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Abstract. A fairly complete account will be given of what is presently known about

Albert algebras over commutative rings. In particular, we sketch a novel approach

to the two Tits constructions of cubic Jordan algebras that yields new insights even
when the base ring is a field. The paper concludes with a discussion of cohomological

invariants and with a number of open problems.
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1. Introduction

This survey article grew out of a series of lectures given during the Fields Institute
workshop on exceptional algebras and groups at the University of Ottawa, April 19−22,
2012. The principal aim of these lectures was to provide a rather complete account of
what is presently known about Albert algebras and their cubic companions. My hope is
that I succeeded in preparing the ground for an adequate understanding of the connection
with exceptional groups, particularly those of type F4, that could (and actually did) arise
in other lectures of the conference.

Still, due to severe time constraints, choices had to made and many important topics,
like, e.g., twisted compositions ([102, 103, 72]), had to be excluded; for the same reason,
proofs had to be mostly omitted. On the other hand, a substantial amount of the material
could be presented not just over fields but, in fact, over arbitrary commutative rings. In
particular, this holds true for our approach to the two Tits constructions of cubic Jordan
algebras that yields new insights even when the base ring is a field.

Date: September 29, 2017.
2010 Mathematics Subject Classification. Primary 17C40; secondary 17C30, 17A75, 11E72, 20G15.

1



2 HOLGER P. PETERSSON

Treating a topic like Albert algebras in a systematic sort of way has the disadvantage
that it takes a whole series of long-winding preparations before the proper subject matter
can be addressed. In order to mitigate this unpleasant effect, I have therefore inserted
a preliminary section where I describe results on Albert algebras and their applications
that have been obtained during the first fifteen to twenty years after their inception. The
emphasis here is not so much on conceptual precision but, rather, on giving a first, albeit
sketchy, impression of what the subject is all about. This will change in subsequent
sections of the paper, where I start basically from scratch in order to describe some of
what I regard as the essential ingredients of the theory.

Though in writing up this survey I have tried my best to keep track of the historical
development, I will surely have overlooked quite a few important contributions to the
subject that should have been quoted at the proper place. I apologize in advance for all
these omissions.

2. Prologue: from quantum mechanics to algebra

Albert algebras left their mark on mathematics and physics, though not under this
name, actually under no name at all, as early as 1934 when Jordan, von Neumann and
Wigner developed a structure theory for what in modern terminology are called finite-
dimensional euclidean Jordan algebras [39]. In the course of their investigation, the
question arose of whether a certain commutative non-associative real algebra of dimension
27 is a Jordan algebra, and whether it is in some sense exceptional. Unable to settle this
question themselves, the authors turned to Albert for help, who in due course provided an
affirmative answer in an immediate follow-up [1] to [39]. In order to appreciate Albert’s
result more fully, it will be imperative to put it on a broader algebraic footing. For this
reason, the reals will henceforth be replaced by an arbitrary field F of characteristic not
2 remaining fixed throughout the rest of this section. Then Albert’s theorem may be
based on the notion of a Jordan algebra. In the present context we prefer instead to
use the more elaborate term linear Jordan algebra, in order to distinguish it from the
concept of a quadratic Jordan algebra to be discussed in §4 below.

2.1. Linear Jordan algebras. By a linear Jordan algebra over F we mean a non-
associative F -algebra J satisfying the identities

xy = yx (commutative law),(1)

x(x2y) = x2(xy) (Jordan identity)(2)

for all x, y ∈ J .

2.2. Examples. (a) Let A be an associative algebra over F . Then the F -vector space
A becomes a linear Jordan algebra over F under the symmetric product defined by

x • y :=
1

2
(xy + yx) (x, y ∈ A)(1)

in terms of the multiplication of A. This linear Jordan algebra is denoted by A+.

(b) Let (B, τ) be an associative F -algebra with involution, so B is an associative algebra
over F and τ : B → B is an involution, i.e., an anti-automorphism of period 2 over F .
Then

H(B, τ) := {x ∈ B | τ(x) = x}(2)

is a subalgebra of B+ and hence a linear Jordan algebra.

2.3. Special and exceptional linear Jordan algebras. A linear Jordan algebra over
F is said to be special if it is isomorphic to a subalgebra of A+, for some associative
algebra A over F . Linear Jordan algebras that are not special are called exceptional .
The examples presented in 2.2 are all special linear Jordan algebras.
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2.4. Octonion algebras. For a formal definition of this concept in a considerably more
general setting, we refer the reader to 5.5 below. Here we will be content with listing a
few properties, all of them valid in octonion algebras but some of them redundant, that
will be crucial for understanding the subsequent development of this section.

Accordingly, let C be an octonion algebra over F . Then C is a non-associative F -
algebra with the following properties.

(a) dimF (C) = 8.
(b) C is unital , i.e., it has an identity element which we denote by 1C .
(c) There is a non-degenerate quadratic form nC : C → F , called the norm of C,

uniquely determined by the condition that it permits composition: nC(uv) =
nC(u)nC(v) for all u, v ∈ C.

(d) There is an involution ιC : C → C, u 7→ ū, called the conjugation of C, uniquely
determined by the condition that it is scalar : uū = nC(u)1C for all u ∈ C. We
have

H(C, ιC) = F1C .(1)

In general, there will be many non-isomorphic octonion algebras over a given field. But,
up to isomorphism, there is exactly one containing zero divisors. Such an octonion algebra
is said to split . If F is algebraically (or only separably) closed, then every octonion
algebra over F is split. On the other hand, there are precisely two non-isomorphic
octonion algebras over the reals, the split one and O, the classical algebra of Graves-
Cayley octonions.

2.5. The conjugate transpose involution. Let C be an octonion algebra over F .
Then ordinary matrix multiplication converts Mat3(C), the space of 3× 3-matrices with
entries in C, into a non-associative F -algebra with identity element 13, the 3 × 3 unit
matrix. A straightforward verification shows that the map

Mat3(C) −→ Mat3(C), x 7−→ x̄t,

is an involution of Mat3(C), called its conjugate transpose involution. Hence

Her3(C) := {x ∈ Mat3(C) | x = x̄t}(1)

becomes a commutative F -algebra, again with identity element 13, under the symmetric
matrix product

x • y :=
1

2
(xy + yx) (x, y ∈ Her3(C)).(2)

By (2.4.1), this algebra has dimension 27 over F . For F := R, C = O, it is the one
considered in [39, 1].

2.6. Theorem. ([1]) Let C be an octonion algebra over F . Then Her3(C) is a central
simple exceptional linear Jordan algebra over F . �

Remark. Albert’s original proof in [1] is given only for the special case F = R, C = O,
but carries over almost verbatim to the case of an arbitrary octonion algebra over an
arbitrary field (of characteristic not 2).

2.7. Albert algebras. For the time being, let C be the split octonion algebra over
F . By an Albert algebra over F we mean an F -form of Her3(C), i.e., a non-associative
F -algebra that becomes isomorphic to Her3(C) after extending scalars to the separable
closure of F .

Note that the octonion algebras over F are precisely the F -forms of C. In analogy to
this, we have

2.8. Theorem. ([2]) The finite-dimensional central simple exceptional linear Jordan al-
gebras over F are precisely the Albert algebras over F . �

Albert algebras are intimately tied up with exceptional (algebraic or Lie) groups and Lie
algebras. This was shown rather early on by looking at derivations.
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2.9. Derivations. Let A be a non-associative algebra over F . By a derivation of A we
mean a linear map D : A→ A satisfying the product rule for derivatives:

D(xy) = (Dx)y + x(Dy) (x, y ∈ A).(1)

The derivations of A form a Lie algebra, denoted by Der(A), under the commutator
product. If A is finite-dimensional, then Der(A) is the Lie algebra of Aut(A), the
automorphism group of A viewed as a group scheme over F [42, (20.4)(8), (21.5)(9)].

After E. Cartan [13] had shown that the derivation algebra of the Graves-Cayley
octonions is the compact Lie algebra of type G2 over the reals, it seemed natural to
expect similar results for Albert algebras. Historically, the first ones along these lines are
the following.

2.10. Theorem. ([14]) Let J be an Albert algebra over a field F of characteristic zero.
Then the derivation algebra of J is a central simple Lie algebra of type F4 over F .

Instead of a proof. Passing to the algebraic closure of F , we may assume that F is
algebraically closed and then have J = Her3(C), where C stands for the split octonion
algebra over F . Now one shows that the Lie algebra Der(J) is simple of dimension 52.
Since, by the Cartan-Killing classification of simple Lie algebras over algebraically closed
fields of characteristic zero, the Lie algebras over F having the properties above are
precisely those of type F4, the theorem follows.

By a slight modification of the procedure just described, one can connect Albert algebras
also with exceptional Lie algebras (or groups) of type E6.

2.11. The structure algebra. Let J be an Albert algebra over F . We write Lx : J → J ,
y 7→ xy, for the left multiplication operator on J affected by x ∈ J and put

L0
J := {Lx | x ∈ J, tr(Lx) = 0},(1)

where tr stands for the trace of a linear endomorphism acting on a finite-dimensional
vector space. Then it follows easily that

str(J) := L0
J + Der(J)(2)

is a Lie algebra of linear transformations, called the structure algebra of J , and the sum
on the right is a direct sum of vector spaces. Hence str(J) has dimension 78. Once it has
been shown that str(J) is also simple as a Lie algebra, the arguments indicating the proof
of Thm. 2.10 can be repeated almost verbatim and then lead to the following result.

2.12. Theorem. ([14]) Let J be an Albert algebra over a field F of characteristic zero.
Then the structure algebra of J is a central simple Lie algebra of Type E6 over F . �

Remark. The structure algebra of an Albert algebra is the Lie algebra of the structure
group scheme, to be defined in 4.15 below.

Even more important than the connection of Albert algebras with derivations is the one
with automorphisms. More specifically, using methods form Galois cohomology (see [42,
(29.8) and (31.47)] for details), one derives the following fundamental result,

2.13. Theorem. The assignment C 7→ Aut(C) (resp. J 7→ Aut(J)) defines a bijection
from the set of isomorphism classes of octonion (resp. Albert) algebras over F onto the
set of isomorphism classes of absolutely simple simply connected algebraic groups of type
G2 (resp. F4) over F . �



ALBERT ALGEBRAS 5

3. Notation and reminders

Throughout the remainder of this paper, we let k be an arbitrary commutative ring. A
(non-associative) k-algebra A, i.e., a k-module together with a k-bilinear multiplication
(the algebra structure of A), subject to no further restrictions, is said to be unital if
it contains a unit (or identity) element, which will then be denoted by 1 = 1A. By a
unital subalgebra we mean a subalgebra of a unital algebra containing its unit. A unital
homomorphism of unital k-algebras is a k-algebra homomorphism taking 1 into 1.

We denote by k-alg the category of unital commutative associative k-algebras, mor-
phisms being unital k-algebra homomorphisms. The identity transformation of a k-
module M will be denoted by 1M . Given R ∈ k-alg, we write MR := M ⊗R for the base
change (or scalar extension) of M from k to R, unadorned tensor products always being
taken over k. It is an R-module in a natural way, and the assignment x 7→ xR := x⊗ 1R
gives a k-linear map from M to MR which in general is neither injective nor surjective.

3.1. Quadratic maps. Let M,N be k-modules. A map Q : M → N is said to quadratic
ifQ is homogeneous of degree 2, soQ(αx) = α2Q(x) for all α ∈ k, x ∈M , and the induced
map

∂Q : M ×M −→ N, (x, y) 7−→ ∂Q(x, y) := Q(x+ y)−Q(x)−Q(y),

is (symmetric) k-bilinear, called the bilinearization or polarization of Q. For convenience,
we systematically simplify notation by writing Q(x, y) instead of ∂Q(x, y). Note that
Q(x, x) = 2Q(x), so Q may be recovered from ∂Q if 2 is a unit in k. Given any R ∈ k-alg,
a quadratic map Q : M → N has a unique extension to a quadratic map QR : MR → NR
over R. In the special case N := k, we speak of a quadratic form (over k).

3.2. Projective modules. Recall that a k-module M is projective if it is a direct sum-
mand of a free k-module. The following fact will be particularly useful in the present
context. Writing Spec(k) for the set of prime ideals in k, kp for the localization of k
at p ∈ Spec(k) and Mp := Mkp for the corresponding base change of M , the following
conditions are equivalent (cf., e.g., [10, II, §5, Thm. 1]).

(i) M is finitely generated projective.
(ii) For all p ∈ Spec(k), the kp-module Mp is free of finite rank rp, and the map

Spec(k)→ Z, p 7→ rp, is locally constant with respect to the Zariski topology of
Spec(k).

If in this case, the rank of the free kp-module Mp does not depend on p ∈ Spec(k), then
we say M has a rank and call this number the rank of M .

3.3. Regularity conditions on quadratic forms. Let q : M → k be a quadratic form.
Then ∂q is a symmetric bilinear form on M , inducing canonically a linear map

M −→M∗ := Homk(M,k), x 7−→ q(x,−),

whose kernel,

Rad(∂q) := {x ∈M | ∀ y ∈M : q(x, y) = 0},
is called the bilinear radical of q.

If k is a field, it is customary to call q non-degenerate if, for x ∈ M , the relations
q(x) = q(x, y) = 0 for all y ∈M imply x = 0. Note that, for char(k) 6= 2, non-degeneracy
of q is equivalent to ∂q being non-degenerate in the usual sense.

Now return to the case that k is an arbitrary commutative ring. Deviating slightly
from a terminology introduced by Loos [45, 3.2], a quadratic form q : M → k is said to
be separable if M is projective as a k-module, and for all fields F ∈ k-alg, the extended
quadratic form qF : MF → F over F is non-degenerate in the sense just defined. By
contrast, q will be called non-singular if M is finitely generated projective as a k-module
and the homomorphism M →M∗ induced by ∂q is in fact an isomorphism.

Both of these concepts are invariant under base change: if q is separable (resp. non-
singular), so is qR, for any R ∈ k-alg.
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4. Jordan algebras

As we have seen in §2, an adequate conceptual framework for investigating Albert
algebras over fields of characteristic not 2 is provided by the theory of linear Jordan alge-
bras. But since we intend to study Albert algebras not just over fields (of characteristic
not 2) but, more generally, over arbitrary commutative rings, the theory of linear Jordan
algebras is no longer appropriate and has to be replaced by a suitable generalization.
Historically speaking, such a generalization has been obtained in two steps.

As a first step, one simply notes that the main ingredients pertaining to the theory of
linear Jordan algebras can be preserved quite easily if the base field F of characteristic
not 2 is replaced by a commutative ring containing 1

2 (equivalently, making 2 invertible).
We illustrate this by sketching the concept of

4.1. Linear Jordan algebras. Assume our base ring k contains 1
2 . By a linear Jordan

algebra over k, we mean a non-associative k-algebra J which is commutative and satisfies
the Jordan identity (2.1.2). Unital linear Jordan algebras over k together with unital k-
algebra homomorphisms form a category, denoted by k-linjord. Moreover, linear Jordan
algebras are stable under base change: if J is a linear Jordan algebra over k, then so is
JR over R, for all R ∈ k-alg.

If A is an associative k-algebra, then the symmetric matrix product (2.2.1) converts
the k-module A into a linear Jordan algebra over k denoted by A+. If (B, τ) is an
associative k-algebra with involution, i.e., with an anti-automorphism of period 2 over
k, then (2.2.2) defines a subalgebra H(B, τ) ⊆ B+, which is therefore a linear Jordan
algebra over k.

Passing on to a version of the theory that no longer requires 1
2 in the base ring turns

out to be much more delicate. The key to this passage is

4.2. The U-operator of a linear Jordan algebra. Assuming that k contains 1
2 , let J

be a linear Jordan algebra over k and write Lx : J → J , y 7→ xy, for the left multiplication
operator of x ∈ J . Then the U -operator of J is defined as the map

U : J −→ Endk(J), x 7−→ Ux := 2L2
x − Lx2 ,(1)

which is obviously quadratic and, via its bilinearization, gives rise to the Jordan triple
product

{xyz} := Ux,zy = (Ux+z − Ux − Uz)y = 2
(
x(zy) + z(xy)− (xz)y

)
.(2)

Given x, y ∈ J , we define the “V -operator”

Vx,y : J −→ J, z 7−→ {xyz},(3)

which is obviously linear.

