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Abstract

We describe the models of the exceptional Lie algebra F4 which are based on its semisim-
ple subalgebras of rank 4. The underlying fact is that the reductive subalgebras of maximal
rank of a simple Lie algebra induce a grading on this algebra by means of an abelian group,
in such a way that the nontrivial components of the grading are irreducible modules.

1 Introduction

Although the exceptional Lie algebras were discovered more than one hundred years ago and a
lot of mathematicians have been interested in them, these algebras are so surprising that it can
be always expected a new way of looking at them.

The most known model of F4, the 52-dimensional simple Lie algebra, is due to Chevalley
and Schafer [ChS], who showed that F4 is the set of derivations of the Albert algebra, the
only exceptional simple Jordan algebra. This fact led Tits, among other authors, to study the
relationship between Jordan algebras and the remaining exceptional simple Lie algebras, which
were constructed in a unified way [T]. This construction is reflected in a magic square, in
particular, it allows us to look at F4 through its subalgebra G2 ⊕A1.

Since then, several authors have given different versions of the magic square, like Vinberg
[V], Barton and Sudbery [BaSu], Landsberg and Manivel [LMa3] and Elduque [E]. The last
three ones are related to the triality, and give a point of view of F4 based on its subalgebra D4,
acting on its three irreducible 8-dimensional representations, closely related to the mentioned
construction in [ChS] (D4 is the subalgebra of the derivations annihilating the three idempotents
in the Albert algebra J). Notice that this construction of F4 is a grading in the Klein group:
the identity component is D4, and the other three components are the natural module and the
two half-spin ones.

Jacobson’s proof that DerJ is a central simple Lie algebra of dimension 52 [Ja4, ch IX, sect 11]
suggests a different model of F4. If J = J0 ⊕ J 1

2
⊕ J1 is the Peirce decomposition relative to

a primitive idempotent e, then h = {d ∈ DerJ | d(e) = 0} is isomorphic to the Lie algebra of
linear transformations in the nine-dimensional vector space B (being B the subspace of J0 of
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the elements of generic trace 0, so that J0 = F (1 − e) ⊕ B) which are skew relative to q, the
quadratic form given by v · v = q(v)(1− e) if v ∈ B. Thus h is a Lie algebra of type B4, and its
set of restrictions to J 1

2
is an irreducible set of linear transformations such that DerJ ∼= h⊕ J 1

2
.

That is, we have a symmetric decomposition, equivalently a Z2-grading, with even part B4 and
odd part an irreducible h-module. The related construction (for instance, [B, p. 190]) describes
the bracket in F4 ≈ so(9)⊕ S9, for S9 the spinor representation of the orthogonal algebra so(9),
by means of the bracket in so(9), the spin action so(9)× S9 → S9 and the map S9 × S9 → so(9)
obtained by dualizing the spin action.

The other Lie triple system with standard embedding F4 provides another Z2-grading, based
on A1 ⊕ C3. In fact this construction is a particular case of the following result which involves
all the exceptional Lie algebras (to see [E2, th. 4.4], or [YA] for characteristic cero): Let U be
a two-dimensional vector space, ϕ a nonzero skew-symmetric bilinear form on U , V a vector
space endowed with a skew-symmetric bilinear form < , > : V × V → F and d : V × V →
EndF (V ), (u, v) 7→ du,v a symmetric map such that

< du,v(x), y > + < x, du,v(y) >= 0
[du,v, dx,y] = ddu,v(x),y + dx,du,v(y)

dx,y(z)− dy,z(x) = 2 < z, x > y− < y, z > x− < x, y > z

for any x, y, z, u, v ∈ V (that is, V is a symplectic triple system, as in [YA]). Let us take the
Z2-graded algebra

g = g0 ⊕ g1

{
g0 = sp(U,ϕ)⊕ span〈du,v | u, v ∈ V 〉
g1 = U ⊗F V

(1)

where g0 is a subalgebra, [g0, g1] is given by the natural action as a module and the product of odd
elements is [a⊗u, b⊗v] =< u, v > ϕa,b+ϕ(a, b)du,v for ϕa,b = ϕ(−, a)b+ϕ(−, b)a. Then g is a Z2-
graded Lie algebra. Concretely, the symmetric pairs (g, g0) = (G2, 2A1), (F4, A1⊕C3), (E6, A1⊕
A5), (E7, A1 ⊕D6) and (E8, A1 ⊕ E7) are particular cases taking V =

{(
α a
b β

)
| a, b ∈ J

}
,

where J is the Jordan algebra F, H3(F ), H3(F + F ), H3(Q) and H3(O) respectively. Here, if
(X,−) is an algebra with involution, H3(X) := {x ∈ Mat3×3(X) | x̄ = xt}.

The last three models of F4 above have a common fact: they are gradings of F4 such that
the identity component is a semisimple subalgebra of rank 4. One of our objectives is to show
that this is not a coincidence, but a general situation. For a reductive subalgebra h of a simple
Lie algebra L, the completely reducible h-module L is decomposed as a sum of h-irreducible
modules. In general, it is a fruitful idea to build an algebra from simpler constituents, but
in Section 3 we will prove that if besides h is of maximal rank, such decomposition as a sum
of irreducible modules provides a grading of L over an abelian group, verifying interesting
properties which enable to obtain models of L in terms of h and its representations: the nonzero
homogeneous components of the grading are irreducible submodules and the homomorphisms
between the tensor products of the components are generated by the projections of the bracket
in L. Hence the bracket in L is determined by these homomorphisms up to some scalars, which
can be obtained imposing the Jacobi identity to be satisfied. Some models related to Z- and
Zm-gradings appear in [OV, Ch 5, §2] making use of a similar philosophy.

