A NOTE ON SOME ALGEBRA CONSTRUCTIONS OVER RATIONAL FUNCTION FIELDS

S. PUMPLÜN

Abstract

Let F be a field of characteristic not 2 or 3 . We give easy sufficient criteria for some first Tits constructions over the rational function field $F(X)$ to yield division algebras.

Introduction

Let $F(x)$ the field of rational functions over a field F of characteristic not 2 or 3 . We obtain some easy to check sufficient criteria which help to construct examples of cubic Jordan division algebras over $F(x)$ which arise as first Tits constructions out of separable cubic algebras.

In [G-R-SB], Gajivaradhan, Rema and Sri Bala gave some sufficient criteria for quaternion and octonion algebras over $F(x)$ to be division algebras, with F of characteristic unequal to 2. Their methods of proof are analogous to the ones used here.

1. Preliminaries

1.1. Let F be a field of characteristic not 2 or 3 and $\lambda \in F^{\times}$. Let B be a separable associative unital algebra of degree 3 over F with norm $N_{B / F}$ and trace $T_{B / F}$. We denote the first Tits construction employing B and λ by $J(B, \lambda)$. For the definition and general properties of $J(B, \lambda)$, the reader is referred to [P-R1], [McC] or [KMRT]. The norm of the Jordan algebra $J(B, \lambda)$ is given by

$$
N_{J(B, \lambda)}\left(\left(b_{1}, b_{2}, b_{3}\right)\right)=N_{B / F}\left(b_{1}\right)+\lambda N_{B / F}\left(b_{2}\right)+\lambda^{2} N_{B / F}\left(b_{3}\right)-\lambda T_{B / F}\left(b_{1} b_{2} b_{3}\right)
$$

with $b_{1}, b_{2}, b_{3} \in B$. It is well-known that $J(B, \lambda)$ is a division algebra if and only if $\lambda \notin$ $N_{B / F}\left(B^{\times}\right)$if and only if $N_{J(B, \lambda)}$ is anisotropic. Moreover, $J(B, b) \cong J\left(B, c^{3} b\right)$ for all $c \in F^{\times}$.

An Albert algebra over F is an exceptional simple Jordan algebra of degree 3, i.e. an F-form of the Jordan algebra of 3 -by- 3 hermitian matrices with diagonal entries in F and off-diagonal entries in the split octonion algebra $\operatorname{Zor}(F)$ (or details, see for instance [P-R1, 2], or [KMRT, p. 524]). Every Albert algebra over F can be obtained by a first or second Tits construction (cf. [P-R1] or [McC]).

[^0]For an iterated first Tits construction we write $J(B, \mu, \lambda)=J(J(B, \mu), \lambda)$ or $J(B, \mu, \lambda, \alpha)=$ $J(J(J(B, \mu), \lambda), \alpha)$ with $\mu, \lambda, \alpha \in F^{\times}$.
1.2. The set-up. Let $K=F(x)$ be the field of rational functions over F. A polynomial $f(x) \in F[x]$ is said to be of the nth kind if $f^{(i)}(0)=0$ for all $i \in\{1, \ldots, n-1\}$, but $f^{(n)}(0) \neq 0$. Every element in the group $K^{\times} / K^{\times 3}$ is given by a polynomial of either the first, the second or the third kind.

Let B be a separable associative algebra of degree 3 over $K=F(x)$. When looking at a first Tits construction $J(B, \lambda(x))$ with $\lambda(x) \in F(x), \lambda(x)=f(x) / g(x)$ with $f(x), g(x) \in$ $F[x]$, we can 'clear the denominator' and instead look at $J(B, \widetilde{\lambda}(x))$ for a suitable $\widetilde{\lambda}(x) \in$ $F[x]$: let $\widetilde{\lambda}=g(x)^{3} f(x) / g(x)=g(x)^{2} f(x) \in F[x]$ then $J(B, \lambda(x)) \cong J(B, \widetilde{\lambda}(x))$.

So we only need to deal with the case $J(B, f(x))$, where $f(x) \in F[x]$. Let $f(x)=$ $f_{1}(x)^{\varepsilon_{1}} \cdots f_{r}(x)^{\varepsilon_{r}}$ be the decomposition of $f(x) \in F[x]$ into distinct irreducible factors $f_{1}(x), \ldots, f_{r}(x)$. Since we know that two polynomials $f(x), h(x) \in F[x]$ with $f(x)=$ $l(x)^{3} h(x)$ for some $l(x) \in F[x]$ yield isomorphic Jordan algebras $J(B, f(x)) \cong J(B, h(x))$, when looking at $J(B, f(x))$, we may assume without loss of generality that

$$
f(x)=f_{1}(x)^{\varepsilon_{1}} \cdots f_{r}(x)^{\varepsilon_{r}}
$$

with $\varepsilon_{i} \in\{1,2\}$ for all $i=1, \ldots, r$.
Define

$$
\begin{array}{ll}
\alpha(x) \in F[x], & \alpha(x)=\alpha_{0}+\alpha_{1} x+\alpha_{2} x^{2}+\cdots+\alpha_{t} x^{t} \\
\mu(x) \in F[x], & \mu(x)=\mu_{0}+\mu_{1} x+\mu_{2} x^{2}+\cdots+\mu_{r} x^{r} \\
\lambda(x) \in F[x], & \lambda(x)=\lambda_{0}+\lambda_{1} x+\lambda_{2} x^{2}+\cdots+\lambda_{s} x^{s}
\end{array}
$$

