
JORDAN TRIPLE DISYSTEMS
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Abstract. We take an algorithmic and computational approach to a basic

problem in abstract algebra: determining the correct generalization to dial-

gebras of a given variety of nonassociative algebras. We give a simplified
statement of the KP algorithm introduced by Kolesnikov and Pozhidaev for

extending polynomial identities for algebras to corresponding identities for di-

algebras. We apply the KP algorithm to the defining identities for Jordan
triple systems to obtain a new variety of nonassociative triple systems, called

Jordan triple disystems. We give a generalized statement of the BSO algo-

rithm introduced by Bremner and Sanchez-Ortega for extending multilinear
operations in an associative algebra to corresponding operations in an asso-

ciative dialgebra. We apply the BSO algorithm to the Jordan triple product
and use computer algebra to verify that the polynomial identities satisfied by

the resulting operations coincide with the results of the KP algorithm; this

provides a large class of examples of Jordan triple disystems. We formulate a
general conjecture expressed by a commutative diagram relating the output of

the KP and BSO algorithms. We conclude by generalizing the Jordan triple

product in a Jordan algebra to operations in a Jordan dialgebra; we use com-
puter algebra to verify that resulting structures provide further examples of

Jordan triple disystems. For this last result, we also provide an independent

theoretical proof using Jordan structure theory.

1. Introduction

The theory of Jordan algebras, originally motivated by potential applications to
quantum physics, was initiated by Jordan, von Neumann and Wigner [12], and the
theory of Jordan triple systems was initiated by Jacobson [10]. Standard references
on these topics are Braun and Koecher [1], Jacobson [11], McCrimmon [18], Neher
[19] and Loos [17]; for applications to geometry and analysis see Faraut et al. [7].
The concept of an associative dialgebra was introduced by Loday [15]; the gener-
alization of the Lie bracket produces Lie dialgebras (also called Leibniz algebras)
which were first introduced by Cuvier [6] and Loday [14]. Numerous authors have
considered other varieties of nonassociative dialgebras; in particular, the general-
ization of the Jordan product produces Jordan dialgebras (also called quasi-Jordan
algebras), which have been studied by Velásquez and Felipe [24, 25], Kolesnikov
[13], Pozhidaev [22, 23], Bremner [2], Bremner and Peresi [4], and Voronin [27].

The purpose of the present paper is to introduce a new variety of triple systems of
Jordan type, which we call Jordan triple disystems. The relation between Jordan
triple disystems and associative dialgebras is analogous to the relation between
Jordan triple systems and associative algebras.

Section 2 recalls basic definitions for associative dialgebras. Section 3 presents a
simplified statement of the general Kolesnikov-Pozhidaev (KP) algorithm for con-
verting an arbitrary variety of multioperator algebras into a variety of dialgebras.
We recall how this algorithm can be applied to the defining identities for Jordan
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algebras to obtain the variety of Jordan dialgebras. In Section 4 we apply the KP
algorithm to the defining identities for Jordan triple systems; we obtain a system
of polynomial identities which define our new variety of Jordan triple disystems.
Section 5 presents a generalized statement of the Bremner-Sánchez-Ortega (BSO)
algorithm for extending multilinear operations in an associative algebra to an as-
sociative dialgebra. We apply the BSO algorithm to the Jordan triple product and
use computer algebra to verify that the resulting polynomial identities coincide with
the results of the KP algorithm; we therefore obtain a large class of examples of
Jordan triple disystems. In Section 6 we formulate a general conjecture expressed
by a commutative diagram relating the output of the KP and BSO algorithms.
Section 7 generalizes the Jordan triple product in a Jordan algebra to operations
in Jordan dialgebras; we use computer algebra to verify that resulting structures
provide another large class of examples of Jordan triple disystems. We also provide
an independent theoretical proof of this last result using Jordan structure theory.

2. Dialgebras

2.1. Dialgebras and Leibniz algebras. Dialgebras were introduced by Loday
[14, 15, 16] to provide a natural setting for Leibniz algebras, a “noncommutative”
generalization of Lie algebras.

Definition 2.1. (Cuvier [6], Loday [14]) A Leibniz algebra is a vector space L
together with a bilinear map L × L → L, denoted (a, b) 7→ [a, b] and called the
Leibniz bracket, satisfying the Leibniz identity:

[[a, b], c] ≡ [[a, c], b] + [a, [b, c]].

If [a, a] ≡ 0 then the Leibniz identity is the Jacobi identity and L is a Lie algebra.

Every associative algebra becomes a Lie algebra if the associative product is
replaced by the Lie bracket. Loday introduced the notion of dialgebra which gives,
by a similar procedure, a Leibniz algebra: one replaces ab and ba by two distinct
operations, so that the resulting bracket is not necessarily skew-symmetric.

Definition 2.2. An associative dialgebra is a vector space D with two bilinear
operations a : D × D → D and ` : D × D → D, the left and right products,
satisfying the left and right bar identities, and left, right and inner associativity:

(a a b) ` c ≡ (a ` b) ` c, a a (b a c) ≡ a a (b ` c),
(a a b) a c ≡ a a (b a c), (a ` b) ` c ≡ a ` (b ` c), (a ` b) a c ≡ a ` (b a c).

From a dialgebra we construct a Leibniz bracket by a a b− b ` a.

2.2. Free dialgebras. Loday has determined a basis for the free dialgebra.

Definition 2.3. A dialgebra monomial on a set X is a product x = a1a2 · · · an
where a1, . . . , an ∈ X with some placement of parentheses and some choice of
operations. The center of x is defined inductively: if n = 1 then c(x) = x; if n ≥ 2
then x = y a z or x = y ` z and we set c(y a z) = c(y) or c(y ` z) = c(z).

Lemma 2.4. (Loday [16]) If x = a1a2 · · · an is a monomial with c(x) = ai then x
is determined by the order of its factors and the position of its center:

x = (a1 ` · · · ` ai−1) ` ai a (ai+1 a · · · a an).
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Definition 2.5. The right side of the last equation is the normal form of x and
is abbreviated by the hat notation a1 · · · ai−1âiai+1 · · · an.

Lemma 2.6. (Loday [16]) The set of monomials a1 · · · ai−1âiai+1 · · · an in normal
form with 1 ≤ i ≤ n and a1, . . . , an ∈ X forms a basis of the free dialgebra on X.

3. The Kolesnikov-Pozhidaev algorithm

This algorithm, introduced by Kolesnikov [13] and Pozhidaev [23], converts a
multilinear polynomial identity of degree d for an n-ary operation into d multilinear
identities of degree d for n new n-ary operations.

Definition 3.1. KP Algorithm.
Part 1: We consider a multilinear n-ary operation, denoted by the symbol

(1) {−,−, . . . ,−} (n arguments).

Given a multilinear polynomial identity of degree d in this operation, we describe
the application of the algorithm to one monomial in the identity, and from this
the application to the complete identity follows by linearity. Let a1a2 . . . ad be a
multilinear monomial of degree d, where the bar denotes some placement of n-ary
operation symbols. We introduce n new n-ary operations, denoted by the same
symbol but distinguished by subscripts:

(2) {−,−, . . . ,−}1, {−,−, . . . ,−}2, . . . , {−,−, . . . ,−}n.
For each i ∈ {1, 2, . . . , d} we convert the monomial a1a2 . . . ad in the original n-
ary operation (1) into a new monomial of the same degree d in the n new n-ary
operations (2), according to the following rule which is based on the position of
ai. For each occurrence of the original operation symbol in the monomial, either
ai occurs within one of the n arguments or not, and we have the following cases:

• If ai occurs within the j-th argument then we convert the original operation
symbol {. . . } to the j-th new operation symbol {. . . }j .
• If ai does not occur within any of the n arguments, then either

– ai occurs to the left of the original operation symbol, in which case we
convert {. . . } to the first new operation symbol {. . . }1, or

– ai occurs to the right of the original operation symbol, in which case
we convert {. . . } to the last new operation symbol {. . . }n.

In this process, we call ai the central argument of the monomial.
Part 2: In addition to the identities constructed in Part 1, we also include the

following identities for all i, j ∈ {1, 2, . . . , n} with i 6= j and all k, ` ∈ {1, 2, . . . , n}:
{a1, . . . , ai−1, {b1, · · · , bn}k, ai+1, . . . , an}j ≡
{a1, . . . , ai−1, {b1, · · · , bn}`, ai+1, . . . , an}j .

This identity says that the n new operations are interchangeable in the i-th argu-
ment of the j-th new operation when i 6= j.

Example 3.2. The defining identities for associative dialgebras can be obtained
by applying the KP algorithm to the associativity identity, which we write in the
form {{a, b}, c} ≡ {a, {b, c}}. The original operation produces two new operations
{−,−}1 and {−,−}2. Since associativity has degree 3, Part 1 produces three new
identities of degree 3 by making a, b, c in turn the central argument:

{{a, b}1, c}1≡{a, {b, c}1}1, {{a, b}2, c}1≡{a, {b, c}1}2, {{a, b}2, c}2≡{a, {b, c}2}2,
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and Part 2 produces these two identities:

{a, {b, c}1}1 ≡ {a, {b, c}2}1, {{a, b}1, c}2 ≡ {{a, b}2, c}2.
If we revert to the standard notation by writing a a b = {a, b}1 and a ` b = {a, b}2,
then these five identities are the defining identities for associative dialgebras.

Definition 3.3. A (linear) Jordan algebra is a vector space J over a field of
characteristic 6= 2 with a bilinear operation J × J → J , denoted a ◦ b, satisfying
commutativity and the Jordan identity for all a, b ∈ J :

a ◦ b ≡ b ◦ a, ((a ◦ a) ◦ b) ◦ a ≡ (a ◦ a) ◦ (b ◦ a).

