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Abstract 

In this work we investigate the structure and representations of 
Jordan algebras arising from intermolecular recombination. It is 
proved that the variety of all these algebras is special. The basis 
and multiplication table are built for the free algebra of this 
variety. It is also shown that all the identities satisfying the 
operation of intermolecular recombination are consequences of only 
one identity of degree 4. 

 

Introduction 

The commutative algebra J  over the field F  is the algebra arising from 
intermolecular recombination if it satisfies the identity  

( ) )()(2))((2 222 zyxyzxyxzxzyx ⋅=⋅⋅−⋅⋅⋅+⋅⋅ . (1) 

Assuming that xz =  in the identity (1), we get the identity )()( 22 yxxxyx ⋅⋅=⋅⋅ . 
Consequently, all the algebras arising from intermolecular recombination are 
Jordan algebras. We will denote by IR-algebras1 the algebras arising from 
intermolecular recombination. Let IR denote the variety of all IR-algebras. 

The IR-algebras were introduced by M. Bremner in the work [1] and naturally 
formalized IR-operations – operations of intermolecular recombination.  

In the general theory of DNA computing (see G. Păun, G. Rozenberg and A. 
Salomaa [2], L. Landweber and L. Kari [3]) the IR-operation has the form  
                                                 

1 IR - intermolecular recombination 
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12212211 xvuxvuxvuxvu +⇒+ , 

where xvvuu ,,,, 2111  are words over some alphabet S . Formalization of IR-
operations by M. Bremner [1] can be defined as follows. Let consider the free F -
module J  generated by the set BAC ×= , where { }1,iA a i I= ∈ , { }2, IibB i ∈=  - 

some finite or countable sets. Let turn F -module J  into F -algebra by defining 
the operation ""  (splicing) on basis elements jiba  ( 21, IjIi ∈∈ ) following the 

rule 

lilkji bababa =
, 

and extend it linearly to all of the F -module J . It is easy to check that this 
operation is associative. M.Bremner notes that the operation of intermolecular 
recombination  

)(
2
1

jklilkji babababa +=⋅  

is a symmetrized product on the algebra ),,( +J . And in fact, 

lkjijklijilklkjilkji babababababababababa ⋅=+=+= )(
2
1)(

2
1

. 

So, the algebra J  of intermolecular recombination is a special Jordan algebra, 
i.e.  

)(),,(),,( ++=+ JJ . 

In the work [1] it is proved that the algebra J  satisfies the identity (1) and all 
the identities of degree ≤6 of this algebra are consequences of the identity (1). In 
the same work we get the question if all the IR-algebras are special Jordan 
algebras. 

In this work we investigate the structure and representations of IR-algebras. We 
prove that all the identities of the algebra J  are consequences of the identity (1) 
and that the variety of IR-algebras is special. 

1.1. Standard IR-algebras. Definitions and notations 

All algebras in this work are considered over the field F of characteristic 0, so the 
defining identities of varieties are linearized. We will use right-handed 
bracketing in non-associative words. Standard definitions and notations can be 
found in [4]. 

Let basis elements jiba  of the F-module generated by the set BAC ×=  be ija  

where Nji ∈, . Then the associative splicing operation defines the associative 

algebra C  with the basis ija , Nji ∈,  and the following multiplication table: 

ilklij aaa = . (2) 
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In cases when ∞== BA ; mBnA == , ; ∞== BnA , , the corresponding 

associative algebras with the multiplication table (2) will be denoted 
correspondingly ∞C ; nmC ; nC . 

We will call ∞C ; nmC ; nC  the standard algebras of splicing, or standard S -

algebras for short. We’ll also define the Jordan algebras )(+
∞∞ =CJ , )(

,,
+= mnmn CJ , 

)(+= nn CJ  and call them standard algebras of intermolecular recombination, or 
standard IR-algebras for short. 

It is clear that the standard IR-algebras have the basis ija , Nji ∈,  ( ni ≤≤1 , 

mj ≤≤1  for mnJ ,  and ni ≤≤1 , Nj∈  for nJ ) and the multiplication table 

)(
2
1

kjilklij aaaa +=⋅ . (3) 

In standard IR-algebras it is convenient to use the following multiplication 
diagram: 

 
For calculations in standard IR-algebras it is convenient to use the following 
correlations (see [1]): 

1( ) ( )
2

x y z x z y z⋅ ⋅ = ⋅ + ⋅ , 

1( ) ( ) ( )
4

x y z t x z x t y z y t⋅ ⋅ ⋅ = ⋅ + ⋅ + ⋅ + ⋅ , (4) 

which are implemented for the basis elements J . 

And in fact, 
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1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2

1 1 1( ) ( ) ( ) (
2 4 2

);

i i j j k k i j j i k k i k k j j k k i i i k k

j j k k

a a a a a a a a a a a a

a a

⋅ ⋅ = + ⋅ = + + + = ⋅ +

+ ⋅
 

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 1( ) ( ) ( )( ) (
4 8

1) ( ).
4

i i j j k k l l i j j i k l l k i l i k k j l j j l

j k k i l i i i k k i i l l j j k k j j l l

a a a a a a a a a a a a a

a a a a a a a a a a a

⋅ ⋅ ⋅ = + + = + + + + +

+ + + = ⋅ + ⋅ + ⋅ + ⋅
 

Let’s note that the correlations (4) are not valid for arbitrary elements. For 
example, 

(4)

1 1 1(( ) ) ( ) ( ) ( )
2 2 2

x y z t x z y z t x t y t x y t z t− ⋅ ⋅ = ⋅ − ⋅ ⋅ = = ⋅ − ⋅ ≠ − ⋅ + ⋅ , 

for 11x a= , 22y a= , 33z t a= = . 

Using the correlation (4) it is easy to check that in standard IR-algebras the 
identity (1) is valid. 

1.2. General results 

Let’s review the main results of this work. 

The multiplication table (3) shows that the standard IR-algebras are algebras 
with genetic realization (see [5]). Among the algebras with genetic realization 
the class of Bernstein algebras holds an important position. 

Let’s remind that the Bernstein algebra over the field F  is a commutative 
algebra J  with a non-zero algebra homomorphism : J Fω → , satisfying the 
identity  

2 2 2 2( )x x x xω⋅ = . 

These algebras were introduced by P. Holgate [9]. It is known [5] that the 
algebra J  can be represented as  

J Fe N= ⊕ , 

where N Kerω=  and e  is idempotent, 2 2 0n n⋅ =  for all n N∈ . If ( ) 2ch F ≠ , 
then  

N U Z= ⊕ , 

where 
1{ | }
2

U u N e u u= ∈ ⋅ = , { | 0}Z z N e z= ∈ ⋅ = . On the algebra N  the 

following Bernstein graduation is defined: 
2U Z⊆ , 2Z U⊆ , U Z U⋅ ⊆ . 

A Bernstein algebra is called Jordan, if it also satisfies the Jordan identity  
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2 2( ) ( )x y x x y x⋅ ⋅ = ⋅ ⋅ . 

The Jordan Bernstein algebras were first introduced by P. Holgate [10], who 
proved that the genetic algebras for the simple Mendel inheritance should are 
special Jordan algebras. Later this result was generalized by A. Wörs-Busekros 
[11]. It was shown that finite-dimensional Bernstein algebras with zero 
multiplication in N  are special Jordan algebras. Also in the paper [11] the 
necessary and sufficient conditions for a Bernstein algebra to be Jordan were 
obtained: 2 0z =  and N U Z= ⊕  is nil-index 3 algebra. 

Jordan Bernstein algebras play an important role in the theory of Bernstein 
algebras (see [5], [12], [13]). 

Definition 1. Bernstein algebra B Fe U Z= ⊕ ⊕  is called annihilator algebra if 
Z  coincides with annihilator of the algebra B , i.e. ( )Z Ann B= . It is easy to note 

that in the annihilator algebras 2 3 0Z N= = . That is why all annihilator 
algebras are Jordan Bernstein algebras. 

In the Section 2 of the present work we prove that all standard IR-algebras are 
Bernstein algebras (Theorem 1) and furthermore, the class of standard IR-
algebras coincides with the class of annihilator Bernstein algebras of a special 
type (Theorem 2). 

We will denote by ( )iF c i I;  ∈  the free F -module generated by the elements 

,ic i I  ∈ . The Section 2 describes the annihilator of a standard IR-algebra J∞ . It 
is found that  

2
11( ) (( ) ; 1, 1)ijAnn J F a a i j∞ = −   >  >  

and the following isomorphism of the modules takes place: 

/ ( ) ( ; 1 1)ijJ Ann J F a i or j∞ ∞  =   = , where ( / ( )) 0Ann J Ann J∞ ∞ =  (Lemma 1). 

