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Abstract. We show the existence of a nonzero graded form on a Lie torus by the existence

of a nonzero graded form on a structurable torus. This gives a simple characterization of the
core of an extended affine Lie algebra (EALA). Namely, the core of any EALA is a Lie torus,

and any centreless Lie torus is the centreless core of some EALA. We also show that a graded

form on a Lie torus is unique up to scalars.

Introduction

The core of an extended affine Lie algebra (or an EALA for short) is itself already a very
interesting object. It is a natural but not too wide generalization of the derived algebra of
an affine Kac-Moody Lie algebra. (The derived algebra is often called an affine Kac-Moody
Lie algebra too.) Our motivation in this paper is to find a simple and direct definition
of the core that does not depend intrinsically on an EALA. Also, the classification of the
cores seems not depending on specific properties of the base field, even though EALAs are
only defined over C (the field of complex numbers). Moreover, the classification suggests a
strong connection between EALAs and finite-dimensional simple isotropic Lie algebras, and
therefore the base field should be allowed to be non-algebraically closed.

Thus we have picked three rather simple axioms to define a Lie algebra over a field F
of characteristic 0 corresponding to the core of an EALA. We call such a Lie algebra a Lie
n-torus or simply a Lie torus. It turns out that these choices work well, and a Lie n-torus
over C characterizes the core of an EALA with nullity n.

We now give a rough explanation of the three axioms. (The precise definition is in Defi-
nition 1.3.) First, we require that the Lie algebra be graded by both a finite irreducible root
system ∆ (possibly nonreduced) and the abelian group Zn. Affine Kac-Moody Lie algebras
have such a double grading for n = 1. Second, we pick one of the most important and ba-
sic properties of finite-dimensional simple isotropic Lie algebras, which we call the division
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property. Roughly speaking, this property is equivalent to the invertibility in the (unital)
coordinate algebra attached to the Lie algebra. The Lie algebras satisfying these 2 axioms,
called division (∆,Zn)-graded Lie algebras, are already interesting, but their classification
seems difficult. Thus we assume, as the third axiom, that the dimensions of certain homoge-
neous spaces relative to the double grading above are equal or less than 1 (1-dimensionality).
By adding this assumption, the coordinate algebra becomes a very concrete object which
is a natural analogue of the algebra of Laurent polynomials in n-variables in several classes
of unital algebras (associative, alternative, Jordan or structurable algebras). We call it an
n-torus or simply a torus. If the torus is associative, it is a twisted group algebra F t[Zn], or
in other words, a quantum torus Fq[t±1

1 , . . . , t±1
n ]. In some sense tori are the most tractable

infinite-dimensional algebras, and they are concrete (more tractable and concrete than finite-
dimensional division algebras though a torus is never a division algebra). Also, most tori
can be embedded into certain finite-dimensional division algebras over certain fields.

Besides their connection with the theory of EALAs, Lie tori may be relevant to the study
of Zn-graded Lie algebras. A Lie n-torus modulo its centre, called a centreless Lie n-torus,
is a Zn-graded Lie algebra which is graded simple (see [Y5, Lem.4.4]). Such algebras for
n = 1, i.e., Z-graded Lie algebras which are graded simple were classified by Mathieu [M]
with certain condition on the dimensions of homogeneous spaces. The classification of Zn-
graded Lie algebras which are graded simple is a big open problem (see [OZ] for some results
on the Z2-graded Lie algebras with certain restrictions). Toward the classification of such
graded Lie algebras, centreless Lie n-tori would serve as counterpart of (possibly twisted)
loop algebras in the case n = 1.

It is easy to see that the core of an EALA is a Lie torus. The problem is the converse.
We need to find a nonzero graded form on a Lie torus, because one of the EALA axioms
requires the existence of a nondegenerate form. (We simply use the term form for an
invariant symmetric bilinear form.) Since Lie tori are infinite-dimensional, the existence of
such a form was not so easy to show. For the preparation, we first prove in Lemma 2.1 that
a nonzero graded form on a Lie torus has very strong properties. For example, the induced
form on the centreless Lie torus is nondegenerate. From these properties we know how such
a form should be defined. Also, by this lemma, we prove that a graded form on a Lie torus
is unique up to scalars (Theorem 2.2).

Then we prove for a ∆-graded Lie algebra L = ⊕µ∈∆∪{0} Lµ that the existence of a certain
bilinear form on the space ⊕µ∈∆ Lµ guarantees the existence of a form on L (Lemma 4.1).
This is a similar trick which was used for showing the existence of a form on the Tits-
Kantor-Koecher Lie algebra associated to a Jordan algebra if the Jordan algebra has a
form, or more generally, the existence of a form on the Kantor Lie algebra associated to a
structurable algebra if the structurable algebra has a form (Schafer [S]). It is also similar to
the method of showing that a symmetrizable Kac-Moody Lie algebra has a form (e.g. [K,
p.18]). By the trick, we can reduce the problem to the case of Lie tori of type BC1.

A Lie torus of type BC1 is coordinatized by a structurable torus (see §6 and Lemma 6.1).
We will show that the existence of a nonzero graded form on a structurable torus guarantees
the existence of a nonzero graded form on a Lie torus of type BC1 (Corollary 3.6), using
Schafer’s result mentioned above (see Lemma 6.3 and Remark 6.4). Thus our problem now
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is to show the existence of a nonzero graded form on a structurable torus.
Structurable n-tori are not classified yet. However, Allison and the author have recently

classified structurable 2-tori in [AY]. Also, we already knew that a Jordan torus, which is
in a subclass of structurable tori, admits a nondegenerate graded form (see [NY]). Using
these results, we can show that any structurable n-torus admits a nondegenerate graded
form (Theorem 5.2). Thus we solve the problem, that is, any centreless Lie torus over C is
the centreless core of some EALA.

In the final section, we construct an EALA over F from a centreless Lie torus over F
(not necessarily over C), by the method used in [AABGP, Ch.III]. One finds that such an
EALA also has an extended affine root system, using the existence of the form above. Also,
we construct a certain EALA similar to a so-called degenerate EALA studied in [G].

The organization of the paper is as follows. In §1 we define a Lie torus and a graded
form. In §2 we prove some properties and uniqueness of the graded forms explained above.
In §3 we give a key lemma for the existence of a form on a ∆-graded Lie algebra. In §4
we review a characterization of the centreless core of an EALA in [AABGP, Ch.III], and
we explain our purpose and goal in connection with Lie tori. In §5 we define a structurable
torus. Then the existence of a nondegenerate graded form on a structurable torus is shown.
In §6 we review Kantor Lie algebras, and state the coordinatization theorem of Lie tori of
type BC1. Then we show that a Lie torus of type BC1 admits a nonzero graded form. In
§7 we finally show that a Lie torus of any type admits a nonzero graded form. In the last
section we discuss EALAs over F .

Finally, I would like to thank Professors Bruce Allison, Jun Morita and Erhard Neher for
some suggestions and corrections.