4.3. Examples. Let A be an associative algebra over k. Then the U -operator of the
linear Jordan algebra A+ is given by

Uxy = xyx (x, y ∈ A)(1)

in terms of the multiplication of A. Note that this formula is inherited by all subalgebras
of A+, so (1) also describes the U -operator of H(B, τ), for any associative k-algebra
(B, τ) with involution.

The U - and V -operators as well as the Jordan triple product satisfy a number of ele-
mentary, but highly non-trivial, identities, among which we single out the following as
particularly important.



ALBERT ALGEBRAS 7

4.4. Theorem. ([55, 59]) If k contains 1
2 and J is a unital linear Jordan algebra over

k, then the identities

U1J
= 1J ,(1)

UUxy = UxUyUx (fundamental formula),(2)

UxVy,x = Vx,yUx(3)

hold in all scalar extensions of J . �

We are now prepared to formalize the concept of a Jordan algebra in a completely different
manner. It turns out that this concept

• works quite well over arbitrary base rings, including the ring Z of rational inte-
gers,

• is isomorphic to the concept of a unital linear Jordan algebra if the base ring
contains 1

2 ,
• takes the bold step of axiomatizing a class of algebra structures which are no

longer bilinear but, instead, linear in one variable and quadratic in the other.

4.5. Quadratic Jordan algebras. ([50]) By a quadratic Jordan algebra over k we mean
a k-module J together with a distinguished element 1J ∈ J (the unit) and a quadratic
map U : J → Endk(J), x 7→ Ux, (the U -operator) such that, setting

{xyz} := Vx,yz := Ux,zy = (Ux+z − Ux − Uz)y(1)

(the Jordan triple product , obviously trilinear and symmetric in the outer variables), the
following identities hold under all scalar extensions.

U1J
= 1J ,(2)

UUxy = UxUyUx (fundamental formula),(3)

UxVy,x = Vx,yUx.(4)

A homomorphism of quadratic Jordan algebras is a linear map preserving units and U -
operators, hence also the Jordan triple product. Thus quadratic Jordan algebras over k
form a category denoted by k-quadjord.

Philosophically speaking, the U -operator serves as the exact analogue of the left (or
right) multiplication in associative (or alternative) algebras. Specializing one of the
variable in (1) to 1J , the Jordan triple product collapses to the bilinear and commutative
Jordan circle product

x ◦ y := {x1Jy} = {1Jxy} = {xy1J}.(5)

4.6. Connecting linear and quadratic Jordan algebras. Assume that our base ring
k contains 1

2 .

(a) Let J be a unital linear Jordan algebra over k. Then the identity element of J and its
U -operator as defined in 4.2 convert J into a quadratic Jordan algebra over k (Thm. 4.4),
denoted by Jquad. If ϕ : J → J ′ is a unital homomorphism of unital linear Jordan algebras
over k, then it is also one of quadratic Jordan algebras: ϕ : Jquad → J ′quad. Thus we
obtain a functor from k-linjord to k-quadjord.

(b) Conversely, let J be a quadratic Jordan algebra over k. Then the bilinear product

xy :=
1

2
x ◦ y

derived from the circle product of J makes J a linear Jordan algebra over k [38], denoted
by Jlin. If ϕ : J → J ′ is a homomorphism of quadratic Jordan algebras over k, then it is
also one of unital linear Jordan algebras: ϕ : Jlin → J ′lin. Thus we obtain a functor from
k-quadjord to k-linjord.
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4.7. Theorem. The functors

k-linjord −→ k-quadjord −→ k-linjord

defined in 4.6 are isomorphisms of categories and inverse to each other. �

4.8. Conventions. From now on, we use the term Jordan algebra to designate a qua-
dratic Jordan algebra, and we write

k-jord := k-quadjord

for the category of (quadratic) Jordan algebras over k. Also, if k contains 1
2 , we identify

the categories k-jord and k-linjord by means of Thm. 4.7.

In the remainder of this section, we merely sketch some of the most basic concepts from
the theory of Jordan algebras. For more details, see [38].

4.9. Ideals, quotients, simplicity. Let J be a Jordan algebra over k. A submodule
I ⊆ J is called an ideal if, in obvious notation,

UIJ + UJI ⊆ I.
In this case, the defining identities (4.5.2)−(4.5.4) together with their linearizations imply
{JJI} ⊆ I and the quotient module J/I carries the unique structure of a Jordan algebra
over k such that the natural map J → J/I is a homomorphism of Jordan algebras. A
Jordan algebra is called simple if it is non-zero and contains only the trivial ideals. A
Jordan algebra over a field F is called absolutely simple if the base change JK is simple
for all field extensions K/F . For char(F ) 6= 2 and dimF (J) <∞, this is equivalent to J
being central simple.

4.10. Examples of Jordan algebras. The examples of linear Jordan algebra discussed
in 2.2 and 4.1 can be transferred to the quadratic setting by making use of Ex. 4.3 in the
following way.

(a) Let A be a unital associative algebra over k. Then the k-module A together
with the unit element 1A and the U -operator defined by Uxy := xyx is a Jordan
algebra over k, denoted by A+. The Jordan triple product in A+ is given by
{xyz} = xyz + zyx, the Jordan circle product by x ◦ y = xy + yx.

(b) Let (B, τ) be a unital associative k-algebra with involution, so B is a unital
associative algebra over k and τ : B → B is an involution, i.e., a k-linear map
of period 2 and an anti-automorphism of the algebra structure:

τ
(
τ(x)

)
= x, τ(xy) = τ(y)τ(x)

for all x, y ∈ B. Then τ : B+ → B+ is an automorphism of period 2, and the
τ -symmetric elements of B, i.e.,

H(B, τ) := {x ∈ B | τ(x) = x}
form a (unital) subalgebra of B+, hence, in particular, a Jordan algebra, called
the Jordan algebra of τ -symmetric elements of B .

There is yet another class of Jordan algebras we haven’t encountered before.

(c) Let Q = (M, q, e) be a pointed quadratic form over k, so M is a k-module,
q : M → k is a quadratic form, and e ∈ M is a distinguished element (the base
point) satisfying q(e) = 1. Defining the conjugation of Q by

ιQ : M −→M, x 7−→ x̄ := q(e, x)e− x,
which is a linear map fixing e and having period 2, the k-module M together
with the unit e and the U -operator

Uxy := q(x, ȳ)x− q(x)ȳ

becomes a Jordan algebra over k, denoted by J(Q) and said to be associated
with Q.
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Remark. The assertions of (a) (resp. (b)) remain valid if the associative algebra A (resp.
B) is replaced by an alternative one.

4.11. Special and exceptional Jordan algebras. A Jordan algebra is said to be
special if there exists a unital associative algebra A and an injective homomorphism
J → A+ of Jordan algebras. Jordan algebras that are not special are called exceptional .
These notions are equivalent to the ones of 2.3 for linear Jordan algebras. The Jordan
algebras 4.10 (a),(b) are obviously special, while the ones in (c) are special if k is a field
but not in general [38].

4.12. Powers and Invertibility. Let J be a Jordan algebra over k and x ∈ J .

(a) Powers xn ∈ J with integer coefficients n ≥ 0 are defined inductively by x0 = 1J ,
x1 = x, xn+2 = Uxx

n. One then obtains the expected formulas

Uxmxn = x2m+n, {xmxnxp} = 2xm+n+p

for all integers m,n, p ≥ 0.

(b) An element x ∈ J is said to be invertible if there exists an element y ∈ J such that
Uxy = x, Uxy

2 = 1J . In this case, y is unique and called the inverse of x in J , written
as x−1. The set of invertible elements of J will be denoted by J× It is easy to see that
the following conditions are equivalent.

(i) x is invertible.
(ii) Ux is bijective.
(iii) 1J ∈ Im(Ux).

In this case x−1 = U−1
x x. Moreover, if x, y ∈ J are invertible, so is Uxy with inverse

(Uxy)−1 = Ux−1y−1.

(c) If A is a unital associative (or alternative) k-algebra, then invertibility and inverses
in A and A+ are the same. Similarly, if (B, τ) is a unital associative (or alternative)
algebra with involution, then invertibility in the Jordan algebra H(B, τ) amounts to the
same as invertibility in the ambient associative (or alternative) algebra B, and again the
inverses are the same.

(d) J is said to be a Jordan division algebra if J 6= {0} and all its non-zero elements
are invertible. Hence if A (resp. B) are as in (c), then A+ is a Jordan division algebra
if and only if A is an associative (or alternative) division algebra; similarly, if B is an
associative (or alternative) division algebra, then H(B, τ) is a Jordan division algebra,
but not conversely.

The group of left multiplications by invertible elements in a unital associative algebra for
trivial reasons acts transitively on its invertible elements. By contrast, the U -operators
belonging to invertible elements of a Jordan algebra J do not in general form a group,
and the group they generate will in general not be transitive on the invertible elements
of J . Fortunately, there is a substitute for this deficiency.

4.13. Isotopes. Let J be a Jordan algebra over k and p ∈ J be an invertible element.
Then the k-module J together with the new unit 1J(p) = p−1 and the new U -operator

U
(p)
x := UxUp is a Jordan algebra over k, called the p-isotope of J and denoted by J (p).

We clearly have J (1J ) = J , J (p)× = J× and (J (p))(q) = J (Upq) for all q ∈ J×. Calling
a Jordan algebra J ′ isotopic to J if J ′ ∼= J (p) for some p ∈ J×, we therefore obtain an
equivalence relation on the category of Jordan algebras over k.

4.14. Examples of isotopes. (a) Let A be a unital associative algebra over k and
p ∈ A+× = A×. Then right multiplication by p in A gives an isomorphism

Rp : (A+)(p) ∼−→ A+,

of Jordan algebras.

(b) In general, however, isotopy is not the same as isomorphism. For example, let (B, τ)
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be a unital associative algebra with involution and p ∈ H(B, τ)×. Then the formula
τ (p)(x) := p−1τ(x)p defines a new involution on B, and right multiplication by p in B
leads to an isomorphism

Rp : H(B, τ)(p) ∼−→ H(B, τ (p))

of Jordan algebras. Using this, it is easy to construct examples (e.g., with B a quaternion
algebra over a field) where H(B, τ) and H(B, τ)(p) are not isomorphic.

The fact that isotopy of Jordan algebras does not break down to isomorphism gives
rise to an important class of algebraic groups.

4.15. The structure group. Let J be a Jordan algebra over k. Then for all η ∈ GL(J),
the following conditions are equivalent.

(i) η is an isomorphism from J to J (p), for some p ∈ J×.
(ii) There exists an element η] ∈ GL(J) such that Uη(y) = ηUyη

] for all y ∈ J .

The elements of GL(J) satisfying one (hence both) of these conditions form a subgroup
of GL(J), called the structure group of J and denoted by Str(J). By (ii) and the funda-
mental formula (4.5.3), the elements Ux, x ∈ J×, generate a subgroup of Str(J) which
we call the inner structure group of J and denote by Instr(J).

5. Octonions

We have seen in §2 that octonions are an indispensable tool for the study of Albert
algebras over fields of characteristic not 2. In the present section, we define them in
a precise manner over arbitrary commutative rings and describe their most important
properties. But rather than presenting them in an isolated sort of way (as we did in 2.4),
it makes much more sense to regard them as members of a wider class of algebras called
composition algebras.

The following definition has been suggested by Loos. Over fields, it is partially in
line with the one in [42, 33.B], the important difference being that we insist on a unit
element, while loc. cit. does not.

5.1. Composition algebras. By a composition algebra over k we mean a unital non-
associative k-algebra C satisfying the following conditions.

(a) C is finitely generated projective of rank r > 0 as a k-module.
(b) There exists a separable quadratic form nC : C → k that permits composition:

nC(xy) = nC(x)nC(y) for all x, y ∈ C.

The quadratic form nC in (b) is uniquely determined and is called the norm of C.
Moreover, we call tC := nC(1C ,−) the trace and

ιC : C −→ C, x 7−→ x̄ := tC(x)1C − x,
the conjugation of C; it is easily seen to be a linear map of period 2.

The simplest example of a composition algebra is the base ring k itself, with norm,
trace, conjugation respectively given by nk(α) = α2, tk(α) = 2α, ᾱ = α for all α ∈ k.

5.2. Properties of composition algebras. Let C be a composition algebra over k.
The following properties may be found in [47, 54, 69].

(a) Composition algebras are stable under base change: CR is a composition algebra
over R for all R ∈ k-alg.

(b) C has rank 1, 2, 4 or 8.
(c) C is alternative, i.e., the associator [x, y, z] := (xy)z − x(yz) is alternating in

x, y, z ∈ C, equivalently, all subalgebras of C on two generators are associative.
(d) nC is non-singular unless the rank of C is 1 and 1

2 /∈ k.
(e) The conjugation of C is an involution, so we have

x = x, xy = y x

for all x, y ∈ C.



ALBERT ALGEBRAS 11

(f) The trace tC : C → k is an associative linear form:

tC
(
(xy)z

)
= tC

(
x(yz)

)
=: tC(xyz)

for all x, y, z ∈ C.
(g) C satisfies the quadratic equations

x2 − tC(x)x+ nC(x)1C = 0

for all x ∈ C, equivalently, the conjugation of C is a scalar involution:

xx̄ = nC(x)1C , x+ x̄ = tC(x)1C

for all x ∈ C.
(h) x ∈ C is invertible in the alternative algebra C (same definition as in associative

algebras) iff nC(x) ∈ k is invertible in k; in this case

x−1 = nC(x)−1x̄.

We now turn to examples of composition algebras. In addition to the base ring itself,
they may be described as follows.

5.3. Quadratic étale algebras. By a quadratic étale algebra over k we mean a com-
position algebra of rank 2. Quadratic étale algebras are commutative associative. If E
is a quadratic étale k-algebra, then its norm and trace are given by

nE(x) = det(Lx), tE(x) := tr(Lx),

where Lx : R → R, y 7→ xy, stands for the left multiplication operator of x ∈ E. The
most elementary example of a quadratic étale algebra is E0 := k ⊕ k (direct sum of
ideals), with norm, trace, conjugation given by

nE0(α⊕ β) = αβ, tE0(α⊕ β) = α+ β, α⊕ β = β ⊕ α
for all α, β ∈ k.

5.4. Quaternion algebras. By a quaternion algebra over k we mean a composition
algebra of rank 4. Quaternion algebras are associative but not commutative. If E is
a quadratic étale k-algebra with conjugation a 7→ ā and µ ∈ k is a unit, then [E,µ),
the free k-algebra generated by E and an additional element j subject to the relations
j2 = µ1E , ja = āj (a ∈ E), is a quaternion algebra over k. Conversely, every quaternion
algebra over k may be written in this way provided k is a semi-local ring, e.g., a field.
The most elementary example is provided by the algebra Mat2(k) of 2×2- matrices over
k whose norm, trace and conjugation are respectively given by the ordinary determinant,
the ordinary trace and the symplectic involution(

α β
γ δ

)
7−→

(
α β
γ δ

)
:=

(
δ −β
−γ α

)
of 2× 2-matrices.

5.5. Octonion algebras. By an octonion algebra over k we mean a composition algebra
of rank 8. Octonion algebras are alternative but no longer associative. The construction
of octonion algebras is not quite as straightforward as in the two previous cases.

5.6. The hermitian vector product. Let E be a quadratic étale k-algebra and (M,h)
a ternary hermitian space over E, so M is a finitely generated projective right E-module
of rank 3, h : M×M → E is a hermitian form (anti-linear in the first, linear in the second
variable), and the assignment x 7→ h(x,−) determines an E-module isomorphism from
M to M∗, the ιE-twisted E-dual of M . Suppose further we are given an orientation1 of
(M,h), i.e., an isomorphism

∆:
∧3

(M,h)
∼−→
(
E, (a, b) 7→ āb

)
1This terminology has been adopted from [8].
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of unary hermitian spaces, which may not exist but if it does is unique up to a factor of
norm 1 in E. Then the equation

h(x×h,∆ y, z) = ∆(x ∧ y ∧ z)

defines a bi-additive alternating map (x, y) 7→ x×h,∆ y from M ×M to M that is anti-
linear in each variable and is called the hermitian vector product induced by (M,h) and
the orientation ∆.

