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S. PUMPLÜN

Abstract. Let F be a field of characteristic not 2 or 3. We give easy sufficient criteria

for some first Tits constructions over the rational function field F (X) to yield division

algebras.

Introduction

Let F (x) the field of rational functions over a field F of characteristic not 2 or 3. We
obtain some easy to check sufficient criteria which help to construct examples of cubic
Jordan division algebras over F (x) which arise as first Tits constructions out of separable
cubic algebras.

In [G-R-SB], Gajivaradhan, Rema and Sri Bala gave some sufficient criteria for quaternion
and octonion algebras over F (x) to be division algebras, with F of characteristic unequal to
2. Their methods of proof are analogous to the ones used here.

1. Preliminaries

1.1. Let F be a field of characteristic not 2 or 3 and λ ∈ F×. Let B be a separable
associative unital algebra of degree 3 over F with norm NB/F and trace TB/F . We denote
the first Tits construction employing B and λ by J(B, λ). For the definition and general
properties of J(B, λ), the reader is referred to [P-R1], [McC] or [KMRT]. The norm of the
Jordan algebra J(B, λ) is given by

NJ(B,λ)((b1, b2, b3)) = NB/F (b1) + λNB/F (b2) + λ2NB/F (b3)− λTB/F (b1b2b3)

with b1, b2, b3 ∈ B. It is well-known that J(B, λ) is a division algebra if and only if λ 6∈
NB/F (B×) if and only if NJ(B,λ) is anisotropic. Moreover, J(B, b) ∼= J(B, c3b) for all
c ∈ F×.

An Albert algebra over F is an exceptional simple Jordan algebra of degree 3, i.e. an
F -form of the Jordan algebra of 3-by-3 hermitian matrices with diagonal entries in F and
off-diagonal entries in the split octonion algebra Zor(F ) (or details, see for instance [P-R1,
2], or [KMRT, p. 524]). Every Albert algebra over F can be obtained by a first or second
Tits construction (cf. [P-R1] or [McC]).
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For an iterated first Tits construction we write J(B,µ, λ) = J(J(B,µ), λ) or J(B,µ, λ, α) =
J(J(J(B,µ), λ), α) with µ, λ, α ∈ F×.

1.2. The set-up. Let K = F (x) be the field of rational functions over F . A polynomial
f(x) ∈ F [x] is said to be of the nth kind if f (i)(0) = 0 for all i ∈ {1, . . . , n − 1}, but
f (n)(0) 6= 0. Every element in the group K×/K×3 is given by a polynomial of either the
first, the second or the third kind.

Let B be a separable associative algebra of degree 3 over K = F (x). When looking at
a first Tits construction J(B, λ(x)) with λ(x) ∈ F (x), λ(x) = f(x)/g(x) with f(x), g(x) ∈
F [x], we can ’clear the denominator’ and instead look at J(B, λ̃(x)) for a suitable λ̃(x) ∈
F [x]: let λ̃ = g(x)3f(x)/g(x) = g(x)2f(x) ∈ F [x] then J(B, λ(x)) ∼= J(B, λ̃(x)).

So we only need to deal with the case J(B, f(x)), where f(x) ∈ F [x]. Let f(x) =
f1(x)ε1 · · · fr(x)εr be the decomposition of f(x) ∈ F [x] into distinct irreducible factors
f1(x), . . . , fr(x). Since we know that two polynomials f(x), h(x) ∈ F [x] with f(x) =
l(x)3h(x) for some l(x) ∈ F [x] yield isomorphic Jordan algebras J(B, f(x)) ∼= J(B, h(x)),
when looking at J(B, f(x)), we may assume without loss of generality that