The main aim of this paper is to describe the models of F4 related to the remaining semisimple
subalgebras of rank 4, since the preceding arguments show that it is possible to do it using only
linear algebra.
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The maximal rank reductive subalgebras are regular, so that they have been studied in the
complex field by Dynkin [Dy, Ch II, §5]. In the case in which they are too maximal subalgebras,
they are obtained from the affine Dynkin diagrams ([Ka, p. 54-55] and [F]) and it is known
that they are in correspondence to the finite order automorphisms, studied by Kac [Ka, Ch 8];
providing in this way a grading of the algebra over a finite cyclic group. We will review these
basic facts in the sections 2 and 3, because our models are obtained applying them several times.

After computing in Section 2 the seven semisimple maximal rank subalgebras of F4, we will
show how all these subalgebras appear naturally in terms of derivations of the Albert algebra,
the first usual model of F4. Afterwards, Section 3 will deal with the general properties of
the gradings related to these subalgebras, explaining also the relationship to the finite order
automorphisms. The next step, in Section 4, will be the description of the models and the
gradings. This section is divided in subsections according to the associated grading groups: Z3,
Z4, Z2

2 and Z3
2.

Finally, the last section will be devoted to some general remarks about relationships and
applications: i) the models of the remaining exceptional Lie algebras suggested by this work,
particularly E8; ii) the unified models through series and magic squares; and, as regards our
gradings of F4, iii) all our gradings are toroidal, iv) there is only one grading of F4 by a root
system (C3), v) what modules appear in the decompositions, vi) which gradings are refinements
of the others, and vii) the relation between the chain of subalgebras and the inverted chain of
subgroups.

2 Maximal rank semisimple subalgebras of F4

Our first objective is the description of the subalgebras in which our models will be based on.
Although they will be the semisimple subalgebras of rank 4, the arguments will be valid in the
more general situation of reductive subalgebras. For algebraically closed fields of characteristic
zero there is an easy method of determining the maximal rank reductive subalgebras.

2.1 Notice first that the notion of reductive subalgebra is associated to that of closed and
symmetric subset [Bo, ChVI, §1.7]:

If L =
∑

α∈Φ∪{0} Lα is the root decomposition relative to a Cartan subalgebra H (= L0) of
a simple Lie algebra L, a subset Γ of the root system φ is said to be closed if α, β ∈ Γ such
that α + β ∈ Φ implies α + β ∈ Γ, and it is said to be symmetric if −Γ = Γ. In this situation
the subalgebra h :=

∑
α∈Γ∪{0} Lα is reductive, h = Z(h) ⊕ [h, h] with Z(h) ⊂ H and L is an

h-completely reducible module.
Conversely, if h is a reductive subalgebra of L of maximal rank, h is the sum of its center

Z(h) and its semisimple part [h, h], hence a Cartan subalgebra of [h, h] plus Z(h) is a Cartan
subalgebra of L, since its dimension is the rank of L and it acts in a semisimple way. The root
system Φ′ of [h, h] relative to such Cartan subalgebra can be considered to be contained in the
root system Φ of L. Now, for any α, β ∈ Φ′ such that α + β ∈ Φ, Lα+β = [Lα, Lβ] ⊂ [h, h] ⊂ h,
so Φ′ is closed (clearly symmetric since being a root system).

2.2 The maximal closed and symmetric subsets of Φ are classified in [Bo, Ch VI, §4, exercise
4]:

Let ∆ = {α1, . . . , αl} be a basis of Φ, let α̃ =
∑

niαi be the maximal root, let us fix
i ∈ {1, . . . , l}.

a) The closed and symmetric subset Φi = {α ∈ Φ | α =
∑

j 6=i kjαj} is maximal if and only
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if ni = 1. In any case the subalgebra h :=
∑

α∈Φi∪{0} Lα has a one-dimensional center and
the Dynkin diagram of its semisimple part is obtained by removing the node i of the Dynkin
diagram of L.

b) In the case ni > 1, the set Γi = {α ∈ Φ | α =
∑l

j=1 kjαj , ki ≡ 0 (mod ni)} is also closed
and symmetric, and it is maximal if and only if ni is prime. Moreover, {−α̃, αj | j 6= i} is a
basis of Γi. Hence the subalgebra h with root system Γi is semisimple of maximal rank and
its Dynkin diagram is obtained by removing the node i of the affine Dynkin diagram. Such
extended Dynkin diagrams appear in the table Aff1 in [Ka, p. 54], and independently in [F],
obtained by joining the vertices i and j (l +1 nodes with α0 = −α̃) by means of |〈αi, αj〉| edges.

Every maximal closed and symmetric subset of Φ is transformed by an element of the Weyl
group into one of the subsets described above. The corresponding subalgebras are conjugated
by means of AutL. Now, a closed and symmetric subset of Φ different than Φ is contained in
some maximal subset, so it can be obtained iterating the previous procedure.