5.7. Theorem. ([104]) With the notation and assumptions of 5.6, the k-module E⊕M
becomes an octonion algebra

C := Zor(E,M, h,∆)(1)

over k under the multiplication

(a⊕ x)(b⊕ y) =
(
ab− h(x, y)

)
⊕
(
yā+ xb+ x×h,∆ y

)
whose unit element, norm, trace, conjugation are respectively given by

1C = 1E ⊕ 0,

nC(a⊕ x) = nE(a) + h(x, x),

tC(a⊕ x) = tE(a),

a⊕ x = ā⊕ (−x)

for all a ∈ E and all x ∈M . Conversely, every octonion algebra over k containing E as
a composition subalgebra arises in this manner. �

Remark. The significance of this result derives from the fact that, if k is a semi-local
ring or 2 ∈ Jac(k), the Jacobson radical of k (e.g., if 2 = 0 in k), then every composition
algebra of rank > 1 is easily seen to contain a quadratic étale subalgebra, while in general
this need not be so ([43, 17, 16, 15]).

5.8. Zorn vector matrices. Applying Thm. 5.7 to the special case that E := E0 = k⊕k
as in 5.3, the E-module M := E3 is free of rank 3 and the hermitian form h is given
by h(x, y) := x̄ty, the canonical identification

∧3
(M,h) = (E, (a, b) 7→ āb) yields an

orientation ∆ of (M,h) such that the octonion k-algebra C of (5.7.1) identifies canonically
with the k-module

Zor(k) :=

(
k k3

k3 k

)
under the multiplication(

α u′

u α′

)(
β v′

v β′

)
:=

(
αβ − u′tv αv′ + β′u′ + u× v

βu+ α′v + u′ × v′ −utv′ + α′β′

)
for all α, α′, β, β′ ∈ k and all u, u′, v, v′ ∈ k3. We speak of the algebra of Zorn vector
matrices over k in this context. Unit element, norm, trace and conjugation of C := Zor(k)
are given by

1C =

(
1 0
0 1

)
, nC(x) = αα′ + u′tu, tC(x) = α+ α′, x̄ =

(
α′ −u′
−u α

)
for

x =

(
α u′

u α′

)
∈ C.

In particular, the norm of C is hyperbolic.
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5.9. Splitness. A composition algebra C of rank r over k is said to be split if one of the
following conditions holds.

(i) r = 1.
(ii) r = 2 and C ∼= E0 := k ⊕ k as in 5.3.
(iii) r = 4 and C ∼= Mat2(k) as in 5.4.
(iv) r = 8 and C ∼= Zor(k) as in 5.8.

There is an important generalization of this concept, called generic splitness, that will
be discussed in 5.16 below.

5.10. Reminder: faithful flatness and étale algebras. Recall that a k-module M is
said to be flat if the functor −⊗M preserves exact sequences; it is said to be faithfully
flat provided a sequence of k-modules is exact if and only if it becomes so after applying
the functor −⊗M .

A k-algebra E ∈ k-alg is said to be finitely presented if there exist a positive integer
n and a short exact sequence

0 // I // k[t1, . . . , tn] // E // 0 ,

of k-algebras, where t1, . . . , tn are independent variables and I ⊆ k[t1, . . . , tn] is a finitely
generated ideal. E is said to be étale if it is finitely presented and satisfies the following
equivalent conditions [33].

(i) For all k′ ∈ k-alg and all ideals I ⊆ k′ satisfying I2 = {0}, the natural map

Homk-alg(E, k′) −→ Homk-alg(E, k′/I)

is bijective.
(ii) E is flat over k and, for all p ∈ Spec(k), the extended algebra E ⊗ κ(p) over

κ(p), the quotient field of k/p, is a (possibly infinite) direct product of finite
separable extension fields of k.

In particular, quadratic étale k-algebras (cf. 5.3) are étale in this sense, as are cubic étale
ones (cf. 10.9 below).

5.11. Theorem. ([48]) Let C be a k-algebra. For C to be an octonion algebra over k
it is necessary and sufficient that there exist a faithfully flat étale k-algebra R such that
CR ∼= Zor(R) is a split octonion algebra over R. �

5.12. Composition algebras over fields. If k = F is a field, composition algebras in
general, and octonions in particular, behave in an especially nice way.

(a) Composition algebras over F are either split quadratic étale or they are simple alge-
bras in the sense that they contain only the trivial ideals. In fact, the quaternion algebras
over F are precisely the finite-dimensional central simple associative algebras of degree
2 while, by a result of Kleinfeld [40], octonion algebras over fields are the only (unital)
simple alternative rings that are not associative.

(b) Composition algebras over fields are classified by their norms, so if we are given two
composition algebras C,C ′ over F , then

C ∼= C ′ ⇐⇒ nC ∼= nC′ .

(c) As an application of (b), it follows easily that for any composition algebra C of
dimension at least 2 over F , the following conditions are equivalent.

(i) C is split.
(ii) C has zero divisors, so some x 6= 0 6= y in C have xy = 0.
(iii) The norm of C is isotropic.
(iv) The norm of C is hyperbolic.

It is a natural question to ask which of the results assembled in 5.12 can be (fully or
partially) generalized from fields to arbitrary commutative rings. For example, the trivial
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fact that quadratic étale algebras are always classified by their norms has a natural (but
non-trivial) extension to quaternion algebras.

5.13. Theorem. ([41]) Quaternion algebras over commutative rings are classified by
their norms. �

Trying to accomplish the same for octonion algebras turns out to be much more delicate,
as the results discussed in the remainder of this section will attest2. In order to describe
these results in more detail, a short digression will be necessary.

5.14. Isotopes of alternative algebras. Let A be a unital alternative algebra over k
and suppose p, q ∈ A are invertible. Write A(p,q) for the non-associative k-algebra living
on the k-module A under the multiplication

x .p,q y := (xp)(qy) (x, y ∈ A).(1)

McCrimmon [53] has shown that A(p,q) is again a unital alternative algebra over k, called
the (p, q)-isotope of A, with identity element 1(p,q) = 1A(p,q) = (pq)−1.

For example, if C is a composition algebra, then so is C(p,q), for all invertible elements
p, q ∈ C; in fact, one checks easily using (1) that nC(p,q) = nC(pq)nC . It follows that
the left multiplication operator Lpq : C(p,q) → C, x 7→ (pq)x, is an isometry from nC(p,q)

to nC preserving units but almost never an isomorphism. [53] also contains examples
showing that isotopes of alternative algebras are in general not isomorphic. But these
examples display pathologies in characteristic 3, for which alternative algebras are no-
torious, and it has long been suspected that examples avoiding such pathologies do not
exist. This suspicion, however, was confounded by the following remarkable results of
Gille and Alsaody-Gille, respectively.

5.15. Theorem. (a) ([31]) There exist non-isomorphic octonion algebras over appropri-
ate commutative base rings whose norms are isometric.

(b) ([7]) Two octonion algebras C and C ′ over k have isometric norms if and only if C ′

is isomorphic to an isotope of C. �

Remark. Part (a) of this theorem says that octonion algebras over rings are not classified
by their norms. In part (b), sufficiency is trivial, as has been indicated in 5.14. Combining
(a) and (b), we see that there exist octonion algebras over appropriate base rings which
are isotopic but not isomorphic. In fact, the examples exhibited in [31] are the co-ordinate
algebras of some affine varieties over a field of arbitrary characteristic.

Other striking results on octonion algebras over rings have recently been obtained by
Asok-Hoyois-Wendt [8]. They are concerned with the following generalization of splitness.

5.16. Generic splitness. Let k be an integral domain with quotient field K. A com-
position algebra C over k is said to be generically split if CK , the base change of C
from k to K, is split. For example, if C is a Zorn algebra, i.e., has the form (5.7.1)
with E ∼= k⊕ k split quadratic étale, then C is clearly generically split, by 5.12 (c). The
converse, however, does not hold. In fact, [8] establishes a number of far-reaching connec-
tions of octonion algebras with algebraic homotopy theory and then proceeds, basically
in the authors’ own words, to

(i) study classification of generically split octonion algebras over schemes,
(ii) analyze when generically split octonion algebras may be realized as Zorn alge-

bras,
(iii) study when generically split octonion algebras are determined by their norm

forms.

2I am grateful to Erhard Neher for having brought these results to my attention.
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6. Cubic norm structures

With the introduction of cubic norm structures, we perform the last step in paving
the way for the definition of Albert algebras. They require a small preparation of their
own.

6.1. Polynomial laws. For the time being we are working over a field F . Given
finite-dimensional vector spaces V,W over F , with bases v1, . . . , vn, w1, . . . , wm, respec-
tively, any chain of polynomials p1, . . . , pm ∈ F [t1, . . . , tn] defines a family of set maps
fR : VR →WR, one for each R ∈ k-alg, given by

fR(

n∑
j=1

rjvjR) :=

m∑
i=1

pi(r1, . . . , rn)wiR (r1, . . . , rn ∈ R),(1)

It is clear that the family f := (fR)R∈k-alg determines the polynomials pi uniquely.
By abuse of language, we speak of f as a polynomial map from V to W , written as
f : V → W . This notion is obviously independent of the bases chosen. Moreover, it is
readily checked that the set maps fR : VR →WR defined by (1) vary functorially (in the
obvious sense, cf. (2) below) with R ∈ k-alg. This key property of polynomial maps is
the starting point of the theory of polynomial laws due to Roby [90]; for an alternate
approach, see [21].

Returning to our base ring k, we associate with any k-module M a (covariant) functor
M : k-alg → set (where set stands for the category of sets) by setting M(R) = MR

as sets for R ∈ k-alg and M(ϕ) = 1M ⊗ ϕ : MR → MS as set maps for morphisms
ϕ : R → S in k-alg. We then define a polynomial law f from M to N (over k) as a
natural transformation f : M→ N. This means that, for all R ∈ k-alg, we are given set
maps fR : MR → NR varying functorially with R, so whenever ϕ : R→ S is a morphism
in k-alg, we obtain a commutative diagram

MR
fR //

1M⊗ϕ
��

NR

1N⊗ϕ
��

MS
fS

// NS .

(2)

A polynomial law from M to N will be symbolized by f : M → N , in spite of the
fact that it is not a map from M to N in the usual sense. But it induces one, namely
fk : M → N , which, however, need not determine f uniquely. On the other hand, the
standard differential calculus for polynomial maps (cf., e.g., [11] or [36]) carries over to
polynomial laws virtually without change.

Polynomial laws from M to k are said to be scalar . The totality of scalar polyno-
mial laws on M is a unital commutative associative k-algebra, denoted by Polk(M) and
isomorphic to the polynomial ring k[t1, . . . , tn] if M is a free k-module of rank n.

A polynomial law f : M → N is said to be homogeneous of degree d if fR(rx) =
rdfR(x) for all R ∈ k-alg, r ∈ R, x ∈ MR. Homogeneous polynomial laws of degree
1 (resp. 2) identify canonically with linear (resp. quadratic) maps in the usual sense.
Scalar homogeneous polynomial laws are called forms. We speak of linear, quadratic,
cubic, quartic, ... forms instead of forms of degree d = 1, 2, 3, 4, . . . .

6.2. The concept of a cubic norm structure. Combining the approach of [51] with
the terminology of [78], we define a cubic norm structure over k as a k-module X together
with

(i) a distinguished element 1 = 1X ∈ X (the base point), which we will assume
to be unimodular in the sense that λ(1X) = 1k for some linear form λ on X,
equivalently, the submodule k1X ⊆ X is free of rank 1 and a direct summand,

(ii) a quadratic map ] = ]X : X → X, x 7→ x] (the adjoint),
(iii) a cubic form N = NX : X → k (the norm),



16 HOLGER P. PETERSSON

such that the following identities hold in all scalar extensions.

N(1) = 1, 1] = 1 (base point identities),(1)

x]] = N(x)x (adjoint identity),(2)

(∂yN)(x) = (DN)(x)y = T (x], y) (gradient identity),(3)

1× x = T (x)1− x (unit identity).(4)

Here x×y = (x+y)]−x]−y] is the bilinearization of the adjoint, and T = TX : X×X → k
is the bilinear trace, i.e., up to a sign the logarithmic Hessian of N at 1,

T (y, z) = −(D2logN)(1)(y, z) = (∂yN)(1)(∂zN)(1)− (∂y∂zN)(1),(5)

giving rise to the linear trace TX(x) = T (x) = T (x, 1). Defining

S := SX : X −→ k, x 7−→ S(x) := T (x]),(6)

we obtain a quadratic form, called the quadratic trace of X.
It is clear that cubic norm structures are stable under base change.

6.3. Theorem. ([51]) With the notation and assumptions of 6.2, the unit element 1J :=
1X and the U -operator defined by

Uxy := T (x, y)x− x] × y(1)

for all x, y ∈ X give the k-module X the structure of a Jordan algebra J = J(X) such
that the relations

x3 − T (x)x2 + S(x)x−N(x)1J = 0 = x4 − T (x)x3 + S(x)x2 −N(x)x,(2)

x] = x2 − T (x)x+ S(x)1J(3)

hold in all scalar extensions. Moreover, N is unital and permits Jordan composition,

N(1J) = 1, N(Uxy) = N(x)2N(y)(4)

in all scalar extensions. Finally, an arbitrary element x ∈ X is invertible in J if and
only if N(x) ∈ k is invertible in k, in which case

x−1 = N(x)−1x].(5)

�

Remark. (a) The preceding construction is clearly compatible with arbitrary base change.
(b) One is tempted to multiply the first equation of (2) by x in order to derive the second.
But this is allowed only in linear Jordan algebras, i.e., in the presence of 1

2 (in which case
the second equation is indeed a consequence of the first) but not in general.

6.4. Cubic Jordan algebras. By a cubic Jordan algebra over k we mean a Jordan
k-algebra J together with a cubic form NJ : J → k (the norm) such that there exists a
cubic norm structure X with J = J(X) and NJ = NX . In this case, we call TJ := TX
the (bi-)linear trace and SJ := SX the quadratic trace of J . Cubic Jordan algebras are
clearly invariant under base change. In the sequel, we rarely distinguish carefully between
a cubic norm structure and its associated cubic Jordan algebra.

A cubic Jordan algebra J over k is said to be non-singular if it is finitely generated
projective as a k-module and the bilinear trace TJ : J × J → k is non-singular as a
symmetric bilinear form, so it induces an isomorphism from the k-module J onto its dual
in the usual way.
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6.5. Examples. We will encounter many more examples later on. For the time being,
we settle with the following simple cases.

(a) Consider the k-module X := Mat3(k), equipped with the identity matrix 13 as base
point, the usual adjoint as adjoint, and the determinant as norm. Then X is a cubic norm
structure satisfying J(X) = Mat3(k)+. Thus Mat3(k)+ together with the determinant is
a cubic Jordan algebra over k.

(b) Let Q = (M, q, e) be a pointed quadratic form over k. Then the k-module X := k⊕M
together with the base point 1 := 1k ⊕ e, the adjoint and the norm respectively given by

(α⊕ u)] := q(u)⊕ (αū), NX(α⊕ u) := αq(u)

in all scalar extensions is a cubic norm structure over k which satisfies J(X) = k⊕ J(Q)
as a direct sum of ideals.

Cubic Jordan algebras are invariant under isotopy:

6.6. Theorem. ([51]) With the notation and assumptions of 6.2, let p ∈ J(X)×. Then
the new

base point 1(p) := p−1,

adjoint x]
(p)

:= N(p)Up−1x],

norm N (p)(x) := N(p)N(x)

make the k-module X into a new cubic norm structure, denoted by X(p) and called the
p-isotope of X. Moreover, J(X(p)) = J(X)(p) is the p-isotope of J(X). �

7. First properties of Albert algebras

We are finally in a position to define Albert algebras.

7.1. The concept of an Albert algebra. By an Albert algebra over k we mean a cubic
Jordan k-algebra J satisfying the following conditions.

(a) J is finitely generated projective of rank 27 as a k-module.
(b) For all fields F ∈ k-alg, the extended cubic Jordan algebra JF over the field F

is simple.