f(x) = f1(x)ε1 · · · fr(x)εr

with εi ∈ {1, 2} for all i = 1, . . . , r.
Define

α(x) ∈ F [x], α(x) = α0 + α1x+ α2x
2 + · · ·+ αtx

t,

µ(x) ∈ F [x], µ(x) = µ0 + µ1x+ µ2x
2 + · · ·+ µrx

r,

λ(x) ∈ F [x], λ(x) = λ0 + λ1x+ λ2x
2 + · · ·+ λsx

s,

Remark 1. Let α(x), β(x), γ(x) ∈ F [x] be of the first kind. Gajivaradhan, Rema and Sri
Bala [G-R-SB] proved two results for octonion algebras: they showed that if the octonion
algebra Cay(F, α(0), β(0), γ(0)) obtained by a repeated Cayley-Dickson doubling process out
of F is a division algebra over a field F of characteristic not 2, then the octonion algebra
Cay(K,α(x), β(x), γ(x)) is a division algebra over K. If α(x) and β(x) are of the first kind
and γ(x) is of the second kind, and if the quaternion algebra (α(0), β(0))F is a division
algebra over F then Cay(K,α(x), β(x), γ(x)) is a division algebra over K. They proved a
similar result for quaternion algebras over K. Since we know that every composition algebra
over the polynomial ring F [x] is defined over F [P, 6.8], we point out that for instance

Cay(K,α(x), β(x), γ(x)) = Cay(F [x], α(x), β(x), γ(x))⊗ F (x) ∼=F [x] Cay(F, a, b, c)⊗F F (x)

for suitable a, b, c ∈ F×.

2. The first Tits construction over F (x) using polynomials of the first kind

Lemma 2. Let E = J(F (x), α(x)) with α(x) ∈ F [x] of the first kind. If

E0 = J(F, α0)

is a division algebra over F , then E is a division algebra over F (x).
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Proof. Assume E = J(F (x), α(x)) is not a division algebra over F (x), then α(x) ∈ F (x)×3,
which means α(x) = f(x)3/g(x)3 for suitable f(x), g(x) ∈ F [x]. Since in this case J(F (x), α(x)) ∼=
J(F (x), f(x)3), we may assume α(x) = f(x)3 with f(x) ∈ F [x]. This implies that α(x) =
b3 + . . . for some b ∈ F×, i.e. α0 = b3 and therefore E0 = J(F, α(0)) = J(F, α0) is not a
division algebra, either. �

Theorem 3. (i) Let E = E0 ⊗F K with E0 a separable cubic field extension over F . Let
A = J(E, λ(x)) with λ(x) ∈ F [x] of the first kind. If

A0 = J(E0, λ0)

is a division algebra over F , then A is a division algebra over F (x).
(ii) Let B = B0 ⊗F K where B0 is a central simple associative division algebra over F . Let
J = J(B,α(x)) with α(x) ∈ F [x] of the first kind. If

J0 = J(B0, α0)

is an Albert division algebra over F , then J is an Albert division algebra over F (x).

Proof. (i) Let 1, e, f be a basis of E0 over F . Suppose that A0 = J(E0, λ(0)) = J(E0, λ0) is a
division algebra over F . A = J(E, λ(x)) is a division algebra over F (x) if and only if NA/K is
an anisotropic cubic form, i.e. we have to show that there are only trivial hi(x) ∈ K such that
0 = NA/K((h1, . . . , h9)). Suppose there are hi(x) ∈ K such that 0 = NA/K((h1, . . . , h9)).
By clearing denominators we may assume that hi(x) ∈ F [x],

hi = hi(x) =
ni∑
j=0

ci,jx
j ,

so that

0 = NA/K((h1, . . . , h9)) = NE/K(h1+h2e+h3f)+λNE/K(h4+h5e+h6f)+λ2NE/K(h7+h8e+h9f)

−λTE/K((h1 + h2e+ h3f)(h4 + h5e+ h6f)(h7 + h8e+ h9f)).

Comparing the constants (which amounts to plugging in 0 everywhere), this yields

0 = NA0/F ((h1(0), . . . , h9(0))) = NE0/F (c1,0 + c2,0e+ c3,0f) + λ0NE0/F (c4,0 + c5,0e+ c6,0f)

+λ2
0NE0/F (c7,0+c8,0e+c9,0f)−λ0TE0/F ((c1,0+c2,0e+c3,0f)(c4,0+c5,0e+c6,0f)(c7,0+c8,0e+c9,0f)).

