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Abstract

Given a complex Hilbert spacH, we study the differential geometry of the manifoldof normal algebraic
elements inZ = L(H). We representd as a disjoint union of connected subsétsof Z. Using the algebraic
structure ofZ, a torsionfree affine connectidvi (that is invariant under the grouut (Z) of automorphisms of
Z) is defined on each of these connected components and the geodesics are computedMrcoasests of
elements that have a fixed finite rank(0 < r < o), Aut (Z)-invariant Riemann and &tiler structures are
defined onM which in this way becomes a totally geodesic symmetric holomorphic manifold. Similar results
are established for the manifold of algebraic elements in an abstradtipi.
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1 Introduction

In this paper we are concerned with the differential geometry of some infinite-dimensional Grassmann manifolds
in Z: = L(H), the space of bounded linear operatersH — H in a complex Hilbert spacé/. Grassmann
manifolds are a classical object in Differential Geometry and in recent years several authors have considered them
in the Banach space setting. Besides the Grassmann structure, a Riemannadnerastriicture has sometimes

been defined even in the infinite-dimensional setting. Let us recall some aspects of the topic that are relevant for
our purpose.

The study of the manifold of minimal projections in a finite-dimensional simple formally real Jordan algebra
was made by U. Hirzebruch in [6], who proved that such a manifold is a compact symmetric Riemann space of
rank 1, and that every such a space arises in this way. Later on, Nomura in [18, 19] established similar results
for the manifold of fixed finite rank projections in a topologically simple real Jordan-Hilbert algebra. In [8], the
authors studied the Riemann andiér structure of the manifold of finite rank projectionsdrwithout the use
of any global scalar product. As pointed out there, the Jordan-Banach structdrenaodes information about
the differential geometry of some manifolds naturally associated to it, one of which is the manifold of algebraic
elements inZ. On the other hand, the Grassmann manifold of all projectiotstas been discussed by Kaup in
[10] and [13]. See also [1, 7] for related results.

It is therefore reasonable to ask whether a Riemann structure can be defined in the set of algebraic elements
in Z, and how does it behave when it exists. We restrict our considerations to tiedfadll normal algebraic
elements inZ that have finite rank. Remark that the assumption concerning the finiteness of the rank can not be
dropped, as proved in [8]. Normality allows us to use spectral theory which is an essential tool. In tHe-e&3e,
all elements irZ are algebraic (as any square matrix is a root of its characteristic polynomial) and have finite rank.
Under the above restrictiond is represented as a disjoint union of connected sulbigets 2, each of which is
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invariant undeAut (Z) (the group of all C-automorphisms of). Using algebraic tools, a holomorphic manifold
structure and aAut (Z)-invariant affine connectiok are introduced o/ and its geodesics are calculated. One
of the novelties is that we take JBriple system approach instead of the Jordan-algebra approach of [18, 19]. As
noted in [1] and [7], within this context the algebraic structure of-Bfple acts as a substitute for the Jordan
algebra structure. In case consists of elements that have a fixed finite rank0 < r < oo), the JB-triple
structure provides #cal scalar produdtnown as thealgebraic metriof Harris ([2], prop. 9.12). Althougly is
not a Hilbert space, the use of the algebraic scalar product allows us to defiug @)-invariant Riemann and
a Kabhler structure orl/. We prove thatV is the Levi-Civita and the Khler connection of/, and that)M is a
symmetric holomorphic manifold on whickut °(Z) acts transitively as a group of isometries.

The role that projections play in the study of the algeBra- £(H) is taken by tripotents in the study of a
JB*-triple system. A spectral calculus and a notion of algebraic element is available in the stettirigtopl#3,
and the manifold of all finite rank algebraic elements in &-§fple Z is studied in the final section.

2 Algebraic preliminaries.

For a complex Banach spacé denote byXy the underlying real Banach space, and4é’) and Lg(X) re-
spectively be the Banach algebra of all bounded complex-linear operatoXsamd the Banach algebra of all
bounded real-linear operators &fk. A complex Banach spacg with a continuous mapping, b, ¢) — {abc}
from Z x Z x Z to Z is called alB*-triple if the following conditions are satisfied for all b, ¢, d € Z, where the
operatofadb € L(Z) is defined by: — {abz} and[, ] is the commutator product:

1. {abc} is symmetric complex linear ia, c and conjugate linear it
2. [aOb, c0d] = {abc}Od — cO{dab}.

3. ala is hermitian and has spectrumo.

4. |[{aaa}| = [lal®.