Let’s adjoin a formal unit 1 to the algebra / ( )J Ann J∞ ∞ . It is shown that the 
algebra  

# 1 / ( )J F J Ann J∞ ∞= ⋅ +  

is a Jordan algebra of symmetrical bilinear form over F  (Lemma 3). 

The Section 3 of this work proves the speciality of the variety of all IR-algebras 
(Theorem 3). 

Let us denote by 1B F V∞ = ⋅ +  the Jordan algebra of non-degenerate symmetric 

bilinear form :f V V F× → , where V  is an infinite vector space over F . Using 

the defining identities of the variety ( )Var B∞  (see the results by S. Vasilovsky 

[7]), it is proved that the variety IR is a proper subvariety ( )Var B∞ , i.e. 

( )IR Var B∞ . 
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In view of the results [8], the variety ( )Var B∞  is special. That is why any 
commutative algebra satisfying the identity (1) is a special Jordan algebra. Let’s 
note that the class of Jordan Bernstein algebras is not special (see [6]). 

In the Section 4 we will investigate the free IR-algebras. 

Definition 2. Associative algebra A  is called splicing algebra or S -algebra if it 
meets the identity  

[ , ] 0x y z t = . (5) 

It is easy to note that all standard splicing algebras are S -algebras. Let S  
denote the variety of all S -algebras. Let [ ]S x  be a free algebra in the variety S  

with set of free generators 1{ , , ...}nX x x=  ...,  . 

The Theorem 4 finds the basis of the identities of a standard splicing algebra 
C ∞ . It is found that  

( )S Var C∞= , 

i.e. all the identities of a standard splicing algebra C ∞  follow from the identity 
(5). 

Let [ ]IR X  denote a free algebra in the variety IR with generating set X . 

It is shown that [ ]S X  is an associative envelope algebra for [ ]IR X . In the 
lemmas 5, 6, 7 the basis and multiplication tables are built for the free algebras 

[ ]S X  and [ ]IR X . 

The Theorem 5 proves that all the identities of a standard IR-algebra J  follow 
from the identity (1), i.e. 

( )IR Var J∞= . 

In the Section 5 we describe the annihilator of a free algebra [ ]IR X  and prove 
that 

( [ ] / ( [ ])) 0Ann IR X Ann IR X = . 

The Theorem 6 proves that the following isomorphism of F -modules takes place: 

[ ] [ ]IR X F X D⊕ , 

where [ ]F X  is a free associative-commutative algebra with generating set 

1{ , , ...}nX x x=  ...,  , ( [ ])D D IR X=  - an associator ideal of the algebra [ ]IR X . 

Furthermore, 0 1D D D= ⊕ , where 1 ( [ ])D Ann IR X= , 2
0 1D D⊆  and 3 0D = . From 

this we can conclude that ( [ ])D M IR X= , where ( [ ])M IR X  - is the McCrimmon 
radical of [ ]IR X . 
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In the Section 6 we will investigate the basis of the identities of standard IR-
algebras nJ  and ,n mJ . It is proved that all the variety of IR-algebras is generated 

by a minimal nontrivial standard algebra 1,2J . This algebra has the basis 

11 12,a a b a=   =  and the multiplication table 2 2 1, , ( )
2

a a b b a b a b=   =   ⋅ = + . 

Consequently, 

1,2 ,( ) ( ) ( )n mVar J Var J Var J IR∞= = =  , ( , ) (1,1)n m ≠ . 

To prove the speciality of the variety IR in the Section 3, we used two 
complicated results: the description of the identities of variety ( )Var B∞  [7] and 

the speciality of the variety ( )Var B∞  [8]. The basis and the multiplication table 

for free algebras [ ]S X  and [ ]IR X  built in the Section 4 allow us to prove the 
specialty of the variety IR by means of a rather simple method. 

It is found that the variety IR possesses the following property: 

[ ] [ ]IR X HS X= , 

i.e. the algebra [ ]IR X  coincides with a Jordan algebra of symmetric elements of 
associative envelope [ ]S X  under the standard involution. We will call the 
varieties of Jordan algebras satisfying this property the reflective varieties. 

In the Section 7 we will prove the following theorem – any reflective variety of 
Jordan algebras is special (Theorem 8). 

2. Annihilator Bernstein algebras 

In this Section we will prove that the class of standard IR-algebras coincides 
with the class of annihilator Bernstein’s algebras of a special type. 

2.1. Annulets of the standard IR-algebras 

Let 2
11 11 11 11 1 12 ( )ij ij ij ij ij j ib a a a a a a a a a a= + − ⋅ = − = + − −  for all , 1i j > . At the 

multiplication diagram the elements ijb  form cells i j× : 

 

Let us first prove that ( )ijb Ann J∞∈  for all , 1i j > . Indeed, for any basis element 

kla a=  of the algebra J∞ , we have 
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11 11 11 11(4)
( 2 ) 0ij ij ij ij ijb a a a a a a a a a a a a a a⋅ = + − ⋅ ⋅ = ⋅ + ⋅ − ⋅ − ⋅ =  

Further, for any 
,

kl kl
k l

a aα= ∑  from J∞ , we’ll have  

, ,
( ) 0ij kl kl kl ij kl

k l k l
b a b aα α⋅ = =∑ ∑ . 

It is easy to see that the set { ; 1, 1}ijb i j  >   >  is linearly independent over F . By 

definition of ijb , we have 

11 1 1
, 1 , 1

0 ( ) 0 0ij ij ij ij j i ij
i j i j

b a a a aα α α
> >

=   ⇒  + − − =   ⇒  =∑ ∑  for any 1, 1i j >   > . 

We denote by ( ; )iL c i I ∈  the F -module generated by the elements ,iC i I ∈ , i.e.  

( ; ) { | }i i i i
i

L c i I c Fα α ∈ = ∈∑ . 

We will call ( ; )iL c i I ∈  a linear envelope of the set { ; }ic i I ∈ . 

In view of the proven, we have ( ; 1, ) ( ; 1, )ij ijL b i j F b i j  >  > 1 =   >  > 1 . Let 

( ; 1, )ijI F b i j=   >  > 1 . 

Lemma 1. The following isomorphism of the F -modules takes place: 

/ ( ) ( ; 1 1)ijJ Ann J F a where i or j∞ ∞     =     = , 

where ( ) ( / ( )) 0Ann J I and Ann J Ann J∞ ∞ ∞=     = . 

Proof. We first prove the isomorphism / ( ; 1 1)ijJ I F a where i or j∞     =     = .  

Let’s consider an arbitrary basis element ; 1, 1ija i j  >   > . In view of the 

definition of the elements ; 1, 1ijb i j  >   > , we have 11 1 1ij ij j ia b a a a= − + +  hence 

11 1 1( , , )ij j ia L a a a I ∈ + . Consequently,  

/ ( ; 1 1)ijJ I L a where i or j∞ =     =     = . 

We now prove that the elements 11 1 1, , , 1 1i ja a a where i and j    >     >  are linearly 

independent in /J I∞ . Let’s suggest the contrary, then in the algebra J∞  we’ll 

have 11 11 1 1 1 1
2 2

0 ( )
n n

i i i i
i i

a a a a I Ann Jα β γ
= =

≠ = + + ∈ ⊆∑ ∑ . 

Then 11 11 11 1 11 1 1 11 1
2 2

1 1( ( )) ( ( )) 0
2 2

n n

i i i i
i i

a a a a a a aα β γ
= =

⋅ = + + + + =∑ ∑ . 
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Consequently, 1 0iβ =  and 1 0iγ =  for all 2i ≥ . Then 11 11a aα= , but 11a  is an 

idempotent, so 11 0α = . The obtained contradiction proves that  

/ ( ; 1 1)ijJ I F a where i or j∞     =     = . 

Let now ( )a Ann J∈ . Then 11 11 1 1 1 1
2 2

n n

i i i i
i i

a a a a vα β γ
= =

= + + +∑ ∑ , where v I∈ . As 

( ), ( )a Ann J v I Ann J∞ ∞∈   ∈ ⊆ , then 11 0a a⋅ = . But in this case 

11 10, 0, 2i i iα β γ1=   = =   ≥ . So, a v I= ∈  and ( )Ann J I∞ = . 