Since A0 is division by hypothesis, this means all c1,0, . . . , c9,0 must be zero and so we have
hi = xh̃i for all i and NA0/F ((h1, . . . , h9)) = x3NA0/F (h̃1, . . . , h̃9). We now proceed by
induction and assume that all coefficients of the hi’s up to the one of xn are zero. Then
NA0/F ((h1, . . . , h9)) = x3nNA0/F ((h̃1, . . . , h̃9)) where now hi = xnh̃i for all i and hence
0 = NA0/F ((h1, . . . , h9)) means 0 = NA0/F ((h̃1, . . . , h̃9)) Now compare the coefficients of
the xn+1’s appearing in the equation. Then by the same argument we obtain that

0 = NA0/F ((c1,n+1, . . . , c9,n+1)) =

NE0/F (c1,n+1 + c2,n+1e+ c3,n+1f) + λ0NE0/F (c4,n+1 + c5,n+1e+ c6,n+1f)

+λ2
0NE0/F (c7,n+1 + c8,0e+ c9,n+1f)

−λ0TE0/F ((c1,0 + c2,n+1e+ c3,n+1f)(c4,n+1 + c5,n+1e+ c6,n+1f)(c7,n+1 + c8,n+1e+ c9,n+1f))
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which means all c1,n+1, . . . , c9,n+1 must be zero as well. By induction we thus show that
0 = NA/K((h1, . . . , h9)) implies that h1 = · · · = h9 = 0, hence that A is a division algebra
over K.
(ii) By a well-known theorem of Wedderburn, every central simple algebra of degree 3 over
F is cyclic. Suppose B0 = (L, a) is a central simple division algebra of degree 3 over F ,
where L = F [x]/(x3 − b) = F (z) is a cubic field extension of F . We give the argument for
the special case that F contains a primitive cube root of unity ρ, because then the basis of
the algebra is easy to write down (but the general case works analogously): B0 has F -basis
{lizj |0 ≤ i, j ≤ 2} where

zl = lzρ, l3 = a ∈ F×, z3 = b ∈ F×

[Pi, p. 299]. Suppose that J = J(B0, α(0)) = J(B0, α0) is a division algebra over F . Use
that

NJ(B,α(x))((b1, b2, b3)) = NB/K(b1) + α(x)NB/K(b2) + α(x)2NB/K(b3)− α(x)TB/F (b1b2b3)

J = J(B,α(x)) is a division algebra over F (x) if and only if NJ/K is an anisotropic
cubic form, i.e. we have to show that there are only the trivial hi(x) ∈ K such that
0 = NJ/K((h1, . . . , h27)). Suppose there are hi(x) ∈ K such that 0 = NA/K((h1, . . . , h27)).
By clearing denominators we may assume there exist polynomials hi(x) ∈ F [x],

hi = hi(x) =
ni∑
j=0

ci,jx
j ,

such that

0 = NJ/K((h1, . . . , h27)) = NB/K(h1+zh2+z2h3+l(h4+zh5+z2h6)+l2(h7+zh8+z2h9))+

α(x)NB/K(h10 + · · ·+ l2z2h18) + α(x)2NB/K(h19 + · · ·+ l2z2h27)

−α(x)TJ/K((h1 + · · ·+ l2z2h9)(h10 + · · ·+ l2z2h18)(h19 + · · ·+ l2z2h27)).

The proof now works analogously as in (ii): Comparing the constants, since A0 is divi-
sion by hypothesis, all c1,0, . . . , c27,0 must be zero and so we have hi = xh̃i for all i and
NA0/F ((h1, . . . , h27)) = x3NA0/F (h̃1, . . . , h̃27). We now proceed by induction and assume
that all coefficients of the hi’s up to the one of xn are zero. Then NA0/F ((h1, . . . , h27)) =
x3nNA0/F ((h̃1, . . . , h̃27)) where now hi = xnh̃i for all i and hence 0 = NA0/F ((h1, . . . , h27))
means 0 = NA0/F ((h̃1, . . . , h̃27)) Now compare the coefficients of the xn+1’s appearing
in the equation. Then by the same argument we obtain that all c1,n+1, . . . , c27,n+1 must
be zero as well. By induction we thus show that 0 = NA/K((h1, . . . , h27)) implies that
h1 = · · · = h9 = 0, hence that A is a division algebra over K. �

Remark 4. Alternatively, we can prove (i) and (ii) much quicker as follows:
(i) Identify E0 ⊗ F (x) = E0(x) = E. Suppose A = J(E,µ(x)) is not a division algebra over
F (x), then µ(x) ∈ NE/K(E×). This means µ(x) = NE/F (x)(e(x)) for a suitable non-zero
e(x) ∈ E0(x). Substituting x = 0, we get µ(0) = NE0/F (e(0)), i.e. µ(0) ∈ NE0/F (E×