2.3 Applying the above in order to know the semisimple subalgebras of F4 of rank 4, let
us take the affine Dynkin diagram of F4,

f f f f f>
1 2 3 4 2

F
(1)
4

and let us remove the nodes corresponding to α1, α2 and α4, thus obtaining the maximal
subalgebras of types A1 ⊕ C3, 2A2 and B4 respectively. Now, the affine Dynkin diagram of B4

is f

f
f f f@@

¡¡
>

1

1

2 2 2 B
(1)
4

so, by removing the three nodes marked with 2 we obtain 2A1 ⊕ C2, A3 ⊕ A1 and D4. Lastly
we get 2A1 from the affine Dynkin diagram of C2

f f f> <
1 2 1

C
(1)
2

when we remove the node marked with 2. Any other choice leads to the same subalgebras. In
conclusion,

Theorem. There are seven maximal rank semisimple subalgebras of F4, namely: B4, A3 ⊕A1,
2A2, C3 ⊕A1, D4, C2 ⊕ 2A1 and 4A1.

2.4 We have recalled the diagram-based method because it is closely related to the grading
group, as we will see in the next section, but in fact all the reductive subalgebras of F4 appear in
[Dy, table 11], in which Dynkin classifies the regular semisimple subalgebras of the exceptional
complex simple Lie algebras. A subalgebra h of a simple Lie algebra L is regular if there exists
a basis consisting of elements of some Cartan subalgebra H of the algebra L and root vectors of
the algebra L relative to H. It is clear that a reductive subalgebra of maximal rank is regular,
and it can be obtained from the table 11 by adding the corresponding centers. Besides they are
unique up to conjugation, according to [Dy, p. 148].

2.5 Although our main theorem about gradings will be stated for algebraically closed fields
of characteristic zero, the resulting models and gradings will not need such restrictions on the
field. Thus, we are going to describe our subalgebras in terms of the derivations of the Albert
algebra, requiring only that the characteristic of the field F (not necessarily algebraically closed)
is different than 2 and 3.
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We will use the notations of [S, Ch IV, §1-2]. Let (C, n) be any Cayley algebra over F , that
is, C an eight-dimensional unital composition algebra and n its quadratic form. Let J be the
exceptional central simple Jordan algebra J = H3(C) = {x ∈ Mat3×3(C) | x̄ = xt}, formed by
the selfdual elements with respect to the standard involution,

x =




ξ1 c b̄
c̄ ξ2 a
b ā ξ3


 ≡ ξ1e1 + ξ2e2 + ξ3e3 + a1 + b2 + c3

for any ξi ∈ F , a, b, c ∈ C. Thus, e1, e2 and e3 are pairwise orthogonal idempotents, and we have
the Peirce decomposition J =

∑
i≤j Jij , where Jij = {x ∈ J | xei = xej = 1

2x} = {ak | a ∈ C} if
i 6= j 6= k. If B is a vector subspace of C, we will denote by Bk ≡ {bk | b ∈ B} the subspace of
J , so Jij = Ck. Take

< , > : J × J → F
(x, y) 7→ < x, y >= t(xy),

which is a nondegenerate symmetric bilinear form in J , Der J-invariant.
Let K ≤ Q ≤ C be a chain of composition subalgebras of C of dimensions 2, 4 and 8

respectively, and the corresponding chain of Jordan algebras H3(K) ≤ H3(Q) ≤ H3(C). Their
derivation algebras are, respectively, DerH3(K) ∼= A2, DerH3(Q) ∼= C3 and DerH3(C) ∼= F4 (see
[JJa] and [ChS], or the first row in the magic square [S, p. 122]). Looking at the second column of
the magic square [S, p. 122], DerH3(K) can be constructed as DerH3(F )⊕DerK⊕H3(F )0⊗K0,
and similarly DerH3(Q) and DerH3(C) (replacing the composition algebra), so that we have
another chain DerH3(K) ≤ DerH3(Q) ≤ DerH3(C) (since DerK ≤ DerQ ≤ Der C, [BeDrE2]).
Another sequence arises taking 0 6= a ∈ K with t(a) = 0, and the map

σ : C × C → K
(x, y) 7→ σ(x, y) = n(a)n(x, y)− n(ax, y)a,

which is a nondegenerate hermitian form and, up to a scalar, does not depend on a. The Lie
algebra of derivations Der C is a central simple Lie algebra of type G2, and their subalgebras
{d ∈ Der C | d(Q) = 0} and {d ∈ Der C | d(K) = 0} can be seen as the special unitary Lie
algebras su(Q⊥, σ) and su(K⊥, σ) respectively, of types A1 and A2 ([Dr],[BeDrE2]) since the
restrictions σ|Q⊥×Q⊥ and σ|K⊥×K⊥ are also nondegenerate.