If a complex vector spacg admits a JB*-triple structure, then the norm and the triple product determine each
other. For,z,y,z € Z we write L(z,y)(z) = (z0y)(z) andQ(z,y)(z): = {zzy}. Note thatL(z,y) € L(Z)
whereas)(z,y) € Lr(Z), and that the operatols, = L(a,a) and@, = Q(a,a) commute. Aderivationof a
JB*-triple Z is an elemend € £(Z) suchthab{zzz} = {(0z)zz} + {2(6z)z} + {22(02)} and arautomorphism
is a bijection¢ € L(Z) such thatp{zzz} = {(¢2)(¢z)(¢z)} for z € Z. The latter occurs if and only ib is
a surjective linear isometry of. The groupAut (Z) of automorphisms of is a real Banach-Lie group whose
Banach-Lie algebra is the seer (Z) of all derivations ofZ. The connected component of the identityNut (Z)
is denoted byAut°(Z). Two elementss,y € Z areorthogonalf xOy = 0 ande € Z is called atripotentif
{eee} = e, the set of which is denoted blyi (Z). Fore € Tri(Z), the set of eigenvalues efle € L£(Z) is
contained in{0, %, 1} and the topological direct sum decomposition, calledRiece decompositioaf Z,

Z = Z(e) ® Zy2(e) ® Zo(e). (1)
holds. HereZy,(e) is thek- eigenspace ofde and thePeirce projectionare

Pi(e) = QQ(e)7 Py s(e) = 2(eOe — Q2(€)), Py(e) =1d — 2e0e + QQ(e).

We will use thePeirce rule§ Z;(e) Z;(e) Zx(e)} C Zi—j+x(e) WhereZ;(e) = {0} forl # 0,1/2, 1. In particular,
every Peirce space is a JBubtriple of Z and Z;,(e)0Zy(e) = {0}. We note thatZ;(e) is a complex unital
JB*-algebra in the produeto b: = {aeb} and involutiona”: = {eae}. Let

Ae): ={z€ Zie) : 2# =2}

Then we haveZ;(e) = A(e) @ iA(e). A tripotente in a JB*-triple Z is said to beminimal if ¢ # 0 and
Pi(e)Z = Ce, and we letMin (Z) be the set of them. ¥ € Min (Z) then|e|| = 1. A JB*-triple Z may have no
non-zero tripotents.



Lete = (e1,--- ,e,) be afinite sequence of non-zero mutually orthogonal tripotents Z, and define for
all integer9) < j, k < n the linear subspaces

Zj j(e) = Z1(ej) 1<j<n,
Zjk(e) = Zrj(e) = Zija(ej) N Zij2(ex)  1<jk<n, j#k,
Zoj(e) = Zjole) = Zu(e;) N () Zoler)  1<j<m, @)
kit

Z070(e) = mZO(ej)-
j
Then the following topologically direct sum decompoaosition, called the Peirce decomposition relatjyeotds

Z= P Zle). 3)

0<j<k<n

The Peirce spaces multiply according to the r§l&s,, Z,, . Z,, .} C Z; , and all products that cannot be brought
to this form (after reflecting pairs of indices if necessary) vanish. In terms of this decomposition, the Peirce spaces
of the tripotente: =e¢; +--- + ¢, are

z1(0) = D Zinle) = ( D Ziu@) & ( D Zirte)),
7,k

1<j<n 1<j,k<n
7k )
Z1/2(€) = @ Z(),j(e>; Zo(e) = Zo(e).

1<j<n

Recall that every C*-algebrd is a JB*-triple with respect to the triple produtfabc}: = (ab*c + cb*a). In
that case, every projection iiis a tripotent and more generally the tripotents are precisely the partial isometries in
7. C*-algebra derivations and*@utomorphisms are derivations and automorphisnis a§ a JB-triple though
the converse is not true.

We refer to [11], [13], [16], [20] and the references therein for the backgroundefriliBes theory.

3 Manifolds of algebraic elements inl(H).

From now on,Z will denote the C-algebral(H). An elementa € Z is said to bealgebraidf it satisfies the
equationp(a) = 0 for some non identically null polynomial € C[X]. By elementary spectral theosya), the
spectrum of: in Z, is a finite set whose elements are roots of the algebraic equdtion= 0. In casez is normal
we have

a= Z ey (%)

A€o(a)

where\ ande, are, respectively, the spectral values and the corresponding spectral projectiots®E o (a)
theney, the projection ontder(a), satisfieseq # 0 but in (5) the summan@ eq is null and will be omitted. In
particular, in (5) the numbepsare non-zero pairwise distinct complex numbers and frere pairwise orthogonal
non-zero projections. We say thahasfinite rankif dima(H) < oo, which always occurs iflim(H) < oo. Set
rx: = rank (ey). Thena has finite rank if and only iy < oo for all A € o(a)\{0} (the cas® € o(a) and
dim ker ¢ = oo may occur).

Thus, every finite rank normal algebraic elemermt Z gives rise to: (i) a positive integerwhich is the cardi-
nal ofo(a)\{0}, (ii) an ordered n-uplé\,, - - - , \,,) of numbersinC\ {0} which is the set of the pairwise distinct
non-zero spectral values @f (i) an ordered n-upléey, - - - , e,,) of non-zero pairwise orthogonal projections, and
(iii) an ordered n-upléry, - - - ,r,,) wherer, € N\{0}.

The spectral resolution afis unique except for the order of the summands in (5), therefore these three n-uples
are uniquely determined up to a permutation of the indites - ,n). The operaton can be recovered from the
set of the first two ordered n-uplespeing given by (5).