§1 Basic concepts

Throughout the paper the base field F has characteristic 0. Let ∆ be a finite irreducible
root system, i.e., ∆ = Al (l ≥ 1), Bl (l ≥ 1, B1 = A1), Cl (l ≥ 2, C2 = B2), Dl (l ≥ 4), El

(l = 6, 7, 8), F4, G2 and BCl (l ≥ 1). Let

∆red :=
{

∆ if ∆ is reduced
{µ ∈ ∆ | µ is reduced, i.e., 1

2µ /∈ ∆} otherwise, i.e., if ∆ = BCl.

Note that ∆red = Bl if ∆ = BCl. Let g be a finite-dimensional split simple Lie algebra over
F with a split Cartan subalgebra h and the root system ∆red so that g has the root space
decomposition g = h⊕ (⊕µ∈∆red gµ

)
with h = g0. A ∆-graded Lie algebra L over F with

grading subalgebra g or grading pair (g, h) is defined as

(i) L contains g as a subalgebra;
(ii) L = ⊕µ∈∆∪{0} Lµ, where Lµ = {x ∈ L | [h, x] = µ(h)x for all h ∈ h}; and
(iii) L0 =

∑
µ∈∆ [Lµ, L−µ].

Note that the Jacobi identity implies [Lµ, Lν ] ⊂ Lµ+ν for all µ, ν ∈ ∆ ∪ {0}. Also, the
centre Z = Z(L) of L is contained in L0, and L/Z is again a ∆-graded Lie algebra with
Z(L/Z) = 0. A ∆-graded Lie algebra having trivial centre is called centreless.
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Remark 1.1. (i) The ∆-graded Lie algebras for a reduced ∆ were introduced by Berman and
Moody [BM], and have been recently generalized for a nonreduced case by Allison, Benkart
and Gao [ABG1]. They classified more general BCl-graded Lie algebras in [ABG1] (and
[BS] for l = 1) than our concept above, and so we only consider a special class of BCl-Lie
algebras in their sense. The reason comes from the theory of extended affine Lie algebras
(EALAs). Namely, the core of an EALA is a ∆-graded Lie algebra in our sense, which was
shown in [AG, Proposition 1.16].

(ii) A Bl-graded Lie algebra is considered as a BCl-graded Lie algebra. In particular, an
A1-graded Lie algebra is considered as a BC1-graded Lie algebra.

Definition 1.2. We call a symmetric invariant bilinear form on a Lie algebra L simply a
form. Here ‘invariant’ is in the sense that ([x, y], z) = (x, [y, z]) for all x, y, z ∈ L. Note
that if a ∆-graded Lie algebra L = ⊕µ∈∆∪{0} Lµ has a form (·, ·), then (Lµ, Lν) = 0 unless
µ + ν = 0 for µ, ν ∈ ∆ ∪ {0}.

Throughout the paper let G = (G, +, 0) be an abelian group. We will consider a G-graded
Lie algebra L = ⊕g∈G Lg, which is a G-graded vector space satisfying [Lg, Lh] ⊂ Lg+h for
all g, h ∈ G. For convenience, we always assume that

suppL := {g ∈ G | Lg 6= 0} generates G.

Definition 1.3.
(1) A form (·, ·) on a G-graded Lie algebra L = ⊕g∈G Lg satisfying

(Lg, Lh) = 0 unless g + h = 0 for all g, h ∈ G,

is called a graded form.
(2) A ∆-graded Lie algebra L = ⊕µ∈∆∪{0} Lµ with grading subalgebra g is called (∆, G)-

graded if L = ⊕g∈G Lg is a G-graded Lie algebra such that g ⊂ L0. Then we have

L =
⊕

µ∈∆∪{0}

⊕

g∈G

Lg
µ,

where Lg
µ = Lµ ∩ Lg since Lg is an h-submodule of L.

(3) Let Z(L) be the centre of L and let µ∨ ∈ h for µ ∈ ∆ be the coroot of µ. Then L is
called a division (∆, G)-graded Lie algebra if for any µ ∈ ∆ and any 0 6= x ∈ Lg

µ,

there exists y ∈ L−g
−µ such that [x, y] ≡ µ∨ modulo Z(L). (division property)

(4) A division (∆, G)-graded Lie algebra L = ⊕µ∈∆∪{0} ⊕g∈G Lg
µ is called a Lie G-torus

of type ∆ if

dimF Lg
µ ≤ 1 for all g ∈ G and µ ∈ ∆. (1-dimensionality)

If G = Zn, we call it a Lie n-torus or simply a Lie torus.

The following two lemmas are easy consequence from the definition.
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Lemma 1.4. Let L = ⊕µ∈∆∪{0} ⊕g∈G Lg
µ be a Lie G-torus with grading pair (g, h) and its

centre Z. Then L/Z is a Lie G-torus with the same grading pair (g, h). (We identify any
subspace of L and its natural image on L/Z if it maps injectively.) Also, gµ = L0

µ for all
µ ∈ ∆red and h⊕ Z0 = L0

0, where Z0 = Z ∩ L0.

Proof. Since Z is G-graded and contained in L0, the first assertion is clear. By 1-dimensionality,
gµ = L0

µ for all µ ∈ ∆red. By the division property and 1-dimensionality, [Lg
µ, L−g

−µ] ≡ Fµ∨

mod Z0 for all µ ∈ ∆ and g ∈ G, and so h⊕ Z0 = L0
0. ¤

Lemma 1.5. Let L be a ∆-graded Lie algebra with its centre Z and a form (·, ·). Then
Z ⊂ rad(·, ·), where rad(·, ·) := {x ∈ L | (x, L) = 0} is the radical of (·, ·). Also, if L/Z has
a form (·, ·), then L has a unique extended form (·, ·)̃ such that (x, y)̃ = (x + Z, y + Z) for
all x, y ∈ L.

Proof. Since Z ⊂ L0, we have (Z, Lµ) = 0 for µ 6= 0. Since L0 =
∑

µ∈∆ [Lµ, L−µ], we get
(Z, L) = 0. The second statement is clear. ¤

§2 Some properties of graded forms

Our main object in the paper is a Lie torus, but we consider a Lie G-torus since the
abelian group G need not be Zn in this section.

Lemma 2.1. Let L = ⊕µ∈∆∪{0} ⊕g∈G Lg
µ be a division G-graded Lie algebra with grading

pair (g, h) and its centre Z. Suppose that L admits a nonzero graded form (·, ·). Then:

(a) Z = rad(·, ·).

If L is a Lie G-torus, then

(b) (·, ·)|h×h is nondegenerate, and

(c) [xg
µ, x−g

−µ] ≡ (xg
µ, x−g

−µ)tµ mod Z

for any xg
µ ∈ Lg

µ and x−g
−µ ∈ L−g

−µ, where tµ for µ ∈ ∆ ∪ {0} is a unique element in h such
that µ(h) = (tµ, h) for all h ∈ h.

Proof. (a): By Lemma 1.5, we only need to show rad(·, ·) ⊂ Z. But this follows from the
fact that L/Z is graded simple (see [Y5, Lem.4.4]) since rad(·, ·) is a graded ideal.