Example 3.4. To apply the KP algorithm to Jordan algebras, we must start with
multilinear identities, so we linearize the Jordan identity to obtain

((a ◦ c) ◦ b) ◦ d+ ((a ◦ d) ◦ b) ◦ c+ ((c ◦ d) ◦ b) ◦ a ≡
(a ◦ c) ◦ (b ◦ d) + (a ◦ d) ◦ (b ◦ c) + (c ◦ d) ◦ (b ◦ a).

(For a general discussion of linearization, see Zhevlakov et al. [28], Chapter 1.) We
rewrite commutativity and the linearized Jordan identity using the symbol {−,−}:

{a, b} − {b, a} ≡ 0,

{{{a, c}, b}, d}+ {{{a, d}, b}, c}+ {{{c, d}, b}, a}
− {{a, c}, {b, d}} − {{a, d}, {b, c}} − {{c, d}, {b, a}} ≡ 0.

The KP algorithm tells us to introduce two new operations {−,−}1 and {−,−}2.
Part 1: Since commutativity has degree 2, we obtain two identities of degree 2

relating the two new operations:

{a, b}1 − {b, a}2 ≡ 0, {a, b}2 − {b, a}1 ≡ 0,

These identities are both equivalent to {a, b}2 ≡ {b, a}1: the second operation is
the opposite of the first. Hence we can replace every occurrence of {−,−}2 by an
occurrence of {−,−}1. Since the linearized Jordan identity has degree 4, we obtain
four identities of degree 4 relating the two new operations:

{{{a, c}1, b}1, d}1 + {{{a, d}1, b}1, c}1 + {{{c, d}2, b}2, a}2
− {{a, c}1, {b, d}1}1 − {{a, d}1, {b, c}1}1 − {{c, d}2, {b, a}2}2 ≡ 0,(3)

{{{a, c}2, b}2, d}1 + {{{a, d}2, b}2, c}1 + {{{c, d}2, b}2, a}1
− {{a, c}2, {b, d}1}2 − {{a, d}2, {b, c}1}2 − {{c, d}2, {b, a}1}2 ≡ 0,(4)

{{{a, c}2, b}1, d}1 + {{{a, d}2, b}2, c}2 + {{{c, d}1, b}1, a}1
− {{a, c}2, {b, d}1}1 − {{a, d}2, {b, c}2}2 − {{c, d}1, {b, a}1}1 ≡ 0,(5)

{{{a, c}2, b}2, d}2 + {{{a, d}2, b}1, c}1 + {{{c, d}2, b}1, a}1
− {{a, c}2, {b, d}2}2 − {{a, d}2, {b, c}1}1 − {{c, d}2, {b, a}1}1 ≡ 0.(6)

In identities (3)–(6), we replace every instance of the second operation by the
opposite of the first operation:

{{{a, c}1, b}1, d}1 + {{{a, d}1, b}1, c}1 + {a, {b, {d, c}1}1}1
− {{a, c}1, {b, d}1}1 − {{a, d}1, {b, c}1}1 − {{a, b}1, {d, c}1}1 ≡ 0,(7)

{{b, {c, a}1}1, d}1 + {{b, {d, a}1}1, c}1 + {{b, {d, c}1}1, a}1
− {{b, d}1, {c, a}1}1 − {{b, c}1, {d, a}1}1 − {{b, a}1, {d, c}1}1 ≡ 0,(8)
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{{{c, a}1, b}1, d}1 + {c, {b, {d, a}1}1}1 + {{{c, d}1, b}1, a}1
− {{c, a}1, {b, d}1}1 − {{c, b}1, {d, a}1}1 − {{c, d}1, {b, a}1}1 ≡ 0,(9)

{d, {b, {c, a}1}1}1 + {{{d, a}1, b}1, c}1 + {{{d, c}1, b}1, a}1
− {{d, b}1, {c, a}1}1 − {{d, a}1, {b, c}1}1 − {{d, c}1, {b, a}1}1 ≡ 0.(10)

Since we now have only one operation, we revert to a simpler notation, and write
{a, b}1 simply as ab. Identities (7)–(10) take the following form:

((ac)b)d+ ((ad)b)c+ a(b(dc))− (ac)(bd)− (ad)(bc)− (ab)(dc) ≡ 0,(11)

(b(ca))d+ (b(da))c+ (b(dc))a− (bd)(ca)− (bc)(da)− (ba)(dc) ≡ 0,(12)

((ca)b)d+ c(b(da)) + ((cd)b)a− (ca)(bd)− (cb)(da)− (cd)(ba) ≡ 0,(13)

d(b(ca)) + ((da)b)c+ ((dc)b)a− (db)(ca)− (da)(bc)− (dc)(ba) ≡ 0.(14)

Clearly (11) becomes (13) after the transposition ac, and (11) becomes (14) after
the cyclic permutation adc. We discard (13) and (14) and retain (11) and (12).

Part 2: We include identities which state that in the first (resp. second) argument
of the second (resp. first) new operation, the two operations are interchangeable:

{a, {b, c}1}1 ≡ {a, {b, c}2}1, {{a, b}1, c}2 ≡ {{a, b}2, c}2.

Rewriting these in terms of the first operation gives

{a, {b, c}1}1 ≡ {a, {c, b}1}1, {c, {a, b}1}1 ≡ {c, {b, a}1}1.

These identities are both equivalent to right-commutativity a(bc) ≡ a(cb).
Rearranging the terms in (11) and applying right-commutativity gives

((ac)b)d− (ac)(bd) + ((ad)b)c− (ad)(bc)− (ab)(cd) + a(b(cd)) ≡ 0.

This can be reformulated in terms of associators as follows:

(15) (ac, b, d) + (ad, b, c)− (a, b, cd) ≡ 0.

If we assume characteristic not 2, then identity (15) is equivalent to

(16) (a, b, c2) ≡ 2(ac, b, c).

Apply right-commutativity to (12) gives

(b(ac))d+ (b(ad))c+ (b(cd))a− (bd)(ac)− (bc)(ad)− (ba)(cd) ≡ 0.

Setting a = c = d (and dividing by 3) gives

(17) (ba2)a ≡ (ba)a2.

If we assume characteristic not 3, then identities (12) and (17) are equivalent.

Definition 3.5. Over a field of characteristic not 2, 3, a (right) Jordan dialgebra
is a vector space D with a bilinear operation D ×D → D, denoted ab, satisfying
right commutativity, the Osborn identity, and the right Jordan identity:

a(bc) ≡ a(cb), (a, b, c2) ≡ 2(ac, b, c), (ba2)a ≡ (ba)a2.

Remark 3.6. The second identity in Definition 3.5 first appeared in Osborn [20];
see also Petersson [21]. In a Jordan dialgebra, the Osborn identity is equivalent to

(18) (b, a2, c) = 2(b, a, c)a.
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The linearized forms of the Osborn identity, the right Jordan identity and (18) are

O1(a, b, c, d) = ((ba)c)d+ ((bd)c)a− (b(ac))d− (b(cd))a− (b(ad))c+ b((ad)c),

RJ(a, b, c, d) = (b(ac))d+ (b(ad))c+ (b(cd))a− (bd)(ac)− (bc)(ad)− (ba)(cd),

O2(a, b, c, d) = ((ac)b)d+ ((ad)b)c− (ab)(cd)− (ac)(bd)− (ad)(bc) + a((cd)b).

Using right commutativity it is easy to verify that

O2(a, b, c, d) = O1(c, a, b, d) +RJ(b, a, c, d).

Remark 3.7. The notion of a Jordan dialgebra was discovered independently by
various authors during the last few years. Kolesnikov [13] introduced a functorial
approach to varieties of associative and nonassociative dialgebras and obtained the
defining identities for left Jordan dialgebras (the opposite identities to those of
Definition 3.5). Velásquez and Felipe [24] introduced the product a a b + b ` a
in an associative dialgebra, showed that it satisfies the first and third identities of
Definition 3.5, and defined a quasi-Jordan algebra to be a vector space satisfying
these identities. Bremner [2] used computer algebra to verify that a a b+ b ` a also
satisfies the second identity of Definition 3.5.

4. Jordan triple disystems

In this section we apply the KP algorithm to the defining identities of Jordan
triple systems. We obtain a new variety of triple systems, which we call Jordan
triple disystems, with two trilinear operations.

Definition 4.1. A (linear) Jordan triple system (JTS) is a vector space T over
a field of characteristic not 2 with a trilinear operation T × T × T → T , denoted
{−,−,−}, satisfying these polynomial identities:

{a, b, c} ≡ {c, b, a},
{a, b, {c, d, e}} ≡ {{a, b, c}, d, e} − {c, {b, a, d}, e}+ {c, d, {a, b, e}}.

Theorem 4.2. Applying the KP algorithm to Definition 4.1 produces two trilinear
operations {−,−,−}1 and {−,−,−}2 satisfying these identities:

{a, b, c}2 ≡ {c, b, a}2,
{a, {b, c, d}1, e}1 ≡ {a, {b, c, d}2, e}1 ≡ {a, {d, c, b}1, e}1,
{a, b, {c, d, e}1}1 ≡ {a, b, {c, d, e}2}1 ≡ {a, b, {e, d, c}1}1,
{{a, b, c}1, d, e}2 ≡ {{a, b, c}2, d, e}2 ≡ {{c, b, a}1, d, e}2,
{{e, d, c}1, b, a}1 ≡ {{e, b, a}1, d, c}1 − {e, {d, a, b}1, c}1 + {e, d, {c, b, a}1}1,
{{e, d, c}2, b, a}1 ≡ {{e, b, a}1, d, c}2 − {e, {d, a, b}1, c}2 + {e, d, {c, b, a}1}2,
{a, b, {c, d, e}1}1 ≡ {{a, b, c}1, d, e}1 − {c, {b, a, d}2, e}2 + {{a, b, e}1, d, c}1,
{a, b, {c, d, e}1}2 ≡ {{a, b, c}2, d, e}1 − {c, {b, a, d}1, e}2 + {{a, b, e}2, d, c}1.