Given the n-upled.: = (A, -+, \,) andR: = (r1,---,r,) in the above conditions, we let

M(n, A, R): :{Z)\kek : ejep =0 forj#k, rank (ex) =7, 1 <j,k<n} (6)
k

be the set of the elements (5) where the coefficiaptand ranks, are given and the; range over non-zero,
pairwise orthogonal projections of ramk. For instance, fon = 1, A = {1} and R = {r} we obtain the
manifold of projections with a given finite rank that was studied in [8]. For the n-uple = (Ay,---,\,)
we setA*: = (Ag,---,\,). The involutionz — z* on Z induces a map (n, A, R) — M (n,A*, R) where
M(n,A,R)* = {z*: z € M} = M(n,A*,R), andA C R if and only if M (n, A, R) consists of hermitian
elements.

For a normal algebraic elememt= 3, ;)\ (0} Aex We define itssupporto be the projection

a= suppa: = Z ex=e1+ - +ep.
Aca(a)\{0}

Itis clear thati( supp(a)) = supph(a) holds for all € Aut°(Z), which combined with théut °(Z)-invariance
of Peirce projector®; gives the following useful formula

Py (supph(a)) = Py (hsupp(a)) = h Py (supp(a)) h™", (k=1,1/2,0). (7

Proposition 3.1 Let A be the set of all normal algebraic elements of finite rankZinand letM (n, A, R) be
defined as in (6). Then

A= |J Mn A R) (8)

n,\, R
is a disjoint union ofAut° (Z)-invariant connected subset gfon which the grougdut®(Z) acts transitively.

PROOF
We have seen before that C Um AR M(n, A, R). Conversely, letz belong to somél/ (n, A, R) hence we
havea = )", Arex for some orthogonal projectiorg. Thenld = (e; + --- + e,,) + f wheref is the projection
ontoker(a) in casel € o(a) and f = 0 otherwise. The above properties of the f yield easilyap(a) = 0 or
p(a) = 0 according to the cases, where R[X] is the polynomiap(z) = (z — A1).--- .(z — A\,). Hencea € A.
Clearly (21) is union of disjoint subsets.

Fix one of the setd/: = M (n, A, R) and take any pait,b € M. Then

a=Mpr+-+Apn,  b=Aq A+ Angn

Incased € o(a), setpy: =1d —>", prandgo: = Id -3, gi. Since rankp, = rank g, the projectiong;, and
qr. are unitarily equivalent and so apg andqo. Let us choose orthonormal ba##§ andB} in the rangeg;, (H)
andgy(H) fork =0, 1,--- ,n. ThenlJ, B; and|J, B} are two orthonormal basis iff. The unitary operator
U € Z that exchanges these basis satidfies= b. In particular)/ is the orbit of any of its points under the action
of the unitary group off. Since this group is connected and its actionzois continuous)M is connected. O

Leta € Z be a normal algebraic element with finite rank ane: supp(a) its support. In the Peirce decom-
position

Z = 7Z1(a) ® Zy2(a) ® Zo(a)

every Peirce spacg;(a); is invariant under the natural involutidrof Z, and we letZ,(a), denote its selfadjoint
part, (k = 1,1/2,0). In what follows, the mafZ x Z — Z given by(z,y) — g(a, z)y, and the partial maps
obtained by fixing one of the variables, will play an important role. For every fixed valaeZ, ;(a), we get

an operatoy(a, )(-) which is an inner JB-triple derivation ofZ, hence we have an operator-valued continuous
real-linear mapZ, ,(a) — Der (Z). Moreoverg(a, z)(-) is a C-algebra derivation if and only if € Z; /5(a)s
(see 3.3). Foy = a fixed, we get the map — ¢(a, z)a for which we introduce the notation

Po(z): =g(a,z)a={aza} — {raa} = (Q(a,a) — L(a,a))z, x € Z.

First we discuss/, /»(a).



Proposition 3.2 Leta € Z be a normal algebraic element of finite rank, anddet e; + - - - + ¢,, be its support.
ThenZ, /»(a) consists of the operators

u:Zuk, ur € Zyja(er), epuj=wujer =0, j#k, (1<j,k<n). (9)
k

If u € Z,2(a)s, then we have the additional conditian € Z; /5 (ex)s.

PROOF
Letu € Z be selfadjoint. The relation € Z, /»(a) is equivalent ta: = 2{aau} which now reads

u=2{aau} = aa*u + ua*a = Z(eku + uey) = Z“’f
k k

where
up: =epu+ue, for 1<k<n. (20)

Note thate;, e, € Zi(a), hence by the Peirce multiplication rul¢s;ue,} € {Z1(a)Z,/2(a)Z1(a)} = {0},
that isejuer, + epue; = 0 forall 1 < j, k < n. Multiplying the latter bye; with j # k yieldse;ue;, = 0 for
j#k, (1 <j, k<n). Therefore by (10),