Albert algebras are clearly stable under base change: if J is an Albert algebra over k,
then JR is one over R, for all R ∈ k-alg. Moreover, over fields of characteristic not 2,
Albert algebras in the sense of 2.7 are the same as the ones in the sense of 7.1. This
follows immediately from Thm. 2.8 combined with Cor. 7.10 (c) below.

Before stating a few elementary properties of Albert algebras, we require a small
notational digression into polynomial laws.

7.2. Polynomials over the ring of scalar polynomial laws. Let J be a Jordan
k-algebra and t a variable. An element p(t) ∈ Polk(J)[t] has the form

p(t) =

d∑
i=0

fit
i (fi ∈ Polk(J), 0 ≤ i ≤ d).

Given x ∈ JR, R ∈ k-alg, we may thus form the “ordinary” polynomial

p(t;x) :=

d∑
i=0

(fi)R(x)ti ∈ R[t],

in which we may replace the variable t by x:

p(x;x) :=

d∑
i=0

(fi)R(x)xi ∈ JR.
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7.3. First properties of Albert algebras. (a) Albert algebras are generically algebraic
of degree 3 in the sense of [46]: if J is an Albert algebra over k, then the polynomial

mJ(t) := t3 − TJt2 + SJt−NJ ∈ Polk(J)[t]

is the unique monic polynomial of least degree satisfying mJ(x;x) = (tmJ)(x;x) = 0 for
all x ∈ JR, R ∈ k-alg. In particular, the cubic norm structure belonging to J (cf. 6.4) is
uniquely determined by the Jordan algebra structure of J alone.

(b) Homomorphisms between Albert algebras are isomorphisms and automatically pre-
serve norms, adjoints and traces.

(c) Isotopes of Albert algebras are Albert algebras.

Before deriving further properties of Albert algebras, we give a few important exam-
ples.

7.4. Twisted hermitian matrices. Let C be a composition algebra over k, with norm
nC , trace tC and conjugation ιC , u 7→ ū. One can show that 1C ∈ C is unimodular, so
we obtain a natural identification k = k1C ⊆ C that is compatible with base change.
Now suppose

Γ = diag(γ1, γ2, γ3) ∈ GL3(k)

is an invertible diagonal matrix. Then the map

Mat3(C) −→ Mat3(C), x 7−→ Γ−1x̄tΓ,

is an involution, called the Γ-twisted conjugate transpose involution. The elements of
Mat3(C) that remain fixed under this involution (i.e., are Γ-hermitian) and have diagonal
entries in k form a k-submodule of Mat3(C) that is finitely generated projective of rank
3(rk(C) + 1) and will be denoted by

Her3(C,Γ).

In particular, we put
Her3(C) := Her3(C,13).

Note that for 1
2 ∈ k, the condition of the diagonal entries being scalars is automatic.

Writing eij for the ordinary matrix units, there is a natural set of generators for the
k-module Her3(C,Γ) furnished by the quantities

u[jl] := γluejl + γj ūelj

for u ∈ C and j, l = 1, 2, 3 distinct. Indeed, a straightforward verification shows that
x ∈ Mat3(C) belongs to Her3(C,Γ) if and only if it can be written in the form (necessarily
unique)

x =
∑

αieii +
∑

ui[jl], (αi ∈ k, ui ∈ C, i = 1, 2, 3),(1)

where we systematically subscribe to the convention that summations like the ones on the
right of (1) extend over all cyclic permutations (ijl) of (123), i.e., over (123), (231), (312).

7.5. Theorem. ([51]) With the notation and assumptions of 7.4, base point, adjoint and
norm given respectively by the formulas

1 =
∑

eii(1)

x] =
∑(

αjαl − γjγlnC(ui)
)
eii +

∑
(γiujul − αiui)[jl],(2)

N(x) = α1α2α3 −
∑

γjγlαinC(ui) + γ1γ2γ3tC(u1u2u3)(3)

in all scalar extensions3 convert the k-module Her3(C,Γ) into a cubic norm structure
over k whose bilinear trace has the form

T (x, y) =
∑

αiβi +
∑

γjγlnC(ui, vi)(4)

3Note that the last term of (3) by 5.2 (f) is unambiguous.
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for x as in (7.4.1) and y =
∑
βieii +

∑
vi[jl] ∈ Her3(C,Γ), βi ∈ k, vi ∈ C, i = 1, 2, 3. �

7.6. Remark. (a) The cubic norm structure (or cubic Jordan algebra) constructed in
Theorem 7.5 will also be denoted by Her3(C,Γ). The Jordan circle product of x, y ∈
Her3(C,Γ) may be expressed as x◦y = xy+yx in terms of ordinary matrix multiplication.
In particular, over fields of characteristic not 2, the Jordan structure of Her3(C,Γ) for C
an octonion algebra and Γ = 13 as described here is compatible with the one of 2.5.

(b) Multiplying Γ with an invertible scalar, or its diagonal entries with invertible squares,
doesn’t change the isomorphism class of Her3(C,Γ). More precisely, given δ, δi ∈ k×,
1 ≤ i ≤ 3, and setting

Γ′ := diag(δ2
1γ1, δ

2
2γ2, δ

2
3γ3),

the assignments ∑
αieii +

∑
ui[jl] 7−→

∑
αieii +

∑
(δui)[jl],∑

αieii +
∑

ui[jl] 7−→
∑

αieii +
∑

(δjδlui)[jl]

give isomorphisms

Her3(C, δΓ)
∼−→ Her3(C,Γ), Her3(C,Γ′)

∼−→ Her3(C,Γ).

Using the first isomorphism, we see that we may always assume γ1 = 1, while combining
it with the second, we see that we may always assume det(Γ) = 1.

(c) The Jordan algebra Her3(C,Γ) is isotopic to the Jordan algebra Her3(C). More
precisely,

p :=
∑

γieii ∈ Her3(C,Γ)×,

and the assignment∑
αieii +

∑
ui[jl] 7−→

∑
(γiαi)eii +

∑
(γjγlui)[jl]

determines an isomorphism from the isotope Her3(C,Γ)(p) onto Her3(C).

(d) If the composition algebra C is associative, i.e., has rank at most 4, then Her3(C,Γ)
is a subalgebra of Mat3(C)+, so its U -operator has the form Uxy = xyx in terms of the
ordinary matrix product. In particular, Her3(C,Γ) is a special Jordan algebra. The case
of an octonion algebra will be stated separately.

7.7. Corollary. Let C be an octonion algebra over k and Γ ∈ GL3(k) a diagonal matrix.
Then Her3(C,Γ) is an Albert algebra over k.

Proof. As a k-module, J := Her3(C,Γ) is finitely generated projective of rank 3(8+1) =
27. Moreover, J is a cubic Jordan algebra which is simple if k is a field ([52]). �

7.8. Reduced cubic Jordan algebras. A cubic Jordan algebra J over k is said to
be reduced if it isomorphic to Her3(C,Γ) for some composition k-algebra C and some
diagonal matrix Γ ∈ GL3(k)4. Thus, reduced Albert algebras have this form with C an
octonion algebra. We speak of split cubic Jordan algebras (resp. of split Albert algebras)
over k if they have the form Her3(C), C a split composition algebra, (resp. Her3(Zor(k))).

7.9. Theorem. For J to be an Albert algebra over k it is necessary and sufficient that
J be a Jordan k-algebra and there exist a faithfully flat étale k-algebra R such that
JR ∼= Her3(Zor(R)) is a split Albert algebra over R.

Instead of a proof. The condition is clearly sufficient. To prove necessity, it will be
enough, by Theorem 5.11, to find a faithfully flat étale k-algebra R making JR a reduced
Albert algebra over R. This can be accomplished by standard arguments, similar to the
ones employed in the proof of the aforementioned theorem.

4This is an ad-hoc definition. For a more intrinsic notion see, e.g., [36].
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Remark. It would be desirable to establish the existence of a faithfully flat étale k-algebra
R as above in a single step, without recourse to Theorem 5.11. Conceivably, this could
be accomplished by appealing to Neher’s theory of grids [61].

7.10. Corollary. (a) Albert algebras are non-singular cubic Jordan algebras. Moreover,
their quadratic traces are separable quadratic forms.

(b) Let ϕ : J → J ′ be a linear bijection of non-singular cubic Jordan algebras that pre-
serves norms and units. Then ϕ is an isomorphism of the underlying cubic norm struc-
tures, hence of cubic Jordan algebras as well.

(c) Albert algebras are exceptional Jordan algebras.

Proof. (a) By Theorem 7.9, it suffices to prove the first assertion for split Albert algebras,
where it follows immediately from (7.5.4). The assertion about the quadratic trace is
established similarly.

(b) Since ϕ preserves norms and units, it preserves traces as well. Setting N := NJ ,
N ′ := NJ′ , ditto for the traces, and applying the chain rule to N ′ ◦ ϕ = N , we obtain
(DN ′)(ϕ(x))ϕ(y) = (DN)(x)y, and the gradient identity yields

T ′
(
ϕ(x)], ϕ(y)

)
= T (x], y) = T ′

(
ϕ(x]), ϕ(y)

)
.

Since T ′ is non-singular, we conclude that ϕ preserves adjoints, hence is an isomorphism
of the underlying cubic norm structures. But the U -operator is built up from adjoints
and traces, by (6.3.1). Hence ϕ preserves U -operators and therefore is an isomorphism
of Jordan algebras.

(c) By Theorem 7.9 it suffices to prove this for the split Albert algebra. This in turn
follows from the fact that Glennie’s identity

G9(X,Y, Z) := G(X,Y, Z)−G(Y,X,Z) = 0,(1)

G(X,Y, Z) := UXZ ◦ UX,Y UZY 2 − UXUZUX,Y UY Z

holds in all special Jordan algebras but not in Her3(Zor(k)) [38]. Thus Albert algebras
are not even homomorphic images of special Jordan algebras. In the presence of 1

2 , this
can also be proved more directly by following Albert’s original arguments in [1]. �

This is the appropriate place to remind the reader of one of the most fundamental
contributions of Zelmanov to the theory of Jordan algebras without finiteness conditions.

7.11. Theorem. ([56]) A simple Jordan algebra is either special or an Albert algebra
over some field. �

8. Reduced cubic Jordan algebras over fields

In this section, we will be concerned with a class of cubic Jordan algebras that are
particularly well understood. For example, we will see that reduced cubic Jordan algebras
over fields have a nice set of classifying invariants with natural interpretations in terms of
Galois cohomology. In most cases, the references given below were originally confined to
reduced Albert algebras only but, basically without change, allow an immediate extension
to arbitrary cubic Jordan algebras.

Throughout this section, we fix a field F and two reduced cubic Jordan algebras J, J ′

over F , written in the form J ∼= Her3(C,Γ), J ′ ∼= Her3(C ′,Γ′) for some composition
F -algebras C,C ′ and some diagonal matrices

Γ = diag(γ1, γ2, γ3), Γ′ = diag(γ′1, γ
′
2, γ
′
3)

belonging to GL3(F ). Our first result says that the elements of Γ may be multiplied by
invertible norms of C without changing the isomorphism class of J . More precisely, the
following statement holds.
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8.1. Proposition. Given invertible elements a2, a3 ∈ C, we have

J ∼= Her3(C,Γ1), Γ1 := diag
(
nC(a2a3)−1γ1, nC(a2)γ2, nC(a3)γ3

)
.

In particular, J ∼= Her3(C) if C is split of dimension at least 2.

Instead of a proof. The proof of the first part rests on the fact that composition algebras
over fields are classified by their norms (5.12 (b)), hence does not carry over to arbitrary
base rings (Thm. 5.15 (a)). The second part follows from the fact that we may assume
det(Γ) = 1 (7.6 (b)) and that the norm of a split composition algebra over F having
dimension at least 2 is hyperbolic (5.12 (c)), hence universal. �

8.2. Theorem. ([5, 19, 37]) The following conditions are equivalent.

(i) J and J ′ are isotopic.
(ii) There exists a norm similarity from J to J ′, i.e., a linear bijection ϕ : J → J ′

satisfying NJ′ ◦ ϕ = αNJ for some α ∈ k×.
(iii) C and C ′ are isomorphic.

Instead of a proof. (iii) ⇒ (i) follows from 7.6 (c), (i) ⇔ (ii) from Cor. 7.10 (b). The
hard part is the implication (i) ⇒ (iii). �

8.3. The co-ordinate algebra. By Theorem 8.2, the composition algebra C up to
isomorphism is uniquely determined by J . We call C the co-ordinate (or coefficient)
algebra of J .

8.4. Nilpotent elements. As usual, an element of a Jordan algebra is said to be nilpo-
tent if and only if some power with positive integer exponent is equal to zero. For reasons
that will be explained in Remark 14.3 below, cubic Jordan algebras containing non-zero
nilpotent elements are said to be isotropic. There is a simple criterion to detect isotropy
in a reduced cubic Jordan algebra over F .

8.5. Theorem. ([5]) J is isotropic if and only if

J ∼= Her3(C,Γnil), Γnil := diag(1,−1, 1).

�

Criteria for isomorphism between J and J ′ are more delicate. The first one to deal with
this question in characteristic not 2 was Springer [101], who considered the quadratic
form x 7→ T (x2) in terms of the linear trace T . Working in arbitrary characteristic, the
key idea, due to Racine [88], consists in looking at the quadratic trace S, x 7→ T (x]).
The connection between the two may be described as follows.

8.6. Remark. (a) The quadratic form Q(x) := T (x2) bilinearizes to Q(x, y) = 2T (x, y),
which shows that Springer’s approach mentioned above does not succeed in characteristic
two.

(b) Applying the linear trace to (7.5.2), it follows that

SJ = [−1]⊕ h⊕ 〈−1〉 . QJ , QJ := 〈γ2γ3, γ3γ1, γ1γ2〉 ⊗ nC ,(1)

where [−1] stands the one-dimensional quadratic from −α2 and h for the hyperbolic
plane, while 〈α1, . . . , αn〉 for α1, . . . , αn ∈ F refers to the symmetric bilinear form over
F given on Fn × Fn by the matrix diag(α1, . . . , αn). Hence SJ determines QJ uniquely
and conversely. In particular, QJ is an invariant of J . On the other hand, (7.5.4) and
(1) imply that the bilinear trace of J has the form

TJ = 〈1, 1, 1〉 ⊕ ∂QJ(2)

Thus, if char(F ) 6= 2, the bilinear trace and the quadratic trace of J are basically the
same.
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8.7. Theorem. ([42, 88, 95, 101]) The following conditions are equivalent.

(i) J and J ′ are isomorphic.
(ii) J and J ′ have isomorphic co-ordinate algebras and isometric quadratic traces.

(iii) J and J ′ have isometric quadratic traces.

Instead of a proof. (i) ⇒ (ii) follows immediately from Thm. 8.2.
(ii) ⇒ (iii) is obvious.
(iii)⇒ (ii). Suppose QJ ∼= QJ′ . It is easy to see that QJ is hyperbolic if and only if C

is split, forcing the 3-Pfister forms nC and nC′ to have the same splitting fields. Hence
they are isometric5 [18, Corollary 23.6] (see also [35, Theorem 4.2], [22]). �

8.8. Invariants of reduced cubic Jordan algebras. We now assume dimF (C) = 2r,
r = 1, 2, 3, so the case C = k is ruled out. Since composition algebras over F are
classified by their norms, it follows from Theorem 8.7 combined with Remark 8.6 that
reduced cubic Jordan algebras J ∼= Her3(C,Γ) as above, where we may assume γ1 = 1
by Remark 7.6 (b), have the quadratic n-Pfister forms (n = r, r + 2)

fr(J) = nC , fr+2(J) = nC ⊕QJ ∼= 〈〈−γ2,−γ3〉〉 ⊗ nC(1)

as classifying invariants. Here a quadratic form Q over F is said to be n-Pfister if it can
be written in the form

Q ∼= 〈〈α1, . . . , αn−1〉〉 ⊗ nE := 〈〈α1〉〉 ⊗
(
. . . (〈〈αn−1〉〉 ⊗ nE) . . .

)
(2)

for some α1, . . . , αn−1 ∈ F× and some quadratic étale F -algebra E, where 〈〈α〉〉 :=
〈1,−α〉 as binary symmetric bilinear forms. For basic properties of Pfister quadratic
forms in arbitrary characteristic, see [18].