Let now ( / )a Ann J I∞∈ , then 11 0a a⋅ = . Similar arguments apply to this case, 

we’ll get 0a = , i.e. ( / ) 0Ann J I∞ = . This proves the lemma. 

Let’s now build a structure of Bernstein Jordan algebra on the algebra J∞ . To do 
this, we’ll introduce the following notations: 

11

1 11 1

1 11 1

1 1

;
, 1;
, 1;

( ; ; 1);
( ) ( ; 1, 1).

i i

i i

i i

ij

e a
e a a i
e a a i
U F e e i
Z Ann J F b i j∞

=
= −   >
= −   >

=   >

= =  >  >

 

Lemma 2. In the algebra J∞  the following relations are valid: 

1. eJ F U Z∞ = ⊕ ⊕  - the direct sum of the F -modules; 

2. 2 1, ,
2

e e e u u u U=   ⋅ =   ∈  and 0,e z z Z⋅ =   ∈ ; 

3. 2U Z⊆ ; 

4. 3 0N = , where N U Z= ⊕ . 

Proof. (1.) follows from the Lemma 1. 

(2.) Calculating with the multiplication table (3) we obtain: 

2 2
11 11

1 11 1 11 11 1 11 11 1 1

1 11 1 11 11 1 11 11 1 1

,
0,

1 1 1 1( ) ( ) ,
2 2 2 2
1 1 1 1( ) ( ) .
2 2 2 2

i i i i i

i i i i i

e a a e
e z

e e a a a a a a a a e

e e a a a a a a a a e

= = =
⋅ =

⋅ = − ⋅ = − − = − =

⋅ = − ⋅ = − − = − =
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Let now 1 1 1 1
1 1

i i i i
i i

u e eα β
> >

= +∑ ∑ , then 1 1 1 1
1 1

1( ) ( )
2i i i i

i i
e u e e e e uα β

> >

⋅ = ⋅ + ⋅ =∑ ∑ . 

(3.) According to the distributivity of the multiplication it is sufficient to check 
the statement 3 on the basis elements U . 

We have  

1 1 11 1 11 1 11 1 11 11 1 1 1
1 1 1 1 1 1( ) ( ) 0
2 2 2 2 2 2i j i j j i j ie e a a a a a a a a a a a⋅ = − ⋅ − = − − − − + + =  for all 

1, 1i j>   > . Analogously, 1 1 0; , 1i je e i j⋅ =   > . 

Let’s now prove that 1 1 ( )i je e Ann J∞⋅ ∈  for all , 1i j > . 

Indeed, 

1 1 11 1 11 1 11 1 11 1 11 11 11

1 1 11 11

1 1 1 1 1 1 1( ) ( ) (
2 2 2 2 2 2 2

1 1) ( 2 ) ( ).
2 2

i j i j j i ij

ij j i ij ij ij

e e a a a a a a a a a a a a

a a a a a a a b Ann J

⋅ = − ⋅ − = − − − − + + = +

+ − − = + − ⋅ = ∈
 

Hence, 2U Z⊆ . 

(4.) We have the following sequence of containments: 
3 2 2( ) 0N U Z N U N Z N= ⊕ ⋅ ⊆ ⋅ ⊆ ⋅ = . 

The lemma is proved. 

Let’s adjoin a formal unit 1 to the algebra / ( )J Ann J∞ ∞ . Let #J  denote the 
obtained algebra as  

# 1 / ( )J F J Ann J∞ ∞= ⋅ + . 

Lemma 3. The algebra #J  is a Jordan algebra of symmetric bilinear form over 
F . 

Proof. Let 11 (2 1)e e= − . From the Lemma 1 we conclude that  

#
11 1 11 ( , , ; , 1)i jJ F F l l l i j= ⋅ +     > . 

It follows from the proof of the Lemma 2 that  
2 2

11

1 1 1 1 1 1

(2 1) 4 4 1 1;
0, , 1.i j i j i j

e e e e
e e e e e e i j

= − = − + =
⋅ = ⋅ = ⋅ =   >

 

Consequently, 11 1 1{ , , ; , 1}i je e e i j    >  is a standard basis of a Jordan algebra of 

symmetric bilinear form over F . This proves the Lemma. 

Observe that the bilinear form defined in the Lemma 3 is degenerate. 
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Theorem 1. Standard IR-algebras ,, ,n m nJ J J∞      are Bernstein Jordan algebras 

with the following ( , )U Z -graduation: 

1. eJ F U Z∞ = ⊕ ⊕ , where 1 1( , ; , 1)i jU F e e i j=    > , ( ) ( ; , 1)ijZ Ann J F b i j= =   > , 

11e a= ; 

2. , , ,n m e n m n mJ F U Z= ⊕ ⊕ , where , 1 1( , ; 1 , 1 )n m j iU F e e j m i n=    < ≤   < ≤ , 

, ,( ( ; 1 , 1 )n m n m ijZ Ann U F b i n j m= ) =   < ≤   < ≤ , 11e a= ; 

3. n e n nJ F U Z= ⊕ ⊕ , where 1 1( , ; , 1)n j iU F e e i n j=    1 < ≤  > , 

( ; , 1)n ijZ F b i n j=   1 < ≤  > , 11e a= ; 

and nontrivial homomorphism ,: ( , )n m nJ J J Fω ∞  → , which is defined by: 

x e u z Jα∀ = + + ∈ , where , ,, ( , ), ( , )n m n n m nF u U U U z Z Zα ∈   ∈     ∈   Ζ ; 

( )xω α= . 

Proof. It follows from the Lemma 2 that the introduced graduations are 
Bernstein graduations (see [6]) and 2 30, 0Z N=   = . In view of the proposition 3.1 

[6], the algebras ,, ,n m nJ J J∞      are Bernstein Jordan algebras. The theorem is 

proved. 

2.2. Annihilator algebras of the type (V, W) 

Let’s note that ( )Z Ann J=  for all Bernstein algebras J Fe U Z= + +  defined in 
the Theorem 1. In accordance with the definition 1 in the Section 1.2, such 
algebras are called annihilator algebras. 

Our next goal is to build a free algebra in the class of annihilator algebras. 

Let ( )JI X=  denote the ideal of the algebra J  generated by X J⊆ . 

Let [ ; ]BJ BJ X Y=  - a free (U,Z) -graded Bernstein algebra (see [6]) from U-

generators 1{ ,..., ,...}nX x x=  and Z-generators 1{ ,..., ,...}nY y y= . It is easy to see 

that the algebra [ ; ] /J F e BJ X Y I= ⋅ + , where ( | , [ ; ])BJI w u w Z u BJ X Y= ⋅ ∈   ∈  is 

a free annihilator algebra. We will denote by [ ; ]AnnBJ X Y  the nucleus of the 
Bernstein algebra J , i.e. [ ; ] [ ; ] /AnnBJ X Y BJ X Y I= . 

Let now X VUW= , where 1{ ,..., ,...}nV v v= , 1{ ,..., ,...}nW w w=  - some sets and 

Y = ∅ . 

Definition 3. The annihilator algebra [ ; ] /J Fe AnnBJ X I= + ∅ , where 

[ ; ]( , ; , )i j i j AnnBJ XI v v w w i j N ∅= ⋅  ⋅   ∈  is called the annihilator algebra of the type 

(V,W). 
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Proposition 1. The annihilator algebra of the type ( , )V W  has the basis 

{ , , ; , }i j i je v w v w i j N,    ∈  and the following multiplication table: 

2 1 1, , ,
2 2

0, ,

( ), , .

i i j j

i j i j i j i j

i j

e e e u u e w w

v v w w v w v w
v w Z Ann J for all i j N

=   ⋅ =   ⋅ =

⋅ = ⋅ =   ⋅ = 

∈ =    ∈

 (6) 

Proof. In view of the properties of free ( , )U Z -graded Bernstein algebra (see [6]), 

we have 2Y U Z= ∅ ⇒ = . But ( )Z Ann J= , since ( , ; , )i jU F v w i j N=  ∈  and 

( ; , )i jZ F u w i j N=   ∈ . The proposition is proved. 

Theorem 2. The class of standard IR-algebras coincides with the class of 
annihilator algebras of the type ( , )V W . An annihilator algebra of the type ( , )V W  
is isomorphic  

to J∞  if | | | |V W= = ∞ , 

to nJ  if | | , | |V n W=   = ∞ , 

to ,n mJ  if | | , | |V n W m=   = . 

