the fibre

ofN througha is the set of the elements
∑
k λkzk wherezk lies in the unit circle of the JB∗-algebraZ1(ek) for

1 ≤ k ≤ n.

PROOF.
Let v =

∑
k λkvk ∈

⊕
k A(ek), and consider the curves inZ

φ(t) : = (exp tg(a, iv))a, ψ(t) : =
∑
k

λk(exp tg(ek, ivk))ek : =
∑
k

λkψk(t), t ∈ R.

They are the solutions of the differential equations

dφ(t)
dt

= g(a, φ(t)),
dψ(t)
dt

=
∑
k

λkg(ek, ψk(t))

with the initial conditionsφ(0) = a andψ(0) =
∑

k λkek = a respectively. FromZ1(ek)2Z1(ej) = {0} for
k 6= j we get

g(a, iv) = g(
∑
k

ek, i
∑
j

λjvj) =
∑
k

λkg(ek, ivk)

and the uniqueness of solutions of differential equations givesφ(t) =
∑

k λkψk(t) for all t ∈ R. But it is known
([16] th. 5.6) that for fixedk, 1 ≤ k ≤ n, the setzk = (exp tg(ek, ivk))ek, t ∈ R, vk ∈ A(ek), is the unit circle of
the JB∗-algebraZ1(ek), that is the set of thosew ∈ Z1(ek) that satisfyw∗ = w−1. This completes the proof.2
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By restricting the local charts in (20) to the direct summandZ1/2(a) ⊂ TaN we get a direct submanifold
B = B(n,Λ, R) of Z, and we refer toB as thebasemanifold ofN . ClearlyB is a holomorphic submanifold of
the real analytic manifoldN , and as in section 3(

∇X Y
)
a

: = P1/2(a)Y ′aXa, X, Y ∈ D(B), a ∈ B,

is anAut ◦(Z)-invariant torsionfree affine connection onB whose geodesics are the curvesγ(t) : = (exp t g(a, u))a,
t ∈ R, for a ∈ B andu ∈ Z1/2(a). Moreover, fora ∈ B the Peirce reflection with respect toa is an involutory
triple automorphisms ofZ that fixesa, hence it fixesi

⊕
k A(ek) andZ1/2(a). It is easy to see that this reflection

commutes with the exponential mapping, hence it fixesB(n,Λ, R) and os it defines a holomorphic symmetry ofB.
In general(a) does not belong toB hence this symmetry in general has no fixed points inB. When the algebraic
elementa ∈ Z has finite rank, that is when rank(a) =

∑
k rank (ek) < ∞, the subtripleZ1/2(a) is linearly

equivalent to a complex Hilbert space by [12] and by using the algebraic metric of Harris one can introduce an
Aut ◦(Z)-invariant Riemann structure and a K¨ahler structure on the base manifold in exactly the same way we did
in section 3, and the connection∇ turns out to be the Levi-Civita and the K¨ahler connection onB.
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