In particular, assuming char(F ) 6= 2 for simplicity, we deduce from [18, 16.2] (see also
[86] for more details and for the history of the subject6) that n-Pfister quadratic forms
Q as in (2) have the cup product

(α1) ∪ · · · ∪ (αn−1) ∪ [E] ∈ Hn(F,Z/2Z)(3)

as a classifying (Galois) cohomological invariant, where (α) stands for the canonical
image of α ∈ F× in H1(F,Z/2Z) and [E] ∈ H1(F,Z/2Z) for the cohomology class of the
quadratic étale F -algebra E (see 13.6 below for more details). From this we conclude
that the classifying invariants of reduced cubic Jordan algebras may be identified with

fr(J) ∈ Hr(F,Z/2Z), fr+2(J) ∈ Hr+2(F,Z/2Z);(4)

they are called the invariants mod 2 of J .

9. The first Tits construction

The two Tits constructions provide us with a powerful tool to study Albert algebras
that are not reduced. In the present section and the next, we describe an approach to
these constructions that is inspired by the Cayley-Dickson construction of composition
algebras.

9.1. The internal Cayley-Dickson construction. Let C be a composition algebra
with norm nC over k. Suppose B ⊆ C is a unital subalgebra and l ∈ C is perpendicular
to B relative to ∂nC , so nC(B, l) = {0}. Setting µ := −nC(l), it is then easily checked
that the multiplication rule

(u1 + v1l)(u2 + v2l) = (u1u2 + µv̄2v1) + (v2u1 + v1ū2)l(1)

holds for all ui, vi ∈ B, i = 1, 2. In particular, B + Bl is the subalgebra of C generated
by B and l.

5I am grateful to Skip Garibaldi for having pointed out this fact as well as the subsequent references
to me.

6I am grateful to Detlev Hoffmann for having drawn my attention to this article, but also for many
illuminating comments.
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9.2. The external Cayley-Dickson construction. Abstracting from the preceding
set-up, particularly from (9.1.1), we now consider an associative composition k-algebra
B with norm nB , trace tB , conjugation ιB , and an arbitrary scalar µ ∈ k×. Then the
direct sum C := B⊕Bj of two copies of B as a k-module becomes a composition algebra
C := Cay(B,µ) over k under the multiplication

(u1 + v1j)(u2 + v2j) = (u1u2 + µv̄2v1) + (v2u1 + v1ū2)j (ui, vi ∈ B, i = 1, 2),(1)

with norm, polarized norm, trace, conjugation given by

nC(u+ vj) = nB(u)− µnB(v),(2)

nC(u1 + v1j, u2 + v2j) = nB(u1, v1)− µnB(u2, v2),(3)

tC(u+ vj) = tB(u),(4)

u+ vj = ū− vj(5)

for all u, u1, u2, v, v1, v2 ∈ B. We say C arises from B,µ by means of the Cayley-
Dickson construction. For example, if E is a quadratic étale k-algebra, the Cayley-
Dickson construction can be performed twice starting from E, so with scalars µ1, µ2 ∈ k×,
we obtain in

Cay(E;µ1, µ2) := Cay
(
Cay(E,µ1), µ2

)
an octonion algebra over k.

The usefulness of the Cayley-Dickson construction is underscored by the

9.3. Embedding property of composition algebras. Suppose we are given

(a) a composition algebra C over k (any commutative ring), with norm nC ,
(b) a composition subalgebra B ⊆ C
(c) an invertible element l ∈ C perpendicular to B relative to ∂nC .

Then B is associative and the inclusion B ↪→ C has a unique extension to a homomor-
phism

Cay
(
B,−nC(l)

)
= B ⊕Bj −→ C

sending j to l. Moreover, this homomorphism is an isomorphism if rk(B) = 1
2 rk(C).

We wish to extend the preceding approach to the level of cubic norm structures and
their associated Jordan algebras. In doing so, the role of associative composition algebras
used to initiate the Cayley-Dickson construction will be played, somewhat surprisingly,
by

9.4. Cubic alternative algebras. By a cubic alternative algebra over k we mean a uni-
tal alternative k-algebra A together with a cubic form NA : A→ k (the norm) satisfying
the following conditions.

(a) 1A ∈ A is unimodular.
(b) NA is unital and permits composition: N(1A) = 1 and the relation

N(xy) = N(x)N(y)

holds in all scalar extensions.
(c) Defining the (linear) trace TA : A→ k and the quadratic trace SA : A→ k by

TA(x) := (∂xNA)(1A), SA(x) := (∂1A
NA)(x),

the relation

x3 − TA(x)x2 + SA(x)x−NA(x)1A = 0

holds in all scalar extensions.

Given a cubic alternative k-algebra A, its linear trace turns out to be an associative
linear form, so we have

TA
(
(xy)z

)
= TA

(
x(yz)

)
=: TA(xyz)(1)
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for all x, y, z ∈ A. Moreover, if we define the adjoint of A as the quadratic map

]A : A −→ A, x 7−→ x] := x2 − TA(x)x+ SA(x)1A.

then the k-module X := A together with the base point 1X := 1A, the adjoint ]X := ]A
and the norm NX := NA is a cubic norm structure over k, denoted by X = X(A), with
linear trace TX = TA, quadratic trace SX := SA and bilinear trace given by TX(x, y) =
TA(xy) for all x, y ∈ A. Moreover, the associated cubic Jordan algebra is J(X) = A+.
We call X(A) the cubic norm structure associated with A.

9.5. Pure elements. Let X be a cubic norm structure over k with norm N = NX ,
trace T = TX and suppose X0 ⊆ X is a non-singular cubic sub-norm structure, so X0

is a non-singular cubic norm structure in its own right, with norm N0 = NX0 , trace
T0 = TX0

, and the inclusion X0 ↪→ X is a homomorphism of cubic norm structures.
Then the orthogonal decomposition

X = X0 ⊕ V, V := X⊥0 ,

with respect to the bilinear trace of X comes equipped with two additional structural
ingredients: there is a canonical bilinear action

X0 × V −→ V, (x0, v) 7−→ x0 . v := −x0 × v,
and there are quadratic maps Q : V → X0, H : V → V given by

v] = −Q(v) +H(v) (v ∈ V ).

With these ingredients, an element l ∈ X is said to be pure relative X0 if

(i) l ∈ V is invertible in J(X) (equivalently, N(l) ∈ k×),
(ii) l] ∈ V (equivalently, Q(l) = 0),

(iii) X0 . (X0 . l) ⊆ X0 . l.

If this is so, we can give the k-module X0 the structure of a well defined non-associative
k-algebra AX(X0, l) whose bilinear multiplication x0y0 is uniquely determined by the
formula

(x0y0) . l := x0 . (y0 . l)

for all x0, y0 ∈ X0.

9.6. Theorem. (The internal first Tits construction) With the notation and assumptions
of 9.5, A := AX(X0, l) together with NA := N0 is a cubic alternative k-algebra satisfying
X(A) = X0, hence A+ = J(X0). Moreover, with µ := N(l) ∈ k, the relations

N(x0 + x1 . l + x2 . l
]) = NA(x0) + µNA(x1) + µ2NA(x2)− µTA(x0x1x2),(1)

(x0 + x1 . l + x2 . l
])] = (x]0 − µx1x2) + (µx]2 − x0x1) . l + (x]1 − x2x0) . l](2)

hold in all scalar extensions. �

9.7. Theorem. (The external first Tits construction) ([20, 51, 78]) Let A be a cubic
alternative k-algebra with norm NA, trace TA, write X0 = X(A) for the associated cubic
norm structure and suppose µ ∈ k is an arbitrary scalar. Then the threefold direct sum

X := T1(A,µ) := A⊕Aj1 ⊕Aj2
of A as a k-module is a cubic norm structure with base point, adjoint, norm and bilinear
trace given by

1X := 1A + 0 · j1 + 0 · j2,(1)

x] := (x]0 − µx1x2) + (µx]2 − x0x1)j1 + (x]1 − x2x0)j2,(2)

NX(x) := NA(x0) + µNA(x1) + µ2NA(x2)− µTA(x0x1x2),(3)

TX(x, y) = T0(x0, y0) + µT0(x1, y2) + µT (x2, y1)(4)

for all x = x0 + x1j1 + x2j2, y = y0 + y1j1 + y2j2, xi, yi ∈ AR, i = 0, 1, 2, R ∈ k-alg. We
say T1(A,µ) arises from A,µ by means of the first Tits construction. �
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Remarks. (a) We write J(A,µ) := J(T1(A,µ)) for the cubic Jordan algebra associated
with T1(A,µ).

(b) Identifying A in T1(A,µ) through the initial summand makes X(A) ⊆ X = T1(A,µ)
a cubic sub-norm structure. We note that j1 ∈ X is pure relative to X(A) if and only
if µ ∈ k×. In this case, AX(X(A), j1) = A as cubic alternative algebras, and if A (i.e.,
X(A)) is non-singular, then so is T1(A,µ).

Among the three conditions defining the notion of a pure element in 9.5, the last one
seems to be the most delicate. It is therefore important to note that, under certain
restrictions concerning the linear algebra of the situation, it turns out to be superfluous.

9.8. Theorem. (Embedding property of the first Tits construction) Let X be a cubic
norm structure over k and suppose X is finitely generated projective of rank at most 3n,
n ∈ N, as a k-module. Suppose further that X0 ⊆ X is a non-singular cubic sub-norm
structure of rank exactly n. For an invertible element l ∈ J(X) to be pure relative to
X0 it is necessary and sufficient that both l and l] be orthogonal to X0. In this case,
setting µ = NX(l), there exists a unique homomorphism from the first Tits construction
T1(AX(X0, l), µ) to X extending the identity of X0 and sending j1 to l. Moreover, this
homomorphism is an isomorphism, and the cubic norm structure X is non-singular of
rank exactly 3n. �

Remark. Already the first part of the preceding result, let alone the second, becomes
false without the rank condition, even if the base ring is a field.

9.9. Examples of cubic alternative algebras. Besides cubic associative algebras,
like cubic étale algebras (see 10.9 below) or Azumaya algebras of degree 3, examples of
cubic properly alternative algebras arise naturally as follows. Letting C be a composition
algebra over k with norm nC , we put A := ke1 ⊕ C as a direct sum of ideals, where
ke1
∼= k is a copy of k as a k-algebra, and define the norm NA : A → k as a cubic form

by the formula

NA(re1 + u) = rnC(u) (r ∈ R, u ∈ CR, R ∈ k-alg).

Then A is a cubic alternative algebra with norm NA over k which is not associative if
and only if C is an octonion algebra over k.

One may ask what will happen when this cubic alternative algebra enters into the first
Tits construction. Here is the answer.

9.10. Theorem. With the notation and assumptions of 9.9, let µ ∈ k×. Then

J(A,µ) ∼= Her3(C,Γnil), Γnil = diag(1,−1, 1).

In particular, if k = F is a field and C is an octonion algebra over F , then J(A,µ) is an
isotropic Albert algebra over F . �

10. The second Tits construction

The fact that cubic alternative (rather than associative) algebras belong to the natural
habitat of the first Tits construction gives rise to a remarkable twist when dealing with
the second. We describe this twist in two steps.

10.1. Unital isotopes of cubic alternative algebras. Let A be a cubic alternative
algebra over k. Isotopes of A in the sense of 5.14 having the special form

Ap := A(p−1,p)(1)

for some invertible element p ∈ A are called unital . Note that Ap = A as k-modules,
while the multiplication of Ap is given by x ·p y := (xp−1)(py) and its norm NAp = NA
agrees with that of A. The construction has the following properties, for all p, q ∈ A×.

• 1Ap = 1A,
• (Ap)+ = A+,
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• Aαp = Ap for all α ∈ k×,
• (Ap)q = Apq,
• Ap = A if A is associative.

10.2. Isotopy involutions. By a cubic alternative k-algebra with isotopy involution of
the r-th kind (r = 1, 2) we mean a quadruple B = (E,B, τ, p) consisting of

(i) a composition algebra E of rank r over k, called the core of B, with conjugation
ιE , a 7→ ā, so either E = k or E is a quadratic étale k-algebra,

(ii) a cubic alternative E-algebra B,
(iii) an invertible element p ∈ B×,
(iv) an ιE-semi-linear homomorphism τ : B → (Bp)op of unital alternative algebras

satisfying the relations

τ(p) = p, τ2 = 1B , NB ◦ τ = ιE ◦NB .
By 10.1 and (iv), τ : B+ → B+ is a semi-linear involutorial automorphism, forcing
H(B) := H(B, τ) = {x ∈ B | τ(x) = x} ⊆ X(B) to be a cubic norm structure over k
such that H(B)⊗E ∼= X(B). Homomorphisms of cubic alternative algebras with isotopy
involution of the r-th kind are defined in the obvious way. A scalar µ ∈ E is said to
be admissible relative to B if NB(p) = µµ̄. Condition (iv) implies in particular first
τ(xy) = (τ(y)p−1)(pτ(x)) and then

xpτ(x) := x
(
pτ(x)

)
∈ H(B)(1)

but NOT (xp)τ(x) ∈ H(B). Note that admissible scalars relative to B are related not
only to p but, via p, also to τ . Note also by 10.1 that, if p ∈ k1B is a scalar, then isotopy
involutions are just ordinary involutions.

We say B is non-singular if B is so as a cubic alternative algebra over E, equivalently,
H(B) is so as a cubic norm structure over k. If the core of B agrees with the centre of B
(as an alternative ring), B is said to be central . Finally, B is said to be division if B is
an alternative division algebra, so all non-zero elements of B are invertible.

10.3. Remark. Let B = (E,B, τ, p) be a cubic alternative algebra with isotopy involu-
tion of the r-th kind (r = 1, 2) and suppose B is associative, in which case we say B is
associative. Then 10.1 implies Bp = B, and τ : B → B is an ordinary involution of the
r-th kind (also called a unitary involution for r = 2). Thus the parameter p in B can be
safely ignored, allowing us to relax the notation to B = (E,B, τ) for cubic associative
algebras with involution of the r-th kind. In accordance with the terminology of [78],
we then speak of (p, µ) as an admissible scalar for B if p ∈ H(B)× and µ ∈ E× satisfy
NB(p) = µµ̄.

10.4. Theorem. (The external second Tits construction) Let B = (E,B, τ, p) be a cubic
alternative k-algebra with isotopy involution of the r-th kind (r = 1, 2) and suppose µ ∈ E
is an admissible scalar relative to B. With the convention of (10.2.1), the direct sum

X := T2(B, µ) := H(B)⊕Bj(1)

of H(B) and B as k-modules is a cubic norm structure over k with base point, adjoint,
norm and bilinear trace respectively given by

1X := 1B + 0 · j,(2)

(x0 + uj)] :=
(
x]0 − upτ(u)

)
+
(
µ̄τ(u)]p−1 − x0u

)
j,(3)

NX(x0 + uj) := NB(x0) + µNB(u) + µ̄NB(u)− TB
(
x0

(
upτ(u)

))
,(4)

TX(x0 + uj, y0 + vj) = TB(x0, y0) + TB
(
upτ(v)

)
+ TB

(
vpτ(u)

)
(5)

for all x0, y0 ∈ H(BR), u, v ∈ BR, R ∈ k-alg. We say T2(B, µ) arises from B, µ by
means of the second Tits construction. �

Remarks. (a) We write J(B, µ) := J(T2(B, µ)) for the cubic Jordan algebra associated
with T2(B, µ).
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(b) Identifying H(B) ⊆ T2(B, µ) through the initial summand makes X(H(B)) ⊆
T2(B, µ) cubic sub-norm structure.

There is also an internal second Tits construction; it rests on the notion of

10.5. Étale elements. Returning to the set-up of 9.5, an element w ∈ X is said to be
étale relative to X0 if it satisfies the conditions

w ∈ V, Q(w) ∈ J(X0)×, NX(w)2 − 4NX0

(
Q(w)

)
∈ k×.(1)

This implies that

Ew := k[t]/
(
t2 −NX(w)t +NX0

(
Q(w)

))
(2)

is a quadratic étale k-algebra (hence the name) that is generated by an invertible element.

Remark. Suppose B is non-singular and r = 2 in 10.4, so we are dealing with isotopy
involutions of the second kind. Then j ∈ T2(B, µ) as in (10.4.1) is an étale element
relative to H(B) if and only if E is generated by µ as a k-algebra.