Remark 1. Let $\alpha(x), \beta(x), \gamma(x) \in F[x]$ be of the first kind. Gajivaradhan, Rema and Sri Bala [G-R-SB] proved two results for octonion algebras: they showed that if the octonion algebra Cay $(F, \alpha(0), \beta(0), \gamma(0))$ obtained by a repeated Cayley-Dickson doubling process out of F is a division algebra over a field F of characteristic not 2 , then the octonion algebra $\operatorname{Cay}(K, \alpha(x), \beta(x), \gamma(x))$ is a division algebra over K. If $\alpha(x)$ and $\beta(x)$ are of the first kind and $\gamma(x)$ is of the second kind, and if the quaternion algebra $(\alpha(0), \beta(0))_{F}$ is a division algebra over F then $\operatorname{Cay}(K, \alpha(x), \beta(x), \gamma(x))$ is a division algebra over K. They proved a similar result for quaternion algebras over K. Since we know that every composition algebra over the polynomial ring $F[x]$ is defined over $F[\mathrm{P}, 6.8]$, we point out that for instance
$\operatorname{Cay}(K, \alpha(x), \beta(x), \gamma(x))=\operatorname{Cay}(F[x], \alpha(x), \beta(x), \gamma(x)) \otimes F(x) \cong_{F[x]} \operatorname{Cay}(F, a, b, c) \otimes_{F} F(x)$ for suitable $a, b, c \in F^{\times}$.
2. The first Tits construction over $F(x)$ using polynomials of the first kind

Lemma 2. Let $E=J(F(x), \alpha(x))$ with $\alpha(x) \in F[x]$ of the first kind. If

$$
E_{0}=J\left(F, \alpha_{0}\right)
$$

is a division algebra over F, then E is a division algebra over $F(x)$.

Proof. Assume $E=J(F(x), \alpha(x))$ is not a division algebra over $F(x)$, then $\alpha(x) \in F(x)^{\times 3}$, which means $\alpha(x)=f(x)^{3} / g(x)^{3}$ for suitable $f(x), g(x) \in F[x]$. Since in this case $J(F(x), \alpha(x)) \cong$ $J\left(F(x), f(x)^{3}\right)$, we may assume $\alpha(x)=f(x)^{3}$ with $f(x) \in F[x]$. This implies that $\alpha(x)=$ $b^{3}+\ldots$ for some $b \in F^{\times}$, i.e. $\alpha_{0}=b^{3}$ and therefore $E_{0}=J(F, \alpha(0))=J\left(F, \alpha_{0}\right)$ is not a division algebra, either.

Theorem 3. (i) Let $E=E_{0} \otimes_{F} K$ with E_{0} a separable cubic field extension over F. Let $A=J(E, \lambda(x))$ with $\lambda(x) \in F[x]$ of the first kind. If

$$
A_{0}=J\left(E_{0}, \lambda_{0}\right)
$$

is a division algebra over F, then A is a division algebra over $F(x)$.
(ii) Let $B=B_{0} \otimes_{F} K$ where B_{0} is a central simple associative division algebra over F. Let $J=J(B, \alpha(x))$ with $\alpha(x) \in F[x]$ of the first kind. If

$$
J_{0}=J\left(B_{0}, \alpha_{0}\right)
$$

is an Albert division algebra over F, then J is an Albert division algebra over $F(x)$.
Proof. (i) Let $1, e, f$ be a basis of E_{0} over F. Suppose that $A_{0}=J\left(E_{0}, \lambda(0)\right)=J\left(E_{0}, \lambda_{0}\right)$ is a division algebra over $F . A=J(E, \lambda(x))$ is a division algebra over $F(x)$ if and only if $N_{A / K}$ is an anisotropic cubic form, i.e. we have to show that there are only trivial $h_{i}(x) \in K$ such that $0=N_{A / K}\left(\left(h_{1}, \ldots, h_{9}\right)\right)$. Suppose there are $h_{i}(x) \in K$ such that $0=N_{A / K}\left(\left(h_{1}, \ldots, h_{9}\right)\right)$. By clearing denominators we may assume that $h_{i}(x) \in F[x]$,

$$
h_{i}=h_{i}(x)=\sum_{j=0}^{n_{i}} c_{i, j} x^{j}
$$

so that

$$
\begin{gathered}
0=N_{A / K}\left(\left(h_{1}, \ldots, h_{9}\right)\right)=N_{E / K}\left(h_{1}+h_{2} e+h_{3} f\right)+\lambda N_{E / K}\left(h_{4}+h_{5} e+h_{6} f\right)+\lambda^{2} N_{E / K}\left(h_{7}+h_{8} e+h_{9} f\right) \\
-\lambda T_{E / K}\left(\left(h_{1}+h_{2} e+h_{3} f\right)\left(h_{4}+h_{5} e+h_{6} f\right)\left(h_{7}+h_{8} e+h_{9} f\right)\right) .
\end{gathered}
$$