2{ererur} = ex(epu + uey) +(exu + ueg)ey =
(exu + uer) + 2epuer, = (epu + ueg) = ug

which showsuy, € Z;/5(ex) and clearlyu, = uj, for 1 < k < n. Multiplying in (10) by e; with j # k we get
uge; = ejur = 0 and in particulae; 0wy, = upOe; = 0 for j # k.
Conversely, let, satisfy the properties in (9). Thar = ), u; is selfadjoint ancbru = er, (3, u;) =
exug. Similarlyuey, = urey, hence{aau} = aa*u +ua*a= (3_;ej)u+u (X, e;) = > (eju+ uejg = u,.
Using the*-invariance ofZ; /;(a) every element in this space can be written in the farms w; + iug with
uy,uz € Zy5(a)s and the result follows easily. O

The following result should be compared with ([1], th. 3.1)

Proposition 3.3 Leta € Z be a normal algebraic element of finite rank aad = supp(a). Then for any
u € Zy/2(a), the operato(a, u): = aOu — uDa is an inner C-derivation ofZ if and only ifu is selfadjoint.

PROOF
Leta =", Arer anda = >, e, be the spectral resolution and the suppor.cBuppose: = v*. By (3.2)u has
the formu = ) ug With ug € Z; /5(ex)s andeyOuy = u;0ex, = 0 for all j # k. Therefore

g(a,u) = Z(ekDuk —uiOey) = Zg(ek,uk). (11)
k

k

Here thee, are projections inZ anduy, € Z;,2(ex)s, hence by ([1], th. 3.1) each(es, ux) is an inner C-
derivation ofZ and so is the sum. Conversely, sircis a projection, whenevet(a, v) is a C*-algebra derivation
we haveu € Z; /;(a)s again by ([1], th. 3.1). O

Now consider the joint Peirce decompositionfelative to the family(eq, - - - , e,) wherea = A\jeq + -+ +
Anen is the spectral resolution af Remark tha@D, ., ., i A(ex) C Zi(a) is a direct summand of, hence so is
the space

X: =( P iAler) ® Zia(a).

1<k<n

Proposition 3.4 Leta € Z be a normal algebraic element of finite rank aad = supp(a). Then®, is a
surjective complex linear homeomorphisngf,(a). If a is hermitian thend,, is a surjective real linear homeo-
morphism ofX that preserves the subspa@®, ..., i A(e).



PROOF
Letx = iv +u € X wherev € @, ., Alex) andu € Z;/5(a). The Peirce multiplication rules give for
v=>;v;withv; € A(e;) andu = 3, uy according to (3.2)

{aZ1/2(a)a} = {0},

{aiva} = —Z{Z e; ka Z et = —iz AeVk,
J k l k
{U aa} = Z{Z U j Zek Z )\lel} = % Z AU -
J k l k
Therefore

@a@):AQiE:Ammg—%E:AH%E( B Ziler) & Z12(a). (12)
k k

Itis now clear thatb, preservesZ; /»(a). If a is hermitian them\ C R™ and®,, also preserve&®, .., i A(ex).
Moreoverd,(xz) = 0 with z € X is equivalenttd> A\yvr, = 0 = > Aguy which is equivalentt@ = 0 = u since
the coefficients satisfy, € o(a)\{0}. We can recover from ®,(z), hence the result follows. O

Recall that a subsétl C Z is called areal analytigrespectivelyholomorphi¢ submanifold if to everys € M
there are open subse’8@ C Z and a closed real-linear (resp. complex) subspiice Z with a € P and
o(P N M) = @Qn X for some bianalytic (resp. biholomorphic) map P — Q. If to everya € M the linear
subspaceX = T,M, called thetangent spac® M ata, can be chosen to be topologically complemented in
thenM is called adirect submanifolaf Z.

Fix one of the sets/ = M(n, A, R) and a pointa € M with spectral resolutiom = ", Ayer. By the
orthogonality properties of the,, the successive powers @have the expression

at=Xe +---+ e, 1<1<n,

where the determinadtt()\!) # 0 does not vanish since it is a Vandermonde determinant ankithee pairwise
distinct. Thus thes;, are polynomials im: whose coefficients are rational functions of the SupposeV/ is a
differentiable manifold, and let us obtain its tangent spég#/. Consider a smooth curve— a(t) through
a € M,t € I, for a neighbourhood of 0 € R anda(0) = a. Eacha(t) has a spectral resolution

a(t) = Mei(t) + -+ Apen(t),

therefore the mapis— e (¢), (1 < k < n), are smooth curves in the manifol(r;,) of the projections irZ that
have fixed finite rank;, = rank (e), whose tangent spaceseat= e (0) areZy ;(ex) (see [1] or [8]). Therefore

d
Uk = E|t=06k(t) S Zl/g(ek), 1 S k S n.