10.6. Theorem. (The internal second Tits construction) With the notation and assump-
tions of 10.5, suppose X0 has rank n, X is finitely generated projective of rank at most
3n as a k-module and w ∈ X is étale relative to X0. Then there are a cubic alternative
k-algebra B with isotopy involution of the second kind as in 10.2 satisfying E = Ew, an
admissible scalar µ ∈ E relative to B and an isomorphism

T2(B, µ)
∼−→ X

sending H(B) to X0 and j to w.

Instead of a proof. The proof consists in

• changing scalars from k to E, making X0E ⊆ XE a non-singular cubic sub-norm
structure,

• using w to exhibit a pure element l of XE relative to X0E ,
• applying Theorem 9.8 to give X0E the structure of a cubic alternative E-algebra
A and to identify XE with the first Tits construction T1(A,µ), for some µ ∈ E×,

• arriving at the desired conclusion by the method of étale descent. �

10.7. Examples: core split isotopy involutions of the second kind. Let A be a
cubic alternative k-algebra and q ∈ A×.

(a) One checks that

B := (k ⊕ k,A⊕Aop, q ⊕ q, εA),

εA being the switch on A⊕Aop, is a cubic alternative k-algebra with isotopy involution
of the second kind whose core splits. Conversely, all cubic alternative algebras with core
split isotopy involution of the second kind are easily seen to be of this form.

(b) The admissible scalars relative to B as in (a) are precisely the elements µ = λ ⊕
λ−1NA(q) with λ ∈ k×, and there is a natural isomorphism

T2(B, µ)
∼−→ T1(A, λ).

It follows that

• first Tits constructions are always second Tits constructions,
• second Tits constructions become first Tits constructions after an appropriate

quadratic étale extension.

10.8. Remark. For an Albert algebra J over k to arise from the first or second Tits con-
struction, it is obviously necessary that J contain a non-singular cubic Jordan subalgebra
of rank 9. In general, such subalgebras do not exist [64, 63]. Vladimir Chernousov (oral
communication during the workshop) has raised the question of whether their existence
is related to the existence of tori (with appropriate properties) in the group scheme of
type F4 corresponding to J .
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10.9. Examples: cubic étale algebras. Let L be a cubic étale k-algebra, so L is a non-
singular cubic commutative associative k-algebra that has rank 3 as a finitely generated
projective k-module. Suppose further we are given a quadratic étale k-algebra E. Then

L ∗ E := (E,L⊗ E,1L ⊗ ιE)

is a cubic étale k-algebra with involution of the second kind.

As yet, I do not have complete results on the classification of isotopy involutions, but
it should certainly help to note that they are basically the same as isotopes of ordinary
involutions. The precise meaning of this statement may be read off from the following
proposition and its corollary.

10.10. Proposition. If B = (E,B, τ, p) is a cubic alternative algebra with isotopy invo-
lution of the r-th kind over k, then so is

Bq := (E,Bq, τ q, pq), τ q(x) := q−1τ(qx), pq := pq

for every q ∈ H(B)×. We call Bq the q-isotope of B and have

H(Bq) = H(B)q.

Moreover,

(Bq)q′ = Bqq
′

(q′ ∈ H(Bq)×).

�

10.11. Corollary. With q := p−1, the map τ q is an ordinary involution of the r-th kind
on Bq, and τ = (τ q)p is the p-isotope of τ q. �

Isotopes of isotopy involutions also relate naturally to isotopes of second Tits construc-
tions.

10.12. Proposition. (cf. [78]) Let B = (E,B, τ, p) be a cubic alternative algebra with
isotopy involution of the r-th kind over k and q ∈ H(B)×. If µ ∈ E is an admissible
scalar relative to B, then NB(q)−1µ is an admissible scalar relative to Bq and the map

T2(Bq, NB(q)−1µ)
∼−→ T2(B, µ)(q−1), x0 + uj 7−→ qx0 + uj

is an isomorphism of cubic norm structures. �

11. Searching for étale elements

The value of the results derived in the preceding section, particularly of Theorem 10.6,
hinges on existence criteria for étale elements. Here we are able to guarantee good results
only if the base ring is a field. The following important observation, however, holds in
full generality.

11.1. Theorem. Let E be a quadratic étale k-algebra, (M,h) a ternary hermitian space
over E and ∆ an orientation of (M,h) (cf. 5.6). Suppose further we are given a diagonal
matrix Γ ∈ GL3(k). Then

J := Her3(C,Γ),

with C := Zor(E,M, h,∆) (cf. (5.7.1)) is a reduced Albert algebra over k containing
J0 := Her3(E,Γ) as a non-singular cubic Jordan subalgebra, and the following conditions
are equivalent.

(i) J contains étale elements relative to J0.
(ii) M is free (of rank 3) as an E-module and E = k[a] for some invertible element

a ∈ E. �
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Remark. It will not always be possible to generate a quadratic étale algebra by an
invertible element, even if the base ring is a field. In that case, the sole counter example
is E = k ⊕ k over k = F2.

Combining Theorem 11.1 with a Zariski density argument and the fact that finite-
dimensional absolutely simple Jordan algebras over a finite field are reduced, we obtain

11.2. Corollary. Let F be a field, J an Albert algebra over F and J0 ⊆ J an absolutely
simple nine-dimensional subalgebra. Then precisely one of the following holds.

(a) J contains étale elements relative to J0.

(b) J0
∼= Mat3(F )+ and F = F2.

Moreover, if J0
∼= Mat3(F )+, then J contains pure elements relative to J0. �

11.3. Corollary. ([52], [77]) Let J be an Albert algebra over a field F and suppose J0 ⊆ J
is an absolutely simple nine-dimensional subalgebra. Then there exist a non-singular
cubic associative F -algebra B with involution of the second kind as well as an admissible
scalar (p, µ) relative to B such that J ∼= J(B, p, µ) under an isomorphism matching J0

with H(B). �

Treating the analogous situation on the nine-dimensional level, we obtain:

11.4. Proposition. Let E be a quadratic étale k-algebra, Γ ∈ GL3(k) a diagonal matrix
and J := Her3(E,Γ) the corresponding reduced cubic Jordan algebra over k. Then the
diagonal matrices L := Diag3(k) form a cubic étale subalgebra of J , and the following
conditions are equivalent.

(i) J contains étale elements relative to L.
(ii) E = k[a] for some invertible element a ∈ E. �

But since cubic étale algebras over finite fields need not be split, the analogue of Corol-
lary 11.2 does not hold on the nine-dimensional level, while the corresponding analogue
of Corollary 11.3, though true, is more difficult to ascertain if the base field is finite. In
order to formulate this result, we require two preparations.

11.5. The product of quadratic étale algebras. Quadratic étale algebras over a
field F are classified by H1(F,Z/2Z) (see 13.6 below). Since the latter carries a natural
abelian group structure, so do the isomorphism classes of the former. Explicitly, if E,E′

are two quadratic étale F -algebras, so is

E · E′ := H(E ⊗ E′, ιE ⊗ ιE′),

and the composition (E,E′) 7→ E · E′ of quadratic étale F -algebras corresponds to the
additive group structure of H1(F,Z/2Z).

11.6. The discriminant of a cubic étale algebra. Let L be a cubic étale algebra
over a field F . Then precisely one of the following holds.

(a) L is reduced : L ∼= F ⊕ K, for some quadratic étale F -algebra K, necessarily
unique. We say that L is split if K is.

(b) L/F is a separable cubic field extension, which is either cyclic or has the sepa-
rable cubic field extension LK/K cyclic for some separable quadratic field ex-
tension K/F , again necessarily unique.

We call the quadratic étale F -algebra

Disc(L) :=


K if L is as in (a),

F ⊕ F if L/F is a cyclic cubic field extension,

K if L/F is a separable non-cyclic cubic field extension

and K is as in (b),
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the discriminant of L. This terminology is justified by the fact that, if char(F ) 6= 2, then

Disc(L) = F (
√
d), where d is the ordinary discriminant of the minimum polynomial of

some generator of L over F . But notice d = 1 for char(F ) = 2.

11.7. Theorem. ([42, 75, 85]) Let B = (E,B, τ) be a central simple cubic associative
algebra with involution of the second kind over a field F and suppose L ⊆ H(B) is a
cubic étale subalgebra. Then, using the notation of 10.9, 11.6, there exists an admissible
scalar (p, µ) relative to L ∗ (E ·Disc(L)) such that the inclusion L ↪→ H(B) extends to an
isomorphism

J
(
L ∗

(
E ·Disc(L)

)
, p, µ

)
∼−→ H(B).

�

12. Cubic Jordan division algebras

Cubic Jordan algebras over fields have recently been shown to parametrize Tits
hexagons [60]. In the present section, we deal with the special case of cubic Jordan
division algebras, which are basically the same as hexagonal systems in the sense of
[107]; Albert division algebras, i.e., Albert algebras that are Jordan division algebras at
the same time, form a particularly important subclass. Fixing a cubic Jordan algebra
J , with norm N , adjoint x 7→ x], trace T , quadratic trace S, over an arbitrary field F
throughout this section, we begin with a digression into the nil radical.

12.1. The nil radical and separability. The nil radical of J is defined as the unique
ideal Nil(J) ⊆ J that is maximal with respect to the property of containing only nilpotent
elements (cf. 8.4). By [76, Thm. 3.6] we have

Nil(J) =
{
x ∈ J | N(x) = 0, T (x, J) = T (x], J) = {0}

}
.(1)

J is said to be semi-simple (resp. separable) if Nil(J) = {0} (resp. the base change JK
is semi-simple for all field extensions K/F ). By (1), non-singular cubic Jordan algebras
are always separable.

12.2. Theorem. ([88]) The following conditions are equivalent.

(i) J is separable.
(ii) One of the following holds.

(a) There exists a separable pointed quadratic form Q over F such that J is
isomorphic to the cubic Jordan algebra F ⊕ J(Q) of 6.5 (b).

(b) J is reduced: there exist a composition algebra C over F and a diagonal
matrix Γ ∈ GL3(F ) such that J ∼= Her3(C,Γ).

(c) J is a separable Jordan division algebra.

�

Remark. With the obvious adjustments, Racine’s theorem holds (and was phrased as
such) under slightly more general conditions, replacing separability by the absence of
absolute zero divisors: Ux = 0⇒ x = 0.

12.3. Corollary. An absolutely simple cubic Jordan algebra over F is either reduced or
a division algebra. �

One advantage of working with cubic Jordan algebras over fields is that subspaces stabi-
lized by the adjoint automatically become cubic Jordan subalgebras. This aspect must
be borne in mind in the first of the following technicalities but also later on.
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12.4. Lemma. ([12]) Let J be a cubic Jordan algebra over F . Then the cubic Jordan
subalgebra J ′ ⊆ J generated by elements x, y ∈ J is spanned by

1, x, x], y, y], x× y, x] × y, x× y], x] × y]

as a vector space over F . In particular, dimF (J ′) ≤ 9.

For a proof of this result, see also [73, Prop. 6.6].

12.5. Lemma. Let B = (E,B, τ, p) be a cubic alternative F -algebra with isotopy invo-
lution of the r-th kind (r = 1, 2) and suppose µ ∈ E is an admissible scalar. Then the
following conditions are equivalent.

(i) The second Tits construction J(B, µ) is a Jordan division algebra.
(ii) H(B) is a Jordan division algebra and µ /∈ NB(B×).

�

12.6. Lemma. A cubic Jordan division algebra over F is either non-singular or a purely
inseparable field extension of characteristic 3 and exponent at most 1. �

12.7. Theorem. (Enumeration of cubic Jordan division algebras) A Jordan F -algebra
J 6= F is a cubic Jordan division algebra if and only if one of the following conditions
holds.

(a) J/F is a purely inseparable field extension of characteristic 3 and exponent 1.
(b) J/F is a separable cubic field extension.
(c) J ∼= D+ for some central associative division algebra D of degree 3 over F .
(d) J ∼= H(E,D, τ), for some central associative division algebra (E,D, τ) of degree

3 over F with involution of the second kind.
(e) J ∼= J(D,µ) for some central associative division algebra D of degree 3 over F

and some scalar µ ∈ F× \ND(D×).
(f) J ∼= J(D, p, µ) for some central cubic associative division algebra D = (E,D, τ)

with involution of the second kind over F and some admissible scalar (p, µ)
relative to D with µ /∈ ND(D×).

In cases (e),(f), J is an Albert division algebra, and conversely.

Sketch of proof. Let J be a cubic Jordan division algebra over F . If J is singular, we are
in case (a), by Lemma 12.6, so we may assume J is non-singular. If dimF (J) ≤ 3, we are
clearly in case (b), so we may assume dimF (J) > 3. Then, by the theorem of Chevalley
(cf. [44]), the base field is infinite, and Theorem 12.2 combined with a descent argument
shows that J is absolutely simple of dimension 6, 9, 15, or 27.

First suppose dimF (J) = 6. Since J is non-singular, it contains a separable cubic
subfield, from which it is easily seen to arise by means of the second Tits construction in
such a way that condition (ii) of Lemma 12.5 is violated. Hence J cannot be a division
algebra. This contradiction shows that J has dimension at least 9.

If dimF (J) = 9, Thm. 12.2 implies that J is an F -form of Her3(F ⊕ F ) ∼= A+,
A := Mat3(F ), and since the Z-automorphisms of A+ are either automorphisms or anti-
automorphisms of A, a Galois descent argument shows that we are in cases (c),(d), so we
may assume dimF (J) > 9. Any separable cubic subfield E ⊆ J together with an element
y ∈ J \ E by Lemma 12.4 and by what we have seen already generates a separable
subalgebra J ′ ⊆ J of dimension 9. Hence Prop. 12.8 below shows dimF (J) = 27, so J
is an Albert algebra, by Cor. 11.3 and Lemma 12.5 necessarily of the form described in
(e),(f). �

12.8. Proposition. Let J ′ ⊂ J be a proper separable division subalgebra of finite dimen-
sion n. Then dimF (J) ≥ 2n.

Proof. Since J ′ is non-singular by Lemma 12.6, we obtain an orthogonal decomposition
J = J ′ ⊕ J ′⊥ relative to the bilinear trace. The formalism of 9.5 yields a bilinear action
J ′ × J ′⊥ → J ′⊥, (x, v) 7→ x.v. We have J ′⊥ 6= {0}, and fixing 0 6= v ∈ J ′⊥, obtain an
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induced linear map J ′ → J ′⊥, x 7→ x.v, which is easily seen to be injective since J ′ is a
division algebra. This proves dimF (J ′⊥) ≥ n, and the assertion follows. �

12.9. Historical remarks. It took the Jordan community a considerable while to realize
that Albert division algebras do indeed exist, see, e.g., [94] (resp. [87]) for some explicit
(resp. implicit) details on this topic. The first examples of Albert division algebras were
constructed by Albert [3], who investigated them further in [4]. After Springer [102]
(see also Springer-Veldkamp [103]) had provided an alternate approach to the subject by
means of twisted compositions, it was Tits who presented his two constructions (without
proof) at the Oberwolfach conference on Jordan algebras in 1967; a thorough treatment
in book form was subsequently given by Jacobson [36]. It should also be mentioned that
the formula (9.7.3) for the norm of a first Tits construction with the cubic associative
algebra A := Mat3(k) and the scalar µ := 1 as input, leading to the split Albert algebra
in the process, is already in [23, 26.8].

All these investigations were confined to base fields of characteristic not 2. McCrim-
mon [51, 52] removed this restriction. Later on, the two Tits constructions were put
in broader perspective through the Tits process developed by Petersson-Racine [77, 78],
which was subsequently applied first by Tits-Weiss [107] to the theory of Moufang poly-
gons and later on by Mühlherr-Weiss [60] to the one of Tits polygons.

Returning to Albert’s investigations [3, 4] over fields of characteristic not 2, it is
quite clear that he understood the term Jordan division algebra in the linear sense, i.e.,
as referring to a (finite-dimensional) (linear) Jordan algebra J whose (linear) Jordan
product has no zero divisors. The question is how cubic Jordan division algebras in our
sense fit into this picture. Here is the simple answer.