0 ).
Therefore A0 = J(E0, µ(0)) = J(E0, µ0) is not a division algebra over F .
(ii) Let B = B0 ⊗F K where B0 is a central simple associative division algebra over F .
Let J = J(B,α(x)) with α(x) ∈ F [x] of the first kind. Suppose A = J(B,α(x)) is not a
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division algebra over F (x), then α(x) ∈ NB/K(B×). This means α(x) = NB/F (x)(e(x)) for
a suitable e(x) ∈ B0⊗F (x). We get α(0) = NB0/F (e(0)), i.e. α(0) ∈ NB0/F (B×

0 ). Therefore
A0 = J(B0, α(0)) = J(B0, α0) is not a division algebra over F .
We give the lengthy proof here as well to show the inductive nature of the argument.

Theorem 5. (i) Let A = J(F (x), µ(x), λ(x)) and µ(x), λ(x) ∈ F [x] of the first kind. If

A0 = J(F, µ0, λ0)

is a division algebra over F , then A is a division algebra over F (x).
(ii) Let J = J(F (x), µ(x), λ(x), α(x)) and µ(x), λ(x), α(x) ∈ F [x] of the first kind. If

J0 = J(F, µ0, λ0, α0)

is a division algebra over F , then J is a division algebra over F (x).

Proof. For J = J(F (x), µ(x)), by plugging in zero the term NJ(h1(x), h2(x), h3(x)) becomes
NJ(F,µ(0))(h1(0), h2(0), h3(0)), i.e. the norm of J(F, µ(0)) (and for J = J(F (x), µ(x), λ(x)),
NJ(h1(x), . . . , h9(x)) becomes NJ(F,µ(0),λ(0))(h1(0), . . . , h9(0))). Hence the same induction
method as in the proof of Theorem 3 can be applied, substituting NJ for NE or NB every-
where. �

More generally, if ϕ is a form of degree n over F (x), we may assume without loss of
generality that all its coefficients αi1,...,irj

(x) are polynomials in F [x]. If they are all of the
first kind, the same inductive argument proves that ϕ is anisotropic, if the corresponding
form ϕ0 over F we obtain from ϕ by putting αi1,...,irj

(0) instead of αi1,...,irj
(x) as coefficients

everywhere, is anisotropic.

3. The first Tits construction over F (x) using polynomials of the second or

third kind

Lemma 6. E = J(F (x), α(x)) is a division algebra over F (x) for all µ(x) ∈ F [x] of the
second or third kind.

Proof. Suppose E = J(F (x), α(x)) is not a division algebra over F (x). Then α(x) ∈ F (x)×3

which means α(x) = f(x)3/g(x)3 for suitable f(x), g(x) ∈ F [x]. Since J(F (x), α(x)) ∼=
J(F (x), f(x)3) assume w.l.o.g. that α(x) = f(x)3 with f(x) ∈ F [x] and f(x) = b0 + b1x +
b2x

2 + . . . .
Suppose α(x) is of the second kind, i.e. α(x) = x(α1 + α2x + . . . ) = α1x + α2x

2 . . . with
α1 6= 0. Comparing coefficients implies α1 = α2 = 0, a contradiction to our assumption that
α1 6= 0. Thus α(x) 6∈ F (x)×3 and E = J(F (x), α(x)) a division algebra over F (x) for every
polynomial α(x).
Suppose α(x) is of the third kind, i.e. α(x) = x2(α2 + α3x + . . . ) = α2x

2 + α3x
3 . . . with

α2 6= 0. Comparing coefficients again implies α1 = α2 = 0, a contradicting that α2 6= 0.
Thus α(x) 6∈ F (x)×3 and E = J(F (x), α(x)) a division algebra over F (x). �

Theorem 7. Let E0 be a separable cubic field extension over F , E = E0 ⊗F F (x) defined
over F and A = J(E, λ(x)) with λ(x) ∈ F [x].
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(i) If λ(x) is of the second kind then A is a division algebra over F (x).
(ii) If λ(x) is of the third kind then A is a division algebra over F (x).