Since the spectral projections @ft) corresponding to different spectral valwes# \; are orthogonal, we have
ej(t)ex(t) = 0forall t € I, and taking the derivative at= 0,

ejup =upej =0,  jFk 1<jk<n (13)

By 19, the tangent vector to— a(t) att = 0, thatis,u: = 4 |,_pa(t) = 3, Awuy satisfies

{aau} = {Z €j Zek Z)\lul} = Z M {ejeru} =
j k 1

Jiksl

1 1 1
; )\l{ekekul} = 5 ;)\l(ekul + ulek) = zl: )\l{elelul} = 5 zl: )\lul = §u

henceu € Z,/5(a), andT, M can be identified with a vector subspaceZgf,(a). InfactT,M = Z,,;(a) as it
easily follows from the following result that should be compared with ([1] th. 3.3)



Theorem 3.5 The sets\/ = M(n, A, R) defined in (6) are holomorphic direct submanifoldsf The tangent
space at the point € M is the Peirce subspacg, /;(a) wherea = supp(a), and a local chart at: given by

fru— f(u): = (expg(a,u))a (14)
with g(a,u) = aOu — uOa.

PROOF.
M C Zis invariant undeAut®(Z). Fix anya € M and letX: = (P, ., i Aler)) ® Z1/2(a). ThusZ =
X @Y for a certain subspacdé. The mappingl &Y — Z defined by(z,y) — F(z,y): = (expg(a,z))y € Z
is a real-analytic and its Echet derivative af0, ) is invertible. In fact this derivative is

oF

%'((),a) (u,v)  =gl@au)a= P4(u),

or
a_y|((),a) (u,v) = (expg(a,0))v =w,

which is invertible according to (3.4). By the implicit function theorem there are opef/sétwith0 € U ¢ X
anda € V C Y suchthalV: = F(U x V) isopeninZ andF': U x V — W is bianalytic.

To simplify notation setX; = Z;,5(a) C X. Thenf = F|X, establishes a real analytic homeomorphism
between the sety;: = U N X; andM;: = f(Ny). SinceX; is a direct summand iX (hence also i), the
imageM; = f(N,) is a direct submanifold.

The operatoly(a,2) = aOxz — xz0a is an inner JBtriple derivation ofZ, henceh: = expg(a,u) is a
JB*-triple automorphism ofZ. Actually h lies in Aut°(Z), the identity connected component. But it is known
([10]) thatAut (Z) has two connected components and that the elements in the identity componehtdgelita
automorphisms of since they have the form— UzU* for someU in the unitary group of{. In particularh
preserves normality, spectral values and ranks hence it preseraes! so

M, = f(N1) = {(expg(a,u))a:ue N} C M.

To complete the proof, it suffices to show thfat= F'|X; is a biholomorphic mapping. The &ehet derivative of
ata is
fla(uw) = g(a,u)a = {a, u, a} — {u, a, a}, u € Zyo(a).

Therefored f'u = {a, u, a} anddf'u = —{u, a, a} are the (uniquely determined) complex-linear and complex-
antilinear components gf u. The Peirce rules givga, ua} = 0 forall u € Z; /5(a), hencef is holomorphic and
the same argument holds for the invefsemap. O

Remark that if the algebraic elemenis a projection thea = ¢ andM as a differentiable manifold is the one
constructed in ([1] th. 3.3) and [8].

4 The Jordan connection onM (n, A, R)

Leta € M: = M(n, A, R) and seta = supp(a). Recall that a vector fiel& on M is a map fromM to the
tangent bundl@ M. ThusX,, the value ofX ata € M, satisfiesX, € T,M ~ Z,,5(a). We letD (M) be the Lie
algebra of smooth vector fields dd. Since the tangent spag& M ata € M has been identified witlr; »(a),

we shall consider every vector field a as aZ-valued function such that the valueais contained inz, /> (a).

LetY, be the Fechet derivative ot € ©(M) ata. ThusY, is a bounded linear operatds »(a) — Z, hence
Y, X, € Z and it makes sense to take the projectiyn, ()Y, X, € Z;/5(a) =~ T, M.

Definition 4.1 We define a connectidvi on M by
(VxY)a: = Pyja(supp(a)) Y, Xa, X, Y e D(M), a€ M.

Note that ifa is a projection, then = supp(a) andV coincides with the affine connection defined in ([1] def 3.6)
and [8]. It is a matter of routine to check thetis an affine connection of/, that it isAut °(Z)- invariant and
torsion-free, i. e.,

g(vXY>:vg(X)g(Y>a gGAUtO(Z)v

where(g X)q: = g, (X 1) forall X € ©(M), and
T(X,Y): =VxY —VyX — [XY] =0, X, Y e D(M).



Theorem 4.2 Let the manifolds// be defined as in (6). Then tRé-geodesics oM are the curves

V(t): = (exp tg(aa u))av t €R, (15)
wherea € M andu € Z; /5(a).

PROOF
Recall that the geodesics ®f are the curves — ~(t) € M that satisfy the second order ordinary differential
equation

(Vi) 7)) 5y = 0.