Comparing the constants (which amounts to plugging in 0 everywhere), this yields $0=N_{A_{0} / F}\left(\left(h_{1}(0), \ldots, h_{9}(0)\right)\right)=N_{E_{0} / F}\left(c_{1,0}+c_{2,0} e+c_{3,0} f\right)+\lambda_{0} N_{E_{0} / F}\left(c_{4,0}+c_{5,0} e+c_{6,0} f\right)$
$+\lambda_{0}^{2} N_{E_{0} / F}\left(c_{7,0}+c_{8,0} e+c_{9,0} f\right)-\lambda_{0} T_{E_{0} / F}\left(\left(c_{1,0}+c_{2,0} e+c_{3,0} f\right)\left(c_{4,0}+c_{5,0} e+c_{6,0} f\right)\left(c_{7,0}+c_{8,0} e+c_{9,0} f\right)\right)$.
Since A_{0} is division by hypothesis, this means all $c_{1,0}, \ldots, c_{9,0}$ must be zero and so we have $h_{i}=x \widetilde{h_{i}}$ for all i and $N_{A_{0} / F}\left(\left(h_{1}, \ldots, h_{9}\right)\right)=x^{3} N_{A_{0} / F}\left(\widetilde{h_{1}}, \ldots, \widetilde{h_{9}}\right)$. We now proceed by induction and assume that all coefficients of the h_{i} 's up to the one of x^{n} are zero. Then $N_{A_{0} / F}\left(\left(h_{1}, \ldots, h_{9}\right)\right)=x^{3 n} N_{A_{0} / F}\left(\left(\widetilde{h_{1}}, \ldots, \widetilde{h_{9}}\right)\right)$ where now $h_{i}=x^{n} \widetilde{h_{i}}$ for all i and hence $0=N_{A_{0} / F}\left(\left(h_{1}, \ldots, h_{9}\right)\right)$ means $\left.0=N_{A_{0} / F}\left(\widetilde{h_{1}}, \ldots, \widetilde{h_{9}}\right)\right)$ Now compare the coefficients of the x^{n+1} 's appearing in the equation. Then by the same argument we obtain that

$$
\begin{gathered}
0=N_{A_{0} / F}\left(\left(c_{1, n+1}, \ldots, c_{9, n+1}\right)\right)= \\
N_{E_{0} / F}\left(c_{1, n+1}+c_{2, n+1} e+c_{3, n+1} f\right)+\lambda_{0} N_{E_{0} / F}\left(c_{4, n+1}+c_{5, n+1} e+c_{6, n+1} f\right) \\
+\lambda_{0}^{2} N_{E_{0} / F}\left(c_{7, n+1}+c_{8,0} e+c_{9, n+1} f\right) \\
-\lambda_{0} T_{E_{0} / F}\left(\left(c_{1,0}+c_{2, n+1} e+c_{3, n+1} f\right)\left(c_{4, n+1}+c_{5, n+1} e+c_{6, n+1} f\right)\left(c_{7, n+1}+c_{8, n+1} e+c_{9, n+1} f\right)\right)
\end{gathered}
$$

which means all $c_{1, n+1}, \ldots, c_{9, n+1}$ must be zero as well. By induction we thus show that $0=N_{A / K}\left(\left(h_{1}, \ldots, h_{9}\right)\right)$ implies that $h_{1}=\cdots=h_{9}=0$, hence that A is a division algebra over K.
(ii) By a well-known theorem of Wedderburn, every central simple algebra of degree 3 over F is cyclic. Suppose $B_{0}=(L, a)$ is a central simple division algebra of degree 3 over F, where $L=F[x] /\left(x^{3}-b\right)=F(z)$ is a cubic field extension of F. We give the argument for the special case that F contains a primitive cube root of unity ρ, because then the basis of the algebra is easy to write down (but the general case works analogously): B_{0} has F-basis $\left\{l^{i} z^{j} \mid 0 \leq i, j \leq 2\right\}$ where

$$
z l=l z \rho, \quad l^{3}=a \in F^{\times}, \quad z^{3}=b \in F^{\times}
$$

[Pi, p. 299]. Suppose that $J=J\left(B_{0}, \alpha(0)\right)=J\left(B_{0}, \alpha_{0}\right)$ is a division algebra over F. Use that

$$
N_{J(B, \alpha(x))}\left(\left(b_{1}, b_{2}, b_{3}\right)\right)=N_{B / K}\left(b_{1}\right)+\alpha(x) N_{B / K}\left(b_{2}\right)+\alpha(x)^{2} N_{B / K}\left(b_{3}\right)-\alpha(x) T_{B / F}\left(b_{1} b_{2} b_{3}\right)
$$