(b): Suppose that (·, ·)|h×h is degenerate. So let 0 6= h ∈ rad(·, ·)|h×h. Since the simple
Lie algebra g = (g, h) is a subalgebra, there exist µ ∈ ∆ and 0 6= xµ ∈ gµ = L0

µ such that
[h, xµ] 6= 0. So [h, xµ] = axµ for some 0 6= a ∈ F . Then there exists y−µ ∈ g−µ = L−0

−µ such
that [xµ, y−µ] = µ∨. Hence, 0 = (h, µ∨) = (h, [xµ, y−µ]) = a(xµ, y−µ), and we get

(∗) (xµ, y−µ) = 0.

Also, we have 0 = (2xµ, y−µ) = ([µ∨, xµ], y−µ) = (µ∨, [xµ, y−µ]) = (µ∨, µ∨). Then, for any
g ∈ G with 0 6= xg

µ ∈ Lg
µ, by the division property (and Lemma 1.5), there exists 0 6= y−g

−µ ∈
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L−g
−µ so that (xg

µ, y−g
−µ) = 1

2 ([µ∨, xg
µ], y−g

−µ) = 1
2 (µ∨, µ∨) = 0. Hence, by 1-dimensionality,

(Lg
µ, L−g

−µ) = 0 for all g ∈ G, and so (Lµ, L−µ) = 0.
Now, for any ν ∈ ∆ and g ∈ G with 0 6= xg

ν ∈ Lg
ν , there exists 0 6= y−g

−ν ∈ L−g
−ν

again so that ν(µ∨)(xg
ν , y−g

−ν) = ([µ∨, xg
ν ], y−g

−ν) = (µ∨, ν∨). But, by (∗), we have (µ∨, ν∨) =
([xµ, y−µ], ν∨) = (xµ, [y−µ, ν∨]) = µ(ν∨)(xµ, y−µ) = 0. Thus, for any ν ∈ ∆ such that
ν(µ∨) 6= 0, we get (xg

ν , y−g
−ν) = 0. Hence, by 1-dimensionality, (Lg

ν , L−g
−ν) = 0 for all g ∈ G,

and so (Lν , L−ν) = 0. Repeating this process, we obtain (Lν , L−ν) = 0 for all ν ∈ ∆ since ∆
is irreducible. Therefore, (L,L) = 0 since L0 =

∑
µ∈∆ [Lµ, L−µ]. So this is a contradiction.

(c): By a usual trick, we have

([xg
µ, x−g

−µ], h) = (xg
µ, [x−g

−µ, h]) = µ(h)(xg
µ, x−g

−µ) = (tµ, h)(xg
µ, x−g

−µ) = ((xg
µ, x−g

−µ)tµ, h)

for any xg
µ ∈ Lg

µ, x−g
−µ ∈ L−g

−µ and all h ∈ h. Hence (c) follows from (b) and Lemma 1.4
(h⊕ Z0 = L0

0). ¤
Using the lemma, we can show the following.

Theorem 2.2. A graded form on a Lie G-torus is unique up to scalars.

Proof. Suppose that (·, ·) and (·, ·)′ are nonzero graded forms on a Lie G-torus L. Let
L = ⊕µ∈∆∪{0} ⊕g∈G Lg

µ with grading pair (g, h) and its centre Z. Then, by Lemma 2.1,
we have in L/Z

(xg
µ, x−g

−µ)tµ = (xg
µ, x−g

−µ)′t′µ

for any xg
µ ∈ Lg

µ and x−g
−µ ∈ L−g

−µ, where tµ and t′µ for µ ∈ h∗ are unique elements in h

such that (tµ, h) = µ(h) = (t′µ, h)′ for all h ∈ h. Also, (·, ·)|h×h and (·, ·)′|h×h are both
nonzero, and so (·, ·)|g×g and (·, ·)′|g×g are both nondegenerate. Thus there exists 0 6= c ∈ F
such that (·, ·)′|g×g = c(·, ·)|g×g. Since (tµ, h) = µ(h) = c(t′µ, h) for all h ∈ h, we get
tµ = ct′µ. Hence, c(xg

µ, x−g
−µ) = (xg

µ, x−g
−µ)′, and so c(·, ·)|Lg

µ×L−g
−µ

= (·, ·)′|Lg
µ×L−g

−µ
. Since

(·, ·)|Lg
µ×Lk

ν
= (·, ·)′|Lg

µ×Lk
ν

= 0 for µ + ν 6= 0 or g + k 6= 0, we have c(·, ·)|L′×L′ = (·, ·)′|L′×L′ ,
where L′ := ⊕µ∈∆ Lµ. Therefore, c(·, ·) = (·, ·)′, since L0 =

∑
µ∈∆ [Lµ, L−µ]. ¤

Remark 2.3. The theorem is false if the form is not graded. In fact, it is easy to give such
an example using a loop algebra (which is a Lie 1-torus). Note that the last sentence of the
exercise 2.5 in [K] should be modified. (The derived algebra of an affine Kac-Moody Lie
algebra is a Lie 1-torus.)

§3 The centreless core of an EALA

A typical example of Lie tori is the core of an EALA. In fact, it is shown in [AG, §1] except
division property. The division property is shown in [Y2, Ex.2.8(b)] or [AY, Lem.5.5]). The
main purpose of this paper is to show that any Lie torus over C is centrally isogeneous to
the core of some EALA. For this purpose, we review a characterization of the centreless
core (the core modulo its centre) of an EALA in [AABGP, Ch.III] (see also [Az]). Namely,
the centreless core of an EALA with nullity n is characterized as a Zn-graded Lie algebra
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L = ⊕σ∈Zn Lσ over C satisfying the following 8 conditions: (We slightly simplified and
modified the conditions there for the use of our notation.)

(1) L has a nondegenerate Zn-graded form (·, ·).
(2) There exists a nontrivial finite-dimensional abelian subalgebra h of L such that adL h

is diagonalizable. Thus L = ⊕µ∈h∗ Lµ, where h∗ is the dual space of h and Lµ =
{x ∈ L | [h, x] = µ(h)x for all h ∈ h}. We put ∆ = {µ ∈ h∗ | µ 6= 0 and Lµ 6= 0}.

(3) (·, ·)|h×h is nondegenerate.
Thus we may transfer (·, ·) to a form on h∗ (the dual space of h).

(4) L is generated by Lµ for µ ∈ ∆.
(5) The restriction of the form (·, ·) to the real space V spanned by ∆ is a positive definite

real valued form such that ∆ is an irreducible finite root system in V relative to the
form (·, ·).

(6) Lµ = ⊕σ∈Zn Lσ
µ for all µ ∈ ∆, where Lσ

µ := Lµ ∩ Lσ.
(7) L0

µ 6= 0 for all µ ∈ ∆red.
(8) h = L0

0.
It is not so difficult to show directly that a Lie algebra satisfying (1)-(8) is a centreless

Lie torus. Thus,

(3.1) a Lie algebra satisfying (1)-(8) above is a centreless Lie torus,

and our purpose is to show the converse.