Letu € Z,/3(a). Theng(a,u) = aOu — uDa is an inner JB-triple derivation ofZ, and, as established in the
proof of (3.5),h(t): = exp tg(a,u)is aninner C-automorphism o¥. Thush(t)a € M andt — ~(t) is a curve
in the manifoldM . Clearly~(0) = a and taking the derivative with respectitat¢ = 0 we get by the Peirce rules

V() = g(a,u)y(t) = h(t)g(a, u)a, Y(0) = g(a, u)a € Zy2(a),
V(t) = 92(aa )V(t) = h(t)g(aa u)Qaa 7(0) = g(aa U)V(O) €7 (a) 2] ZO(a)'
In particularP; /> (a)g(a, u)?a = 0. The definition ofV and the relation (7) give

(Vs 40,0 = Pra(suppy(t) (500, 4(6)) = Prja( suppy() (1) =
P12 (supph(t)a) h(t)g(a, w)a = h(t)Py 2 (supp(a)) g(a, u)%a = 0

for all t € R. Using the representation = ), u, given by (9) one getg(a,u)a = —% > ok AUk, and as
A € o(a)\{0} the mapping: — g(a, u)a is a linear homeomorphism d¢f; ;;(a). Since geodesics are uniquely
determined by the initial poini(0) = a and the initial velocityy(0) = g(a, u)a, the above shows that family of
curves in (15) with € M andu € T, M ~ Z, />(a) are all geodesics of the connection O

Recall thata = supp(a) is a finite rank projection, hence by ([8], th. 1.1) the*dbtriple Z, /»(a) has
finite rank and the tangent spafgM ~ Z, »(a) is linearly homeomorphic to a Hilbert space undean® (Z)-
invariant scalar product (say, -)). Thus we can define a Riemann metricahby

0o(X,Y): =(Xa,Ya), X, YeDM), acM. (16)

Remark thay is hermitian i.e. we havey,(iX, iY) = ¢g.(X,Y), and that it has been defined in algebraic terms,
hence it isAut °(Z)-invariant. Moreovery is compatible with the Riemann structure, i. e.

ThereforeV is the only Levi-Civita connection of/. On the other hand, let the map Z, /3(a) — Z1,2(a) be
givenbyJz: = iz. ClearlyJ? = —Id, henceJ defines (the usual) complex structure on the tangent spake to
andV is J-hermitian

Vx (1Y) =1iVxY, X, Y e D(M),

henceV is the only hermitian connection al. Thus the Levi-Civita and the hermitian connection are the same
in this case, and sV is the Kahler connection oM/ .

For a tripotene € Tri(Z), the Peirce reflection arounds the linear magh.: = Id — P /;(e) or in detail
z =21+ 2172 + 20 = Se(2) = 21 — 212 + 20 Wherez;, are the Peirce-projections of, (k = 1,1/2,0). Recall
that.S. is an involutory triple automorphism ¢f with S, (e) = e, and that ife is a projection (taken as a tripotent)
then S, is a C-algebra automorphism dof. This applies taea = supp(a), hence to each € M we getS,,
an involutory automorphism of the manifold which in this way becomes a symmetric holomorphic Riemann
(Kéahler) manifold. Note that in general¢ M even ifa € M, henceS, may have no fixed points if/.

It would be interesting to know if any two poinésb in M can be joined by a geodesic and whether geodesics
are minimizing curves for the Riemann distance. The answers to these questions are affirmatiyé edresists
of projections of the same finite rank (see [8]).



5 Algebraic elements in JB-triples

The role that projections play in the study of algebras is taken by tripotents in the study of triple systems. A
spectral calculus and a notion of algebraic elements is available in the stetting-bfplBs. In what follows we
shall consider the manifold of all finite rank algebraic elements in*atdBle 7.

Definition 5.1 An element, € Z is calledalgebraidf there exits a decomposition
a:)\161+"'+>\n€n (17)
where(ey) is a family of pairwise orthogonal tripotents it and (\;,) are complex coefficients.

For an algebraic element € Z the above decomposition can always be chosen in such a way thategvisry
non-zero and the are real numbers with < A\; < --- A,, and under these additional conditions the spectral
representation af is unique. Clearly: has finite rank if and only if every so does evegy

Remark that forZ = L£(H), normal algebraic elements in thé-@lgebraZ are algebraic elements it as a

JB*-triple. Given a positive integer € N, an increasing n-uple of non-zero real numhérs (A, -+, \,,) and
an n-upleR = (ry,--- ,r,) where0 < r, € N, we define
N(n, A, R): = {Z)\kek cej0ep,=0 forj#k, rank(eg) =rp, 1 <j, k<n} (18)
k

to be the set of the elements (17) where the coefficigpnd ranks:; are given and the, range over non-zero,
pairwise orthogonal tripotents ifi such that rankle;,) = .. The setA of finite rank algebraic elements i is
the disjoint uniond = U,, o, g N(n, A, R).

Lemma 5.2 Let Z be an irreducible JBWtriple. Then each of sey = N(,n A, R) is an Aut®(Z)-invariant
connected subset &f on which the groupdut®(Z) acts transitively.