$J=J(B, \alpha(x))$ is a division algebra over $F(x)$ if and only if $N_{J / K}$ is an anisotropic cubic form, i.e. we have to show that there are only the trivial $h_{i}(x) \in K$ such that $0=N_{J / K}\left(\left(h_{1}, \ldots, h_{27}\right)\right)$. Suppose there are $h_{i}(x) \in K$ such that $0=N_{A / K}\left(\left(h_{1}, \ldots, h_{27}\right)\right)$. By clearing denominators we may assume there exist polynomials $h_{i}(x) \in F[x]$,

$$
h_{i}=h_{i}(x)=\sum_{j=0}^{n_{i}} c_{i, j} x^{j}
$$

such that

$$
\begin{gathered}
0=N_{J / K}\left(\left(h_{1}, \ldots, h_{27}\right)\right)=N_{B / K}\left(h_{1}+z h_{2}+z^{2} h_{3}+l\left(h_{4}+z h_{5}+z^{2} h_{6}\right)+l^{2}\left(h_{7}+z h_{8}+z^{2} h_{9}\right)\right)+ \\
\alpha(x) N_{B / K}\left(h_{10}+\cdots+l^{2} z^{2} h_{18}\right)+\alpha(x)^{2} N_{B / K}\left(h_{19}+\cdots+l^{2} z^{2} h_{27}\right) \\
-\alpha(x) T_{J / K}\left(\left(h_{1}+\cdots+l^{2} z^{2} h_{9}\right)\left(h_{10}+\cdots+l^{2} z^{2} h_{18}\right)\left(h_{19}+\cdots+l^{2} z^{2} h_{27}\right)\right)
\end{gathered}
$$

The proof now works analogously as in (ii): Comparing the constants, since A_{0} is division by hypothesis, all $c_{1,0}, \ldots, c_{27,0}$ must be zero and so we have $h_{i}=x \widetilde{h_{i}}$ for all i and $N_{A_{0} / F}\left(\left(h_{1}, \ldots, h_{27}\right)\right)=x^{3} N_{A_{0} / F}\left(\widetilde{h_{1}}, \ldots, \widetilde{h_{27}}\right)$. We now proceed by induction and assume that all coefficients of the h_{i} 's up to the one of x^{n} are zero. Then $N_{A_{0} / F}\left(\left(h_{1}, \ldots, h_{27}\right)\right)=$ $\left.x^{3 n} N_{A_{0} / F}\left(\widetilde{\left(h_{1}\right.}, \ldots, \widetilde{h_{2} 7}\right)\right)$ where now $h_{i}=x^{n} \widetilde{h_{i}}$ for all i and hence $0=N_{A_{0} / F}\left(\left(h_{1}, \ldots, h_{27}\right)\right)$ means $0=N_{A_{0} / F}\left(\left(\widetilde{h_{1}}, \ldots, \widetilde{h_{27}}\right)\right)$ Now compare the coefficients of the x^{n+1} 's appearing in the equation. Then by the same argument we obtain that all $c_{1, n+1}, \ldots, c_{27, n+1}$ must be zero as well. By induction we thus show that $0=N_{A / K}\left(\left(h_{1}, \ldots, h_{27}\right)\right)$ implies that $h_{1}=\cdots=h_{9}=0$, hence that A is a division algebra over K.

Remark 4. Alternatively, we can prove (i) and (ii) much quicker as follows:
(i) Identify $E_{0} \otimes F(x)=E_{0}(x)=E$. Suppose $A=J(E, \mu(x))$ is not a division algebra over $F(x)$, then $\mu(x) \in N_{E / K}\left(E^{\times}\right)$. This means $\mu(x)=N_{E / F(x)}(e(x))$ for a suitable non-zero $e(x) \in E_{0}(x)$. Substituting $x=0$, we get $\mu(0)=N_{E_{0} / F}(e(0))$, i.e. $\mu(0) \in N_{E_{0} / F}\left(E_{0}^{\times}\right)$. Therefore $A_{0}=J\left(E_{0}, \mu(0)\right)=J\left(E_{0}, \mu_{0}\right)$ is not a division algebra over F.
(ii) Let $B=B_{0} \otimes_{F} K$ where B_{0} is a central simple associative division algebra over F. Let $J=J(B, \alpha(x))$ with $\alpha(x) \in F[x]$ of the first kind. Suppose $A=J(B, \alpha(x))$ is not a
division algebra over $F(x)$, then $\alpha(x) \in N_{B / K}\left(B^{\times}\right)$. This means $\alpha(x)=N_{B / F(x)}(e(x))$ for a suitable $e(x) \in B_{0} \otimes F(x)$. We get $\alpha(0)=N_{B_{0} / F}(e(0))$, i.e. $\alpha(0) \in N_{B_{0} / F}\left(B_{0}^{\times}\right)$. Therefore $A_{0}=J\left(B_{0}, \alpha(0)\right)=J\left(B_{0}, \alpha_{0}\right)$ is not a division algebra over F.
We give the lengthy proof here as well to show the inductive nature of the argument.
Theorem 5. (i) Let $A=J(F(x), \mu(x), \lambda(x))$ and $\mu(x), \lambda(x) \in F[x]$ of the first kind. If

$$
A_{0}=J\left(F, \mu_{0}, \lambda_{0}\right)
$$

is a division algebra over F, then A is a division algebra over $F(x)$.
(ii) Let $J=J(F(x), \mu(x), \lambda(x), \alpha(x))$ and $\mu(x), \lambda(x), \alpha(x) \in F[x]$ of the first kind. If

$$
J_{0}=J\left(F, \mu_{0}, \lambda_{0}, \alpha_{0}\right)
$$

is a division algebra over F, then J is a division algebra over $F(x)$.
Proof. For $J=J(F(x), \mu(x))$, by plugging in zero the term $N_{J}\left(h_{1}(x), h_{2}(x), h_{3}(x)\right)$ becomes $N_{J(F, \mu(0))}\left(h_{1}(0), h_{2}(0), h_{3}(0)\right)$, i.e. the norm of $J(F, \mu(0))$ (and for $J=J(F(x), \mu(x), \lambda(x))$, $N_{J}\left(h_{1}(x), \ldots, h_{9}(x)\right)$ becomes $\left.N_{J(F, \mu(0), \lambda(0))}\left(h_{1}(0), \ldots, h_{9}(0)\right)\right)$. Hence the same induction method as in the proof of Theorem 3 can be applied, substituting N_{J} for N_{E} or N_{B} everywhere.