Lemma 3.2. If a centreless Lie torus over C admits a nonzero graded form, then it satisfies
(1)-(8) above. More generally, if a Lie torus L over C with its centre Z admits a nonzero
graded form, then L/Z satisfies (1)-(8) above.

Proof. (2), (4), (6) and (7) already follow from our definition of a Lie torus. Also, (8) follows
from Lemma 1.4. Now, consider first our ∆ of the grading pair (g, h) of L as a root system
in the euclidean space spanned by ∆ through the Killing form κ on g in the standard way
(see e.g. [H, p.40]). Next, by by Lemma 2.1, L/Z has the well-defined nondegenerate graded
form (·, ·) such that (·, ·)|h×h is nondegenerate, and so (·, ·)|g×g is nondegenerate. Hence
c(·, ·)|g×g = κ for some 0 6= c ∈ C. Take the form c(·, ·) on L/Z for (1). Then (3) and (5)
hold. ¤

To show the existence of a nonzero graded form on any Lie torus, we need to discuss
about structurable tori and to show the existence of a nonzero graded form on them.

§4 Standard trick

We show a key lemma in this section for the existence of a form on a ∆-graded Lie algebra.
This could be called a standard trick since a similar argument was used for symmetrizable
Kac-Moody Lie algebras, Tits-Kantor-Koecher Lie algebras (TKK algebras) or Kantor Lie
algebras (see Remark 6.4(ii)).

Lemma 4.1. (i) Let L = ⊕µ∈∆∪{0} Lµ be a ∆-graded Lie algebra. Suppose (·, ·) is a
symmetric bilinear form on L′ = ⊕µ∈∆ Lµ as a vector space such that (·, ·) is invariant and
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∆-graded whenever it is defined, i.e., ([u, v], w) = (u, [v, w]) if [u, v], w, u, [v, w] ∈ L′, and
(Lµ, Lν) = 0 unless µ + ν = 0 for µ, ν ∈ ∆. Then (·, ·) uniquely extends a form on L.

(ii) Let L = ⊕g∈G Lg be a (∆, G)-graded Lie algebra. Suppose (·, ·) is a symmetric bilinear
form on L′ (as in (i)) such that (·, ·) is invariant and (∆, G)-graded whenever it is defined,
i.e., in addition to the conditions in (i), (L′∩Lg, L′∩Lh) = 0 unless g +h = 0 for g, h ∈ G.
Then (·, ·) uniquely extends a graded form on L.

Proof. (i): Since L0 =
∑

µ∈∆ [Lµ, L−µ], one can use a usual trick. Namely, we define for
x, y ∈ L0,

(x, y) =
∑

ν∈∆

([x, yν ], y−ν),

where y =
∑

ν∈∆ [yν , y−ν ]. (Strictly speaking, one should write y =
∑

ν∈∆

∑
1≤iν≤rν

[yiν
ν , yiν−ν ]

for yiν
ν ∈ Lν and yiν−ν ∈ L−ν , but we suppress this description since the argument below

works without any major change.) Then this is well-defined, i.e., independent of the expres-
sion for y. Indeed, one can use the same trick in [K, p.18], but for the convenience of the
reader, we include the proof. First, ([[uµ, u−µ], uν ], u−ν) = (uµ, [u−µ, [uν , u−ν ]) holds for
µ, ν ∈ ∆ since

([[uµ, u−µ], uν ], u−ν) = ([[uµ, uν ], u−µ], u−ν) + ([uµ, [u−µ, uν ]], u−ν)

= ([uµ, uν ], [u−µ, u−ν ]) + (uµ, [[u−µ, uν ], u−ν ])

= (uµ, [uν , [u−µ, u−ν ]] + [[u−µ, uν ], u−ν ])

= (uµ, [u−µ, [uν , u−ν ]).

Thus for x =
∑

µ∈∆ [xµ, x−µ], we have

(x, y) =
∑

ν∈∆

([x, yν ], y−ν) =
∑

µ∈∆

(xµ, [x−µ, y])

and hence (x, y) is independent of the expression for y, and also (x, y) is given by the second
equality independently of the expression for x. Also, we have (x, y) =

∑
ν∈∆ ([x, yν ], y−ν) =∑

ν∈∆ (y−ν , [x, yν ]) = −∑
ν∈∆ (y−ν , [yν , x]) = −∑

ν∈∆ ([y−ν , yν ], x) = (y, x). We define
for x ∈ L0 and s ∈ L′, (x, s) = (s, x) = 0, which is necessary (see the note in Definition
1.2), so that (Lµ, Lν) = 0 unless µ + ν = 0 for all µ, ν ∈ ∆ ∪ {0}. Thus the extended
form (·, ·) is symmetric, and the uniqueness is clear from our definition. So we only need to
show the invariance, and it is enough to show that ([uµ, vν ], w−µ−ν) = (uµ, [vν , w−µ−ν ]) for
µ, ν ∈ ∆ ∪ {0}. We divide the proof into the four cases, (a) µ 6= 0 and ν 6= 0, (b) µ 6= 0 and
ν = 0, (c) µ = 0 and ν 6= 0, and (d) µ = 0 and ν = 0. For (a), if −µ−ν 6= 0, the invariance is
one of our assumptions. Otherwise we get ([uµ, v−µ], w0) = (uµ, [v−µ, w0]) by our definition.
(b) is one of our assumptions since−µ−ν 6= 0. For (c), we get ([u0, vν ], w−ν) = (u0, [vν , w−ν ])
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by our definition. For (d), let u0 =
∑

µ∈∆ [uµ, u−µ]. Then

([u0, v0], w0) =
∑

µ∈∆

([[uµ, u−µ], v0], w0)

=
∑

µ∈∆

([[uµ, , v0], u−µ], w0) +
∑

µ∈∆

([uµ, [u−µ, v0]], w0)

=
∑

µ∈∆

(uµ, [v0, [u−µ, w0]]) +
∑

µ∈∆

(uµ, [[u−µ, v0], w0])

=
∑

µ∈∆

(uµ, [u−µ, [v0, w0]])

=
∑

µ∈∆

([uµ, u−µ], [v0, w0]]) = (u0, [v0, w0]).

(ii): By (i), we only need to show (Lg
0, L

h
0 ) = 0 unless g + h = 0, but this is clear since

(xg, yh) =
∑

ν∈∆

∑
h=k+l ([xg, yk

ν ], yl
−ν) for xg ∈ Lg and yh =

∑
ν∈∆

∑
h=k+l [yk

ν , yl
−ν ] ∈

Lh. ¤

§5 Structurable tori and their graded forms

We first review structurable algebras and structurable tori. In this section the base field
F can be arbitrary of ch. F 6= 2, 3. Let A = (A, ) be a unital algebra with involution
over F . For x, y ∈ A, we define Vx,y ∈ EndF A by

Vx,y(z) := (xy)z + (zy)x− (zx)y

for z ∈ A. Put Tx = Vx,1 for x ∈ A. Then Tx(z) = xz+zx−zx. We say (A, ) is structurable
if

[Tz, Vx,y] = VTzx,y − Vx,Tzy

for x, y, z ∈ A, where [·, ·] is the commutator. Examples of structurable algebras include
any alternative algebra with involution and any Jordan algebra with the identity map as
involution. For our purpose we give the following example.