PROOF
Irreducible JBW-triples are Cartan factors and we may assumehigta notspecialas otherwiselim Z < oo
and the result is known [16]. Thug is a J-algebra in the sense of Harris [4] that is, a weak*-operator closed
complex linear subspace d@f(H, K) that is closed under the operation of taking triple products, for suitable
complex Hilbert spaceH, K with dim H < dim K. Tripotents are the partial isometriesH — K thatlieinZ.

We make a type by type proof. Let= L(H, K) be a type | Cartan factor and ketb € N. In particular

a=Aer+ -+ Apen, b:)\1611+"'+)\neil

Let Hy, H;, C H be the domains of the partial isometrigsande;,, and similarly letK;, K; C K denote their
respective ranges. Sineg ande), have the same finite rank;, they are unitarily equivalent, that is there are
unitary operatord’y,: H, — Hj andV;: K — K} such thae), = Vie,Uy. Since the, are pairwise orthogonal
we haveH, L H; andK; L K, for k # j and@ Uy, €D Vi are unitary operators ofp H, and@ K, that
can be extended to unitary operatéfs H — H andV: K — K if needed. The mapping — Z given by
z — V2U is a JB-triple automorphism that lies iAut °(Z) [10] and clearly satisfies = VaU. HenceAut°(Z)
acts transitively onV, N is connected and invariant under that group.
Cartan factors of types Il and Il can treated in the same way. The case of spin factors may be discussed with a
different approach, but we shall not go into details. O
Now consider the joint Peirce decompositionfelative to the family(es, - - - , e,,) wherea = A\je; +--- +
Anen is the spectral resolution af Let thesupporbf a be tripotenta = suppa: =e; + - - - + e, and note that

X: :( @ iA(ek))@Zl/Q(a).

1<k<n

is a topologically complemented subspac&in
Fix one of the setsV = N(n, A, R) and a pointa € N with spectral resolution = >, Aye;. From the
properties:;,Oe; = 0 for j # k, the successive odd powersahave the expression

at :)\?l+161+---+)\,2f+1en, 0<i<n-—-1,



where the determinamiet(Ail“) # 0 does not vanish since it is a Vandermonde determinant and,tfse
pairwise distinct. Thus they, are polynomials ire whose coefficients are rational functions of the Suppose
N is a differentiable manifold, and let us obtain its tangent sp7ac€. Consider a smooth curnve— a(t) in N
througha, ¢ € I, for a neighbourhood of 0 € R anda(0) = a. Eacha(t) has a spectral resolution

a(t) = Mei(t) + -+ Apen(t),

are smooth curves in the manifoldi¥r;,) of the tripotents inZ that

therefore the mapsi— e (¢), (1 < k < n),
k), Whose tangent spacesat = e (0) are respectively A(ex) & Z;/2(ex)

have fixed finite rank; = rank (
(see [1] or [8]). Therefore

d
2k = %|t:0 er(t) =ivk +uk: €1 A(eg) @ Zl/g(ek), 1<k<n.

<
wh

Setv: =), A\pvp andu: = >, Apug. FromZ(e,)0Z(e;) = {0}, we get

{aaiv} = zZ)\l{e]ekvl} = ZZ)\kvk =i el @A k)

7.k,

The spectral tripotents af{¢) corresponding to different spectral valugs# \; are orthogonal, heneg(t)Dey(t) =
0 for all t € I, and taking the derivative at= 0 we get

ejljuk:ukljej:()v j#kv 1§],k§n (19)

Hence

{aau}—{Ze] Zek Z)\lul}—Z)\l{ejekul}— Z)\kuk— -

gkl

which shows that: € Z, /5 (a). By 19, the tangent vector to— a(t) att = 0isz: = %L|,—oa(t) = 3, Ak (ive +
ug) = iv + u hence it satisfies

) 1 .
{aaz} =iv+ Ju € Z@A(€k> © Zy0(a),

henceT, N can be identified with a vector subspacei §p A(ex) © Z;/2(a). In factT,N coincides with that
space as it easily follows from the following result that should be compared with ([1] th. 3.3)

Theorem 5.3 The setsV = N(n, A, R) defined in (18) are real analytic direct submanifolds/f The tangent
space at the point € N is the Peirce subspack, wherea = supp(a), and a local chart at given by

fiom 1) = (expgla 2)a (20)
with g(a, z) = alz — zOa.

PROOF
N C ZisinvariantundeAut®(Z). Fixanya € N andletX : = (@, <, i Alex)) ®Z12(a). ThusZ = XY
for a certain subspacg. The mappingX & Y — Z defined by(z,y) — F(z,y): = (expg(a,z))y € Zis a
real-analytic and its fechet derivative af0, a) is invertible as proved in (3.4). By the implicit function theorem
there are open setg, V with 0 € U C X anda € V C Y such thatW: = F(U x V) is open inZ and
F:U x V — W is bianalytic and the imagg(U) is a direct real analytic submanifold &f.