More generally, if φ is a form of degree n over $F(x)$, we may assume without loss of generality that all its coefficients $\alpha_{i_{1}, \ldots, i_{r_{j}}}(x)$ are polynomials in $F[x]$. If they are all of the first kind, the same inductive argument proves that φ is anisotropic, if the corresponding form φ_{0} over F we obtain from φ by putting $\alpha_{i_{1}, \ldots, i_{r_{j}}}(0)$ instead of $\alpha_{i_{1}, \ldots, i_{r_{j}}}(x)$ as coefficients everywhere, is anisotropic.
3. The first Tits construction over $F(x)$ using polynomials of the second or THIRD KIND

Lemma 6. $E=J(F(x), \alpha(x))$ is a division algebra over $F(x)$ for all $\mu(x) \in F[x]$ of the second or third kind.

Proof. Suppose $E=J(F(x), \alpha(x))$ is not a division algebra over $F(x)$. Then $\alpha(x) \in F(x)^{\times 3}$ which means $\alpha(x)=f(x)^{3} / g(x)^{3}$ for suitable $f(x), g(x) \in F[x]$. Since $J(F(x), \alpha(x)) \cong$ $J\left(F(x), f(x)^{3}\right)$ assume w.l.o.g. that $\alpha(x)=f(x)^{3}$ with $f(x) \in F[x]$ and $f(x)=b_{0}+b_{1} x+$ $b_{2} x^{2}+\ldots$.
Suppose $\alpha(x)$ is of the second kind, i.e. $\alpha(x)=x\left(\alpha_{1}+\alpha_{2} x+\ldots\right)=\alpha_{1} x+\alpha_{2} x^{2} \ldots$ with $\alpha_{1} \neq 0$. Comparing coefficients implies $\alpha_{1}=\alpha_{2}=0$, a contradiction to our assumption that $\alpha_{1} \neq 0$. Thus $\alpha(x) \notin F(x)^{\times 3}$ and $E=J(F(x), \alpha(x))$ a division algebra over $F(x)$ for every polynomial $\alpha(x)$.
Suppose $\alpha(x)$ is of the third kind, i.e. $\alpha(x)=x^{2}\left(\alpha_{2}+\alpha_{3} x+\ldots\right)=\alpha_{2} x^{2}+\alpha_{3} x^{3} \ldots$ with $\alpha_{2} \neq 0$. Comparing coefficients again implies $\alpha_{1}=\alpha_{2}=0$, a contradicting that $\alpha_{2} \neq 0$. Thus $\alpha(x) \notin F(x)^{\times 3}$ and $E=J(F(x), \alpha(x))$ a division algebra over $F(x)$.

Theorem 7. Let E_{0} be a separable cubic field extension over $F, E=E_{0} \otimes_{F} F(x)$ defined over F and $A=J(E, \lambda(x))$ with $\lambda(x) \in F[x]$.
(i) If $\lambda(x)$ is of the second kind then A is a division algebra over $F(x)$.
(ii) If $\lambda(x)$ is of the third kind then A is a division algebra over $F(x)$.

Proof. $A=J(E, \mu(x))$ is a division algebra over $F(x)$ if and only if $N_{A / K}$ is an anisotropic cubic form, i.e. we have to show that there are only trivial $h_{i}(x) \in K$ such that $0=$ $N_{A / K}\left(\left(h_{1}, \ldots, h_{9}\right)\right)$. Suppose there are $h_{i}(x) \in K$ such that $0=N_{A / K}\left(\left(h_{1}, \ldots, h_{9}\right)\right)$. Clearing denominators we assume these $h_{i}(x) \in F[x]$,

$$
h_{i}=h_{i}(x)=\sum_{j=0}^{n_{i}} c_{i, j} x^{j},
$$

such that

$$
\begin{gathered}
0=N_{A / K}\left(\left(h_{1}, \ldots, h_{9}\right)\right)=N_{E / K}\left(h_{1}+h_{2} e+h_{3} f\right)+\lambda(x) N_{E / K}\left(\left(h_{4}+h_{5} e+h_{6} f\right)+\lambda(x)^{2} N_{E / K}\left(\left(h_{7}, h_{8}, h_{9}\right)\right)\right. \\
-\lambda(x) T_{E / K}\left(\left(h_{1}+h_{2} e+h_{3} f\right) \cdot\left(h_{4}+h_{5} e+h_{6} f\right) \cdot\left(h_{7}+h_{8} e+h_{9} f\right)\right.
\end{gathered}
$$

with $1, e, f$ a basis of E_{0} over F.
(i) Let

$$
\lambda(x)=\lambda_{1} x+\lambda_{2} x^{2}+\cdots+\lambda_{s} x^{s}=x\left(\lambda_{1}+\lambda_{2} x+\cdots+\lambda_{s} x^{s-1}\right)=x \widetilde{\lambda}(x), \quad \lambda_{1} \neq 0
$$

be of the second kind. Plugging in 0 everywhere yields

$$
0=N_{E_{0} / F}\left(h_{1}(0)+h_{2}(0) e+h_{3}(0) f\right)=N_{E_{0} / F}\left(c_{1,0}+c_{2,0} e+c_{3,0} f\right)
$$