Proof. We first consider a standard IR-algebra J∞ . It follows from the Theorem 1, 

that J Fe U Z= ⊕ ⊕ , where 1 1( , ; , 1)i jU F e e i j=    > , ( ) ( ; , 1)ijZ Ann J F b i j= =   > , 

11e a= . Let us introduce the following notations: 

1 1, , 1,
{ 1}, { 1}.

i i i i

i i

v e w e i
V v i W w i

=   =   >

= ;  >   = ;  >
 

Let’s prove that the algebra J∞  is an annihilator algebra of the type ( , )V W . 

From the proof of the Lemma 2 it follows that  

1 1

0, , 1;

1 .
2

i j i j

i j i j i j

v v w w for i j

v w e e b Z

⋅ = ⋅ =   >

⋅ = ⋅ = ∈
 

We conclude from the Lemma 1 that the variety 
1{ , , 1}
2i j i jv w b i j⋅ =  >  is linearly 

independent over F . Hence, the algebra J∞  has the basis and the multiplication 
table (6). Consequently, it is isomorphic to an annihilator algebra of the type 
( , )V W , where | | | |V W= = ∞ . 

Conversely let us consider an annihilator algebra B  of the type ( , )V W  with a 
basis and a multiplication table (6). 
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Let 

11

1 1

1 1

1 1 1 1

;
, 2;
, 2;

2 , , 2.

i i

j j

ij i j i j

a e
a e v i
a e w j
a v w v w e i j

−

−

− − − −

=
= −   ≥

= −   ≥

= − − +   ≥

 

At first it is necessary to note that ( ; , )ijB F a i j N=   ∈ , i.e. ; ,ija i j N  ∈  is the 

basis of the algebra B . Now we will found a multiplication table in this basis: 
2

11 11

11 1 1 11 1

11 1 1 11 1

11 1 1 1 1

1 1 1 1 1 1 1 1

;
1 1 1 ;
2 2 2
1 1 1 ;
2 2 2

1 1 1 1 , , 2;
2 2 2 2

1 1 1 1( ) ( ) , , 2;
2 2 2 2

i i i

j j j

ij i j j i

i j i j i j i j

a a

a a e v a a

a a e w a a

a a v w e a a i j

a a e v e v e v v a a i j

−

−

− −

− − − −

=

⋅ = − = +

⋅ = − = +

⋅ = − − + = +   ≥

⋅ = − ⋅ − = − − = +   ≥

 

Analogously, 

1 1 1 1 1 1 1 1 1 1 1

1

1 1 1( ) ( )
2 2 2

1 1 ( ), , , , 2.
2 2

ij kl i j k l i l k j i j k

l il kj

a a v w e v w e v w v w v w v

w e a a i j k l

− − − − − − − − − − −

−

⋅ = − − + ⋅ − − + = + − − − −

− + = +   ≥

 

Therefore, the algebra B  has the multiplication table (3) in the basis 
; ,ija i j N  ∈ . Hence, it is isomorphic to a standard IR-algebra J∞ . The same proof 

works for the cases | | , | |V n W m=   =  and | | , | |V n W=   = ∞ . This proves the 
theorem. 

3. The specialty of the variety IR 

In this Section we will prove that the variety IR is a proper subvariety of the 
variety of special algebras ( )Var B∞  [8]. 

Lemma 4. In the variety IR the following identities are valid: 

1 1x x y x x yzU R zR U= ; (7) 

2, ,
2 x z x z
xD y yD⋅ = ; (8) 
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, , , 0y z t z t y t y zxD R xD R xD R+ + = ; (9) 

, , ,3 y z x y z y x zxD t tD tD⋅ ⋅⋅ = + ; (10) 

1, 0y z t txD U = ; (11) 

, , , ,(( ) ( ) ( ) ( ) ) 0y t x z y z x tx z U y t U x t U y z U u⋅ + ⋅ − ⋅ − ⋅ ⋅ = ; (12) 

2 ,, x x yx y
zU zR U= ; (13) 

2
2 2

,,
[ , ] 0, [ , ] 2 4 y xy x
x y z where x y yD yD x⋅ =     = − ⋅ ; (14) 

1 6(1) 6( ), ,... ... ,
n nx x y y x x y yzR R U zR R U for any Snσ=    ∈ . (15) 

Furthermore, the identities (1), (7), (8) are equivalent in the variety of 
commutative algebras. 

Proof.  

(1) (7) ⇒ . 

1

2

( )

2 2 2

2 2 2

(1)

2( ) 2(2 ( ) ( ))

4 2 2( ) ( ) 2 ( )
2( ) ( ) 2 2 ( ) 0,

x x y x x y J
zU R zR U z x x y z x y z x x y z x y x z x x y

z x x y z x y z x x y z x x y x y z x y z
x z x y z x x y z x y x y z x y z

⋅− = ⋅ ⋅ ⋅ − ⋅ ⋅ − ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ =

= ⋅ ⋅ ⋅ − ⋅ ⋅ + ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ + ⋅ ⋅ − ⋅ ⋅ −

− ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ − ⋅ ⋅ + ⋅ ⋅ − ⋅ ⋅ =   

 

where J  is a Jordan identity 2 22 2( ) ( ) ( )z x y x x y z z x x y x y z⋅ ⋅ ⋅ + ⋅ ⋅ = ⋅ ⋅ ⋅ + ⋅ ⋅ . 

(7) (1)⇒ . In view of the above proved it is enough to check that (7) ( )J⇒ . 

Substituting  y x=  into (7), we have 2 22 ( ) 2 ( )z x x x z x x z x x x z x x⋅ ⋅ ⋅ − ⋅ ⋅ = ⋅ ⋅ ⋅ − ⋅ ⋅ , 

i.e. 2 2( ) ( )z x x z x x⋅ ⋅ = ⋅ ⋅ . Therefore, the identities (1) and (7) are equivalent for 
commutative algebras. 

(1) (8)⇔ . It is easy to notice that the identity (8) is a D -operator representation 
of the identity (1): 

2
2 2 2

, ,
( ) 2 2 2 0z x x zx y z x z y x z x y x z y xD y yD⋅ ⋅ − ⋅ ⋅ + ⋅ ⋅ ⋅ − ⋅ ⋅ = ⋅ + = . 

(1) (9)⇔ . Rewriting the left part of (9) in the terms of U -operator, we have: 

, , ,( ) ( ) ( ) ( ) 2y z x z x yxU yU x y z x z y y z x x y z y z x x z y zD− = ⋅ ⋅ + ⋅ ⋅ − ⋅ ⋅ − ⋅ ⋅ − ⋅ ⋅ + ⋅ ⋅ = . 

Consequently, 

, , ,2 x y y z x zzD xU yU= − . (16) 

Hence, 
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, , , , , , ,(16) (7)

, ,

4 2( ) (( ) ( ) ( ) ( ) )

( ) ( ) .

y z t z x y x t x t z t x t y t

z t y t

xD R yU zU R y z U x y U z y U z x U

x y U x z U

= − = ⋅ + ⋅ − ⋅ − ⋅ =

= ⋅ − ⋅
 

Writing ( , , ) ( , , ) ( , , ) ( , , )f y z t f y z t f z t y f t y zσ = + +  gives  

, , , , ,4 ( ) ( ) ( ) ( ) ( ) 0y z t z t y t z t t zxD R x y U x z U x y U x y Uσ σ σ σ σ= ⋅ − ⋅ = ⋅ − ⋅ = . 

(1) (10)⇒ . We have  

, , , , , , , , , ,(8)
3 (2 ) ( )y z y z z x x y y z x z y z y x x y z y z xxD t xD yD zD t xD yD xD zD t tD tD⋅ ⋅⋅ = − − ⋅ = + + + ⋅ = +

. 

(1) (11)⇒ . It follows from the proved identities (8), (10), that 

2 2 2 2
2 2 2

, , , , ( ), , , ,(10) (8)

, , , ( ) , , ,(9) (10)

3 ( ) ( ) 2

2 2 2 2( ) 6 .

y z x y z y x z z t x yz t t x y x z t t y

t x y z x z t y t y x z x y z y x z t y z

xD t t D t D x y D zD yD x z D tD R

tD R tD R tD R tD tD R xD t t

⋅ ⋅ ⋅⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅

⋅ = + = − ⋅ − − − ⋅ =− −

− − − = + = ⋅ ⋅

 

This gives 

, , 0y z t txD U = . 