Proof. A = J(E,µ(x)) is a division algebra over F (x) if and only if NA/K is an anisotropic
cubic form, i.e. we have to show that there are only trivial hi(x) ∈ K such that 0 =
NA/K((h1, . . . , h9)). Suppose there are hi(x) ∈ K such that 0 = NA/K((h1, . . . , h9)). Clear-
ing denominators we assume these hi(x) ∈ F [x],

hi = hi(x) =
ni∑
j=0

ci,jx
j ,

such that

0 = NA/K((h1, . . . , h9)) = NE/K(h1+h2e+h3f)+λ(x)NE/K((h4+h5e+h6f)+λ(x)2NE/K((h7, h8, h9))

−λ(x)TE/K((h1 + h2e+ h3f) · (h4 + h5e+ h6f) · (h7 + h8e+ h9f),

with 1, e, f a basis of E0 over F .
(i) Let

λ(x) = λ1x+ λ2x
2 + · · ·+ λsx

s = x(λ1 + λ2x+ · · ·+ λsx
s−1) = xλ̃(x), λ1 6= 0

be of the second kind. Plugging in 0 everywhere yields

0 = NE0/F (h1(0) + h2(0)e+ h3(0)f) = NE0/F (c1,0 + c2,0e+ c3,0f)

Since E0 is division by hypothesis, c1,0 = c2,0 = c3,0 = 0 and so we have hi = xh̃i for
i = 1, 2, 3 and

0 = NA/K((h1, . . . , h9))

= x3NE/F (h̃1 + h̃2e+ h̃3f) + xλ̃(x)NE/K(h4 + h5e+ h6f) + x2λ̃2NE/K(h7 + h8e+ h9f)

−x2λ̃TE/K((h̃1 + h̃2α+ h̃3f)(h4 + h5α+ h6α
2)(h7 + h8α+ h9f)).

Cancel x:

0 = x2NE/F (h̃1 + h̃2e+ h̃3f) + λ̃(x)NE/K(h4 + h5e+ h6α
2) + xλ̃2NE/K(h7 + h8e+ h9α

2)

−xλ̃TE/K((h̃1 + h̃2e+ h̃3f)(h4 + h5e+ h6f)(h7 + h8e+ h9f)).

Put x = 0:

0 = λ1NE0/F (h4(0) + h5(0)e+ h6(0)f) = λ1NE0/F (c4,0 + c5,0e+ c6,0f).

Hence also c4,0 = c5,0 = c6,0 = 0 and hi = xh̃i for i = 4, 5, 6 and

0 = NA/K((h1, . . . , h9))

= x3NE/F (h̃1 + h̃2e+ h̃3α
2) + x4λ̃(x)NE/K(h̃4 + h̃5e+ h̃6f) + x2λ̃2NE/K(h7 + h8e+ h9f)

−x3λ̃TE/K((h̃1 + h̃2e+ h̃3f)(h̃4 + h̃5e+ h̃6f)(h7 + h8e+ h9f)).

Cancel x2:

0 = xNE/F (h̃1 + h̃2e+ h̃3f) + x2λ̃(x)NE/K(h̃4 + h̃5e+ h̃6f) + λ̃2NE/K(h7 + h8e+ h9f)

−xλ̃TE/K((h̃1 + h̃2e+ h̃3f)(h̃4 + h̃5e+ h̃6f)(h7 + h8e+ h9f)).

Put x = 0:
0 = λ2

1NE/K(h7(0) + h8(0)e+ h9(0)f).
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Hence also c7,0 = c8,0 = c9,0 = 0 and hi = xh̃i for i = 7, 8, 9. An obvious induction now
shows that we may conclude h1 = · · · = h9 = 0 this way.
(ii) Let

λ(x) = λ2x
2 + · · ·+ λsx

s = x2(λ2 + λ3x+ · · ·+ λsx
s−2) = x2λ̃(x), λ2 6= 0

be of the third kind. Put x = 0, then

0 = NE0/F (h1(0) + h2(0)e+ h3(0)f) = NE0/F (c1,0 + c2,0e+ c3,0f),

i.e. c1,0 = c2,0 = c3,0 = 0 and hi = xh̃i for i = 1, 2, 3. Now

0 = NA/K((h1, . . . , h9))

= x3NE/F (h̃1, h̃2, h̃3) + x2λ̃(x)NE/K(h4 + h5e+ h6f) + x4λ̃(x)2NE/K(h7 + h8e+ h9f)

−x3λ̃(x)TE/K((h̃1 + h̃2e+ h̃3f)(h4 + h5e+ h6f)(h7 + h8e+ h9f)).