Since E_{0} is division by hypothesis, $c_{1,0}=c_{2,0}=c_{3,0}=0$ and so we have $h_{i}=x \widetilde{h_{i}}$ for $i=1,2,3$ and

$$
\begin{gathered}
0=N_{A / K}\left(\left(h_{1}, \ldots, h_{9}\right)\right) \\
=x^{3} N_{E / F}\left(\widetilde{h_{1}}+\widetilde{h_{2}} e+\widetilde{h_{3}} f\right)+x \widetilde{\lambda}(x) N_{E / K}\left(h_{4}+h_{5} e+h_{6} f\right)+x^{2} \widetilde{\lambda}^{2} N_{E / K}\left(h_{7}+h_{8} e+h_{9} f\right) \\
\left.-x^{2} \widetilde{\lambda} T_{E / K}\left(\widetilde{h_{1}}+\widetilde{h_{2}} \alpha+\widetilde{h_{3}} f\right)\left(h_{4}+h_{5} \alpha+h_{6} \alpha^{2}\right)\left(h_{7}+h_{8} \alpha+h_{9} f\right)\right) .
\end{gathered}
$$

Cancel x :

$$
\begin{gathered}
0=x^{2} N_{E / F}\left(\widetilde{h_{1}}+\widetilde{h_{2}} e+\widetilde{h_{3}} f\right)+\widetilde{\lambda}(x) N_{E / K}\left(h_{4}+h_{5} e+h_{6} \alpha^{2}\right)+x \widetilde{\lambda}^{2} N_{E / K}\left(h_{7}+h_{8} e+h_{9} \alpha^{2}\right) \\
\left.-x \widetilde{\lambda} T_{E / K}\left(\widetilde{h_{1}}+\widetilde{h_{2}} e+\widetilde{h_{3}} f\right)\left(h_{4}+h_{5} e+h_{6} f\right)\left(h_{7}+h_{8} e+h_{9} f\right)\right) .
\end{gathered}
$$

Put $x=0$:

$$
0=\lambda_{1} N_{E_{0} / F}\left(h_{4}(0)+h_{5}(0) e+h_{6}(0) f\right)=\lambda_{1} N_{E_{0} / F}\left(c_{4,0}+c_{5,0} e+c_{6,0} f\right)
$$

Hence also $c_{4,0}=c_{5,0}=c_{6,0}=0$ and $h_{i}=x \widetilde{h}_{i}$ for $i=4,5,6$ and

$$
\begin{gathered}
0=N_{A / K}\left(\left(h_{1}, \ldots, h_{9}\right)\right) \\
=x^{3} N_{E / F}\left(\widetilde{h_{1}}+\widetilde{h_{2}} e+\widetilde{h_{3}} \alpha^{2}\right)+x^{4} \widetilde{\lambda}(x) N_{E / K}\left(\widetilde{h_{4}}+\widetilde{h_{5}} e+\widetilde{h_{6}} f\right)+x^{2} \widetilde{\lambda}^{2} N_{E / K}\left(h_{7}+h_{8} e+h_{9} f\right) \\
\left.-x^{3} \widetilde{\lambda} T_{E / K}\left(\widetilde{h_{1}}+\widetilde{h_{2}} e+\widetilde{h_{3}} f\right)\left(\widetilde{h_{4}}+\widetilde{h_{5}} e+\widetilde{h_{6}} f\right)\left(h_{7}+h_{8} e+h_{9} f\right)\right) .
\end{gathered}
$$

Cancel x^{2} :

$$
\begin{gathered}
0=x N_{E / F}\left(\widetilde{h_{1}}+\widetilde{h_{2}} e+\widetilde{h_{3}} f\right)+x^{2} \widetilde{\lambda}(x) N_{E / K}\left(\widetilde{h_{4}}+\widetilde{h_{5}} e+\widetilde{h_{6}} f\right)+\widetilde{\lambda}^{2} N_{E / K}\left(h_{7}+h_{8} e+h_{9} f\right) \\
-x \widetilde{\lambda} T_{E / K}\left(\left(\widetilde{h_{1}}+\widetilde{h_{2}} e+\widetilde{h_{3}} f\right)\left(\widetilde{h_{4}}+\widetilde{h_{5}} e+\widetilde{h_{6}} f\right)\left(h_{7}+h_{8} e+h_{9} f\right)\right) .
\end{gathered}
$$