Proof. Part 1: First, we consider the identity of degree 3: {a, b, c} − {c, b, a} ≡ 0.
If we make a, b, c in turn the central argument we obtain three identities:

{a, b, c}1 − {c, b, a}3 ≡ 0, {a, b, c}2 − {c, b, a}2 ≡ 0, {a, b, c}3 − {c, b, a}1 ≡ 0.

The first and third identities are both equivalent to {a, b, c}3 ≡ {c, b, a}1: the third
operation is the opposite of the first, and can be eliminated. The second identity
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says that the second operation is symmetric in its first and third arguments:

(19) {a, b, c}2 ≡ {c, b, a}2.

Second, we consider the identity of degree 5,

{a, b, {c, d, e}} − {{a, b, c}, d, e}+ {c, {b, a, d}, e} − {c, d, {a, b, e}} ≡ 0.

If we make a, b, c, d, e in turn the central argument we obtain five identities;

{a, b, {c, d, e}1}1 − {{a, b, c}1, d, e}1 + {c, {b, a, d}2, e}2 − {c, d, {a, b, e}1}3 ≡ 0,

{a, b, {c, d, e}1}2 − {{a, b, c}2, d, e}1 + {c, {b, a, d}1, e}2 − {c, d, {a, b, e}2}3 ≡ 0,

{a, b, {c, d, e}1}3 − {{a, b, c}3, d, e}1 + {c, {b, a, d}1, e}1 − {c, d, {a, b, e}1}1 ≡ 0,

{a, b, {c, d, e}2}3 − {{a, b, c}3, d, e}2 + {c, {b, a, d}3, e}2 − {c, d, {a, b, e}1}2 ≡ 0,

{a, b, {c, d, e}3}3 − {{a, b, c}3, d, e}3 + {c, {b, a, d}3, e}3 − {c, d, {a, b, e}3}3 ≡ 0.

We replace {a, b, c}3 by the opposite of {a, b, c}1; to save space we omit “≡ 0”:

{a, b, {c, d, e}1}1 − {{a, b, c}1, d, e}1 + {c, {b, a, d}2, e}2 − {{a, b, e}1, d, c}1,(20)

{a, b, {c, d, e}1}2 − {{a, b, c}2, d, e}1 + {c, {b, a, d}1, e}2 − {{a, b, e}2, d, c}1,(21)

{{c, d, e}1, b, a}1 − {{c, b, a}1, d, e}1 + {c, {b, a, d}1, e}1 − {c, d, {a, b, e}1}1,(22)

{{c, d, e}2, b, a}1 − {{c, b, a}1, d, e}2 + {c, {d, a, b}1, e}2 − {c, d, {a, b, e}1}2,(23)

{{e, d, c}1, b, a}1 − {e, d, {c, b, a}1}1 + {e, {d, a, b}1, c}1 − {{e, b, a}1, d, c}1.(24)

Part 2: We obtain the following 12 identities:

{a, {b, c, d}1, e}1 ≡ {a, {b, c, d}2, e}1 ≡ {a, {b, c, d}3, e}1,
{a, b, {c, d, e}1}1 ≡ {a, b, {c, d, e}2}1 ≡ {a, b, {c, d, e}3}1,
{{a, b, c}1, d, e}2 ≡ {{a, b, c}2, d, e}2 ≡ {{a, b, c}3, d, e}2,
{a, b, {c, d, e}1}2 ≡ {a, b, {c, d, e}2}2 ≡ {a, b, {c, d, e}3}2,
{{a, b, c}1, d, e}3 ≡ {{a, b, c}2, d, e}3 ≡ {{a, b, c}3, d, e}3,
{a, {b, c, d}1, e}3 ≡ {a, {b, c, d}2, e}3 ≡ {a, {b, c, d}3, e}3.

We replace {a, b, c}3 by the opposite of {a, b, c}1, obtaining

{a, {b, c, d}1, e}1 ≡ {a, {b, c, d}2, e}1 ≡ {a, {d, c, b}1, e}1,(25)

{a, b, {c, d, e}1}1 ≡ {a, b, {c, d, e}2}1 ≡ {a, b, {e, d, c}1}1,(26)

{{a, b, c}1, d, e}2 ≡ {{a, b, c}2, d, e}2 ≡ {{c, b, a}1, d, e}2,(27)

{a, b, {c, d, e}1}2 ≡ {a, b, {c, d, e}2}2 ≡ {a, b, {e, d, c}1}2,(28)

and other equivalent identities; note that (28) follows from (27) by using (19).
We now see that (22) becomes (24) by the transposition ce and using (25) and

(26). We retain (24), which we write as a derivation property:

(29) {{e, d, c}1, b, a}1 ≡ {{e, b, a}1, d, c}1 − {e, {d, a, b}1, c}1 + {e, d, {c, b, a}1}1.

We also see that (23) becomes another derivation property by using (28):

(30) {{c, d, e}2, b, a}1 ≡ {{c, b, a}1, d, e}2 − {c, {d, a, b}1, e}2 + {c, d, {e, b, a}1}2.

This completes the proof. �
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Definition 4.3. A Jordan triple disystem (JTD) is a vector space D over a field
of characteristic not 2 with two trilinear operations {−,−,−}i : D ×D ×D → D
(i = 1, 2) satisfying the following identities:

{a, b, c}2 ≡ {c, b, a}2,(J1)

{a, {b, c, d}1, e}1 ≡ {a, {b, c, d}2, e}1,(J2)

{a, b, {c, d, e}1}1 ≡ {a, b, {c, d, e}2}1,(J3)

{{a, b, c}1, d, e}2 ≡ {{a, b, c}2, d, e}2,(J4)

{{e, d, c}1, b, a}1 ≡ {{e, b, a}1, d, c}1 − {e, {d, a, b}1, c}1 + {e, d, {c, b, a}1}1,(J5)

{{e, d, c}2, b, a}1 ≡ {{e, b, a}1, d, c}2 − {e, {d, a, b}1, c}2 + {e, d, {c, b, a}1}2,(J6)

{a, b, {c, d, e}1}1 ≡ {{a, b, c}1, d, e}1 − {c, {b, a, d}2, e}2 + {{a, b, e}1, d, c}1,(J7)

{a, b, {c, d, e}1}2 ≡ {{a, b, c}2, d, e}1 − {c, {b, a, d}1, e}2 + {{a, b, e}2, d, c}1.(J8)

(We have omitted the redundant second identities in lines 2, 3 and 4.)

We conclude this section with some examples of Jordan triple disystems.

Example 4.4. Let T be a Jordan triple system with product {−,−,−} over a field
of characteristic not 2. It is straightforward to check that T becomes a Jordan triple
disystem by setting {−,−,−}1 = {−,−,−}2 = {−,−,−}. In particular, every
associative algebra gives rise to a Jordan triple disystem by defining {a, b, c}1 =
{a, b, c}2 = abc+ cba. (For details see Section 5.)

Example 4.5. Let A be a differential associative algebra in the sense of Loday
[16]: that is, A is an associative algebra with product a · b together with a linear
map d : A→ A such that d2 = 0 and d(a · b) = d(a) · b+a ·d(b) for all a, b ∈ A. One
endows A with a dialgebra structure by defining a a b = a ·d(b) and a ` b = d(a) ·b.
It follows from Section 5 that A becomes a Jordan triple disystem by defining

{a, b, c}1 = a · d(b) · d(c) + d(c) · d(b) · a, {a, b, c}2 = d(a) · b · d(c) + d(c) · b · d(a).

Example 4.6. Let L be a Leibniz algebra over a field of characteristic not 2. If an
element x ∈ L satisfies [x, [x, [x, L]]] = {0} then we define

L(x) = { y ∈ L | [x, [x, y]] = 0 }.
By Velásquez and Felipe [24] (see also Gubarev and Kolesnikov [9]) we know that
the quotient space Lx = L/L(x) becomes a Jordan dialgebra with the product
ab = [a, [b, x]]. It follows from Section 7 that Lx has the structure of a Jordan
triple disystem with the trilinear operations defined as follows for all a, b, c ∈ L:

{a, b, c}1 = [[a, [b, x]], [c, x]]− [[a, [c, x]], [b, x]] + [a, [b, [c, x]]],

{a, b, c}2 = [[b, [a, x]], [c, x]] + [[b, [c, x]], [a, x]]− [b, [a, [c, x]]].

5. Jordan triple diproducts in an associative dialgebra

In this section, we study two trilinear operations in an associative dialgebra. We
use computer algebra to determine the identities satisfied by these operations of
degree ≤ 5 and prove that these identities are equivalent to those of Theorem 4.2.
We start by recalling the algorithm applied by Bremner and Sánchez-Ortega [5] to
the alternating ternary sum. In the general case it converts a multilinear operation
of degree n in an associative algebra into a family of n multilinear operations of
degree n in an associative dialgebra.
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Definition 5.1. BSO algorithm.
We start with a multilinear operation ω of degree n in an associative algebra

over a field F, which we can identify with an element of the group algebra FSn:

ω(a1, a2, . . . , an) =
∑
σ∈Sn

xσ aσ(1)aσ(2) · · · aσ(n) (xσ ∈ F).