Now, several semisimple Lie subalgebras of rank 4 of F4 arise in a natural way:

Proposition 1. With the notations above, there are the following isomorphisms of Lie algebras:

i) h0 = {d ∈ DerJ | d(ei) = 0 ∀i} ≈ o(C, n), of type D4,

ii) h1 = {d ∈ DerJ | d(e1) = 0} ≈ o(C1 ⊕ F (e2 − e3), < , >), of type B4,

iii) h2 = {d ∈ DerJ | d(H3(Q)) ⊂ H3(Q)} ≈ su(Q⊥, σ)⊕DerH3(Q), of type A1 ⊕ C3,

iv) h3 = {d ∈ DerJ | d(H3(K)) ⊂ H3(K)} ≈ su(K⊥, σ)⊕DerH3(K), of type 2A2,

v) h4 = {d ∈ DerJ | d(K⊥1 ) ⊂ K⊥1 } ≈ o(K⊥, n)⊕ o(K1 ⊕ F (e2 − e3), < , >), of type A3 ⊕A1,

vi) h5 = {d ∈ DerJ | d(Q⊥1 ) ⊂ Q⊥1 } ≈ o(Q⊥, n)⊕ o(Q1 ⊕ F (e2 − e3), < , >), of type 2A1 ⊕C2,

vii) h6 = {d ∈ DerJ | d(H3(Q)) ⊂ H3(Q), d(ei) = 0 ∀i} ≈ o(Q, n)⊕ o(Q⊥, n), of type 4A1.
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Moreover, all the pairs (F4, hi) are reductive, that is, there are mi subspaces of F4 such that
F4 = hi ⊕mi and [hi, mi] ⊂ mi.

Proof. i) The first isomorphism is known [S, Ch IV, proof of th. 4.9], but we will do a sketch to
use the notations during the rest of the proof.

If U ∈ o(C, n), by the principle of local triality there are unique maps U ′, U ′′ ∈ o(C, n)
satisfying U(xy) = U ′(x)y + xU ′′(y) for any x, y ∈ C. Take S : C → C the standard involution
S(x) = x̄. Now, we define

DU : J → J by

{
DU (ei) = 0
DU (ai) = Ui(a)i

for
U1 = S−1US, U2 = U ′, U3 = U ′′.

Thus the set h0 = {d ∈ Der C | d(ei) = 0 ∀i} = {DU | U ∈ o(C, n)} is isomorphic to o(C, n) since
[DU , DT ] = D[U,T ].

Moreover, if for any i ∈ {1, 2, 3} we denote da/i ≡ [Rej−ek
, Rai ] ∈ DerJ (i, j, k cyclic per-

mutation of 1, 2, 3) and Di ≡ {da/i | a ∈ C}, then DerJ = D0 ⊕ D1 ⊕ D2 ⊕ D3, and, since
[DU , da/i] = dUi(a)/i, Di are h0-modules and m0 = D1 ⊕D2 ⊕D3 is a complement h0-invariant.

ii) The isomorphism h1 ≈ B4 was already mentioned in the introduction (see also [Ja4] and
[Ja2]). Anyway, it is easy to check it directly at the same time than the cases h4 and h5.

Notice first that h1 = {d ∈ Der C | d(e1) = 0} = D0 ⊕D1, since

da/i(ei) = 0, da/i(bi) = 1
2n(a, b)(ej − ek)

da/i(ej) = −1
2ai, da/i(bj) = aibj

da/i(ek) = 1
2ai, da/i(bk) = −aibk,

and that m1 = D2 ⊕D3 is an h1-invariant complement.
Now, if X is a composition subalgebra of C, it holds that X⊥

1 ⊕ F (e2 + e3) is a subalgebra
of J and the set of derivations of J which leave it invariant is the subalgebra hX ≡ {d ∈ DerJ |
d(X⊥

1 ) ⊂ X⊥
1 } ⊂ h1 = D0 ⊕D1.

An element DU belongs to hX iff (U1(X⊥))1 ⊂ X⊥
1 , or equivalently, if U(X⊥) ⊂ X⊥.

If we denote ϕa,b ≡ n(a,−)b − n(b,−)a for any a, b ∈ C, the set o(C, n) is equal to ϕC,C =
ϕX,X ⊕ ϕX,X⊥ ⊕ ϕX⊥,X⊥ , with ϕX,X(X⊥) = 0, ϕX⊥,X(X⊥) ⊂ X and ϕX⊥,X⊥(X⊥) ⊂ X⊥, so
that {U ∈ o(C, n) | U(X⊥) ⊂ X⊥} = ϕX,X ⊕ ϕX⊥,X⊥ .

On the other hand, da/1(X⊥
1 ) ⊂ n(a,X⊥)(e2− e3), so that an element da/1 belongs to hX iff

a ∈ X⊥⊥ = X.
Hence, hX = Dϕ

X⊥,X⊥ ⊕ (DϕX,X ⊕ dX/1), where

Dϕ
X⊥,X⊥ = {d ∈ hX | d(X1) = 0}

and
DϕX,X ⊕ dX/1 = {d ∈ hX | d(X⊥

1 ) = 0} (2)

are obviously two ideals.
The first ideal is isomorphic to ϕX⊥,X⊥ ≈ o(X⊥, n), a Lie algebra of the type o(7), o(6),

o(4) and 0 (B3, D3 ≈ A3, D2 ≈ 2A1 and 0) if X is the composition algebra F, K, Q and C
respectively.
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Since dX/1(X1) ⊂ F (e2 − e3), dX/1(e2 − e3) ⊂ X1, dϕX,X (X1) = X1 and dϕX,X (e2 − e3) = 0,
we can take the map

{d ∈ DerJ | d(X⊥
1 ) = 0} → o(X1 ⊕ F (e2 − e3), < , >)

d 7→ d|X1⊕F (e2−e3)

which is well defined (< , > is DerJ-invariant and < , > |X1⊕F (e2−e3) is nondegenerate too),
and it is a monomorphism between vector spaces of the same dimension