Cancel x2:

0 = xNE/F (h̃1, h̃2, h̃3) + λ̃(x)NE/K(h4 + h5e+ h6f) + x2λ̃(x)2NE/K(h7 + h8e+ h9f)

−xλ̃(x)TE/K((h̃1 + h̃2e+ h̃3f)(h4 + h5e+ h6f)(h7 + h8e+ h9f)).

Put x = 0:

0 = λ2NE0/F (h4(0) + h5(0)e+ h6(0)f) = λ2NE0/F (c4,0 + c5,0e+ c6,0f).

Hence also c4,0 = c5,0 = c6,0 = 0 and hi = xh̃i for i = 4, 5, 6 and

0 = xNE/F (h̃1, h̃2, h̃3) + x3λ̃(x)NE/K(h̃4 + h̃5e+ h̃6f) + x2λ̃(x)2NE/K(h7 + h8e+ h9f)

−x2λ̃(x)TE/K((h̃1 + h̃2e+ h̃3f)(h̃4 + h̃5e+ h̃6f)(h7 + h8e+ h9f)).

Cancel x:

0 = NE/F (h̃1, h̃2, h̃3) + x2λ̃(x)NE/K(h̃4 + h̃5e+ h̃6f) + xλ̃(x)2NE/K(h7 + h8e+ h9f)

−xλ̃(x)TE/K((h̃1 + h̃2e+ h̃3f)(h̃4 + h̃5e+ h̃6f)(h7 + h8e+ h9f)).

Put x = 0:
0 = NE/F (h̃1, h̃2, h̃3).

So here the proof differs slightly form the previous case: Hence also c1,1 = c2,1 = c3,1 = 0
and we write h̃i = xfi for i = 1, 2, 3. Then

0 = x3NE/F (f1 + f2e+ f3f) +x2λ̃(x)NE/K(h̃4 + h̃5e+ h̃6f) +xλ̃(x)2NE/K(h7 +h8e+h9f)

−x2λ̃(x)TE/K((f1 + f2e+ f3f)(h̃4 + h̃5e+ h̃6f)(h7 + h8e+ h9f)).

Cancel x:

0 = x2NE/F (f1 + f2e+ f3f) + xλ̃(x)NE/K(h̃4 + h̃5e+ h̃6f) + λ̃(x)2NE/K(h7 + h8e+ h9f)

−xλ̃(x)TE/K((f1 + f2e+ f3f)(h̃4 + h̃5e+ h̃6f)(h7 + h8e+ h9f)).

Put x = 0:
0 = λ2

2NE/K(h7 + h8e+ h9f)

Hence c7,0 = c8,0 = c9,0 = 0 and hi = xh̃i for i = 7, 8, 9. An obvious induction again shows
that h1 = · · · = h9 = 0. �
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This can be generalized using the same method of proof to show:

Theorem 8. (i) Let A = J(F (x), µ(x), λ(x)) with µ(x), λ(x) ∈ F [x], where µ(x) is of the
first kind such that J(F, µ0) is a division algebra. If λ(x) is of the second or third kind then
A is a division algebra over F (x).
(ii) Let J = J(F (x), λ(x), µ(x), α(x)), where λ(x), µ(x) are of the first kind and J(F, λ0, µ0)
is a division algebra over F . If α(x) is of the second or third kind then J is a division algebra
over F (x).

In particular, the above conditions are necessary in case the scalars used are monomials:
e.g., given J = J(F (x), λ(x), µ(x), α(x)), if λ(x) = λ0, µ(x) = µ0 and α(x) = α0 are con-
stants (i.e., monomials of the first kind), J = J(F (x), λ(x), µ(x), α(x)) = J(F, λ0, µ0, α0)⊗F
F (x), so that J is division iff so is J(F, λ0, µ0, α0), and if λ(x) = λ0, µ(x) = µ0 and
α(x) = α1x or α(x) = α2x

2 is of the second or third kind, J is division implies that so
is J(F, λ0, µ0).
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