The operatoy(a, z) = alz — zOa is an inner JBtriple derivation ofZ, henceh: = expg(a,z)is a JB-
triple automorphism of. Actually h lies inAut °(Z), the identity connected component. In particllareserves
the algebraic character and the spectral decomposition, hence it preSeavnekso

F(N)={(expg(a,z))a: z€ U} C N.
This completes the proof. O
Definition 5.4 For the tripotentse, ¢’ we sete ~ ¢’ if and only ife ande’ have the samg-Peirce projectors for

k=0,1/2,1.
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This notion was introduced by Neher who proved ([17], th.2.3) that

/

e~e <= ecZ(e) and € € Zi(e), (21)
or equivalently if and only itCle = ¢’Te’. Next we extend this relation to an equivalence in the maniféld

Definition 5.5 Leta, b be elements iV with spectral resolutions = ", A\ie, andb = >, \x fr respectively.
We say that and b are equivalent (and writee ~ ) if the joint Peirce decompositions ¢f relative to the
orthogonal families = (e) andF = (fi) are the same.

Note that~ coincides with the equivalence of Neher when the algebraic elememtdb are tripotents. By ([16],
th. 3.14), the Peirce spaces of the tripotepntan be expressed in terms of the joint Peirce decompositigh of
relative to€, hencen ~ bif and only ife;, ~ f for1 < k < n.

Proposition 5.6 Let a, b be points inN such thats = > Aye, andb = (exp g(a, z)a for some tangent vector
z=w+u€ (BycpeniAler)) ® Ziy2(a). Thena ~ bif and only ifu = 0.

PrROOF

Letb = (expg(a, z)a = >, A\ fi be the spectral resolution &f Then eacly;, is an odd polynomial irb, say
fx = px(b), 1 < k < n. To simplify the notation, consider the indéx= 1 and omit the reference to it in the rest
of the proof. Ifa ~ b thene ~ f hence by (21) we must haye= {eef} that is

p(b) = {eep(b)} = p({eeb}) (22)

Clearly we haveb ~ o for all p € T, which replaced above yields an identity between two polynomiats lret
X™, for some positive odd intege, be the term op of lowest degree whose coefficient is not zero. Then (22)
entailsb™ = {eeb™}, thatis(exp g(a, z))™a = {ee (expg(a, z))™a}. Taking the Fechet derivative at the origin
g(a,-)a = {eeg(a,-)a}, which evaluated at the tangent vector= iv + v = iy, vi + »_, ur and using the
Peirce rules as in the proof of (3.4) yields= 0. The converse is easy. O

In particular, there is a neighbourhoodwin N in which the algebraic elemenisquivalent ta: are those of
the formb = (exp g(a, iv))awithv = 3", v € @, A(ex), which gives the expression of the fibrefthrough
a.

Proposition 5.7 Leta € N be an algebraic element i@ with spectral resolutiom = >, Ayex. Then the fibre
of N througha is the set of the elemen}s, Az, wherez; lies in the unit circle of the JBalgebraZ, (e;) for
1<k<n.

PROOF.
Letv =), \vur € @, A(ex), and consider the curves in

$(t): = (exp tg(a,iv))a,  Y(t): =D Alexp tglex,ive))ex: = Y Metu(t),  tER.
k k

They are the solutions of the differential equations

W0 — g(a0(0),

dqg_it) — zk: )\kg(ekﬂpk(t))

with the initial conditionsp(0) = a and(0) = ", Axer = a respectively. Fron¥,(e;)0Z;(e;) = {0} for
k # j we get
g(a,iv) = g(Y en, iy Avy) =D Akglex, ivy)
k j Kk

and the uniqueness of solutions of differential equations gives= >, A\xvx(t) forall ¢ € R. But it is known
([16] th. 5.6) that for fixed:, 1 < k < n, the sety, = (exptg(ek,ivg))ek, t € R, v, € A(eg), is the unit circle of
the JB-algebraZ (e ), that is the set of those € Z;(e;,) that satisfyw* = w~!. This completes the proof. O
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By restricting the local charts in (20) to the direct summafigy(a) C 7,N we get a direct submanifold
B = B(n, A, R) of Z, and we refer td3 as thebasemanifold of N. Clearly B is a holomorphic submanifold of
the real analytic manifoldv, and as in section 3

(VxY),: =P p@Y/X,, X.YeDB), acB,

is anAut °(Z)-invariant torsionfree affine connection @hwhose geodesics are the curvés): = (expt g(a,u))a,

t € R,fora € B andu € Z,5(a). Moreover, fora € B the Peirce reflection with respect4as an involutory

triple automorphisms of that fixesa, hence it fixes @, A(ex) andZ, ;;(a). Itis easy to see that this reflection
commutes with the exponential mapping, hence it fi%és, A, R) and os it defines a holomorphic symmetryif

In general(a) does not belong t& hence this symmetry in general has no fixed point8inNhen the algebraic
elementa € Z has finite rank, that is when rank) = >, rank (ex) < oo, the subtripleZ, /,(a) is linearly
equivalent to a complex Hilbert space by [12] and by using the algebraic metric of Harris one can introduce an
Aut ° (Z)-invariant Riemann structure and aKér structure on the base manifold in exactly the same way we did

in section 3, and the connecti@nturns out to be the Levi-Civita and theaKler connection oif3.
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