(
1+dim X

2

)
. So the ideal

in (2) is isomorphic to o(X1 ⊕ F (e2 − e3), < , >), a Lie algebra of the type o(1), o(3), o(5) and
o(9) respectively (F, B1 ≈ A1, B2 ≈ C2 and B4). Therefore hF ≈ B3 ⊕ F , h4 = hK ≈ A3 ⊕ A1,
h5 = hQ ≈ 2A1⊕C2 and h1 = hC ≈ B4 are reductive subalgebras of F4 of rank 4 (the first one is
not semisimple) whose corresponding invariant complements are mX = Dϕ

X,X⊥⊕dX⊥/1⊕D2⊕D3.
iii) Let us take now h(X) ≡ {d ∈ DerJ | d(H3(X)) ⊂ H3(X)} and the Lie algebras homo-

morphism
ΦX : h(X) → DerH3(X)

d 7→ d|H3(X)

whose kernel is Ker ΦX = {d ∈ DerJ | d(H3(X)) = 0} ⊂ h0.
Recall from [S, p. 81] that o(C, n) = Der C ⊕RC0 ⊕LC0 , where La and Ra denote the left and

right multiplications by the element a ∈ C0. Let U = d + La + Rb be an arbitrary element in
o(C, n) (d ∈ Der C, a, b ∈ C0). Then DU ∈ Ker ΦX iff Ui(X) = 0 for all i. But d = 1

3(U1+U2+U3),
so d(X) = 0 and hence the maps La + Rb = U − d and −Ra + Rb + Lb = U ′ − d annihilate X,
in particular annihilate 1 ∈ X, so that a + b = −a + 2b = 0 and a = b = 0. That is, the kernel
KerΦX = {DU | U ∈ Der C, U(X) = 0} ≈ {U ∈ Der C | U(X) = 0} is isomorphic to G2, A2, A1

and 0 if X is equal to F, K, Q and C respectively, and so of dimension 14, 8, 3 and 0.
It is easy to see that h(X) = D{d∈Der C|d(X)⊂X}⊕RX0

⊕LX0
⊕ (⊕idX/i) and that an invariant

complement is m(X) = DD
X0,X⊥⊕R

X⊥⊕L
X⊥⊕(⊕idX⊥/i), with the usual notation Da,b = [Ra, Rb]+

[La, Rb] + [La, Lb] ∈ Der C used in [S, p. 77]. As dim{d ∈ Der C | d(X) ⊂ X} = 14, 8, 6, 14 by
[Dr] or [BeDrE2], the dimension of h(X) is equal to dim{d ∈ Der C | d(X) ⊂ X}+ 5 dimX − 2 =
17, 16, 24 and 52 respectively, the same than dim Ker ΦX + dimDerH3(X), since DerH3(X) is
isomorphic to A1, A2, C3 and F4 respectively. Therefore ΦX is an epimorphism, and h(X) ≈
KerΦX ⊕ ImΦX = Ker ΦX ⊕DerH3(X) is of type G2 ⊕A1, 2A2, A1 ⊕ C3 and F4 respectively,
with hK = h3 and hQ = h2.

iv) Finally, the subalgebra h6 = h0 ∩ h2 = {d ∈ DerJ | d(H3(Q)) ⊂ H3(Q), d(ei) = 0∀i} =
D{d∈Der C|d(Q)⊂Q}⊕RQ0

⊕LQ0
= DϕQ,Q⊕ϕQ⊥,Q⊥ ≈ ϕQ,Q ⊕ ϕQ⊥,Q⊥ ≈ o(Q, n)⊕ o(Q⊥, n) is of type

2 o(4) or 4A1, and it has an invariant complement m6 = DϕQ,Q⊥ ⊕D1 ⊕D2 ⊕D3.

Remark. In order to obtain a new model of an algebra L, one can start with a description
of the algebra, then identifying different pieces whose direct sum is L to models and finally
translating the bracket in L through these bijections. In this kind of models, it is very useful
to know a complete description of the pieces. This is why we have added a description of the
complements m in the proof, which could also be used to construct nonsplit Lie algebras of
type F4, analogously to the models of G2 obtained in [BeDrE1]. Furthermore, they provide a
collection of examples of Lie-Yamaguti algebras with standard embedding F4 (consult [BeDrE2]
for more information about this topic). However, the description of the complements m is not
essential to the constructions in this work, because their Lie algebra structures will be proved
by checking directly the Jacobi identity, instead of using isomorphisms.
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3 Gradings based on reductive subalgebras of maximal rank.

3.1 Let us consider again an algebraically closed field F of characteristic zero. The next
theorem explains how any reductive subalgebra h of maximal rank of a simple Lie algebra L
provides a grading of L such that the identity component is h and verifying some remarkable
properties which will help us to recover the bracket in L.