(1) (12)⇒ . From (7), (11) we obtain  

, , , , , ,(7)

, , , , , ,

, , , , , , , , (11)

2(( ) ( ) ( ) ( ) ) (( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) )

( ) 0.

y t x z y z x t u t u y u

z u x u z u y u t u x u

x y t u z t y u y x z y t z x u

x z U y t U x t U y z U R x z y U x z t U

y t x U y t z U x t y U x t z U y z x U y z t U
zD U xD U tD U yD U

⋅ + ⋅ − ⋅ − ⋅ = ⋅ ⋅ + ⋅ ⋅ +

+ ⋅ ⋅ + ⋅ ⋅ − ⋅ ⋅ − ⋅ ⋅ − ⋅ ⋅ − ⋅ ⋅ =

= + + + =

 

(1) (13)⇒ . Since IR is a Jordan variety, the known Jordan identity is valid in IR 
(e.g., see [4]): 

2, ,,
2x x y x x yx y

zU R zU zR U+ = . 

From this,  

2 , , ,, (7)
2 x x y x x y x x yx y

zU zR U zU R zR U= − = . 

(1) (14)⇒ . We have  

2 2
2 2

, , , , ,, ,(16) (13), (7)

2 2 2 2
, , , , , , ,

[x,y] 2 4 2 2 ( )

( ) 2( ) 2( ) .

y x y y x y x y y x x yy x x y

y y x y x x x y x y y y x x

yD yD x yU x U yU R xU R x y U

x U x y U y U x y U x y U x U y U
 

= − ⋅ = − − + = ⋅ −

− − ⋅ − + ⋅ = ⋅ − −
 

Then, 2 2 2
, , , (12), ,

[x,y] (2( ) ) 0x y y y x x z y t x
u x y U x U y U u

 =  =
⋅ = ⋅ − − ⋅ = . 
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(1) (15)⇒ . It suffices to show that: 

1 2 1, ,... 0
nx x y y y yzD R R U = , 

where the operators 
1
...

ny yR R  can be missing. 

We induct on n . The base of induction is the identity (11), when 
1
...

ny yR R  are 

missing. Now 
1 2 1 1 2 2 1 2 2, , 1 , , 1 , ,(10)

3 ... ... ... 0
n n nx x y y y y z x x y y y y x z x y y y yzD R R U y D R R U yU R R U⋅ ⋅= + =  

by induction. This proves the lemma. 

Theorem 3. The variety IR is a proper subvariety ( )Var B∞ , i.e. 

( )IR Var B∞ . 

The variety IR is special, i.e. any commutative algebra satisfying the identity (1) 
is a special Jordan algebra. 

Proof. By S. Vasilovsky’s results [7], the variety ( )Var B∞  is defined by the 
following identities: 

2[ , ] ,

2
, ,

0,

( 2 ) 0.
x y t

y z t y z t x

zD

x D R xD R Rσ

=

− =
 

It is easily seen that the first identity is the consequence of the identity (14), and 
the second is the consequence of the identity (9). 

Therefore,  

( )IR Var B∞⊆ . 

It is obvious that (14) is not valid in B∞ . Hence, ( )IR Var B∞≠ . By the Theorem 

3.1 [8], ( )Var B∞  is a special variety. Therefore the variety IR is special. This 
proves the theorem. 

4. Free S and IR-algebras 

We will denote by [ ]IR X  the free algebra in the variety IR of generating set 

1{ ,..., ,...}nX x x= . In this Section we will build a basis and a multiplication table 

of the free algebra [ ]IR X  and will prove that the variety of all IR-algebras is 

generated by a standard IR-algebra J∞ , i.e.  

( )IR Var J∞= . 

4.1. The variety of the algebras of splicing. 
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Let [ ]Ass X , [ ]SJ X  be free associative, free special Jordan algebras. Let’s 
remind (Definition 2) that the associative algebra A  is called S -algebra if it 
meets the identity (5) 

[ , ] 0x y z t = . 

It is easy to check that the standard algebras of splicing are S -algebras. By (2), 

1 1 2 2 3 3 4 4 1 4(2)i j i j i j i j i ja a a a a= , hence, 
1 1 2 2 3 3 4 4

[ , ] 0i j i j i j i ja a a a = . 

Let us denote by S  the variety of all S -algebras, and let [ ]S X  be a free algebra 
in this variety. 

Let’s build a basis and multiplication table for a free algebra S . We will define 
an ordering operator < >: [ ] [ ]Ass X SJ X →  by a rule: 

If 
1
...

ms su x x=  is a monomial from [ ]Ass X  then  

1
... [ ]

mi iu x x SJ X< >= ⋅ ⋅ ∈ , 

where 1 ... mi i≤ ≤  and the set 1{ ,..., }ms s  and 1{ ,..., }mi i  coincide with respect to 
repetitors of all the symbols. Then we will extend the ordering operator on the 
algebra [ ]Ass X  by linearity: if i if uα= ∑ , where ,i iF uα ∈    are monomials, 

then i if uα< >= < >∑ . For example, 1 2 1 3 1 1 1 2 1 33 3x x x x x x x x x x< + >= ⋅ ⋅ + ⋅ . 

By definition, the operation of multiplication of the elements of the algebra 
[ ]Ass X  and consequently of the algebra [ ]SJ X  within the brackets < >  is 

associative-commutative. Therefore, for any 1,..., [ ]nv v Ass X∈  and nSσ ∈ , we 
have  

1 1 2 (1) ( )... ... ...n n nv v v v v v vσ σ< ⋅ ⋅ >=< >=< > . 

Let’s consider the algebra [ ]A X  with the basis 

{ , 1 , }i i j i j i jB x x x x x x u x=  = < >   < > , where ix X∈  and u< >  runs over all 

ordered monomials of [ ]SJ X , 1 – a formal unit; with the multiplication table: 

1 ;

;

, , , , .

i j i j

i j k i j k i j k

i j k l i k j l

x x x x
x x u x x u x x x ux x
x u x x v x x uvx x x where i j k l N

= < >

< > = < > = < >

< > < > = < >    ∈

 

Lemma 5. The algebras [ ]S X  and [ ]A X  are isomorphic. 

Proof. It follows from the definition of the multiplication and ordering operator in 
the algebra [ ]A X , that the algebra [ ]A X  is an S -algebra. Consequently, the 
identical mapping : X Xτ →  has a unique extension to canonical 
homomorphism : [ ] [ ]S X A Xτ → . From (5) we conclude that  
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[ ] [ ]S X L B= . 

It is clear that the images of the basis elements from B  under homomorphism τ  
are linearly independent in [ ]A X . Hence, 

[ ] [ ]S X F B= . 

Consequently, the algebras [ ]S X  and [ ]A X  are isomorphic. This proves the 
lemma. 

Theorem 4. ( )S Var C∞= , i.e. all the identities of the standard algebra of splicing 

C∞  follow from the identity (5). 

Proof. The algebra C∞  is an S -algebra, hence ( )Var C S∞ ⊆ . Let’s prove the 
contrary inclusion. 

Let a homogenous polynomial 
,

[ ]ij i ij j
i j

f x u x S Xα= < > ∈∑ , where ij Fα ∈ , be an 

identity on C∞ . Consider the mapping : i iix aϕ →  and extend it up to the 

homomorphism : [ ]S X Cϕ ∞→ . Such extension exists due to the fact that [ ]S X  

is a free algebra in the variety S . Then, 

, ,
( ) ( ) 0ij ii ij jj ij ij

i j i j
f a u a aϕ α ϕ α= < > = =∑ ∑ . 

Hence, 0ijα =  for all ,i j . Consequently, 0f =  in the algebra [ ]S X  and f  is the 

consequence of the identity (5). This proves the theorem. 

4.2. Basis and multiplication table of the algebra IR[X] 

We will denote by ( [ ])D D IR X=  the associator ideal of the algebra [ ]IR X , i.e. 

the ideal generated by all Jordan associators bcaD , where , , [ ]a b c IR X∈ . 

Proposition 2. In the algebra [ ]IR X  the following relations are valid: 

,( ; , , [ ])b cD L aD where a b c IR X=   ∈ ; (17) 

, ,x y x yuU u U=< > ; (18) 

, , ,
1 1
2 2x y z y z x zu U R ux U uy U< > = < > + < > ; (19) 

, , , , , ,
1 ( )
4x y z t x t x z y z y tu U v U uvyz U uvyt U uvxt U uvxz U< > ⋅ < > = < > + < > + < > + < > ,(20) 

where , , , , , [ ]u v x y z t IR X∈  and ,u v  can be formal units. 

Proof. The relation (17) follows immediately from the identity (10).  
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It is evident that u u d=< > + , where d D∈ . Hence, 

, , , ,(17),(11)x y x y x y x yuU u U dU u U=< > + = < > . 