12.10. Proposition. ([68]) For a finite-dimensional cubic Jordan algebra J over a field
of characteristic not 2 to be a Jordan division algebra it is necessary and sufficient that
it be a linear Jordan division algebra, i.e., that its bilinear Jordan product have no zero
divisors.

Proof. Sufficiency is easy. To prove necessity, suppose J is a Jordan division algebra and
a, b ∈ J satisfy a.b = 0, the dot referring to the bilinear Jordan product. The case of a
field extension being obvious, we may assume by Lemma 12.4 and Thm. 12.7 that J has
dimension 9, hence is as in (c) or (d) of that theorem. Passing to a separable quadratic
extension if necessary we may in fact assume J = D+ for some central associative division
algebra D of degree 3 over the base field. Then a.b = 0 is equivalent to the relation ab =
−ba in terms of the associative product of D. Taking norms, we conclude ND(a)ND(b) =
−ND(a)ND(b), and since we are in characteristic not 2, one of the elements a, b must be
zero. �

13. Invariants

After having enumerated non-singular cubic Jordan algebras in Thms. 12.2, 12.7, we
now turn to the problem of classification, with special emphasis on Albert algebras.
The most promising approach to this problem is by means of invariants. In Section 8,
particularly 8.8, we have already encountered the classifying invariants fr and fr+2 for
reduced cubic Jordan algebras Her3(C,Γ) (C a composition algebra of dimension 2r,
r = 1, 2, 3), with nice cohomological interpretations to boot. We speak of the invariants
mod 2 in this context.

Our first aim in this section will be to show that these invariants survive also for cubic
Jordan division algebras. In the case of Albert algebras, Serre [96, Thm. 10] (see also
[27, Thm. 22.4]) has done so by appealing to the algebraic theory of quadratic forms,
particularly to the Arason-Pfister theorem (cf. [18, Cor. 23.9]), combined with a descent
property of Pfister forms due to Rost [92].

Here we will describe an approach that is more Jordan theoretic in nature. Fixing
an arbitrary base field F and an absolutely simple cubic Jordan algebra J over F , our
approach is based on the following concept.
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13.1. Reduced models. A field extension L/F is called a reducing field of J if the
scalar extension JL is a reduced cubic Jordan algebra over L. By a reduced model of J
we mean a reduced cubic Jordan algebra Jred over F which becomes isomorphic to J
whenever scalars are extended to an arbitrary reducing field of J : (Jred)L ∼= JL for all
field extensions L/F having JL reduced. It is clear that, once existence and uniqueness
of the reduced model have been established, the invariants mod 2 of J simply can be
defined as the ones of Jred.

13.2. Theorem. ([83]) Reduced models exist and are unique up to isomorphism.

Instead of a proof. Uniqueness follows from Theorem 8.7 and Springer’s theorem [18,
Cor. 18.5], which implies that two non-singular quadratic forms over F that become
isometric after an odd degree field extension must have been so all along. Existence can
be established in a way that yields some insight into the structure of the reduced model
at the same time.

13.3. The octonion algebra of an involution. Let B = (E,B, τ) be a central simple
associative algebra of degree 3 with involution of the second kind over F . Then (1B , 1E)
is an admissible scalar relative to B and, following [81], we deduce from Corollary 12.3
combined with Lemma 12.5 that J(B, 1B , 1E) is a reduced Albert algebra over F . Its
co-ordinate algebra (cf. 8.3) is an octonion algebra over F denoted by C := Oct(B), while
its norm is a 3-Pfister quadratic form thoroughly investigated by Haile-Knus-Rost-Tignol
[34]. They showed, in particular, (see also [71]) that this 3-Pfister quadratic form is a
classifying invariant for involutions (of the second kind) on B. Therefore we will also
call Oct(B) the octonion algebra of τ . In the following description of its norm, we make
use of the product of quadratic étale algebras and of the discriminant of a cubic étale
algebra as explained in 11.5, 11.6.

13.4. Theorem. ([42, 81, 83]) Let B = (E,B, τ) be a central simple associative algebra
of degree 3 with involution of the second kind over F and suppose L ⊆ H(B) is a cubic
étale subalgebra.

(a) Writing dE/F ∈ F× for the ordinary discriminant of E as a quadratic étale F -algebra,
we have

nOct(B)
∼= nE·Disc(L) ⊕ dE/F (SH(B)|L⊥).

(b) E ⊆ Oct(B) is a quadratic étale subalgebra, and scalars γ1, γ2 ∈ F× satisfy the
relation Oct(B) = Cay(E;−γ1,−γ2) if and only if

H(B)red = Her3(E,Γ), Γ = diag(γ1, γ2, 1)

is a reduced model of H(B). �

13.5. Corollary. ([83]) Let J be an Albert algebra over F , realized as J = J(B, p, µ) by
means of the second Tits construction, where B = (E,B, τ) is a central simple associative
algebra of degree 3 with involution of the second kind over F and (p, µ) is an admissible
scalar relative to B. Then E ⊆ Oct(Bq), q := p−1, is a quadratic étale subalgebra and,
for any γ1, γ2 ∈ F× such that Oct(Bq) = Cay(E;−γ1,−γ2),

Jred = Her3(Oct(Bq),Γ), Γ = diag(γ1, γ2, 1),

is a reduced model of J . �

There exists yet another cohomological invariant of Albert algebras, called the invariant
mod 3, that, contrary to the previous ones, doesn’t seem to allow a non-cohomological
interpretation. In order to define it, we require a short digression into Galois cohomology,
see, e.g., [99], [42] or [32].
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13.6. Facts from Galois cohomology. (a) Let G be a commutative group scheme
of finite type over our base field F , so G is a functor from F -alg to abelian groups,
represented by a finitely generated commutative associative F -algebra. Writing Fs for
the separable closure of F , we put

Hi(F,G) := Hi
(

Gal(Fs/F ),G(Fs)
)

for all integers i ≥ 0 and

H∗(F,G) :=
⊕
i≥0

Hi(F,G),

which becomes a graded ring under the cup product. If we are given a field extension
K/F , there are natural homomorphisms

res := resK/F : H∗(F,G) −→ H∗(K,G) (restriction)

cor := corK/F : H∗(K,G) −→ H∗(F,G) (corestriction)

of graded rings, and if K/F is finite algebraic, then

cor ◦ res = [K : F ]1.

In particular, if a prime p kills G but does not divide [K : F ], then the restriction map
res : H∗(F,G)→ H∗(K,G) is injective.

(b) For a positive integer n, we consider the constant group scheme Z/nZ with trivial
Galois action and conclude that

H1(F,Z/nZ) = HomG(G,Z/nZ), G := Gal(Fs/F ),

the right-hand side of the first equation referring to continuous G-homomorphisms, clas-
sifies cyclic étale F -algebras of degree n, i.e., pairs (L, ρ) where L is an étale algebra
of dimension n over F and ρ : L → L is an F -automorphism having order n and fixed
algebra F1L. The cohomology class of (L, ρ) will be denoted by [L, ρ] ∈ H1(F,Z/nZ).
It is easy to see that a cyclic étale F -algebra (L, ρ) of degree n has either L/F a cyclic
field extension, with ρ a generator of its Galois group, or is split , i.e., isomorphic to(

Fn, (α1, α2, . . . , αn) 7−→ (α2, . . . , αn, α1)
)
.

(c) Let Gm the commutative group scheme of units given by Gm(R) = R× for R ∈ F -alg.
Then

Br(F ) := H2(F,Gm)

is the Brauer group of F . It has a natural interpretation as the group of similarity classes
[D] of central simple (associative) F -algebras D.

(d) The Brauer group is known to be a torsion group. For a positive integer n, we write

nBr(F ) := {α ∈ Br(F ) | nα = 0}
for its n-torsion part, and if n is not divisible by the characteristic of F , then

nBr(F ) = H2(F,µn),

where µn stands for the group scheme of n-th roots of 1, given by

µn(R) := {r ∈ R | rn = 1}, R ∈ F -alg.

In particular, if D is a central simple associative algebra of degree n over F , i.e., an
F -form of Matn(F ), then [D] ∈ H2(F,µn).

(e) Let n be a positive integer not divisible by char(F ), (L, ρ) a cyclic étale F -algebra of
degree n and γ ∈ F×. We write D := (L, ρ, γ) for the associative F -algebra generated by
L and an element w subject to the relations wn = 1D, wa = ρ(a)w (a ∈ L). It is known
that D is a central simple algebra of dimension n2 over F ; we speak of a cyclic algebra
in this context. In cohomological terms we have

[D] = [L, ρ, γ] = [L, ρ] ∪ [γ] ∈ H2(F,Z/nZ⊗ µn) = H2(F,µn),

where γ 7→ [γ] stands for the natural map F× → H1(F,µn) induced by the n-th power
map Gm → Gm.
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13.7. Theorem. ([91]) If F has characteristic not 3, there exists a cohomological in-
variant assigning to each Albert algebra J over F its invariant mod 3, i.e., a unique
element

g3(J) ∈ H3(F,Z/3Z)

which only depends on the isomorphism class of J and satisfies the following two condi-
tions.

(a) If J ∼= J(D,µ) for some central simple associative F -algebra D of degree 3 and
some µ ∈ F×, then

g3(J) = [D] ∪ [µ] ∈ H3(F,µ3 ⊗ µ3) = H3(F,Z/3Z).

(b) g3 commutes with base change, i.e.,

g3(J ⊗K) = resK/F
(
g3(J)

)
for any field extension K/F .

Moreover,

(c) g3 detects division algebras in the sense that an Albert algebra J over F is a
division algebra if and only if g3(J) 6= 0.

�

13.8. Remark. (a) In part (a) of the theorem it is important (though trivial) to note
that, given a primitive cube root ζ ∈ Fs of 1, the identification

µ3(Fs)⊗ µ3(Fs) = Z/3Z, ζi ⊗ ζj = ij mod 3 (i, j ∈ Z)

does not depend on the choice of ζ.

(b) The invariant mod 3 of Albert algebras originally goes back to a suggestion of Serre
[95], [98, pp. 212-222]. Its existence was first proved by Rost [91], with an elementary
proof working also in characteristic 2 subsequently provided by Petersson-Racine [82].
The characterization of Albert division algebras by the invariant mod 3 rests on a theorem
of Merkurjev-Suslin [58], see also [32]. The approach to the invariant mod 3 described
in Theorem 13.7 does not work in characteristic 3; in this case, one has to proceed in a
different manner due to Serre [97, 84]. Nowadays the invariant mod 3 of Albert algebras
fits into the more general framework of the Rost invariant for algebraic groups (groups
of type F4 in the present case), see [27] for a systematic treatment of this topic.

13.9. Corollary. Let J be an Albert division algebra over F . Then JK is an Albert
division algebra over K, for any finite algebraic field extension K/F of degree not divisible
by 3.

Proof. For simplicity we assume char(F ) 6= 3. Since g3(J) 6= 0 by Theorem 13.7 (c),
and the restriction map from H3(F,Z/3Z) to H3(K,Z/3Z) is injective by 13.6 (a), we
conclude g3(JK) 6= 0 from Theorem 13.7 (b). Hence JK is a division algebra. �

13.10. Symplectic involutions. Assume char(F ) 6= 2 and let (B, τ) be a central simple
associative algebra of degree 8 with symplectic involution (of the first kind) over F .
Writing t for the generic trace of the Jordan algebra H(B, τ) and picking an element
e ∈ X := Ker(t) satisfying t(e3) 6= 0, Allison and Faulkner [6] have shown that X carries
the structure of an Albert algebra J(B, τ, e) in a natural way.

13.11. Corollary. The Albert algebra J := J(B, τ, e) considered in 13.10 is reduced.

Instead of a proof. (B, τ) has a splitting field of degree 1, 2, 4, or 8, and one checks
easily that the scalar extension JK is not a division algebra. Hence neither is J , by
Corollary 13.9. �
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13.12. Corollary. ([80]) Let D be a central simple associative F -algebra of degree 3 and
µ, µ′ ∈ F×. For the Albert algebras J(D,µ), J(D,µ′) to be isomorphic it is necessary
and sufficient that µ′ = µND(u), for some u ∈ D×.

Proof. The condition is easily seen to be sufficient. Conversely, suppose J(D,µ) and
J(D,µ′) are isomorphic. Then they have the same invariant mod 3, and the bi-linearity
of the cup product implies

g3

(
J(D,µµ′−1)

)
= [D] ∪ ([µ]− [µ′]) = 0.

Hence J(D,µµ′−1) is not a division algebra by Theorem 13.7 (c), and µµ′−1 ∈ ND(D×)
by Lemma 12.5. �

The analogue of this corollary for second Tits constructions is more delicate:

13.13. Theorem. ([62, 71]) Let D = (E,D, τ) be a central simple associative algebra
of degree 3 with involution of the second kind over F and suppose (p, µ), (p′, µ′) are
admissible scalars relative to D. Then the Albert algebras J(D, p, µ) and J(D, p′, µ′) are
isomorphic if and only if p′ = upτ(u) and µ′ = µND(u) for some u ∈ D×. �

13.14. The Skolem-Noether problem for Albert algebras. Let J be an Albert al-
gebra over F . The Skolem-Noether problem for J asks whether any isomorphism between
separable cubic subalgebras of J can be extended to an automorphism of J . Combining
Cor. 13.12 with Thms. 12.7, 13.13 and standard arguments already in [36], a partial
affirmative answer to this question can be given as follows.

13.15. Theorem. ([36, 62]) Let J be an Albert algebra over F and J1, J2 be separable
cubic subalgebras of J which are not cubic étale. Then every isomorphism from J1 to J2

can be extended to an automorphism of J . �

On the other hand, it is known since Albert-Jacobson [5] that the Skolem-Noether prob-
lem for cubic étale subalgebras of Albert algebras has a negative answer. Fortunately,
however, there is a substitute for this deficiency:

13.16. Theorem. ([29]) Let E1, E2 be cubic étale subalgebras of an Albert algebra J over
F and suppose ϕ : E1 → E2 is an isomorphism. Then there exists an element w ∈ E1

of norm 1 such that ϕ ◦ Rw can be extended to an element of the structure group of J ,
where Rw stands for the right multiplication by w in E1. �

As an application of this result, it has been shown in [29] that exceptional groups of type
3D4 allow outer automorphisms with particularly nice properties. We refer to [29, 1.1]
for details.

14. Open problems

Let F be an arbitrary field. In the preceding sections we have encountered three
cohomological invariants of Albert algebras, namely, f3, f5, belonging to H3(F ; Z/2Z),
H5(F ; Z/2Z), respectively, which make sense also in characteristic 2 ([18]), and g3, be-
longing to H3(F,Z/3Z), which makes sense also in characteristic 3 (Remark 13.8 (b)).
Our starting point in this section will be the following result.

14.1. Theorem. ([27, 25]) f3 and f5 are basically the only invariants mod 2 and g3 is
basically the only invariant mod 3 of Albert algebras over fields of characteristic not 2, 3.
�

In view of this result, it is natural to ask the following question:

14.2. Question. ([95],[96, p. 465]) Do the invariants mod 2 and 3 classify Albert alge-
bras up to isomorphism?
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14.3. Remark. By the results of Section 8, Question 14.2 has an affirmative answer
when dealing with reduced Albert algebras. In particular, an Albert algebra is split if
and only if all its invariants f3, f5, g3 are zero. Furthermore, Aut(J), the group scheme of
type F4 attached to an Albert algebra J over F , is isotropic if and only if the invariants f5

and g3 are zero, which in turn is equivalent to J containing non-zero nilpotent elements,
justifying the terminology of 8.4 .

A less obvious partial answer to Question. 14.2 reads as follows.

14.4. Theorem. ([93]) Let J, J ′ be Albert algebras over F and suppose their invariants
mod 2 and 3 are the same. If F has characteristic not 2, 3, there exist field extensions
K/F of degree dividing 3 and L/F of degree not divisible by 3 such that JK ∼= J ′K and
JL ∼= J ′L. �

A complete answer to Question 14.2 being fairly well out of reach at the moment, one
might try to answer it for specific subclasses of Albert algebras (other than reduced ones),
e.g., for first Tits constructions. This makes sense because first Tits constructions can
be characterized in terms of invariants.