Put $x=0$:

$$
0=\lambda_{1}^{2} N_{E / K}\left(h_{7}(0)+h_{8}(0) e+h_{9}(0) f\right)
$$

Hence also $c_{7,0}=c_{8,0}=c_{9,0}=0$ and $h_{i}=x \widetilde{h}_{i}$ for $i=7,8,9$. An obvious induction now shows that we may conclude $h_{1}=\cdots=h_{9}=0$ this way.
(ii) Let

$$
\lambda(x)=\lambda_{2} x^{2}+\cdots+\lambda_{s} x^{s}=x^{2}\left(\lambda_{2}+\lambda_{3} x+\cdots+\lambda_{s} x^{s-2}\right)=x^{2} \widetilde{\lambda}(x), \quad \lambda_{2} \neq 0
$$

be of the third kind. Put $x=0$, then

$$
0=N_{E_{0} / F}\left(h_{1}(0)+h_{2}(0) e+h_{3}(0) f\right)=N_{E_{0} / F}\left(c_{1,0}+c_{2,0} e+c_{3,0} f\right)
$$

i.e. $c_{1,0}=c_{2,0}=c_{3,0}=0$ and $h_{i}=x \widetilde{h_{i}}$ for $i=1,2,3$. Now

$$
\begin{gathered}
0=N_{A / K}\left(\left(h_{1}, \ldots, h_{9}\right)\right) \\
\left.=x^{3} N_{E / F} \widetilde{\left(h_{1}\right.}, \widetilde{h_{2}}, \widetilde{h_{3}}\right)+x^{2} \widetilde{\lambda}(x) N_{E / K}\left(h_{4}+h_{5} e+h_{6} f\right)+x^{4} \widetilde{\lambda}(x)^{2} N_{E / K}\left(h_{7}+h_{8} e+h_{9} f\right) \\
\left.-x^{3} \widetilde{\lambda}(x) T_{E / K}\left(\widetilde{\left(h_{1}\right.}+\widetilde{h_{2}} e+\widetilde{h_{3}} f\right)\left(h_{4}+h_{5} e+h_{6} f\right)\left(h_{7}+h_{8} e+h_{9} f\right)\right) .
\end{gathered}
$$

Cancel x^{2} :

$$
\begin{gathered}
0=x N_{E / F}\left(\widetilde{h_{1}}, \widetilde{h_{2}}, \widetilde{h_{3}}\right)+\widetilde{\lambda}(x) N_{E / K}\left(h_{4}+h_{5} e+h_{6} f\right)+x^{2} \widetilde{\lambda}(x)^{2} N_{E / K}\left(h_{7}+h_{8} e+h_{9} f\right) \\
\left.-x \widetilde{\lambda}(x) T_{E / K}\left(\widetilde{h_{1}}+\widetilde{h_{2}} e+\widetilde{h_{3}} f\right)\left(h_{4}+h_{5} e+h_{6} f\right)\left(h_{7}+h_{8} e+h_{9} f\right)\right)
\end{gathered}
$$

Put $x=0$:

$$
0=\lambda_{2} N_{E_{0} / F}\left(h_{4}(0)+h_{5}(0) e+h_{6}(0) f\right)=\lambda_{2} N_{E_{0} / F}\left(c_{4,0}+c_{5,0} e+c_{6,0} f\right)
$$

Hence also $c_{4,0}=c_{5,0}=c_{6,0}=0$ and $h_{i}=x \widetilde{h_{i}}$ for $i=4,5,6$ and

$$
\begin{gathered}
0=x N_{E / F}\left(\widetilde{h_{1}}, \widetilde{h_{2}}, \widetilde{h_{3}}\right)+x^{3} \widetilde{\lambda}(x) N_{E / K}\left(\widetilde{h_{4}}+\widetilde{h_{5}} e+\widetilde{h_{6}} f\right)+x^{2} \widetilde{\lambda}(x)^{2} N_{E / K}\left(h_{7}+h_{8} e+h_{9} f\right) \\
-x^{2} \widetilde{\lambda}(x) T_{E / K}\left(\left(\widetilde{h_{1}}+\widetilde{h_{2}} e+\widetilde{h_{3}} f\right)\left(\widetilde{h_{4}}+\widetilde{h_{5}} e+\widetilde{h_{6}} f\right)\left(h_{7}+h_{8} e+h_{9} f\right)\right)
\end{gathered}
$$

Cancel x :

$$
\begin{aligned}
& 0=N_{E / F}\left(\widetilde{h_{1}}, \widetilde{h_{2}}, \widetilde{h_{3}}\right)+x^{2} \widetilde{\lambda}(x) N_{E / K}\left(\widetilde{h_{4}}+\widetilde{h_{5}} e+\widetilde{h_{6}} f\right)+x \widetilde{\lambda}(x)^{2} N_{E / K}\left(h_{7}+h_{8} e+h_{9} f\right) \\
&\left.-x \widetilde{\lambda}(x) T_{E / K}\left(\widetilde{h_{1}}+\widetilde{h_{2}} e+\widetilde{h_{3}} f\right)\left(\widetilde{h_{4}}+\widetilde{h_{5}} e+\widetilde{h_{6}} f\right)\left(h_{7}+h_{8} e+h_{9} f\right)\right)
\end{aligned}
$$

Put $x=0$:

$$
0=N_{E / F}\left(\widetilde{h_{1}}, \widetilde{h_{2}}, \widetilde{h_{3}}\right)
$$