We have  

, , , , ,(7) (18)

1 1 1 1
2 2 2 2x y z x y z y x z y z x zu U R u R U u R U ux U uy U< > = < > + < > = < > + < > .  

Analogously,  

, , , , , , ,(7),(18)

, , , , ,

, , , , ,

4 2 2x y z t y v z t x v z t y t

y v z y z y v t y z t y v

x t x v z v z x t t x z t

u U v U ux U U uy U U uxvz U

uxt U uxvt U uxz U uxv U uxzt U
yuvz U uyt U uyvt U uyz U uyv U
uyzt

< > < >

< >⋅ < >⋅ ⋅

< >⋅ < >⋅ ⋅

< > ⋅ < > = < > + < > =< > +

+ < > + < > + < > − < > − < > +

+ < > + < > + < > + < > − < > −

− < , , , , ,(13),(18)
.x v x t x z y z y tU uvyz U uvyt U uvxt U uvxz U> = < > + < > + < > + < >

 

This proves the proposition. 

Let’s consider a subset [ ]B IR X⊆  of the following type: 

, ,{ , 1 , }
i j i ji i j x x x xB x x x U u U=   ⋅ =< >   < > , 

where ,i jx x X∈ , u< >  runs over all ordered monomials of [ ]SJ X , 1 – a formal 

unit. In view of the relations (19), (20) the linear envelope ( )L B  is a sub-algebra 
[ ]IR X , i.e. it is closed under multiplication. 

Lemma 6. The set B  is the basis of the algebra [ ]IR X . 

Proof. We first show that [ ] ( )IR X L B= . Let’s consider an arbitrary homogenous 
polynomial [ ]w IR X∈ . We will prove by induction on deg( )w  that ( )w L B∈ . If 
deg( ) 3w ≤ , then ( )w L B∈  by definition of B . Let’s assume that deg( )w n= , 

4n ≥ and all homogenous monomials of the length n<  belong to ( )L B . 

It is well known that the algebra of multiplication ( [ ])R SJ X  is generated by the 

set of operators ,{ , ; , }
i i jx x x i jR U where x x X     ∈ . Hence, ,( , )

i j ix x xw L uU vR∈  , where 

,i jx x X∈ , ,u v  are homogenous monomials of [ ]IR X  of degree 2n −  and 1n −  

correspondingly. 

It follows from the relation (18) that , , ( )
i j i jx x x xuU u U L B=< > ∈ . By induction 

assumption,  

, , , ,
, ,

( )
i j k i i k ix j k j k x x x jk jk x x x

j k j k
vR v U R v U Rα α= < > = < >∑ ∑ , 

where jk Fα ∈ . 

From (19) we have  
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, , , ,(19)

1 1 ( )
2 2j k i k i j ij k x x x jk j x x jk k x xv U R v x U v x U L B< > ⋅ = < > + < > ∈ . 

Consequently, ( )w L B∈  and [ ] ( )IR X L B= . 

Let’s now prove that the set B  is linearly independent over F , i.e. that  

[ ] ( )IR X F B= . 

Let’s suppose that ,
,

0
i jij ij x x

i j
f u Uα= < > =∑  in the algebra [ ]IR X , where f  is a 

homogenous polynomial and ij ji Fα α= ∈ . 

Consider the mapping : i iix aϕ →  and extend it to homomorphism 

: [ ]IR X Jϕ ∞→ . Such extension exists due to the fact that J∞  is a IR-algebra. 

Then in the algebra J∞  we have: 

, (4), ,

1( ) ( ) ( ( ) ( )
2ii jjij ij a a ij ij jj ii jj ij ii ii jj

i j i j
f u U u a a a u a a aϕ α ϕ α ϕ ϕ= < > = < > ⋅ + ⋅ + < > ⋅ + ⋅ −∑ ∑

, ,

1( ) ( ) ) ( ) ( ) 0
2ij ii ij jj ij ii jj ij ij ji

i j i j
u a u a a a a aϕ ϕ α α− < > ⋅ − < > ⋅ = ⋅ = + =∑ ∑ . 

Consequently, 0ijα =  for all ,i j  and 0f = . So, it follows that [ ] ( )IR X F B= . 

The lemma is proved. 

Observe that the multiplication table on the basis B  of the algebra [ ]IR X is 
defined by the relations (19), (20) in case when , , ,x y z t X∈ , which follows from 
the Lemma 6. 

4.3. Associative envelope for IR X[ ]  and basis  
of the identities of the algebra J∞  

On the algebra [ ]S X  it is defined a standard involution *, which is set on the 
basis words in accordance with the following rule: 

i ix x∗ = , ( )i j j ix x x x∗ = , ( )i j j ix u x x u x∗< > = < > , 

where ,i jx x X∈  and u  runs over all ordered monomials of [ ]SJ X  and linearly 

extends to the whole algebra [ ]S X . 

Let [ ]HS X  be a Jordan algebra ( [ ], )H S X ∗  of symmetrical elements of the 

algebra [ ]S X  relatively to ∗ . And let [ ]JS X  be a Jordan subalgebra ( )[ ]S X +  
generated by the set X . 

Proposition 3. [ ] [ ]HS X JS X= . 
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Proof. It is obvious that [ ] [ ]JS X HS X⊆ . Let’s prove the contrary inclusion. 
Consider an arbitrary homogenous element [ ]f HS X∈ . Then 

,
ij i ij j

i j
f x u xα= < >∑  and f f∗ = , where ij Fα ∈ . It follows that 

, ,
ij i ij j ij j ij i

i j i j
x u x x u xα α< > = < >∑ ∑ . Consequently, ij jiα α=  for all ,i j . 

Finally, 

,
, ,

1 1( ) ( ) [ ]
2 2 i jij i ij j j ij i ij ij x x

i j i j
f f f x u x x u x u U JS Xα α∗= + = < > + < > = < > ∈∑ ∑ . 

This proves the proposition. 

Lemma 7. The algebra [ ]S X  is an associative envelope for the algebra [ ]IR X . 

Proof. It suffices to prove that the algebras [ ]IR X  and [ ]JS X  are isomorphic. 
Let us consider the set 

, ,{ , 1 , }
i j i ji i j x x x xB x x x U u U= ⋅ =< >   < > , 

where ,i jx x X∈  and u  runs over all ordered monomials of [ ]SJ X  and 

constitutes the basis of the algebra [ ]JS X . It follows from the Lemma 6 and the 
proof of the Proposition 3 that B  is a basis of [ ]JS X . 

Let us find the multiplication table in this basis: 

,1
i ji j x xx x U=< > ; 

,

, ,

1 1( ) (
2 4

1 1) ;
2 2

k l

i l k l

i x x i k l l k i k l k l i

i l k l k i k x x l x x

x u U x x u x x u x x x u x x ux x

x x u x x ux x ux U ux U

< > = < > + < > = < > + < > +

+ < > + < > = < > + < >
  

analogously, 

, , , , ,
1 (
4i j l k j l j k i lx x x x i k x x i l x x j k x xu U v U uvx x U uvx x U uvx x U< > < > = < > + < ⋅ > + < > +

, )
i kj l x xuvx x U+ < > . 

Thus, the basis and the multiplication tables of the algebras [ ]IR X  and [ ]JS X  
coincide, what proves the lemma. 

Theorem 5. ( )IR Var J∞= , i.e. all the identities of a standard IR-algebra J∞  

follow from the identity (1). 
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Proof. We have ( )Var J IR∞ ⊆ . Let’s prove a contrary inclusion. Let the 

homogenous polynomial ,
,

i jij ij x x
i j

f u Uα= < >∑ , where ji ij Fα α= ∈ , be an 

identity on the algebra J∞ . 

Let’s consider the homomorphism : [ ]IR X Jϕ ∞→ , defined in the Lemma 6. Then  

,

1( ) ( ) 0
2 ij ij ji
i j

f a aϕ α= + =∑ . 

Hence, 0ijα =  for all ,i j  and 0f =  in the algebra [ ]IR X . Consequently, the 

defining identities of the algebras [ ]IR X  and J∞  coincide. This proves the 
theorem. 

5. Annihilator of the free algebra IR[X] 

In this section we will describe the generators of the ( [ ])Ann IR X . The examples 
of non-zero elements of ( [ ])Ann IR X  were found in the Lemma 4: 

, , , , (12)
( ) ( ) ( ) ( ) ( [ ])y t x z y z x tx z U y t U x t U y z U Ann IR X⋅ + ⋅ − ⋅ − ⋅ ∈ ; 

2 ,, (13)
2 ( [ ])y xy x

yD yD x Ann IR X− ⋅ ∈ ,  

where 1 2 3 4, , ,x x y x z x t x=  =  =  = . 