14.5. Theorem. ([74, 42, 71]) For an Albert algebra J over F , the following conditions
are equivalent.

(i) J is a first Tits construction.
(ii) The reduced model of J is split.
(iii) f3(J) = 0.

�

Since f5 is always a multiple of f3 by (8.8.1), Question 14.2 when phrased for first Tits
constructions reads as follows.

14.6. Question. Does the invariant mod 3 classify first Tits construction Albert alge-
bras up to isomorphism?

It has been shown in [107] that isomorphism classes of Moufang hexagons are in a one-to-
one correspondence with isotopy classes of cubic Jordan division algebras. It is therefore
natural to look for classifying invariants of Albert algebras up to isotopy. Before doing
so, however, it has to be decided which ones among the invariants f3, f5, g3 are actually
isotopy invariants. Our answer will be based upon the following result.

14.7. Theorem. ([74]) Let J, J ′ be Albert algebras over F such that J is a first Tits
construction and J ′ is isotopic to J . Then J ′ is isomorphic to J . �

14.8. Corollary. f3 and g3 are isotopy invariants of Albert algebras.

Proof. Let J be an Albert algebra over F . We first deal with f3, where we may assume
that J is a division algebra (Thm. 8.2). Picking any separable cubic subfield L ⊆ J , the
extended algebra JL becomes reduced over L, and since the restriction H3(F,Z/2Z) →
H3(L,Z/2Z) is injective, the assertion follows. Next we turn to g3, where we may assume
that J is not a first Tits construction (Thm. 14.7). But then it becomes one after an
appropriate separable quadratic field extension (10.7), and the assertion follows as before.

�

Now the isotopy version of Question14.2 can be phrased as follows.

14.9. Question. ([95]) Do the invariants f3 and g3 classify Albert algebras up to isotopy?

14.10. Proposition. If f3, f5 and g3 classify Albert algebras up to isomorphism, then f3

and g3 classify them up to isotopy.

Instead of a proof. Using the theory of distinguished involutions ([42, 71]), one shows
that every Albert algebra over F has an isotope whose f5-invariant is zero. �
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14.11. The Kneser-Tits problem. (cf. [24], [30]) Let G be a simply connected abso-
lutely quasi-simple F -isotropic algebraic group. The Kneser-Tits problem asks whether
G(F ), the group of F -points of G, is projectively simple in the sense that it becomes
simple (as an abstract group) modulo its centre. When phrased for certain forms of E8

having F -rank 2 (cf. [106]), the Kneser-Tits problem can be translated into the setting
of Albert algebras and then leads to the Tits-Weiss conjecture ([107, p. 418]).

14.12. The Tits-Weiss conjecture. The structure group (cf. 4.15) of an Albert algebra
over F is generated by U -operators Ux, x ∈ J×, and by scalar multiplications y 7→ αy,
α ∈ F×.

A partial affirmative solution to this conjecture reads as follows..

14.13. Theorem. ([105]) The Tits-Weiss conjecture is true for Albert division algebras
that are pure first Tits constructions. �

Remark. (a) [105] shows in addition that the Tits-Weiss conjecture has an affirmative
answer also for reduced Albert algebras.

(b) By a pure first Tits construction we mean of course an Albert algebra that cannot
be obtained from the second. The significance of the preceding result is underscored by
the fact that pure first Tits constructions exist in abundance. For example, all Albert
division algebras over the iterated Laurent series field in several variables with complex
coefficients are pure first Tits constructions ([79]), see also 14.20 below for more details.

14.14. Essential dimension. ([57, 89]) Roughly speaking, the essential dimension of an
algebraic object over a field F is the minimal number of parameters needed to describe
the object uniquely up to isomorphism. In order to make this more precise, we denote by
F -field the full subcategory of F -alg whose objects are fields and consider a covariant
functor

Φ: F -field −→ set,

where set stands for the category of sets. Given a field extension K/F (i.e., an object
F -field), a morphism α : K0 → K in F -field (making K an extension field of K0) and
some x ∈ Φ(K), we say that x is defined over K0 (or K0 is a field of definition for x) if
x belongs to the image of the set map Φ(α) : Φ(K0) → Φ(K), so some x0 ∈ Φ(K0) has
(x0)K := Φ(α)(x0) = x. Then we define the essential dimension of x (relative to Φ) as

ed(x) := edΦ(x) := min tr.degF (K0),

where the minimum is taken over all fields of definition K0 for x. Moreover, we define
the essential dimension of Φ as

ed(Φ) := max ed(x),

where the maximum is taken over all field extensions K/F and all x ∈ Φ(K).
The preceding formalism applies in particular to the functor

Alb : F -field −→ set

that assigns to each field extension K/F the set of isomorphism classes of Albert algebras
over K, and to each morphism α : K → K ′ in F -alg the set map Alb(α) : Alb(K) →
Alb(K ′) induced by the base change of Albert algebras from K to K ′. The functor Alb
is equivalent to the G-torsor functor over F for G the split group of type F4.

The essential dimension of the functor Alb is not known, nor is the one, aside from
trivial cases, of individual Albert algebras. On the positive side, we can record the
following two results.

14.15. Theorem. ([49]) ed(Alb) ≤ 7 for char(F ) 6= 2, 3. �



ALBERT ALGEBRAS 39

14.16. Theorem. ([9]) ed(Alb) ≥ 5 in all characteristics. �

It is not known whether Thm. 14.15 survives in the bad characteristics 2 and 3. A much
cruder estimate covering these cases as well reads as follows7.

14.17. Theorem. ([26]) ed(Alb) ≤ 19 in all characteristics. �

14.18. Wild Albert algebras. [28] investigated wild Pfister quadratic forms over
Henselian fields and also connected their results with Milnor’s K-theory mod 2. In doing
so, they took advantage of the fact that Pfister quadratic forms are classified by their
cohomological invariants (see 8.8 above).

It is tempting to try a similar approach for wild Albert algebras over Henselian fields.
The fact that we do not know at present whether Albert algebras are classified by their
cohomological invariants should not serve as a deterrent but, on the contrary, as an
incentive to do so. Indeed, working on this set-up could lead to new insights into the
classification problem 14.2.

14.19. The Jacobson embedding theorem. Jacobson [36] has shown that every el-
ement of a split Albert algebra over a field F of characteristic not 2 can be embedded
into a (unital) subalgebra isomorphic to Mat3(F )+. In view of Jacobson’s result, which
has been extended to base fields of arbitrary characteristic [73], it is natural to ask the
following question: can every element of a first Tits construction Albert division algebra
be embedded into a subalgebra isomorphic to D+, for some central associative division
algebra D of degree 3? The answer to this question doesn’t seem to be known.

14.20. Special fields. What do we know about Albert algebras over special fields? The
reader may wish to consult the matrix (1) below from which one can depict, over the
various fields in column 1, the number of non-isomorphic (resp. non-isotopic) reduced
Albert algebras in column 2 (resp. 3) and the number of non-isomorphic (resp. non-
isotopic) Albert division algebras in column 4 (resp. 5).

field isom-red isot-red isom-div isot-div

C 1 1 0 0

R 3 2 0 0

Fq 1 1 0 0

[F : Qp] <∞ 1 1 0 0

[F : Q] <∞ 3#(F↪→R) 2#(F↪→R) 0 0

C((t1, . . . , tn)) αn(C) βn(C) γn(C) γn(C)

R((t1, . . . , tn)) αn(R) βn(R) 0 0,

(1)

Here #(F ↪→ R) stands for the number of real embeddings of a number field F , while
C((t1, . . . , tn)) (resp. R((t1, . . . , tn))) refers to the field of iterated formal Laurent series
in n variables with complex (resp. real) coefficients. Finally, the numerical entries in the

7I am grateful to Mark MacDonald for having drawn my attention to this.
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two bottom rows are defined by

αn(C) =
1

210 · 32 · 7

(
25n − 31 · 24n + 347 · 23n+1 − 491 · 22n+3 + 115 · 2n+6 + 59 · 210

)
,

βn(C) =
1

23 · 3 · 7

(
23n − 7

(
22n − 2n+1

)
+ 160

)
,

γn(C) =
1

24 · 33 · 13

(
33n − 13

(
32n − 3n+1

)
− 27

)
,

αn(R) =
1

25 · 32 · 7

(
25n + 49 · 24n + 323 · 23n+1 + 209 · 22n+3 + 7 · 2n+8 + 1818

)
,

βn(R) =
1

21

(
23n + 7

(
22n + 2n+1

)
+ 20

)
.

The entries in rows 1, 2 of (1) are standard, while the ones in row 3 (resp. 4) follow
from the theorem of Chevalley-Warning (cf. [44]) (resp. from standard properties of
quadratic forms over p-adic fields combined with a theorem of Springer [100]), which
imply that Albert algebras over the fields in question are split. Moreover, the numerical
entries in row 5 are due to Albert-Jacobson [5], while the ones in rows 6, 7 are contained
in, or follow easily from, [65, 66, 67]8. Finally, the number of non-isomorphic isotropic
Albert algebras over the special fields at hand can also be read off from (1) since, by
Theorems 8.2, 8.5, it agrees with the entries of column 3.

14.21. The cyclicity problem. We close this paper with a question that, fittingly, was
raised by Albert [4] himself: Does every Albert division algebra contain a cyclic cubic
subfield? A positive answer to this question would not only have a significant impact
on Albert’s own approach to the subject but also on the theory of cyclic and twisted
compositions [102, 103, 42].

While we do know that Albert’s question has an affirmative answer if (i) the base
field has characteristic not 3 and contains the cube roots of 1 [75] or (ii) the base field
has characteristic 3 [70], dealing with this question in full generality seems to be rather
delicate since, for example, the answer to its analogue for cubic Jordan division algebras
of dimension 9 is negative. This follows from examples constructed in [75] (see also [34])
which live over the field R((t1, . . . , tn)) in the last row of (14.20.1). Unfortunately, this
field is of no interest to Albert’s original question since, again by the last row of (14.20.1),
it fails to admit Albert division algebras.
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involution, 2, 6, 10

conjugate transpose, 3

Γ-twisted, 18

distinguished, 37

octonion algebra of, 33

scalar, 11

symplectic, 11, 35

unitary, 26

Jacobson embedding theorem, 39

Jordan algebra, 8

of τ -symmetric elements, 8

absolutely simple, 8

division, 9

exceptional, 9

homomorphism, 7

ideal, 8

inner structure group, 10

invertibility, 9
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isotope, 9

isotopic, 9

Jordan circle product, 7

linear, 2, 6

exceptional, 2

division, 32

special, 2

of a pointed quadratic form, 8

of an associative algebra, 8

powers, 9

quadratic, 7

simple, 8

special, 2, 9

structure group, 10

unit, 7

Jordan identity, 2

Jordan triple product, 6, 7

Kneser-Tits problem, 38

left multiplication operator, 4, 6, 11

Lie algebra, 4

of type E6, 4

of type F4, 4

of type G2, 4

module

faithfully flat, 13

flat, 13

projective, 5

rank, 5

Moufang polygon, 32

nilpotent element, 21

octonion algebra, 3, 11

conjugation, 3

norm, 3

of an involution, 33

split, 3

Pfister form, 22

polynomial law, 15

homgeneous, 15

scalar, 15

polynomial map, 15

pure element, 24

pure first Tits construction, 38

quadratic form, 5

non-degenerate, 5

bilinear radical, 5

non-singular, 5

permitting composition, 3, 10

pointed, 8

base point, 8

conjugation, 8

separable, 5

quadratic map, 5

bilinearization, 5

polarization, 5

quaternion algebra, 11

scalar extension, 5

structure algebra, 4

subalgebra, unital, 5

symmetric matrix product, 3

symmetric product, 2

Tits hexagon, 30

Tits polygon, 32
Tits-Weiss conjecture, 38

twisted hermitian matrices, 18

unimodular, 15

Zorn algebra, 14
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60. B. Mühlherr and R.M. Weiss, Tits polygons. With an appendix by H.P. Petersson, Submitted.
61. E. Neher, Jordan triple systems by the grid approach, Lecture Notes in Mathematics, vol. 1280,

Springer-Verlag, Berlin, 1987.

62. R. Parimala, R. Sridharan, and M.L. Thakur, A classification theorem for Albert algebras, Trans.
Amer. Math. Soc. 350 (1998), no. 3, 1277–1284.

63. , Tits’ constructions of Jordan algebras and F4 bundles on the plane, Compositio Math.

119 (1999), no. 1, 13–40.
64. R. Parimala, V. Suresh, and M.L. Thakur, Jordan algebras and F4 bundles over the affine plane,

J. Algebra 198 (1997), no. 2, 582–607.
65. H.P. Petersson, Composition algebras over a field with a discrete valuation, J. Algebra 29 (1974),

414–426.
66. , Reduced simple Jordan algebras of degree three over a field with a discrete valuation, Arch.

Math. (Basel) 25 (1974), 593–597.
67. , Exceptional Jordan division algebras over a field with a discrete valuation, J. Reine Angew.

Math. 274/275 (1975), 1–20, Collection of articles dedicated to Helmut Hasse on his seventy-fifth
birthday, III.

68. , On linear and quadratic Jordan division algebras, Math. Z. 177 (1981), no. 4, 541–548.

69. , Composition algebras over algebraic curves of genus zero, Trans. Amer. Math. Soc. 337
(1993), no. 1, 473–493.

70. , Albert division algebras in characteristic three contain cyclic cubic subfields, Arch. Math.

(Basel) 72 (1999), no. 1, 40–42.
71. , Structure theorems for Jordan algebras of degree three over fields of arbitrary characte-

ristic, Comm. Algebra 32 (2004), no. 3, 1019–1049.
72. , Cyclic compositions and trisotopies, J. Algebra 307 (2007), no. 1, 49–96.



46 HOLGER P. PETERSSON

73. , An embedding theorem for reduced Albert algebras over arbitrary fields, Comm. Algebra

43 (2015), no. 5, 2062–2088.

74. H.P. Petersson and M.L. Racine, Springer forms and the first Tits construction of exceptional
Jordan division algebras, Manuscripta Math. 45 (1984), no. 3, 249–272.

75. , The toral Tits process of Jordan algebras, Abh. Math. Sem. Univ. Hamburg 54 (1984),

251–256.
76. , Radicals of Jordan algebras of degree 3, Radical theory (Eger, 1982), Colloq. Math. Soc.

János Bolyai, vol. 38, North-Holland, Amsterdam, 1985, pp. 349–377.

77. , Classification of algebras arising from the Tits process, J. Algebra 98 (1986), no. 1, 244–
279.

78. , Jordan algebras of degree 3 and the Tits process, J. Algebra 98 (1986), no. 1, 211–243.

79. , Pure and generic first Tits constructions of exceptional Jordan division algebras, Algebras
Groups Geom. 3 (1986), no. 3, 386–398.

80. , Albert algebras, Jordan algebras (Oberwolfach, 1992), de Gruyter, Berlin, 1994, pp. 197–
207.

81. , On the invariants mod 2 of Albert algebras, J. Algebra 174 (1995), no. 3, 1049–1072.

82. , An elementary approach to the Serre-Rost invariant of Albert algebras, Indag. Math.
(N.S.) 7 (1996), no. 3, 343–365.

83. , Reduced models of Albert algebras, Math. Z. 223 (1996), no. 3, 367–385.

84. , The Serre-Rost invariant of Albert algebras in characteristic three, Indag. Math. (N.S.) 8
(1997), no. 4, 543–548.

85. H.P. Petersson and M.L. Thakur, The étale Tits process of Jordan algebras revisited, J. Algebra

273 (2004), no. 1, 88–107.
86. A. Pfister, On the Milnor conjectures: history, influence, applications, Jahresber. Deutsch. Math.-

Verein. 102 (2000), no. 1, 15–41.

87. C.M. Price, Jordan division algebras and the algebras A(λ), Trans. Amer. Math. Soc. 70 (1951),
291–300.

88. M.L. Racine, A note on quadratic Jordan algebras of degree 3, Trans. Amer. Math. Soc. 164 (1972),
93–103.

89. Z. Reichstein, Essential dimension, Proceedings of the International Congress of Mathematicians.

Volume II, Hindustan Book Agency, New Delhi, 2010, pp. 162–188.

90. N. Roby, Lois polynomes et lois formelles en théorie des modules, Ann. Sci. École Norm. Sup. (3)
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