Theorem 1. Let L be a (finite-dimensional) simple Lie algebra, L =
∑

α∈Φ∪{0} Lα the root
decomposition relative to a Cartan subalgebra H of L, and Φ′ a closed and symmetric subset of
the root system Φ. Let G be the abelian group ZΦ/ZΦ′. Then:

a) Φ ∩ ZΦ′ = Φ′

b) L = ⊕g∈GLg is G-graded, being L0 = h = H ⊕∑
α∈Φ′ Lα a reductive subalgebra and for any

0 6= g ∈ G either Lg = 0 or Lg is an h-irreducible module. Besides G is generated by the
set {g ∈ G | Lg 6= 0}.

c) If L = ⊕g∈G̃Mg is another grading by an abelian group G̃, where M0 ⊃ h and G̃ is generated
by {g ∈ G̃ | Mg 6= 0}, then there is a group epimorphism π : G → G̃ such that Lg ⊂ Mπ(g)

for any g ∈ G.

d) If g1, g2 ∈ G \ {0}, g1 + g2 6= 0, Homh(Lg1 ⊗ Lg2 ,Lg1+g2) is generated by the restriction of
the Lie bracket [ , ] : Lg1 ⊗ Lg2 → Lg1+g2.

e) If g1, g2 ∈ G, g1 + g2 6= 0, then [Lg1 ,Lg2 ] = Lg1+g2.

f) h is semisimple if and only if G is a finite group.

g) Lg 6= 0 for all g ∈ G if and only if the bracket of any two irreducible components of L not
contained in h is not zero. In this case h is semisimple.

Proof. a) Given α1, . . . , αn ∈ Φ′ such that α = α1 + · · · + αn ∈ Φ, let us show that α ∈ Φ′ by
induction on n (it is trivial in case n = 1). As (α, α) > 0, there is an index i ∈ {1, . . . , n} such
that (α, αi) > 0, so α − αi = α1 + · · · + α̂i + · · · + αn ∈ Φ (the hat means that the marked
summand doesn’t appear). By the induction hypothesis α−αi ∈ Φ′, and so α = αi +(α−αi) ∈
(Φ′ + Φ′) ∩ Φ ⊂ Φ′.

b) It is clear that L is graded by the abelian group G = ZΦ/ZΦ′, with Lα ⊂ Lα+ZΦ′ ; and,
since {α + ZΦ′ | α ∈ Φ} is a set of generators of G contained in {g ∈ G | Lg 6= 0}, this set also
generates G.

Writing h =
∑

α∈Φ′∪{0} Lα, it is a reductive Lie subalgebra of L (2.1), obviously contained
in L0 =

∑
α+ZΦ′=ZΦ′ Lα. So h = L0 holds, by a).

By complete reducibility, we can decompose L = h⊕m1⊕· · ·⊕mr, where mi are h-irreducible
modules. Since L = H⊕∑

α∈Φ Lα = h⊕∑
α∈Φ\Φ′ Lα, and mi are h-invariant, there are Φ1, . . . ,Φr

nonempty subsets of Φ such that Φ = Φ′
·∪ Φ1

·∪ · · · ·∪ Φr and mi =
∑

α∈Φi
Lα.

Let us see now that for any i ∈ {1, . . . , r} there exists 0 6= g ∈ G such that mi = Lg. Thus,
each of the nonzero homogeneous components of the grading will be some of the irreducible
submodules mi. To do that, let us take µi a maximal root in Φi. Since mi is [h, h]-irreducible,
mi = U([h, h])−Lµi and the whole set Φi is contained in µi + ZΦ′ (element in G). Hence
mi ⊂ Lµi+ZΦ′ .
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To prove the equality, let us suppose that there exists ηi ∈ Φi and ηj ∈ Φj (i 6= j) such that
ηi− ηj ∈ ZΦ′. So there are α1, . . . , αn ∈ Φ′ such that ηi− ηj = α1 + · · ·+αn, and we can choose
ηi and ηj such that n is minimum.

As (ηi, ηj +α1 + · · ·+αn) = (ηi, ηi) > 0, it follows that either there is an index l ∈ {1, . . . , n}
such that (ηi, αl) > 0 or (ηi, ηj) > 0. In the first case, ηi−αl ∈ Φ, so that Lηi−αl

= [Lηi , L−αl
] ⊂

[mi, h] ⊂ mi and η′i = ηi − αl ∈ Φi with η′i − ηj = α1 + · · ·+ α̂l + · · ·+ αn, a contradiction with
the choice of n. In the second case, ηi − ηj ∈ Φ (ηi 6= ηj , since Φi ∩ Φj = ∅, and ηi 6= −ηj ,
since (ηi,−ηi) < 0), it follows that ηi − ηj ∈ Φ′ = Φ ∩ ZΦ′ by a), and then Lηi = [Lηj , Lηi−ηj ] ⊂
[mj , h] ⊂ mj , again an absurd. In consequence for all ηj ∈ Φj , ηj + ZΦ′ 6= µi + ZΦ′ and
Lµi+ZΦ′ =

∑
β∈Φ,β+ZΦ′=µi+ZΦ′ Lβ = mi.

c) Since h ⊂ M0, it is clear that any root space is homogeneous, hence if ∆ is a basis of
Φ, we can take π : ∆ → G̃ such that Lα ⊂ Mπ(α). There exists an unique extension to the
free Z-module generated by ∆ such that π : Z∆ = ZΦ → G̃ is a Z-modules homomorphism.
Note that Lα ⊂ Mπ(α) for any α ∈ Φ+ (analogously for α ∈ Φ−), since there is a chain
α = α1 + · · ·+αs with αi ∈ ∆ such that α1 + · · ·+αi ∈ Φ for all i, and because of the G̃-grading
we have Lα = [[[Lα1 , Lα2 ], . . . ], Lαs ] ⊂ Mπ(α1)+π(α2)+···+π(αs)=π(α). We thus get π(Φ′) = 0,
since M0 ⊃ h ⊃ Lα for any α ∈ Φ′; and consequently ZΦ′ ⊂ kerπ and the induced group
homomorphism π̄ : ZΦ/ZΦ′ → G̃ is an epimorphism (the set of generators {g ∈ G̃ | Mg 6= 0} is
contained in Im π̄).