Let , , , ,( , , , , ) x y z t x t z yn n x y z t u uzt U uxy U uzy U uxt U= =< > + < > − < > − < > , where 

, , , , [ ]x y z t u IR X∈  and u  can be a formal unit. 

Let’s check that ( [ ])n Ann IR X∈ . Indeed, 

, , , , ,(19)

, , , , , ,

,

2

0.

x y v z t v x t v z y v y v

x v t v z v t v x v y v

z v

n v uzt U R uxy U R uzy U R uxt U R uztx U

uzty U uxyz U uxyt U uzyx U uzyt U uxtz U
uxty U

⋅ =< > + < > − < > − < > = < > +

+ < > + < > + < > − < > − < > − < > −

− < > =
 

Lemma 8. In the algebra [ ]IR X  the following relations are valid: 

1. ( [ ]) ( ( , , , , ))Ann IR X L n x y z t u= , where , , ,x y z t X∈  and u  runs over all ordered 
monomials of [ ]SJ X  including a formal 1. 

2. ( [ ] / ( [ ])) 0Ann IR X Ann IR X = . 

Proof. 1. From what has already been proved, ( ( , , , , )) ( [ ])L L n x y z t u Ann IR X= ⊆ . 
Let’s now prove the contrary inclusion. Consider an arbitrary non-zero 
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homogenous element ( [ ])f Ann IR X∈ . It is obvious that deg( ) 4f ≥ . Let’s 
decompose f  by the basis of [ ]IR X : 

1 ,
, 1

( ,..., )
i j

n

n ij ij x x
i j

f f x x u Uα
=

= = < >∑ , 

where ij ji Fα α= ∈ , deg( ) 2iju ≥ . Renumerating, if required, the generators 

1,..., nx x  in 1( ,..., )nf f x x= , we will have 

1 2
deg ( ) deg ( ) ... deg ( ) 1

nx x xf f f≥ ≥ ≥ ≥ . 

If 
1

deg ( ) 2x f ≥ , then due to the definition of the elements n  we have  

1 1 1 1

2
1 , , 1 , 1 ,i j j ix x i j x x i x x j x xux U ux x U ux x U ux x U L< > + < > − < > − < > ∈ . 

Consequently, 
11 ,

1
i

n

i i x x
i

f u U uα
=

= < > +∑ , where 1i Fα ∈ , u L∈ . 

Then  

1 1 1 1 11 11 1 1 , 1 1 , ,(7) 2
2 2 ( ) 0

i

n

x x i i x x i i x x
i

f x u x U u x U u x Uα α
=

⋅ = < > + < > + < > =∑ . 

It follows from the view of the basis words of the algebra [ ]IR X  that 1 0iα =  for 

2 i n≤ ≤ , and hence 11 0α = . Consequently, f u L= ∈ . 

If 
1

deg ( ) 1x f =  then 1( , ..., )nf x x  is a multilinear polynomial. 

We have  

1 2 1 21 2 , , 2 , 1 ,i j j jx x i j x x i x x j x xux x U ux x U ux x U ux x U L< > + < > − < > − < > ∈ , 

2 4 1 3 1 4 2 31 3 , 2 4 , 2 3 , 1 4 ,x x x x x x x xux x U ux x U ux x U ux x U L< > + < > − < > − < > ∈ . 

Therefore, 

1 2 31 , ,
2

i

n

i i x x x x
i

f u U v U uα β
=

= < > + < > +∑ , 

where , ,i F u Lα β ∈   ∈ . 

Then  

1 1 1 3 1

2 1

1 1 1 , 1 , 2 ,
2

3 ,

2 ( )

0

i n n n

n

n

n i i x x i i x x x x
i

x x

f x u x U u x U vx U

vx U

α β

β

+ + +

+

+
=

⋅ = < > + < > + < > +

+ < > =

∑
. 
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It follows from the view of the basic words of [ ]IR X  that 0iα =  at 2 i n≤ ≤ , 

hence, 0β = , too. Consequently, f u L= ∈ . 

2. Let us consider an arbitrary non-zero homogenous element 

1( , ..., ) [ ] / ( [ ])nf f x x IR X Ann IR X=  ∈ . From what has already been proved, it 

follows that deg( ) 4f ≥ . Let ( [ ] / ( [ ]))f Ann IR X Ann IR X∈ . Then we have 
0f u v⋅ ⋅ =  for any , [ ]u v IR X∈ . Proceeding analogously as above, we come to two 

cases: 

either 
11 ,

1
i

n

i i x x
i

f u Uα
=

= < >∑ , where 1i Fα =∈ . But in this case 1 1 0f x x⋅ ⋅ =  and 

1 0iα =  for 2 i n≤ ≤ , and hence 11 0α = ; 

or 
1 2 31 , ,

2
i

n

i i x x x x
i

f u U v Uα β
=

= < > + < >∑ , where ,i Fα β ∈ . But in this case 

1 2 0n nf x x+ +⋅ ⋅ =  and 0iα =  for 2 i n≤ ≤ , and hence 0β = , too, what makes a 

contradiction. Consequently,  ( [ ] / ( [ ])) 0Ann IR X Ann IR X = . The Lemma is 
proved. 

Corollary. ( [ ]) ( [ ])Ann IR X D D IR X⊆ =  

Proof. It follows from the Lemma 8 that it is sufficient to prove that 
, , , , [ ] ( , , , , )x y z t u IR X n n x y z t u D∀ ∈    = ∈ . 

We have  

, , , , , ,(18)

, ,

( )

( ).

x y x t z t z y t x y y x t

y z t t z y

n uzt U uzy U uxy U uxt U uz RU R U

ux R U RU

=< > − < > + < > − < > = < > − +

+ < > −
 

But , , , , ...(16) (7)
4 2( ) ( )y z t z x y x t y z t z yxD R yU zU R x R U R U= − = − , thus, n D∈ . This proves 

the corollary. 

Choose a basis u< >  in the free associative commutative algebra [ ]F X  of 

generation 1{ , , ...}nX x x=  ...,  , where u< >  runs over all ordered monomials of 

[ ]SJ X . Then [ ] ( )F X F u= < > . 

Define 1 ( [ ])D Ann IR X= . By the corollary, 1D D⊆ . Let 0D  be a direct 

complement of F -module 1D  in D , then 0 1D D D= ⊕ . 

Theorem 6. The following isomorphism of F -modules takes place: 
[ ] [ ]IR X F X D⊕ , where 0 1D D D= ⊕ , 2

0 1D D⊆ , 1 ( [ ])D Ann IR X=  and 3 0D = . 

Proof. It is obvious that u u d=< > + , where a monomial [ ]u F X∈  and d D∈ . 
Therefore, [ ] [ ]IR X F X D+ . If [ ]u F X D< >∈ ∩ , then it is clear that 

0u u<< >>=< >= . Hence, [ ] [ ]IR X F X D⊕ . 
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Let’s verify that 2
0 1D D⊆ . By (17) it is sufficient to prove that 

, , , , , [ ]a b c x y z IR X∀ ∈    , , 1b c y zaD xD D⋅ ∈ . 

We have 

, , , , , , , , , ,(10)

, ,

3 3 3( ) 3b c y z b c y z b c y z b c y z a b c y z

b c a y z

aD xD aD D x aD x D aD D x xD D

xD D

⋅

⋅

⋅ = − ⋅ + ⋅ = − ⋅ + +

+
. 

On the other hand, 

, ,, , ( ), ( ), ,(16) (13)

, , , , , ,

, , , ,(13)

1, , , , [ ] 2 (
2

1) (
2

b c b cb c y z aD z aD y c z

a b z b z a c z c y a b y b y

a c y c z y b b z b

a b c y z IR X aD D yU zU yab U

yc U yac U yb U zab U zc U zac U

zb U ayb U azc U ayc U azc U

⋅ ⋅ ⋅

⋅

∀ ∈        = − = < > +

+ < > − < > − < > − < > − < > + < > +

+ < > = < > + < > − < > − < > ,

, , , , (20)

)

1 ( ) ( [ ])
4

y

b z c z b y c yyca U yba U zca U zba U Ann IR X

+

+ < > − < > − < > + < > ∈

 

Hence, , , 1b c y zaD xD D⋅ ∈ . 