Example 5.1. Suppose that (E, ) is an associative algebra with involution. Let W is a
left E-module with action denoted by (e, w) 7→ e ◦ w. Suppose that χ : W ×W −→ E is a
hermitian form over (E, ). That is

χ(e ◦ w1, w2) = eχ(w1, w2), χ(w1, e ◦ w2) = χ(w1, w2)ē

and
χ(w1, w2) = χ(w2, w1)

for w1, w2 ∈ W and e ∈ E. Let A = E⊕W with product and involution defined respectively
by

(e1 + w1)(e2 + w2) = e1e2 + χ(w2, w1) + e1 ◦ w2 + e2 ◦ w1 and e + w = ē + w
9



for e1, e2, e ∈ E and w1, w2, w ∈ W . The algebra with involution (A, ) is a structurable
algebra called the structurable algebra of the hermitian form χ (see [A1, §8]).

If u, v ∈ A and Vu,v = id, we say that u is (conjugate) invertible in (A, ) with conjugate
inverse v in (A, ). In that case the element v is unique [AH, Lem.6.1(ii)] and denoted by
û. The notion of conjugate invertibility and conjugate inverse coincides with the notion of
invertibility and inverse in Jordan algebras when (A, ) is a Jordan algebra with identity
involution.

Next we review structurable tori (see [AY]). Let G = (G, +, 0) be an abelian group. A
G-graded structurable algebra (A, ) is a structurable algebra so that A = ⊕g∈G Ag is
G-graded as a vector space, Ag ⊂ Ag and AgAk ⊂ Ag+k for all g, k ∈ G.

Let (A, ) = A = ⊕g∈G Ag be a G-graded structurable algebra over F . We say (A, ) is
a structurable G-torus if it satisfies the following three conditions:

(1) all nonzero homogeneous elements are invertible;
(2) dimF Ag ≤ 1 for all g ∈ G;
(3) suppA generates G,

where suppA = {g ∈ G | Ag 6= 0}. In particular, if G = Zn, then (A, ) is called a
structurable n-torus or simply a structurable torus. We also use the terms, a Jordan G-
torus, a Jordan n-torus and a Jordan torus when (A, ) is a Jordan algebra with identity
involution.

In general structurable algebras the invertibility is not so easy to handle. However, in
the class of structurable G-tori, it behaves well in the following sense [AY, Prop.3.1]: For
0 6= x ∈ Ag, there exists a unique y ∈ A−g so that xy = yx = 1 and [Lx, Ly] = [Rx, Ry] = 0,
where L and R are the left and right multiplication operators. We call the y the inverse of
x, denoted x−1. Moreover, we have x−1 = x̂.

We note that there exists a structurable torus (E ⊕W, ) of a hermitian form so that E
is a graded subalgebra and W is a graded E-module (see [AY, Ex.4.6]).

Next we need to discuss about forms on a structurable G-torus. As in the Lie case we
call a symmetric invariant bilinear form (·, ·) on a structurable algebra A = (A, ) simply a
form. Here ‘invariant’ means that

(x̄, ȳ) = (x, y) and (zx, y) = (x, z̄y)

for all x, y, z ∈ A. A form (·, ·) on a structurable G-torus A = ⊕g∈G Ag satisfying

(Ag, Ak) = 0 unless g + k = 0 for all g, k ∈ G,

is called a graded form. We define an F -linear map ε on A by

ε =
{

id on A0 = F1 (identify F1 with F )
0 on ⊕g 6=0 Ag

and for x, y ∈ A, put
ε(x, y) := ε(x̄y).

10



Then ε(·, ·) is symmetric and nondegenerate. In fact ε(x, y)− ε(y, x) = ε(x̄y− ȳx) = 0 since
x̄y − ȳx is skew. Also, the radical of ε(·, ·) is homogeneous, and hence must be 0 by the
invertibility of a nonzero homogeneous element. But the author does not know whether or
not the invariance holds. However, we prove the invariance if G is torsion-free. For this
purpose we use the following fact from [AY, Thm 9.22]:

Any structurable 2-torus (A, ) can be identified with some structurable 2-torus of a
hermitian form, that is, (A, ) = (E ⊕W, ) (possibly W = 0), or some Jordan 2-torus.

Theorem 5.2. There exists a nondegenerate graded form on a structurable G-torus if G is
torsion-free. A graded form of such a torus is unique up to a scalar.

Proof. Let (A, ) be a structurable G-torus, say A = ⊕g∈G Ag. Note that if x, y, z are
homogeneous elements of A then ε(x, y)−ε(x̄, ȳ) = ε(x̄y−xȳ) = ±ε(xy−xy) and ε(zx, y)−
ε(x, z̄y) = ε((x̄z̄)y − x̄(z̄y)) = ±ε((xz)y − x(zy)). Thus, to show that ε(·, ·) is invariant we
need to prove that for all homogeneous x, y, z we have

(1) [x, y] ∈ A0 =⇒ [x, y] = 0,

and

(2) (x, y, z) ∈ A0 =⇒ (x, y, z) = 0,

where [x, y] = xy − yx is the commutator and (x, y, z) = (xy)z − x(yz) is the associator.
For (1), suppose for contradiction x and y are nonzero homogenous elements of A so that

[x, y] ∈ A0 and [x, y] 6= 0. Let x ∈ Ag, in which case y ∈ A−g. Hence y = cx−1 for some
c ∈ F . So [x, y] = c[x, x−1] = 0. This contradiction proves (1).

For (2), suppose for contradiction that x, y and z are nonzero homogenous elements of A
so that (x, y, z) ∈ A0 and (x, y, z) 6= 0. Let x ∈ Ag and y ∈ Ak, in which case z ∈ A−g−k.
Let A′ = (A′, ) be the subalgebra of A generated by x±1 and y±1. Then suppA′ generated
a free abelian group of rank 1 or 2 since G is torsion-free. So A′ is a structurable n-torus
where n = 1 or 2. If n = 1, we have a contradiction since structurable 1-tori are associative
(see [AY, Thm 7.5]). Suppose that n = 2. If is the identity map, then A is a Jordan torus
and it is known using the classification of Jordan tori that Z(A) ∩ (A,A, A) = 0 (see [NY,
Prop.4.9]). Consequently in that case we have A0 ∩ (A,A, A) ⊂ Z(A) ∩ (A,A, A) = 0, a
contradiction. So we can assume that is not the identity. Then, (A, ) can be identified
with the structurable torus (E ⊕W, ) of a hermitian form χ [AY, Thm 9.22], as mentioned
above. Thus x = e1 + w1, y = e2 + w2 and z = e3 + w3 where e1, e2, e3 are homogeneous in
E and w1, w2, w3 are homogeneous in W . Then a direct calculation yields

(x, y, z) = [χ(w2, w1), e3] + [χ(w3, w2), e1] + [χ(w3, w1), ē2]

+ [ē2, ē1] ◦ w3 + [e3, ē1] ◦ w2 + [e3, e2] ◦ w1(3)

+ χ(w1, w2) ◦ w3 − χ(w3, w2) ◦ w1.