For all i, j = 1, 2, . . . , n we collect the terms in which ai is in position j; we write
Sj,in for the set of permutations σ with σ(j) = i:

ωi(a1, a2, . . . , an) =

n∑
j=1

∑
Sj,i
n

xσ aσ(1) · · · aσ(j−1)aiaσ(j+1) · · · aσ(n).

We define n new multilinear operations in an associative dialgebra; ω̂i is obtained
from ω by making ai the center of each dialgebra monomial:

ω̂i(a1, a2, . . . , an) =

n∑
j=1

∑
S

(i)
n

xσ aσ(1) · · · aσ(j−1)âiaσ(j+1) · · · aσ(n).

Definition 5.2. The Jordan triple product in an associative algebra A over a
field of characteristic not 2 is the trilinear operation

(a, b, c) = abc+ cba.

Definition 5.3. The Jordan triple diproducts are obtained by applying the
BSO algorithm to the Jordan triple product:

(a, b, c)1 = âbc+ cbâ, (a, b, c)2 = ab̂c+ cb̂a, (a, b, c)3 = abĉ+ ĉba.

It is clear that (a, b, c)3 = (c, b, a)1, so we will only consider (a, b, c)1 and (a, b, c)2.

In the rest of this section, we use computer algebra to determine the multilinear
polynomial identities of degrees 3 and 5 satisfied by the Jordan triple diproducts
(· · · )1 and (· · · )2 over a field of characteristic 0.

5.1. Degree 3: operation 1. In this case a polynomial identity is a linear com-
bination of the six permutations of (a, b, c)1:

x1(a, b, c)1 + x2(a, c, b)1 + x3(b, a, c)1 + x4(b, c, a)1 + x5(c, a, b)1 + x6(c, b, a)1.

We expand each diproduct to obtain a linear combination of the 18 multilinear
dialgebra monomials of degree 3 ordered as follows:

âbc, âcb, b̂ac, b̂ca, ĉab, ĉba, ab̂c, aĉb, bâc, bĉa, câb, cb̂a, abĉ, acb̂, baĉ, bcâ, cab̂, cbâ.

We construct the 18× 6 matrix E in which the (i, j) entry is the coefficient of the
i-th dialgebra monomial in the expansion of the j-th diproduct monomial:

Et =


1 . . . . . . . . . . . . . . . . 1
. 1 . . . . . . . . . . . . . 1 . .
. . 1 . . . . . . . . . . . . . 1 .
. . . 1 . . . . . . . . . 1 . . . .
. . . . 1 . . . . . . . . . 1 . . .
. . . . . 1 . . . . . . 1 . . . . .


The coefficient vectors of the polynomial identities satisfied by (−,−,−)1 are the
vectors in the nullspace of E, which is the zero subspace since rank(E) = 6.

Lemma 5.4. The diproduct (· · · )1 satisfies no polynomial identity of degree 3.
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5.2. Degree 3: operation 2. Replacing (· · · )1 by (· · · )2 gives the matrix

Et =


. . . . . . 1 . . . . 1 . . . . . .
. . . . . . . 1 . 1 . . . . . . . .
. . . . . . . . 1 . 1 . . . . . . .
. . . . . . . 1 . 1 . . . . . . . .
. . . . . . . . 1 . 1 . . . . . . .
. . . . . . 1 . . . . 1 . . . . . .


We compute the row canonical form and obtain the canonical basis of the nullspace:[

0 −1 0 1 0 0
]
,
[

0 0 −1 0 1 0
]
,
[
−1 0 0 0 0 1

]
.

Lemma 5.5. Every polynomial identity of degree 3 satisfied by the diproduct (· · · )2

follows from the symmetry in the first and third arguments: (a, b, c)2 ≡ (c, b, a)2.

5.3. Degree 5: operation 1. Since (· · · )1 satisfies no polynomial identity of de-
gree 3, we consider three association types of degree 5:

((a, b, c)1, d, e)1, (a, (b, c, d)1, e)1, (a, b, (c, d, e)1)1.

There are 3 · 5! multilinear diproduct monomials of these three types, and 5 · 5!

dialgebra monomials of the forms âbcde, ab̂cde, abĉde, abcd̂e, abcdê. We expand
the diproduct monomials in an associative dialgebra and obtain

((a, b, c)1, d, e)1 = âbcde+ cbâde+ edâbc+ edcbâ,

(a, (b, c, d)1, e)1 = âbcde+ âdcbe+ ebcdâ+ edcbâ,

(a, b, (c, d, e)1)1 = âbcde+ âbedc+ cdebâ+ edcbâ.

We construct the 600×360 matrix E in which the (i, j) entry is the coefficient of the
i-th dialgebra monomial in the expansion of the j-th diproduct monomial. Using
a computer algebra system, we find that rank(E) = 150, and hence the nullspace
has dimension 210. We compute the canonical basis of the nullspace, and find that
all the components are ±1. We sort these vectors by increasing number of nonzero
components: there are 30 with two, 120 with four, and 60 with six. We construct
the 480× 360 matrix M with a 360× 360 upper block and a 120× 360 lower block.
For each nullspace basis vector, we perform the following computations:

(1) Apply all permutations of a, b, c, d, e to the corresponding linear combina-
tion of diproduct monomials, and store the results in the lower block.

(2) Compute the row canonical form; the lower block is now zero, and the
upper block contains a basis for the subspace of the nullspace generated by
the nullspace basis vectors up to the current vector.

(3) If the rank of the matrix has increased from the previous vector to the
current vector, then we record the current vector as a generator.

We obtain three generators of the nullspace, corresponding to these identities:

(a, (b, c, d)1, e)1 − (a, (d, c, b)1, e)1 ≡ 0,

((e, b, a)1, d, c)1 − ((e, d, c)1, b, a)1 − (e, (b, a, d)1, c)1 + (e, d, (c, b, a)1)1 ≡ 0,

((e, b, a)1, d, c)1 − ((e, d, c)1, b, a)1 − (e, (b, a, d)1, c)1 + (e, d, (a, b, c)1)1 ≡ 0.

A similar computation shows that no two of these identities generate the entire
nullspace. The difference of the second and third identities is

(e, d, (c, b, a)1)1 − (e, d, (a, b, c)1)1 ≡ 0,

and this gives a simpler set of three generating identities.
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Proposition 5.6. Every polynomial identity of degree 5 satisfied by the diproduct
(· · · )1 is a consequence of these three independent identities:

(a, (b, c, d)1, e)1 ≡ (a, (d, c, b)1, e)1, (a, b, (c, d, e)1)1 ≡ (a, b, (e, d, c)1)1,

((e, d, c)1, b, a)1 ≡ ((e, b, a)1, d, c)1 − (e, (d, a, b)1, c)1 + (e, d, (c, b, a)1)1.

5.4. Degree 5: operation 2. Lemma 5.5 implies that we need to consider only
two association types for the diproduct (· · · )2 of degree 5:

((a, b, c)2, d, e)2 = abcd̂e+ cbad̂e+ ed̂abc+ ed̂cba,

(a, (b, c, d)2, e)2 = abĉde+ adĉbe+ ebĉda+ edĉba.

The first type is symmetric in a and c, giving 5!/2 monomials; the second is sym-
metric in a and e and in b and d, giving 5!/4 monomials. We construct the 600×90
matrix E in which the (i, j) entry is the coefficient of the i-th dialgebra monomial
in the expansion of the j-th diproduct monomial. We find that rank(E) = 90.

Proposition 5.7. Every polynomial identity of degree 5 satisfied by the diproduct
(· · · )2 is a consequence of the symmetry of Lemma 5.5.

5.5. Degree 5: operations 1 and 2. We now consider multilinear polynomial
identities which involve both diproducts (· · · )1 and (· · · )2. In addition to the three
association types for (· · · )1 and the two association types for (· · · )2, we must also
consider the five association types involving both operations:

1: ((a, b, c)1, d, e)1 6: ((a, b, c)2, d, e)1

2: (a, (b, c, d)1, e)1 7: (a, (b, c, d)2, e)1

3: (a, b, (c, d, e)1)1 8: (a, b, (c, d, e)2)1

4: ((a, b, c)2, d, e)2 9: ((a, b, c)1, d, e)2

5: (a, (b, c, d)2, e)2 10: (a, (b, c, d)1, e)2

Lemma 5.5 and Proposition 5.6 imply the following results:

symmetries monomials symmetries monomials
1: − 5! = 120 6: a↔ c 5!/2 = 60
2: b↔ d 5!/2 = 60 7: b↔ d 5!/2 = 60
3: c↔ e 5!/2 = 60 8: c↔ e 5!/2 = 60
4: a↔ c 5!/2 = 60 9: − 5! = 120
5: a↔ e; b↔ d 5!/4 = 30 10: a↔ e 5!/2 = 60

The total number of multilinear diproduct monomials is 690. In this case, the ma-
trix E has size 600× 690, and as before the (i, j) entry is the coefficient of the i-th
dialgebra monomial in the expansion of the j-th diproduct monomial. For such a
large matrix we use modular arithmetic to do Gaussian elimination in order to con-
trol the memory requirements. Since we consider multilinear monomials, all vector
spaces are representations of S5; if use a modulus p > 5 we will obtain dimensions
equivalent to those which we would have obtained using rational arithmetic. We
find that rank(E) = 250, and hence the nullspace has dimension 440. We compute
the canonical basis and sort it by increasing number of nonzero components.