Further, 3 3 3
0 1 0 1 0( ) 0D D D D D D= ⊕ ⊆ ⊆ ⋅ = . 

The theorem is proved. 

Corollary. ( [ ])D M IR X= , where ( [ ])M IR X  is a MacCrimmon radical of 
[ ]IR X . 

Proof. By the Theorem 6, d D∀ ∈ , [ ]z IR X∈ , , ( [ ]) ( [ ])d dzU Ann IR X IR X∈ ⊆ Z , 

where ( [ ])IR XZ  is an ideal of [ ]IR X  generated by all absolute zero divisors. 
That is why ( [ ])D M IR X⊆ . But the algebra [ ] / [ ]IR X D F X  is a nongenerated 
algebra. Consequently, ( [ ])D M IR X= . The corollary is proved. 

6. Basis of the identities of the algebras nJ  and ,n mJ . 

Let’s find the basis of the algebra 1,2J . This algebra has the basis 11 12,a a b a=   =  

and the following multiplication table: 

2 2 1, , ( )
2

a a b b a b a b=    =    ⋅ = + . 

Lemma 9. 1,2( ) ( )Var J Var J∞ = . 
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Proof. Since 1,2J  is a subalgebra J∞ , then 1,2( ) ( )Var J Var J∞⊆ . Let’s suppose that 

1,2( ) ( )Var J Var J∞≠ . Then there exists a nonzero homogenous multilinear 

polynomial 1( , ..., ) [ ]nf f x x IR X=  ∈ , which is an identity on 1,2J . It is evident 

that deg 3f ≥ . Let’s decompose it over the basis of the algebra [ ]IR X : 

,
1

i jij ij x x
i j n

f u Uα
≤ < ≤

= < >∑ , 

where ij Fα ∈ . Reindexing if necessary the generators of the alternation in f , 

we can assume that 1,2 0α ≠ . Let 
1 1 ,...,|

n nx v x vf f = ==  is the value of polynomial f  in 

the algebra 1,2J  for 1 1,..., n nx v x v= = , where 1,2iv J∈ . 

Let 1 12 2 11, ... nx a x x a=  = = = . Then  

12 11 11 111 1 , , 1 12 11 11(4)2 2 2 2

1 12 11 11
2 2

( )

1 ( ) 0
2

n n

i i a a ij ij a a i ij
i i j n i i j n

n

i ij
i i j n

f u U u U a a a

a a a

α α α α

α α

= ≤ ≤ ≤ = ≤ ≤ ≤

= ≤ ≤ ≤

= < > + < > = ⋅ + =

= + + =

∑ ∑ ∑ ∑

∑ ∑
 

Consequently,  

1
2

0
n

i
i

α
=

=∑ . 

Similarly, 

1,
0

n

ij
j j i

α
=  ≠

=∑ . 

Let 1 11 12 2 1 12 3 112 , 3 , ... nx a a x a a x x a= +   = +  = = = . Then  

11 12 1 12 11 12 11 11 12 11

11 11

12 12 ( 2 ),( 3 ) 1 1 ( 2 ), 2 2 ( 3 ),
3 3

,
3

0

n n

a a a a i i a a a i i a a a
i i

ij ij a a
i j n

f u U u U u U

u U

α α α

α

+ + + +
= =

≤ ≤ ≤

= < > + < > + < > +

+ < > =

∑ ∑

∑
 

By (4): 

11 12 11 1212 ( 2 ),( 3 ) 11 12 11 12 11 12 11 11 12 12

11 12

3( 2 ) ( 3 ) ( ) ( ) 6
2

7 17 ;
2 2

a a a au U a a a a a a a a a a

a a

+ +< > = + ⋅ + = + + + + + =

= +
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11 12 11

11 12 11

11 11

1 ( 2 ), 11 12 11 11 12

2 ( 3 ), 11 12 11 11 11 12 11 12

, 11 11 11

( 2 ) 2 ;

3 5 3( 3 ) ( ) ;
2 2 2

.

i a a a

i a a a

ij a a

u U a a a a a

u U a a a a a a a a

u U a a a

+

+

< > = + ⋅ = +

< > = + ⋅ = + + = +

< > = ⋅ =

 

Consequently,  

12 11 12 1 11 12 2 11 12 11
3 3 3

7 17 5 3( ) (2 ) ( ) 0
2 2 2 2

n n

i i ij
i i i j n

a a a a a a aα α α α
= = ≤ ≤ ≤

+ + + + +  + =∑ ∑ ∑ . 

Hence,  

12 11 12 1 11 12 2 11 12 11
3 3 3

(7 17 ) (4 2 ) (5 3 ) 2 0
n n

i i ij
i i i j n

a a a a a a aα α α α
= = ≤ ≤ ≤

+ + + + + + =∑ ∑ ∑ . 

Since 1
2

0
n

i
i

α
=

=∑ , we have 12 11 12 2 11 12 11
3 3

(3 15 ) (5 3 ) 2 0
n

i ij
i i j n

a a a a aα α α
= ≤ ≤ ≤

+ + + + =∑ ∑ . 

Since 
1

2

0ij
i n

i

α
≤ ≤
≠

=∑ , then 12 12 2 11 11
3 3

12 (2 ) 2 0
n

i ij
i i j n

a a aα α α
= ≤ ≤ ≤

+ + =∑ ∑ . Consequently, 

12 0α = . This contradicts our assumption. This proves the lemma. 

Theorem 7. The variety 1,1( )Var J K=  is the variety of associative commutative 

algebras and has the determining identity , 0y zxD = ; 

The variety 1,2 ,( ) ( ) ( )n mVar J Var J Var J IR∞= = =  and has the determining identity 

(1). 

Proof. It is obvious that 1,1( )Var J K= . From the chain of inclusion 

1,2 ,n mJ J J∞⊆ ⊆ , we get 1,2 ,( ) ( ) ( )n mVar J Var J Var J∞⊆ ⊆ . 

From the Lemma 9 and the Theorem 5 it follows that 

1,2 ,( ) ( ) ( )n mVar J Var J Var J IR∞= = = . The theorem is proved. 

7. Reflexive varieties of Jordan algebras 

The proof of the specialty of variety IR in the Section 3 required application of 
two rather complex results: description of identities of the variety ( )Var B∞  [7] 

and the specialty of the variety ( )Var B∞  [8]. The construction basis and the 

multiplication table of the algebras [ ]S X  and [ ]IR X  (Section 4) allow us to 
easily prove the specialty of the variety IR . 
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Let M  be some homogenous variety of Jordan algebras. Let a free algebra 
[ ]M X  in M  be a special Jordan algebra and [ ]A X  be some associative envelope 

algebra for [ ]M X .  

There exists a natural involution ∗  on [ ]A X , which acts on the monomials by 

1 1( ... ) ...n nx x x x∗ = , and linearly extends over the whole algebra [ ]A X . 

We will denote by [ ]HA X  a Jordan algebra of symmetric elements of [ ]A X  in 
regard to ∗ . It is obvious that [ ] [ ]M X HA X⊆ . 

Definition. The variety M  is called reflexive if [ ] [ ]M X HA X=  for some 
associative envelope algebra [ ]A X  of [ ]M X . 

Theorem 8. Any reflexive variety of Jordan algebras is special. 

Proof. It suffices to prove that all homomorphic images of [ ]M X  are special 
Jordan algebras. Let’s consider the algebra [ ] /J M X I  and let’s prove that J  
is a special algebra. In accordance with the Cohn lemma [8] it is sufficient to 

show that [ ]( ) [ ]A XI I M X I
∧

= ∩ = , where [ ]( )A XI  is the ideal of the algebra [ ]A X  

generated by the set I . 

Let f I
∧

∈ . Then i i i i
i

f a u bα= ∑ , where ,i ia b   are the monomials of [ ]A X  or 

formal units, and iu I∈ . Since [ ]f M X∈ , then f f∗ = . Consequently, in view of 

reflexivity of the M , we have 
1 ( ) ( , )
2 i i i i i i i i

i i
f a u b b u a h u Xα ∗ ∗= + =∑ ∑ , where 

( , )i ih u X  are Jordan polynomials of iu  and X . Therefore, f I∈  and I I
∧

= . This 
proves the theorem. 

Corollary. The variety IR  is reflexive and, consequently, it is special. 

Proof. The reflexivity of IR  is proved in the Proposition 3, and the corollary is 
proved. 

 

It would be interesting to describe the reflexive varieties of Jordan algebras. 
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