Now, by (1), the first three terms on the right hand side of (3) do not yield nonzero elements
of A0. But neither do the last five terms, since they are in W and A0 ∩W ⊂ E ∩W = 0.
This contradiction proves (2). Hence ε(·, ·) is a nondegenerate graded form.
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Finally let (·, ·) be any graded form on (A, ). Define a map g from A into F by g(x) =
(1, x) for x ∈ A. Then g = cε for some c ∈ F . Hence (x, y) = (1, x̄y) = g(x̄y) = cε(x̄y) =
cε(x, y) for x, y ∈ A, and so any graded form is unique up to a scalar. ¤
Remark 5.3. If a structurable H-torus has a nonzero graded form, where H is an arbitrary
abelian group generated by 2 elements, then one can exclude the condition in Theorem 5.2
that G is torsion-free.

§6 Lie tori of type BC1

We first review Kantor Lie algebras. Let (A, ) be a structurable algebra, and

A− = {x ∈ A | x = −x}.
The Kantor Lie algebra K(A, ) is constructed as follows. Let

N = (A,A−), VA,A = {Vx,y | x, y ∈ A}
and let Ñ be a copy of N . Then K(A, ) = Ñ ⊕ VA,A ⊕N has the following Lie bracket

[Vx,y, (z, s)] = (Vx,y(z), (sy)x̄ + x(ȳs)),

[Vx,y, (z, s)̃] = (−Vy,x(z),−(sx)ȳ − y(x̄s))̃,

[(x, r), (y, s)] = (0, xȳ − yx̄),

[(x, r)̃, (y, s)̃] = (0, xȳ − yx̄)̃,

[(x, r), (y, s)̃] = −(sx, 0)̃ + Vx,y + LrLs + (ry, 0),

for x, y, z ∈ A and s, r ∈ A−, where L is the left multiplication operator. We note that
K(A, ) is centreless (see [A]). TKK algebras are a special case of Kantor Lie algebras.
More precisely, if A− = 0, then A = (A, ) is a Jordan algebra and K(A) is a TKK algebra.

Now, we state the coordinatization theorem of Lie G-tori of BC1, which can be proven
in the same way as in [AY, Thm 5.6].

Lemma 6.1. Let L = ⊕µ∈∆∪{0} ⊕g∈G Lg
µ be a centreless Lie G-torus of type BC1. Then

L can be identified with the Kantor Lie algebra K(A, ) = (A,A−)̃ ⊕ VA,A ⊕ (A,A−) for
some structurable G-torus (A, ) = ⊕g∈G Ag as follows: Let ∆ = {±2λ,±λ}. Then for all
g ∈ G, we have

Lg
−2λ = (0, A−g )̃, Lg

−λ = (Ag, 0)̃, Lg
0 =

∑

k+l=g

VAk,Al
, Lg

λ = (Ag, 0), Lg
2λ = (0, A−g ).

Remark 6.2. (i) In Lemma 6.1, if L has type A1, the structurable G-torus is a Jordan G-torus
(see Remark 1.1(ii)).

(ii) The converse of Lemma 6.1 is also true. More precisely, if (A, ) is a structurable
G-torus (resp. a Jordan G-torus), then K(A, ) is a Lie G-torus of type BC1 (resp. type
A1). In fact, one can define a G-grading on K(A, ) and its grading pair as in Lemma 6.1.
Then 1-dimensionality is clear. The division property follows from the fact that x̂ ∈ A−g

for 0 6= x ∈ Ag (see §5).

About forms on Kantor Lie algebras, we have the following by Schafer [S, p.115 (25)]:
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Lemma 6.3. If a structurable algebra (A, ) has a form f(·, ·), then there exists a unique
form u(·, ·) on K(A, ) such that u((x, 0), (y, 0)̃) = f(x, y) for all x, y ∈ A. In particular,
u((0, r), (0, s)̃) = − 1

2f(r, s) for all r, s ∈ A−.

Remark 6.4. (i) This lemma was used for showing some property of forms on a finite-
dimensional central simple structurable algebra in [S]. However, his proof does not require
any condition on a structurable algebra, and so the lemma is true for structurable algebras
in general. See also [BS, Thm 9.10(iii)].

(ii) Benkart [B] showed a theorem similar to Lemma 6.3 for a ∆-graded Lie algebra of
reduced ∆ (in terms of its coordinate algebra). The theorem for nonreduced case is in
[ABG1] and [BS].

Using this lemma, we show the following:

Lemma 6.5. If any structurable G-torus admits a nonzero graded form, then so does any
Lie G-torus of type BC1. Hence, any Lie G-torus of type BC1 admits a nonzero graded form
if G is torsion-free.

Proof. Identify the Lie G-torus modulo centre with K(A, ) for some structurable G-torus
(A, ) by Lemma 6.1. Let f(·, ·) be a nonzero graded form on (A, ) by our assumption.
Then the corresponding form u on K(A, ) to f in Lemma 6.3 is nonzero and clearly graded
on K(A, )±λ ⊕K(A, )±2λ since f is graded. Hence u is graded on K(A, ) by the same
reason as in the proof of Lemma 4.1(ii). Hence, by Lemma 1.5, the Lie G-torus admits a
nonzero graded form. The second statement follows from Theorem 5.2. ¤

§7 The existence of a nonzero graded form on a Lie torus

We are now ready to prove our main theorem.

Theorem 7.1. Any Lie G-torus admits a nonzero graded form if G is torsion-free. In
particular, any Lie torus admits a nonzero graded form.

Proof. Let L = ⊕µ∈∆∪{0} ⊕g∈G Lg
µ be a Lie G-torus with grading pair (g, h) and its centre

Z. Using the Killing form κ on g, we define tµ for µ ∈ h∗ as a unique element of h such that
µ(h) = κ(tµ, h) for all h ∈ h. Then we have µ∨ = 2

κ(tµ,tµ) tµ. Since [Lg
µ, L−g

−µ] ≡ Fµ∨ mod Z

for all µ ∈ ∆, one can define a bilinear form (·, ·) on L′ = ⊕µ∈∆ Lµ by

(7.2)

{
[xg

µ, xk
ν ] ≡ (xg

µ, xk
ν)tµ mod Z if µ + ν = 0 and g + k = 0

(xg
µ, xk

ν) = 0 otherwise

for all µ, ν ∈ ∆, g, k ∈ G, xg
µ ∈ Lg

µ and xk
ν ∈ Lk

ν . for any xg
µ ∈ Lg

µ and x−g
−µ ∈ L−g

−µ,
Since t−µ = −tµ, (·, ·) is symmetric on L′. To apply Lemma 4.1(ii) we need to show that

([u, v], w) = (u, [v, w]) for u ∈ Lg
µ, v ∈ Lk

ν , w ∈ L−g−k
−µ−ν , µ ∈ ∆ and µ + ν ∈ ∆.