More precisely, notice that if the G̃-grading verifies exactly the property b), that is, M0 = h

and the nonzero components Mg are h-irreducible modules, both the G and G̃-gradings are
equivalent because two decompositions of L as sums of the subalgebra h plus h-irreducible
submodules must be equal since the h-irreducible modules {mi | i = 1, . . . , r} are all different
and not isomorphic to the simple ideals of h.

d) By the Jacobi identity of L, the brackets [Lg1 ,Lg2 ] are h-invariant, so trivially the map
[ , ]|Lg1⊗Lg2

∈ Homh(Lg1 ⊗ Lg2 ,Lg1+g2).
On the other hand, let us take µ1 and µ2 the maximal weights in Lg1 and Lg2 respectively

(h-irreducible modules). If vµ1 is a maximal vector for Lg1 of weight µ1 and vσ(µ2) is a minimal
vector for Lg2 of weight σ(µ2) (σ the element in the Weyl group such that σ(Φ′+) = Φ′−),
the h-module Lg1 ⊗ Lg2 is generated by vµ1 ⊗ vσ(µ2) and any f ∈ Homh(Lg1 ⊗ Lg2 ,Lg1+g2) is
determined by the image f(vµ1⊗vσ(µ2)), contained in Lµ1+σ(µ2), trivial or one-dimensional (just
in case µ1 + σ(µ2) is a root), hence dim Homh(Lg1 ⊗ Lg2 ,Lg1+g2) ≤ 1.

In the case this space is one-dimensional, if we take µ the maximal root in Lg1+g2 (V (µ)
is a summand of V (µ1) ⊗ V (µ2)), it is known that there exists α a weight in V (µ2) such that
µ = µ1 + α, so that Lµ = [Lµ1 , Lα] ⊂ [Lg1 ,Lg2 ] and thus [Lg1 ,Lg2 ] 6= 0.

e) It is enough to check that [Lg1 ,Lg2 ] 6= 0 for any g1, g2 ∈ G such that g1 + g2 6= 0 and
Lg1+g2 6= 0, by the irreducibility of Lg1+g2 .

With the notations in d) (the other case, g1 or g2 = 0, is trivial), Lµ1+µ2+ZΦ′ 6= 0, Φ∩ (µ1 +
µ2 +ZΦ′) 6= ∅ and there exist α1, . . . , αn ∈ Φ′ such that µ1 +µ2 +α1 + · · ·+αn ∈ Φ (ZΦ′ = Z+Φ′

because −Φ′ = Φ′). Let us take n minimum verifying the above.
As before, (µ1 + µ2 + α1 + · · · + αn, µ1 + µ2 + α1 + · · · + αn) > 0, but there doesn’t exist

l ∈ {1, . . . , n} such that (µ1 + µ2 + α1 + · · ·+ αn, αl) > 0 by the choice of n, so that it may be
assumed that (µ1 + µ2 + α1 + · · ·+ αn, µ1) > 0 (analogously in case µ2), µ2 + α1 + · · ·+ αn ∈ Φ
and 0 6= [Lµ1 , Lµ2+α1+···+αn ] ⊂ [Lµ1+ZΦ′ ,Lµ2+ZΦ′ ].

f) Let ∆ = {α1, . . . , αl} be a basis of Φ, and ∆′ = {γ1, . . . , γm} be a basis of Φ′. Obviously
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∆′ ⊂ Z∆.
The algebra h is semisimple if and only if Z(h) = 0, equivalently if the rank of its semisimple

part is the rank of L, m = l.
If m = l, ∆ ⊂ Q∆′ and there exist n1, . . . , nl such that niαi ∈ Z∆′. It is clear that the

cardinal of the set ZΦ/ZΦ′ is less than
∏l

i=1 ni, finite.
Conversely, if m < l, Φ 6⊂ ∑m

i=1Rγi and there exists α ∈ Φ such that α /∈ QΦ′. Hence
{nα + ZΦ′ | n ∈ Z} is a subset of G with infinite different classes.

g) The condition [mi, mj ] 6= 0 for all i, j, is equivalent, by e), to the fact Lg1+g2 6= 0 if
Lg1 ,Lg2 6= 0 (notice that L0 6= 0, and, in any case, 0 6= [Lα, L−α] ⊂ [Lα+ZΦ′ ,L−α+ZΦ′ ]). So that
the set Ĝ = {g ∈ G | Lg 6= 0} is a subgroup, and, as Ĝ generates G, G = Ĝ.

Since L is finite dimensional, it follows that G is finite and h is semisimple as in f).

3.2 On account of the above theorem, if L = h ⊕ m and m = m1 ⊕ · · · ⊕ mr is the
decomposition of L as a sum of h-irreducible modules (h reductive of maximal rank), all of
these modules are not trivial and not isomorphic among them. For each pair of indices (i, j),
the bracket [mi, mj ] is either 0, or contained in h (only in the case mj ≈ m∗

i ), or contained in
exactly one module mk. In the latter case the bracket is determined up to scalar by any nonzero
h-homomorphism mi ⊗mj → mk.