We now construct an 810 × 690 matrix M with a 690 × 690 upper block and
a 120 × 690 lower block. Before processing the 440 nullspace identities, we first
process the third identity of Proposition 5.6, which we rewrite as follows:

((a, b, c)1, d, e)1 − ((a, d, e)1, b, c)1 + (a, (b, e, d)1, c)1 − (a, b, (c, d, e)1)1 ≡ 0.
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This is the only known identity that has not already been taken into account; the
other identities from Lemma 5.5 and Proposition 5.6 express symmetries which
have been assumed in our enumeration of the diproduct monomials. This identity
generates a 90-dimensional subspace of the nullspace. Continuing with the 440
nullspace vectors, we obtain six additional generators (we omit “≡ 0”):

((c, b, a)2, d, e)2 − ((a, b, c)1, d, e)2,(31)

(a, (b, c, d)1, e)1 − (a, (b, c, d)2, e)1,(32)

((e, d, c)2, b, a)2 − ((a, b, e)2, d, c)1 − ((a, b, c)2, d, e)1 + (e, (b, a, d)1, c)2,(33)

((e, b, a)2, d, c)2 + ((c, b, a)2, d, e)2 − ((e, d, c)2, b, a)1 − (e, (d, a, b)1, c)2,(34)

((e, b, a)1, d, c)1 − ((e, d, c)1, b, a)1 − (e, (b, a, d)1, c)1 + (e, d, (a, b, c)2)1,(35)

((a, b, c)1, d, e)1 + ((a, d, c)1, b, e)1 − (a, (b, c, d)1, e)1 − (c, (b, a, d)2, e)2.(36)

Further calculations show that if we take any proper subset of these six identities,
and combine it with the third identity of Proposition 5.6, then the resulting set of
identities does not generate the entire nullspace. It follows that identities (31)–(36)
are independent, modulo the third identity of Proposition 5.6. Using Lemma 5.5
and Proposition 5.6, we see that (31), (32), (35) are equivalent to

((a, b, c)2, d, e)2 ≡ ((a, b, c)1, d, e)2,

(a, (b, c, d)1, e)1 ≡ (a, (b, c, d)2, e)1,

((e, b, a)1, d, c)1 − ((e, d, c)1, b, a)1 − (e, (d, a, b)1, c)1 + (e, d, (c, b, a)2)1 ≡ 0.

From the last identity we subtract the third identity of Proposition 5.6 and obtain

(a, b, (c, d, e)1)1 ≡ (a, b, (c, d, e)2)1.

We now see that identities (31)–(36) are equivalent to the following six identities
(we omit “≡ 0” in the last three):

((a, b, c)2, d, e)2 ≡ ((a, b, c)1, d, e)2,

(a, (b, c, d)1, e)1 ≡ (a, (b, c, d)2, e)1,

(a, b, (c, d, e)1)1 ≡ (a, b, (c, d, e)2)1,

((e, d, c)2, b, a)2 − ((a, b, e)2, d, c)1 − ((a, b, c)2, d, e)1 + (e, (b, a, d)1, c)2,

((e, b, a)2, d, c)2 + ((c, b, a)2, d, e)2 − ((e, d, c)2, b, a)1 − (e, (d, a, b)1, c)2,

((a, b, c)1, d, e)1 + ((a, d, c)1, b, e)1 − (a, (b, c, d)1, e)1 − (c, (b, a, d)2, e)2.

The last three identities are equivalent (assuming known symmetries) to

((e, d, c)1, b, a)2 ≡ ((e, b, a)2, d, c)1 − (e, (b, a, d)1, c)2 + ((c, b, a)2, d, e)1.

((e, d, c)2, b, a)1 ≡ ((e, b, a)1, d, c)2 − (e, (d, a, b)1, c)2 + (e, d, (c, b, a)1)2.

(a, (b, c, d)2, e)2 ≡ ((c, b, a)1, d, e)1 + ((c, d, a)1, b, e)1 − (c, (b, a, d)1, e)1.

We have proved the following result.

Theorem 5.8. Every polynomial identity of degree ≤ 5 satisfied by the Jordan
triple diproducts (· · · )1 and (· · · )2 in an associative dialgebra is a consequence of
these eight independent identities:

(a, b, c)2 ≡ (c, b, a)2,

(a, (b, c, d)1, e)1 ≡ (a, (b, c, d)2, e)1,
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(a, b, (c, d, e)1)1 ≡ (a, b, (c, d, e)2)1,

((a, b, c)1, d, e)2 ≡ ((a, b, c)2, d, e)2,

((e, d, c)1, b, a)1 ≡ ((e, b, a)1, d, c)1 − (e, (d, a, b)1, c)1 + (e, d, (c, b, a)1)1,

((e, d, c)2, b, a)1 ≡ ((e, b, a)1, d, c)2 − (e, (d, a, b)1, c)2 + (e, d, (c, b, a)1)2,

((e, d, c)1, b, a)2 ≡ ((e, b, a)2, d, c)1 − (e, (b, a, d)1, c)2 + ((c, b, a)2, d, e)1,

(a, (b, c, d)2, e)2 ≡ ((c, b, a)1, d, e)1 + ((c, d, a)1, b, e)1 − (c, (b, a, d)1, e)1.

Remark 5.9. These identities are equivalent to those of Theorem 4.2. We have

(a, (b, c, d)1, e)1 ≡ (a, (b, c, d)2, e)1 ≡ (a, (d, c, b)2, e)1 ≡ (a, (d, c, b)1, e)1,

(a, b, (c, d, e)1)1 ≡ (a, b, (c, d, e)2)1 ≡ (a, b, (e, d, c)2)1 ≡ (a, b, (e, d, c)1)1,

((a, b, c)1, d, e)2 ≡ ((a, b, c)2, d, e)2 ≡ ((c, b, a)2, d, e)2 ≡ ((c, b, a)1, d, e)2,

corresponding to the identities in the first four lines displayed in Theorem 4.2. The
fifth and sixth identities of Theorem 5.8 coincide with the fifth and sixth lines
displayed in Theorem 4.2. Using the known identities,

((e, d, c)1, b, a)2 ≡ ((c, d, e)1, b, a)2 ≡ (a, b, (c, d, e)1)2,

((e, b, a)2, d, c)1 ≡ ((a, b, e)2, d, c)1, ((c, b, a)2, d, e)1 ≡ ((a, b, c)2, d, e)1,

(e, (b, a, d)1, c)2 ≡ (c, (b, a, d)1, e)2,

we see that the seventh identity of Theorem 5.8 becomes the eighth line displayed
in Theorem 4.2. To conclude, we apply the transposition ac to the eighth identity
of Theorem 5.8:

(c, (b, a, d)2, e)2 ≡ ((a, b, c)1, d, e)1 + ((a, d, c)1, b, e)1 − (a, (b, c, d)1, e)1

Using this equivalent form of the fifth identity of Theorem 5.8,

((a, d, c)1, b, e)1 − (a, (b, c, d)1, e)1 ≡ −(a, b, (c, d, e)1)1 + ((a, b, e)1, d, c)1,

we obtain

(c, (b, a, d)2, e)2 ≡ ((a, b, c)1, d, e)1 − (a, b, (c, d, e)1)1 + ((a, b, e)1, d, c)1,

which is equivalent to the seventh line displayed in Theorem 4.2.

Theorem 5.10. If D is a subspace of an associative dialgebra over a field of char-
acteristic not 2, 3, 5 which is closed under the Jordan diproducts (· · · )1 and (· · · )2,
then D is a Jordan triple disystem with respect to these operations.

We exclude characteristics 2, 3, 5 since our computer algebra methods require
modular arithmetic with a prime greater than the degree of the identities.

6. Conjecture: dialgebra operations and identities

The results of Sections 4 and 5 suggest a general conjecture relating multilinear
operations in associative dialgebras and their polynomial identities.

Fix a coefficient field F and an integer n ≥ 2. Let ω be a multilinear n-ary
operation in an associative algebra over F; we can identify ω with an element of
the group algebra FSn. Fix a degree d and consider the multilinear polynomial
identities of degree e ≤ d satisfied by ω; we may assume that d ≡ 1 (mod n−1). To
be precise, let Ae be the multilinear subspace of degree e in the free nonassociative
n-ary algebra over F on e generators. Let Ie be the subspace of Ae consisting of
those nonassociative n-ary polynomials which vanish identically when the n-ary
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ω
BSO−−−−→ ω1, . . . , ωny y

Id(ω)
KP−−−−→

Jd(ω1, . . . , ωn)
?
= KPd(ω)

Figure 1. Diagrammatic formulation of Conjecture 6.1

operation is replaced by ω; thus Ie is the kernel of the expansion map from Ae
to the group algebra FSe regarded as the multilinear subspace of degree e in the
free associative algebra on e generators. By definition, the multilinear polynomial
identities of degree ≤ d satisfied by ω are the direct sum

Id(ω) =
⊕

1≤e≤d

Ie.

We apply the KP algorithm to the identities in Id(ω) and obtain a set of multilinear
polynomial identities involving n new n-ary operations. To be precise, let Be be the
multilinear subspace of degree e in the free nonassociative multioperator algebra
with n operations of arity n. Let KP(Ie) be the subspace of Be obtained by applying
the KP algorithm to the identities in Ie, and define

KPd(ω) =
⊕

1≤e≤d

KP(Ie).

We now consider a different path to the same destination. We apply the BSO
algorithm to ω and obtain n multilinear operations ω1, . . . , ωn of arity n in an
associative dialgebra. Consider the multilinear polynomial identities of degree e ≤ d
satisfied by ω1, . . . , ωn. To be precise, let Je be the subspace of Be consisting of
those nonassociative polynomials in the n operations which vanish identically when
the n operations are replaced by ω1, . . . , ωn; thus Je is the kernel of the expansion
map from Be to the direct sum of e copies of the group algebra FSe regarded as the
multilinear subspace of degree e in the free associative dialgebra on e generators.
We define

Jd(ω1, . . . , ωn) =
⊕

1≤e≤d

Je.