Suppose first that ν 6= qµ for q ∈ Q. Then tµ and tν are linearly independent. We have

[[u, v], w] = ([u, v], w)tµ+ν = ([u, v], w)tµ + ([u, v], w)tν .
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On the other hand, using the Jacobi identity,

[[u, v], w] = [[u,w], v] + [u, [v, w]] = ([u,w], v)t−ν + (u, [v, w])tµ.

Comparing the coefficients of tµ, we get ([u, v], w) = (u, [v, w]).
Suppose ν = qµ, i.e., ν = 0, µ, −2µ or − 1

2µ. We first consider the case ν 6= 0. Let λ = 1
2µ

if µ is not reduced and λ = µ otherwise. Let g1 = 〈L0
±λ〉 be the 3-dimensional split simple

Lie algebra of type A1 and h1 = 〈λ∨〉 its Cartan subalgebra. Let ∆1 = {±λ,±2λ}. We let
the subalgebra M of L generated by L0

±λ, L±g
±µ, L±k

±ν and L
±(g+k)
±(µ+ν). Then

M =
⊕

ξ∈∆1∪{0}

⊕

l∈〈g,k〉
M l

ξ

is a Lie (1 or 2)-torus of type ∆1, i.e., type BC1 (or A1), with grading pair (g1, h1), and
u ∈ Lg

µ = Mg
µ , v ∈ Lk

ν = Mk
ν and w ∈ L−g−k

−µ−ν = M−g−k
−µ−ν .

Now, by Lemma 6.5, M admits a nonzero graded form (·, ·)M , and by Lemma 2.1,
(·, ·)M |g1×g1 is nondegenerate. Note that for any ξ ∈ ∆1, tξ is a scalar multiple of λ∨,
and so tξ ∈ h1. Since κ(tξ, tξ) 6= 0, κ(·, ·)|h1×h1 is nondegenerate, and so κ(·, ·)|g1×g1 is
nondegenerate. Thus there exists 0 6= c ∈ F such that c(·, ·)M |g1×g1 = κ(·, ·)|g1×g1 . Using
this nonzero graded form c(·, ·)M , we have, by Lemma 2.1,

[xl
ξ, x

−l
−ξ] ≡ c(xl

ξ, x
−l
−ξ)

M tMξ mod Z(M)

for any xl
ξ ∈ M l

ξ and x−l
−ξ ∈ M−l

−ξ, where Z(M) is the centre of M and tMξ is a unique element
in h1 such that

κ(tξ, h) = ξ(h) = c(tMξ , h)M = κ(tMξ , h)

for all h ∈ h1. Hence, tMξ = tξ for all ξ ∈ ∆1. Thus, by our definition (7.2) of (·, ·), we have
for all ξ ∈ ∆1,

(xl
ξ, x

−l
−ξ)tξ + z = [xl

ξ, x
−l
−ξ] = c(xl

ξ, x
−l
−ξ)

M tξ + zM ,

where z ∈ Z and zM ∈ Z(M). In particular, z ∈ M , and so z ∈ Z(M). Since Ftξ ∩Z(M) =
0, we get

(xl
ξ, x

−l
−ξ) = c(xl

ξ, x
−l
−ξ)

M

for all xl
ξ ∈ M l

ξ and x−l
−ξ ∈ M−l

−ξ with ξ ∈ ∆1. But c(·, ·)M is invariant, and so ([u, v], w) =
c([u, v], w)M = c(u, [v, w])M = (u, [v, w]).

We now consider the case ν = 0, i.e., v ∈ Lk
0 . So

v =
∑

η∈∆,k=s+t

[vs
η, vt

−η]

for some vs
η ∈ Ls

η and vt
−η ∈ Lt

−η. Thus it is enough to show that

([u, [vs
η, vt

−η]], w) = (u, [[vs
η, vt

−η], w]).
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Suppose first that η 6= qµ for q ∈ Q. Then

([u, [vs
η, vt

−η]], w) = ([[u, vs
η], vt

−η], w)− ([[u, vt
−η], vs

η], w) (Jacobi identity)

= ([u, vs
η], [vt

−η, w])− ([u, vt
−η], [vs

η, w])

(If µ± η ∈ ∆, then {tµ+η, t−η} and {tµ−η, tη} are linearly independent sets and so use the
previous case. If µ + η /∈ ∆, then −µ− η /∈ ∆, and so [u, vs

η] = 0 = [vt
−η, w]. If µ− η /∈ ∆,

then −µ + η /∈ ∆, and so [u, vt
−η] = 0 = [vs

η, w]. Hence the equality holds for any case.)

= (u, [vs
η, [vt

−η, w]])− (u, [vt
−η, [vs

η, w]])

(since {tµ, tη} and {tµ, t−η} are linearly independent sets)

= (u, [[vs
η, vt

−η], w]) (Jacobi identity).

For the case η = qµ, since η 6= 0, one can define λ, g1, h1 and ∆1 by the same way as
in the previous case. Namely, let the subalgebra N of L generated by L0

±λ, L±g
±µ, L±s

±η, L±t
±η

and L
±(g+s+t)
±µ . Then

N =
⊕

ξ∈∆1∪{0}

⊕

l∈〈g,s,t〉
N l

ξ

is a Lie (1, 2 or 3)-torus of type ∆1, and u ∈ Lg
µ = Ng

µ , [vs
η, vt

−η] ∈ Ns+t
0 and w ∈ L−g−s−t

−µ =
N−g−s−t
−µ . Thus, by the same reason as in the previous case, there exists a nonzero graded

form (·, ·)N on N such that
(xl

ξ, x
−l
−ξ) = (xl

ξ, x
−l
−ξ)

N

for all xl
ξ ∈ N l

ξ and x−l
−ξ ∈ N−l

−ξ with ξ ∈ ∆1. Therefore,

([u, [vs
η, vt

−η]], w) = ([u, [vs
η, vt

−η]], w)N = (u, [[vs
η, vt

−η], w])N = (u, [[vs
η, vt

−η], w]).

Thus, by Lemma 4.1(ii), our bilinear form (·, ·) on L′ extends uniquely on L, which is a
nonzero graded form. ¤

With (3.1) and Lemma 3.2, we have:

Theorem 7.3. The core of any EALA is a Lie torus over C. Conversely, for any Lie torus
L over C with its centre Z, L/Z is isomorphic to the centreless core of some EALA.

In particular, by Remark 6.2, we also have the following:

Corollary 7.4. Let (A, ) be any structurable torus over C. Then K(A, ) is isomorphic to
the centreless core of some EALA of type BC1 or type A1 if A = (A, ) is a Jordan torus.

Remark 7.5. (i) As in the case of Theorem 5.2, Theorem 7.2 is true for any Lie G-torus if
any structurable G-torus admits a nonzero graded form. (see Remark 5.3).