So here the proof differs slightly form the previous case: Hence also $c_{1,1}=c_{2,1}=c_{3,1}=0$ and we write $\widetilde{h_{i}}=x f_{i}$ for $i=1,2,3$. Then

$$
\begin{gathered}
0=x^{3} N_{E / F}\left(f_{1}+f_{2} e+f_{3} f\right)+x^{2} \widetilde{\lambda}(x) N_{E / K}\left(\widetilde{h_{4}}+\widetilde{h_{5}} e+\widetilde{h_{6}} f\right)+x \widetilde{\lambda}(x)^{2} N_{E / K}\left(h_{7}+h_{8} e+h_{9} f\right) \\
-x^{2} \widetilde{\lambda}(x) T_{E / K}\left(\left(f_{1}+f_{2} e+f_{3} f\right)\left(\widetilde{h_{4}}+\widetilde{h_{5}} e+\widetilde{h_{6}} f\right)\left(h_{7}+h_{8} e+h_{9} f\right)\right) .
\end{gathered}
$$

Cancel x :

$$
\begin{gathered}
0=x^{2} N_{E / F}\left(f_{1}+f_{2} e+f_{3} f\right)+x \widetilde{\lambda}(x) N_{E / K}\left(\widetilde{h_{4}}+\widetilde{h_{5}} e+\widetilde{h_{6}} f\right)+\widetilde{\lambda}(x)^{2} N_{E / K}\left(h_{7}+h_{8} e+h_{9} f\right) \\
-x \widetilde{\lambda}(x) T_{E / K}\left(\left(f_{1}+f_{2} e+f_{3} f\right)\left(\widetilde{h_{4}}+\widetilde{h_{5}} e+\widetilde{h_{6}} f\right)\left(h_{7}+h_{8} e+h_{9} f\right)\right)
\end{gathered}
$$

Put $x=0$:

$$
0=\lambda_{2}^{2} N_{E / K}\left(h_{7}+h_{8} e+h_{9} f\right)
$$

Hence $c_{7,0}=c_{8,0}=c_{9,0}=0$ and $h_{i}=x \widetilde{h}_{i}$ for $i=7,8,9$. An obvious induction again shows that $h_{1}=\cdots=h_{9}=0$.

This can be generalized using the same method of proof to show:
Theorem 8. (i) Let $A=J(F(x), \mu(x), \lambda(x))$ with $\mu(x), \lambda(x) \in F[x]$, where $\mu(x)$ is of the first kind such that $J\left(F, \mu_{0}\right)$ is a division algebra. If $\lambda(x)$ is of the second or third kind then A is a division algebra over $F(x)$.
(ii) Let $J=J(F(x), \lambda(x), \mu(x), \alpha(x))$, where $\lambda(x), \mu(x)$ are of the first kind and $J\left(F, \lambda_{0}, \mu_{0}\right)$ is a division algebra over F. If $\alpha(x)$ is of the second or third kind then J is a division algebra over $F(x)$.

In particular, the above conditions are necessary in case the scalars used are monomials: e.g., given $J=J(F(x), \lambda(x), \mu(x), \alpha(x))$, if $\lambda(x)=\lambda_{0}, \mu(x)=\mu_{0}$ and $\alpha(x)=\alpha_{0}$ are constants (i.e., monomials of the first kind), $J=J(F(x), \lambda(x), \mu(x), \alpha(x))=J\left(F, \lambda_{0}, \mu_{0}, \alpha_{0}\right) \otimes_{F}$ $F(x)$, so that J is division iff so is $J\left(F, \lambda_{0}, \mu_{0}, \alpha_{0}\right)$, and if $\lambda(x)=\lambda_{0}, \mu(x)=\mu_{0}$ and $\alpha(x)=\alpha_{1} x$ or $\alpha(x)=\alpha_{2} x^{2}$ is of the second or third kind, J is division implies that so is $J\left(F, \lambda_{0}, \mu_{0}\right)$.

References

[G-R-SB] Gajivaradhan, P., Rema, P. S., Sri Bala, S., Composition division algebras over a function field. Southeast Asian Bull. Math. 33 (4) (2009), 727-731.
[KMRT] Knus, M.A., Merkurjev, A., Rost, M., Tignol, J.-P., "The Book of Involutions", AMS Coll. Publications, Vol. 44 (1998).
[McC] McCrimmon, K., "A Taste of Jordan Algebras". Universitext, Springer Verlag, New York 2004.
[P] Petersson, H. P., Composition algebras over curves of genus zero. Trans. AMS 337 (1) (1993), 473 - 493.
[P-R1] Petersson, H. P., Racine, M., An elementary approach to the Serre-Rost invariant of Albert algebras. Indag. Math., N.S., 7 (3)(1996), 343-365.
[P-R2] Petersson, H. P., Racine, M., The Serre-Rost invariant of Albert algebras in characteristic three. Indag. Math., N.S., 8 (4)(1997), 543-548.
[Pi] Pierce, R. S., "Associative Algebras". Springer-Verlag (Graduate Texts in Mathematics), 1982.
[Pu1] Pumplün, S., Albert algebras over curves of genus zero and one. J. Algebra 320 (2008), 4178 4214.

E-mail address: susanne.pumpluen@nottingham.ac.uk
School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom

[^0]: Date: 11.10.2012.
 1991 Mathematics Subject Classification. Primary: 17A35.
 Key words and phrases. Jordan division algebras, Albert algebras, first Tits construction, rational function fields.