Conjecture 6.1. If the field F has characteristic 0 or p > d then

KPd(ω) = Jd(ω1, . . . , ωn).

Expressed less formally, the conjecture says that the following two processes
produce the same results when the group algebra FSd is semisimple:

• Find the identities satisfied by ω, and apply the KP algorithm.
• Apply the BSO algorithm, and find the identities satisfied by ω1, . . . , ωn.

The conjecture is equivalent to the commutativity of the diagram in Figure 1.

7. Jordan triple diproducts in a Jordan dialgebra

Every Jordan algebra J with operation a ◦ b gives rise to a Jordan triple system
by considering the same underlying vector space with respect to the triple product

(37) 〈a, b, c〉 = (a ◦ b) ◦ c− (a ◦ c) ◦ b+ a ◦ (b ◦ c).
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In this section we consider a Jordan dialgebra D with operation ab and the two
trilinear operations which give rise to the structure of a Jordan triple disystem on
the same underlying vector space.

The first trilinear operation 〈· · · 〉1 can be obtained by replacing the Jordan
algebra product a ◦ b in (37) by the the Jordan dialgebra product ab in D:

(38) 〈a, b, c〉1 = (ab)c− (ac)b+ a(bc).

The second trilinear operation 〈· · · 〉2 can be obtained from the first by transposing
a and b and changing the signs of the second and third terms:

(39) 〈a, b, c〉2 = (ba)c+ (bc)a− b(ac).

It is straightforward to verify that in a special Jordan dialgebra, where the product
is ab = a a b+ b ` a, these operations reduce to twice the first and second Jordan
diproducts in an associative dialgebra:

(a a b+ b ` a) a c+ c ` (a a b+ b ` a)

− (a a c+ c ` a) a b− b ` (a a c+ c ` a)

+ a a (b a c+ c ` b) + (b a c+ c ` b) ` a
= âbc+ bâc+ câb+ cbâ− âcb− câb− bâc− bcâ+ âbc+ âcb+ bcâ+ cbâ

= 2
(
âbc+ cbâ

)
,

(b a a+ a ` b) a c+ c ` (b a a+ a ` b)
+ (b a c+ c ` b) a a+ a ` (b a c+ c ` b)
− b a (a a c+ c ` a)− (a a c+ c ` a) ` b

= b̂ac+ ab̂c+ cb̂a+ cab̂+ b̂ca+ cb̂a+ ab̂c+ acb̂− b̂ac− b̂ca− acb̂− cab̂

= 2
(
ab̂c+ cb̂a

)
.

Lemma 7.1. In a Jordan dialgebra D with operation ab, every polynomial identity
of degree 3 satisfied by 〈a, b, c〉1 and 〈a, b, c〉2 is a consequence of the symmetry of
〈a, b, c〉2 in its first and third arguments: 〈a, b, c〉2 ≡ 〈c, b, a〉2.

Proof. We use computer algebra. We construct an 18× 24 matrix E in which

• the upper left 6× 12 block contains the right commutative identities
• the lower left 12× 12 block contains the expansions of 〈· · · 〉1 and 〈· · · 〉2
• the lower right 12× 12 block contains the identity matrix
• the upper right 6× 12 block contains the zero matrix

More precisely, columns 1–12 of the matrix correspond to the 12 multilinear mono-
mials of degree 3 in the free nonassociative algebra,

(ab)c, (ac)b, (ba)c, (bc)a, (ca)b, (cb)a, a(bc), a(cb), b(ac), b(ca), c(ab), c(ba),

and columns 13–24 correspond to the 12 multilinear monomials of degree 3 in the
trilinear operations 〈· · · 〉1 and 〈· · · 〉2,

〈a, b, c〉1, 〈a, c, b〉1, 〈b, a, c〉1, 〈b, c, a〉1, 〈c, a, b〉1, 〈c, b, a〉1,
〈a, b, c〉1, 〈a, c, b〉1, 〈b, a, c〉1, 〈b, c, a〉1, 〈c, a, b〉1, 〈c, b, a〉1.

There are six permutations of the right-commutative identity:

a(bc)−a(cb), a(cb)−a(bc), b(ac)−b(ca), b(ca)−b(ac), c(ab)−c(ba), c(ba)−c(ab).
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. . . . . . + − . . . . . . . . . . . . . . . .

. . . . . . − + . . . . . . . . . . . . . . . .

. . . . . . . . + − . . . . . . . . . . . . . .

. . . . . . . . − + . . . . . . . . . . . . . .

. . . . . . . . . . + − . . . . . . . . . . . .

. . . . . . . . . . − + . . . . . . . . . . . .
+ − . . . . + . . . . . + . . . . . . . . . . .
− + . . . . . + . . . . . + . . . . . . . . . .
. . + − . . . . + . . . . . + . . . . . . . . .
. . − + . . . . . + . . . . . + . . . . . . . .
. . . . + − . . . . + . . . . . + . . . . . . .
. . . . − + . . . . . + . . . . . + . . . . . .
. . + + . . . . − . . . . . . . . . + . . . . .
. . . . + + . . . . − . . . . . . . . + . . . .
+ + . . . . − . . . . . . . . . . . . . + . . .
. . . . + + . . . . . − . . . . . . . . . + . .
+ + . . . . . − . . . . . . . . . . . . . . + .
. . + + . . . . . − . . . . . . . . . . . . . +



Figure 2. The 18× 24 matrix for the proof of Lemma 7.1



+ . . . . . . . . . . . ∗ . . . . . . . . . ∗ .
. + . . . . . . . . . . . ∗ . . . . . . . . ∗ .
. . + . . . . . . . . . . . ∗ . . . . . . . . ∗
. . . + . . . . . . . . . . . ∗ . . . . . . . ∗
. . . . + . . . . . . . . . . . ∗ . . . . ∗ . .
. . . . . + . . . . . . . . . . . ∗ . . . ∗ . .
. . . . . . + . . . . . ∗ ∗ . . . . . . . . . .
. . . . . . . + . . . . ∗ ∗ . . . . . . . . . .
. . . . . . . . + . . . . . ∗ ∗ . . . . . . . .
. . . . . . . . . + . . . . ∗ ∗ . . . . . . . .
. . . . . . . . . . + . . . . . ∗ ∗ . . . . . .
. . . . . . . . . . . + . . . . ∗ ∗ . . . . . .
. . . . . . . . . . . . . . . . . . + . . . . −
. . . . . . . . . . . . . . . . . . . + . − . .
. . . . . . . . . . . . . . . . . . . . + . − .



Figure 3. The row canonical form of the matrix of Figure 2

Entry (i, j) of the upper left block is the coefficient of the j-th nonassociative mono-
mial in the i-th permutation of the right-commutative identity. Entry (12+i, j) of
the lower left block contains is the coefficient of the j-th nonassociative monomial
in the expansion of the i-th trilinear monomial using equations (38) and (39). This
matrix is displayed in Figure 2, using the symbols ·,+,− for 0, 1,−1. The rank is
15, and the row canonical form is displayed in Figure 3, using the symbol ∗ for 1

2 .
The dividing line between the upper and lower parts of the matrix lies immediately
above row 13, since that is the uppermost row whose leading 1 is in the right part of
the matrix. These rows represent the dependence relations among the expansions of
the trilinear monomials which hold as a result of the right-commutative identities.
The rows of the lower right 3 × 12 block of the row canonical form represent the
permutations of the identity 〈a, b, c〉2 − 〈c, b, a〉2 ≡ 0. �

Theorem 7.2. In a Jordan dialgebra D with operation ab, every polynomial iden-
tity of degree 5 satisfied by 〈a, b, c〉1 and 〈a, b, c〉2 is a consequence of the identity of
Lemma 7.1 together with these seven independent identities:

〈a, 〈b, c, d〉1, e〉1 − 〈a, 〈d, c, b〉2, e〉1 ≡ 0,

〈a, b, 〈c, d, e〉1〉1 − 〈a, b, 〈e, d, c〉2〉1 ≡ 0,

〈〈a, b, c〉1, d, e〉2 − 〈〈c, b, a〉2, d, e〉2 ≡ 0,

〈〈a, b, c〉2, d, e〉1 − 〈〈e, d, a〉2, b, c〉2 + 〈a, 〈b, e, d〉1, c〉2 − 〈〈e, d, c〉2, b, a〉2 ≡ 0,

〈〈a, b, c〉2, d, e〉1 − 〈a, 〈b, c, d〉1, e〉2 − 〈e, 〈b, a, d〉1, c〉2 + 〈〈a, d, c〉2, b, e〉2 ≡ 0,
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〈〈a, b, c〉1, d, e〉1 + 〈〈a, b, e〉1, d, c〉1 − 〈a, b, 〈c, d, e〉2〉1 − 〈c, 〈d, a, b〉2, e〉2 ≡ 0,

〈〈a, b, c〉1, d, e〉1 + 〈〈a, d, c〉1, b, e〉1 − 〈a, 〈b, c, d〉2, e〉1 − 〈e, 〈b, a, d〉2, c〉2 ≡ 0.

Proof. The basic strategy is the same as in the proof of Lemma 7.1, but the matrix
is much larger and some further computations are required.

There are 14 association types for a nonassociative binary operation of degree 5,

(((ab)c)d)e, ((a(bc))d)e, ((ab)(cd))e, (a((bc)d))e, (a(b(cd)))e, ((ab)c)(de), (a(bc))(de),

(ab)((cd)e), (ab)(c(de)), a(((bc)d)e), a((b(cd))e), a((bc)(de)), a(b((cd)e)), a(b(c(de))).

and 5! permutations of the variables a, b, c, d, e, giving 1680 multilinear monomials,
which correspond to the columns in the left part of the matrix; we order them first
by association type and then by lexicographical order of the permutation.