(ii) The classification of Lie tori over F of type Cl, F4, G2 and BCl is not yet known
though the classification of the cores of EALAs is done, up to central extensions, except for
types BC1 and BC2 (see [BGK], [BGKN], [AG], [Y1], [Y2], [Y4], [Y5] and [ABG2]).
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§8 The root systems of Lie tori

Let L = ⊕µ∈∆∪{0} ⊕g∈G Lg
µ be a Lie G-torus. For each µ ∈ ∆ ∪ {0}, let

Sµ := {g ∈ G | Lg
µ 6= 0}.

Then
R(L) := {Sµ}µ∈∆

is a reduced root system extended by G (see [Y5]). Also, if G = Zn, then the two concepts,
a reduced root system extended by Zn and an extended affine root system (EARS), coincide
(see [Y5]). There is a way to know this fact directly using a nondegenerate graded form of a
centreless Lie torus. For this purpose we construct a slightly bigger Lie algebra L̃ (than L)
whose root system is an EARS. By the construction, one can directly see that R(L) is an
EARS. The method is the complete analogue of the process of adding central elements and
derivations to a loop algebra. Also, such a construction was already explained in [AABGP,
Ch.III], but to emphasize that this works for over F , not only over C, we repeat the argument
briefly.

Let L = ⊕µ∈∆∪{0} ⊕σ∈Zn Lσ
µ be a centreless Lie n-torus over F with grading pair (g, h).

Then by Theorem 7.1 and Lemma 2.1, there exists a nondegenerate graded form (·, ·) on L
such that (·, ·) |g×g is the Killing form κ of g. Let Der L be the Lie algebra of all derivations
of L. Define di ∈ Der L as di(x) = kix for x ∈ Lσ and σ = (k1, . . . , kn) ∈ Zn. Let

D = Fd1 ⊕ · · · ⊕ Fdn ⊂ Der L, and C = Fc1 ⊕ · · · ⊕ Fcn

be another n-dimensional vector space. Let L̃ = L⊕C ⊕D, with new bracket [ , ]̃ defined
as follows:

[L̃, C ]̃ = 0, [D, D]̃ = 0, [di, x]̃ = dix for all x ∈ L,

[x, y]̃ = [x, y] +
n∑

i=1

(dix, y)ci for all x, y ∈ L.

Then L̃ is a Lie algebra. Next we extend the form on L̃ as follows:

(C, C) = (D, D) = (C, L) = (D, L) = 0 and (ci, dj) = δij for all 1 ≤ i, j ≤ n.

Then (·, ·) on L̃ is a nondegenerate form. We put H = h ⊕ C ⊕ D, and identify the dual
space H∗ = h∗ ⊕ C∗ ⊕D∗. Let {δ1, . . . , δn} be the dual basis of {d1, . . . , dn}, and identify
Zn ⊂ D∗ by (k1, . . . , kn) =

∑n
i=1 kiδi. Then,

[d, x]̃ = σ(d)x for d ∈ D, x ∈ Lσ and σ ∈ Zn.

For α ∈ H∗, let
L̃α = {x ∈ L̃ | [h, x]̃ = α(h)x for all h ∈ H}.
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Then,
L̃ =

⊕

α∈H∗
L̃α =

⊕

µ∈∆∪{0}

⊕

σ∈Zn

L̃µ+σ,

with
L̃0 = H and L̃µ+σ = Lσ

µ for (µ, σ) 6= (0, 0).

Let
R̃ := {α ∈ H∗ | L̃α 6= 0}.

Then we have one to one correspondence between the sets

R̃ ≈ R(L) ∪ {S0} via µ + σ ↔ σ ∈ Sµ.

Since (·, ·) |H×H is nondegenerate, one can define the induced form (·, ·) on H∗ by the usual
way. Identify the prime field of F with Q (the field of rational numbers). Let

V :=
∑

α∈R̃

Qα,

and let l be the rank of ∆. Then:

Lemma 8.1. V is an (l + n)-dimensional vector space over Q and the restricted form
(·, ·) |V×V is positive semidefinite over Q with radical N := ⊕n

i=1 Qδi.

Proof. By our construction of the form, we have (N, V ) = 0. Let V ′ :=
∑

µ∈∆ Qµ. Then
V = V ′ ⊕N . So we only need to show that (·, ·)′ := (·, ·) |V ′×V ′ is positive definite over Q.
But (·, ·)′ coincides with the induced form on h∗ restricted to V ′ from the Killing form on
h. Thus one can apply the same argument as in the classical case (see e.g. [H, p.40]). ¤

Let
VR := R⊗Q V,

where R is the field of real numbers. Then one can show that (VR, R̃) is an EARS of type
∆ of nullity n. In this sense, one may say that

L̃ is an EALA over F constructed from a centreless Lie torus L,

and the core of L̃ is the n-dimensional central extension L′ := L⊕ C of L. Note that L′ is
a Lie torus defining L′00 = L0

0 ⊕C(= h⊕C), but L̃ is not a Lie torus since L̃ is not perfect.
The roots in the radical or equivalently the roots in D∗ are called isotropic roots. The

isotropic roots are contained in Zδ1 ⊕ · · · ⊕ Zδn.

Remark 8.2. (i) EARSs are classified in [AABGP]. Also, one knows that for some EARS R

there does not exist a Lie torus L such that R(L̃) = R (see [AG] or [Y3]).
(ii) By the same way as in [ABGP], using the classification of EARSs of nullity 1 and the

Gabber-Kac Theorem (e.g. [MP]), one knows that a Lie 1-torus (not necessarily over C) is
either a (twisted) loop algebra or its universal central extension.
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We have constructed L̃ from L by a 2n-dimensional extension. We can make the similar
construction by just 2-dimensional extension if F is big enough.

Suppose that F contains at least n linearly independent elements over the prime field Q,
say e1, · · · , en. Let L be a centreless Lie n-torus over F as above. In the above construction
of L̃, we take

d :=
n∑

i=1

eidi,

where di is defined as above, D = Fd and C = Fc. Then we can construct the Lie algebra
L̃ = L⊕ C ⊕D, H = h⊕ C ⊕D, and the nondegenerate form by the same way except

[x, y]̃ = [x, y] + (dx, y)c for all x, y ∈ L, and (c, d) = 1.

Let {δ} be the dual basis of {d}, and identify Zn ⊂ D∗ by

(k1, . . . , kn) =
n∑

i=1

kieiδ.

Then the isotropic roots are contained in Ze1δ1 ⊕ · · · ⊕ Zenδn. Hence the dimension of the
radical of V defined above is n, and so (VR, R̃) is again an EARS of nullity n. Similarly,
we can construct an EALA whose root system has nullity n by 2m-dimensional extension
of a Lie n-torus for any 1 ≤ m < n. These EALAs in some sense generalize the notion of a
degenerate EALA introduced by Gao [G]. In fact, if F = C, we can define V =

∑
α∈R̃ Rα

instead of V =
∑

α∈R̃ Qα above. Then for n = 2 and suitable choice of e1 and e2 above,
one can get dimC

∑
α∈R̃ Cα = 1, but dimR V = 2. Such an EALA L̃ is called degenerate.
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