We need to generate all the consequences of degree 5 of the defining identities for
Jordan dialgebras. A multilinear identity I(a1, . . . , an) of degree n produces n+2
identities of degree n+1 (we have n substitutions and two multiplications):

I(a1an+1, . . . , an), . . . , I(a1, . . . , anan+1), I(a1, . . . , an)an+1, an+1I(a1, . . . , an).

The right-commutative identity of degree 3 produces 5 identities of degree 4, and
each of these produces 6 identities of degree 5, for a total of 30. The linearized
versions of the two identities of degree 4 from Definition 3.5 each produce 6 identities
of degree 5, for a total of 12. Altogether we have 42 identities of degree 5, and each
allows 5! permutations of the variables, for a total of 5040 identities.

The last two paragraphs show that the upper left block has size 5040× 1680; its
(i, j) entry is the coefficient of the j-th nonassociative monomial in the i-th identity.

There are 10 association types for two trilinear operations of degree 5, assuming
that the second operation is symmetric in its first and third arguments:

1: 〈〈a, b, c〉1, d, e〉1 6: 〈〈a, b, c〉2, d, e〉1
2: 〈a, 〈b, c, d〉1, e〉1 7: 〈a, 〈b, c, d〉2, e〉1
3: 〈a, b, 〈c, d, e〉1〉1 8: 〈a, b, 〈c, d, e〉2〉1
4: 〈〈a, b, c〉2, d, e〉2 9: 〈〈a, b, c〉1, d, e〉2
5: 〈a, 〈b, c, d〉2, e〉2 10: 〈a, 〈b, c, d〉1, e〉2

The symmetry of 〈· · · 〉2 gives the number of multilinear monomials in each type:

120 + 120 + 120 + 60 + 60 + 60 + 120 + 60 + 60 + 30 = 810;

these monomials correspond to the columns in the right part of the matrix. The
lower left block has size 810 × 1680; its (i, j) entry is the coefficient of the j-th
nonassociative monomial in the expansion, using equations (38) and (39), of the
i-th monomial in the operations 〈· · · 〉1 and 〈· · · 〉2. The lower right block is the
810× 810 identity matrix, and the upper right block is the 5040× 810 zero matrix.
(See Figure 4.)

We compute the row canonical form of this matrix and find that its rank is 2215.
We ignore the first 1655 rows since their leading ones are in the left part, and retain
only the next 560 rows which have have their leading ones in the right part. We
sort these rows by increasing number of nonzero components.

We construct another matrix with an upper block of size 810× 810 and a lower
block of size 120 × 810. For each of the 560 identities satisfied by the operations
〈· · · 〉1 and 〈· · · 〉2, we apply all 5! permutations of the variables, store the permuted
identities in the lower block, and compute the row canonical form of the matrix;
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consequences in
degree 5 of the
Jordan dialgebra
identities from
Definition 3.5

zero matrix

expansions using
(38) and (39) of
the monomials
of degree 5 for
〈· · · 〉1 and 〈· · · 〉2

identity matrix


Figure 4. Matrix for the proof of Theorem 7.2

after each iteration, the lower block is the zero matrix. We record the index numbers
of the identities which increase the rank, and obtain these results:

identity 1 121 241 301 331 342 451 454
rank 120 240 360 390 450 470 530 560

Further computations show that identity 301 is superfluous: the other seven identi-
ties generate the entire 560-dimensional space. These seven identities are displayed
in standard notation in the statement of this Theorem. �

Theorem 7.3. If D is a subspace of a Jordan dialgebra over a field of character-
istic not 2, 3, 5 which is closed under the trilinear operations 〈· · · 〉1 and 〈· · · 〉2 of
equations (38) and (39), then D is a Jordan triple disystem with respect to these
operations.

Proof. Theorem 7.1 tells us that identity (J1) is satisfied:

〈a, b, c〉2 ≡ 〈c, b, a〉2.
Identities (J2), (J3) and (J4) can be easily obtained from (J1) and the first three
identities of Theorem 7.2:

〈a, 〈b, c, d〉1, e〉1 ≡ 〈a, 〈d, c, b〉2, e〉1 ≡ 〈a, 〈b, c, d〉2, e〉1,
〈a, b, 〈c, d, e〉1〉1 ≡ 〈a, b, 〈e, d, c〉2〉1 ≡ 〈a, b, 〈c, d, e〉2〉1,
〈〈a, b, c〉1, d, e〉2 ≡ 〈〈c, b, a〉2, d, e〉2 ≡ 〈〈c, b, a〉2, d, e〉2.

Identity (J7) is a consequence of the sixth identity of Theorem 7.2 by applying
(J1) and (J3). To obtain (J6), we apply the transpositions ae and bd to the fourth
identity of Theorem 7.2:

〈〈e, d, c〉2, b, a〉1 − 〈〈a, b, e〉2, d, c〉2 + 〈e, 〈d, b, a〉1, c〉2 − 〈〈a, b, c〉2, d, e〉2 ≡ 0.

Using identities (J1) and (J4) we obtain these two identities,

〈〈a, b, e〉2, d, c〉2 ≡ 〈〈e, b, a〉2, d, c〉2 ≡ 〈〈e, b, a〉1, d, c〉2,
〈〈a, b, c〉2, d, e〉2 ≡ 〈〈c, b, a〉2, d, e〉2 ≡ 〈〈c, b, a〉1, d, e〉2,

and substituting these in the previous identity gives (J6). To obtain identity (J8),
we apply (J1) and (J4) to the fifth identity of Theorem 7.2:

(40) 〈〈a, b, c〉2, d, e〉1 − 〈a, 〈b, c, d〉1, e〉2 − 〈c, 〈b, a, d〉1, e〉2 + 〈〈a, d, c〉1, b, e〉2 ≡ 0.
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Identity (J6) gives

−〈c, 〈b, a, d〉1, e〉2 + 〈〈a, d, c〉1, b, e〉2 ≡ −〈a, b, 〈e, d, c〉1〉2 + 〈〈a, b, e〉2, d, c〉1.

On the other hand, using identities (J1) and (J4) we obtain

〈a, b, 〈e, d, c〉1〉2 ≡ 〈〈e, d, c〉1, b, a〉2 ≡ 〈〈e, d, c〉2, b, a〉2 ≡
〈〈c, d, e〉2, b, a〉2 ≡ 〈〈c, d, e〉1, b, a〉2 ≡ 〈a, b, 〈c, d, e〉1〉2.

Applying these considerations to identity (40) we obtain

〈〈a, b, c〉2, d, e〉1 − 〈c, 〈b, a, d〉1, e〉2 + 〈〈a, b, e〉2, d, c〉1 − 〈a, b, 〈c, d, e〉1〉2 ≡ 0,

which is equivalent to (J8). It remains to show (J5). We apply (J1) and (J2) to
the last identity of Theorem 7.2 and obtain

(41) 〈〈a, b, c〉1, d, e〉1 + 〈〈a, d, c〉1, b, e〉1 − 〈a, 〈b, c, d〉1, e〉1 − 〈c, 〈b, a, d〉2, e〉2 ≡ 0.

From (J7) we have:

〈c, 〈b, a, d〉2, e〉2 ≡ −〈a, b, 〈c, d, e〉1〉1 + 〈〈a, b, c〉1, d, e〉1 + 〈〈a, b, e〉1, d, c〉1,

and substituting this in (41) gives

(42) 〈〈a, d, c〉1, b, e〉1 − 〈a, 〈b, c, d〉1, e〉1 + 〈a, b, 〈c, d, e〉1〉1 − 〈〈a, b, e〉1, d, c〉1 ≡ 0.

To finish, we observe that

〈a, b, 〈c, d, e〉1〉1 ≡ 〈a, b, 〈c, d, e〉2〉1 ≡ 〈a, b, 〈e, d, c〉2〉1 ≡ 〈a, b, 〈e, d, c〉1〉1,

and applying these to (42) yields

〈〈a, d, c〉1, b, e〉1 − 〈a, 〈b, c, d〉1, e〉1 + 〈a, b, 〈e, d, c〉1〉1 − 〈〈a, b, e〉1, d, c〉1 ≡ 0,

which is equivalent to (J5). �

Second proof of Theorem 7.3. We conclude with an alternative proof, with-
out using computer algebra, of the defining identities (J1)–(J8) for Jordan triple
disystems with respect to the operations 〈· · · 〉1 and 〈· · · 〉2 in a Jordan dialgebra:

〈a, b, c〉1 = (ab)c− (ac)b+ a(bc), 〈a, b, c〉2 = (ba)c+ (bc)a− b(ac).

Definition 7.4. Let D be a Jordan dialgebra with operation ab. The annihilator
Dann is the ideal spanned by { [a, b] = ab−ba | a, b ∈ D }. The right center Zr(D)
is the ideal consisting of the elements b ∈ D such that ab = 0 for all a ∈ D. A
derivation is a linear map δ : D → D satisfying δ(ab) = δ(a)b+ aδ(b) for all a, b ∈
D. A left derivation is a linear map µ : D → D satisfying µ(ab) = µ(a)b+µ(b)a for
all a, b ∈ D. For a ∈ D the right and left multiplication operators Ra : D → D,
La : D → D are defined by Rab = ba, Lab = ab for all b ∈ D.

Lemma 7.5. We have Dann ⊆ Zr(D) for any Jordan dialgebra D.

Proof. Right commutativity gives c[a, b] = c(ab)− c(ba) = 0. �

Lemma 7.6. If D is a Jordan dialgebra then for all a, b, c ∈ D we have

〈a, b, c〉1 − 〈c, b, a〉1 ∈ Dann, 〈a, b, c〉1 − 〈a, b, c〉2 ∈ Dann.
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Proof. Right commutativity gives

〈a, b, c〉1 − 〈c, b, a〉1 = (ab)c− (ac)b+ a(bc)− (cb)a+ (ca)b− c(ba)

= (ab)c− c(ab) + (ca− ac)b+ a(cb)− (cb)a = [ab, c] + [c, a]b+ [a, cb],

〈a, b, c〉1 − 〈a, b, c〉2 = (ab)c− (ac)b+ a(bc)− (ba)c− (bc)a+ b(ac)

= (ab− ba)c+ a(bc)− (bc)a+ b(ac)− (ac)b = [a, b]c+ [a, bc] + [b, ac].

Both expressions belong to Dann since the annihilator is an ideal. �

Proposition 7.7. If D is a Jordan dialgebra then identities (J1)–(J4) are satisfied
by the operations 〈· · · 〉1 and 〈· · · 〉2:

〈a, b, c〉2 ≡ 〈c, b, a〉2,
〈a, 〈b, c, d〉1, e〉1 ≡ 〈a, 〈b, c, d〉2, e〉1 ≡ 〈a, 〈d, c, b〉1, e〉1,
〈a, b, 〈c, d, e〉1〉1 ≡ 〈a, b, 〈c, d, e〉2〉1 ≡ 〈a, b, 〈e, d, c〉1〉1,
〈〈a, b, c〉1, d, e〉2 ≡ 〈〈a, b, c〉2, d, e〉2 ≡ 〈〈c, b, a〉1, d, e〉2.

Proof. The first line follows directly from right commutativity. For the second line,
using Lemma 7.6 it suffices to show 〈a, x, e〉1 ≡ 0 for x ∈ Dann, and again this
follows from right commutativity. The third and fourth lines are similar. �

Right commutativity is equivalent to both Rab = Rba and LaLb = LaRb. The
operations 〈· · · 〉1 and 〈· · · 〉2 can be expressed using multiplication operators:

〈a, b, c〉1 = RcRb a−RbRc a+Rcb a =
(
Rcb + [Rc, Rb]

)
a

= Lab c−RbLa c+ LaLb c =
(
Lab + [La, Rb]

)
c,

〈a, b, c〉2 = Lba c+RaLb c− LbLa c =
(
Lba − [Lb, Ra]

)
c.

It has been shown by Felipe and Velásquez [8, 26] that [Ra, Rb] is a derivation, that
[La, Rb] is a left derivation, and that for all a, b, c ∈ D we have

R[Ra,Rb]c = [[Ra, Rb], Rc],(43)

L[La,Rb]c = [[La, Rb], Rc].(44)

Lemma 7.8. If D is a Jordan dialgebra then for i = 1, 2 and a, b, c, d ∈ D we have

(1) Rd 〈a, b, c〉i = 〈Rd a, b, c 〉i − 〈 a,Rd b, c 〉i + 〈 a, b, Rd c 〉i,
(2) Ld 〈a, b, c〉i = 〈Ld a, b, c 〉1 − 〈 a,Rd b, c 〉2 + 〈Ld c, b, a 〉1.

Proof. (1) For i = 1 we use the linearization of the right Jordan identity,

(45) [Ra, Rbc] + [Rb, Rca] + [Rc, Rab] = 0.

By definition of 〈· · · 〉1 we have

Rd〈a, b, c〉1 = ((ab)c)d− ((ac)b)d+ (a(bc))d,

〈Rda, b, c〉1 = ((ad)b)c− ((ad)c)b+ (ad)(bc),

〈a,Rdb, c〉1 = (a(bd))c− (ac)(bd) + a((bd)c),

〈a, b, Rdc〉1 = (ab)(cd)− (a(cd))b+ a(b(cd)).

Using right commutativity and equations (43) and (45) we obtain

Rd〈a, b, c〉1 − 〈Rda, b, c〉1 + 〈a,Rdb, c〉1 − 〈a, b, Rdc〉1
= (a(bc))d− (ad)(bc) + (a(cd))b− (ab)(cd) + (a(bd))c− (ac)(bd)
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+ ((ab)c)d− ((ac)b)d− ((ad)b)c+ ((ad)c)b+ a((bd)c)− a(b(cd))

=
(
[Rd, Rcb] + [Rb, Rcd] + [Rc, Rbd] + [Rd, [Rc, Rb]] +R[Rc,Rb]d

)
a = 0.

For i = 2 the proof is similar, using (44) and this equation proved in [26]:

(46) [La, Rbc] + [Rb, Lac] + [Rc, Lab] = 0,

(2) For i = 1, right commutativity and the definitions of 〈· · · 〉1 and 〈· · · 〉2 give

Ld〈a, b, c〉1 − 〈Lda, b, c〉1 + 〈a, Ldb, c〉2 − 〈Ldc, b, a〉1
=
(
LdLab − LdRbLa + LdLaLb − LRbRad +RbLda − LdaRb

+ LRaRbd +RaLdb − LdbLa −RaRbLd +RbRaLd −RbaLd
)
c

=
(
LdRab − LdRbRa + LdRaRb + L[Ra,Rb]d +RbLda − LdaRb

+RaLdb − LdbRa − [Ra, Rb]Ld −RabLd
)
c

=
(
[Ld, Rab] + [Rb, Lda] + [Ra, Ldb] + L[Ra,Rb]d

)
c = 0.

We have used (46) and (44) and the fact that

L[Ra,Rb]d = [[Ra, Rb], Ld],

since [Ra, Rb] is a derivation of D. For i = 2, it suffices to observe that right
commutativity implies Ld〈a, b, c〉1 = Ld〈a, b, c〉2. �

Lemma 7.9. If D is a Jordan dialgebra with derivation δ and left derivation µ
then for i = 1, 2 and a, b, c, d ∈ D we have

δ〈a, b, c〉i = 〈δa, b, c〉i + 〈a, δb, c〉i + 〈a, b, δc〉i,
µ〈a, b, c〉i = 〈µa, b, c〉1 + 〈a, µb, c〉2 + 〈µc, b, a〉1.

Proof. Straightforward. �

Proposition 7.10. If D is a Jordan dialgebra then identities (J5)–(J8) are satisfied
by the operations 〈· · · 〉1 and 〈· · · 〉2.

Proof. For a, b, c, d, e ∈ D we apply Lemmas 7.8 (1) and 7.9 to get

〈〈e, d, c〉1, b, a〉1 =
(
Rab + [Ra, Rb]

)
〈e, d, c〉1

= 〈(Rab+[Ra, Rb])e, d, c〉1 − 〈e, (Rba+[Rb, Ra])d, c〉1 + 〈e, d, (Rab+[Ra, Rb])c〉1
= 〈〈e, b, a〉1, d, c〉1 − 〈e, 〈d, a, b〉1, c〉1 + 〈e, d, 〈c, b, a〉1〉1,

which is identity (J5). The proof of identity (J6) is similar, replacing the outermost
operation 〈· · · 〉1 by 〈· · · 〉2. Finally, Lemmas 7.8 (2) and 7.9 give

〈a, b, 〈c, d, e〉1〉1 =
(
Lab + [La, Rb]

)
〈c, d, e〉1

= 〈(Lab+[La, Rb])c, d, e〉1 − 〈c, (Lab−[La, Rb])d, e〉2 + 〈(Lab+[La, Rb])e, d, c〉1
= 〈〈a, b, c〉1, d, e〉1 − 〈c, 〈b, a, d〉2, e〉2 + 〈〈a, b, e〉1, d, c〉1,
〈a, b, 〈c, d, e〉1〉2 =

(
Lba − [Lb, Ra]

)
〈c, d, e〉1

= 〈(Lba−[Lb, Ra])c, d, e〉1 − 〈c, (Lba+[Lb, Ra])d, e〉2 + 〈(Lba−[Lb, Ra])e, d, c〉1
= 〈〈a, b, c〉2, d, e〉1 − 〈c, 〈b, a, d〉1, e〉2 + 〈〈a, b, e〉2, d, c〉1,

which are identities (J7) and (J8). The proof is complete. �
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[7] J. Faraut, S. Kaneyuki, A. Korányi, Q. Lu, G. Roos: Analysis and geometry on complex

homogeneous domains. Birkhäuser Boston, 2000.
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49 (2008) 870–885; translation in Siberian Mathematical Journal 49 (2008) 696708.

[23] A. P. Pozhidaev: 0-dialgebras with bar-unity, Rota-Baxter and 3-Leibniz algebras. Contem-

porary Mathematics 499, 245–256. American Mathematical Society, 2009.



JORDAN TRIPLE DISYSTEMS 23

[24] R. Velásquez, R. Felipe: Quasi-Jordan algebras. Communications in Algebra 36 (2008)

1580–1602.

[25] R. Velásquez, R. Felipe: Split dialgebras, split quasi-Jordan algebras and regular elements.
Journal of Algebra and its Applications 8 (2009) 191–218.

[26] R. Velásquez, R. Felipe: On K-B quasi-Jordan algebras and their relation with Leibniz

algebras. www.cimat.mx/reportes/enlinea/I-10-10.pdf
[27] V. Voronin: Special and exceptional Jordan dialgebras. arXiv:1011.3683v1 [math.RA]

[28] K. A. Zhevlakov, A. M. Slinko, I. P. Shestakov, A. I. Shirshov: Rings that are Nearly

Associative. Academic Press, 1982.

Department of Mathematics and Statistics, University of Saskatchewan, Canada

E-mail address: bremner@math.usask.ca

CIMAT, Centro de Investigación en Matemáticas, Guanajuato, México
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