Therefore, we are in a good situation to describe (L, [ , ]) by means of the subalgebra h,
the h-modules mi, and the homomorphisms Homh(mi ⊗ mj , mk); specially if h is semisimple
because the abelian grading group is finite, concretely of cardinal r + 1 if any bracket between
two different irreducible components is not zero, which often happens.

3.3 It is interesting to notice that if G̃ is a subgroup of G, hG̃ ≡ ∑
g∈G̃ Lg is again a

reductive subalgebra of maximal rank (the Cartan subalgebra is contained in L0) containing h,
semisimple with root system Φ′ ∪{Φi | µi +ZΦ′ ∈ G̃} if h is semisimple too. The grading group
of the construction based on hG̃ is of course G/G̃. The converse also holds, there is an inverted
chain of subalgebras and subgroups.

3.4 Relationship with Z- and Zm-gradings.
Taking into consideration that there is a chain Φ′ = Φ0 ⊂ Φ1 ⊂ · · · ⊂ Φs = Φ of closed

and symmetric subsets such that each of them is maximal in the following one, we could have
checked the truth of the theorem in an indirect way by applying several times the general theory
of automorphisms and gradings to the maximal closed and symmetric subsets. Each step would
provide a cyclic grading group (either Z or Zp with p a prime) jointly with the irreducibility of
the homogeneous components. In particular we would know each quotient group Gi/Gi+1 of the
corresponding chain G = G0 ⊃ G1 ⊃ · · · ⊃ Gs (as in 3.3), and hence approximately the group
G (not exactly because of the possible repeated primes).

In the notations of 2.2 and [OV, Ch 3, §3],
a) Fixed i ∈ {1, . . . , l}, a Z-grading of L is defined making Lp = ⊕α∈Φ∪{0}{Lα | α =∑l

j=1 kjαj , ki = p}, so L = L−ni ⊕ · · · ⊕ L0 ⊕ · · · ⊕ Lni where L0 = H ⊕ ∑{Lα | α =∑l
j=1,j 6=i kjαj ∈ Φ} is reductive with one-dimensional center Z = {h ∈ H | αj(h) = 0 ∀j 6= i}

and semisimple part with root system Φi and basis {αj | j 6= i}. Recall (2.2 a) that L0 is
maximal if and only if ni = 1, in which case we have a 3-grading L = L−1 ⊕ L0 ⊕ L1.

It is not true that the homogeneous components are irreducible in any Z-grading. This
one is determined by fixing integers p1, . . . , pl ≥ 0, and defining Lp = ⊕α∈Φ∪{0}{Lα | α =∑l

j=1 kjαj ,
∑l

j=1 kjpj = p}. So the homogeneous component Lp decomposes into the direct
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sum of the irreducible modules L(ν)
p (see [OV, p. 108]), which are the sum of the root spaces Lα

contained in Lp corresponding to the roots with fixed coefficients at the simple roots αk such
that pk 6= 0. In our case, pi = 1 and pj = 0 if j 6= i, so L(ν)

p must have fixed coefficient at αi,
obviously p, and L(ν)

p = Lp do be irreducible.
b) For α0 ≡ −α̃ (the minimum root), any root α ∈ Φ can be uniquely represented in the

form α =
∑l

j=0 kjαj for 0 ≤ kj ≤ nj (if α ∈ Φ+, k0 = 0, and if α ∈ Φ−, k0 = 1).
Now, for an index i with ni a prime number (6= 1), we define θ by means of θ|Lα = wki id

if Lα is the root space associated to α =
∑l

j=0 kjαj and w = exp 2πI
ni

∈ F is a primitive ni-th
root of the unity. Since θ is an inner automorphism of L of order ni, we have a Zni-grading of
L given by Lp̄ =

∑
α∈Φ∪{0}{Lα | α =

∑l
j=0 kjαj , ki ≡ p (modni)}, so that L0̄ is the semisimple

subalgebra of rank l with root system Γi and basis {α0, αj | j 6= i}, that is, the obtained one
removing the node i of the extended Dynkin diagram. In fact, the condition of ni to be prime
is only necessary for the maximality of the subalgebra Fix θ = L0̄.

These Zm-gradings are called of inner type (because they are produced by inner automor-
phisms of order m) and they are associated to the Kac diagrams Aff1, in contrast to the grad-
ings produced by outer automorphisms, which are associated to the Kac diagrams Aff2 and
Aff3. Again the components of a Zm-grading of inner type may be not irreducible. One such
grading is given by integers p0, p1, . . . , pl ≥ 0 such that

∑l
j=0 njpj = m (n0 = 1), being the

homogeneous components Lp̄ =
∑

α∈Φ∪{0}{Lα | α =
∑l

j=0 kjαj ,
∑l

j=0 kjpj ≡ p (modm)} for

p ∈ {0, . . . ,m− 1}, direct sum of the irreducible components L(ν)
p̄ (see [OV, p. 113]). In our case

pi = 1 and pj = 0 if j 6= i, so that there is only one L(ν)
p̄ 6= 0 (the coefficient at αi is ki = p),

and Lp̄ = L(ν)
p̄ is irreducible, as we expected from Theorem 1.

In conclusion, we can determine the grading groups by looking at the labels of the removed
nodes, taking care of the repeated factors.

3.5 Example.
Theorem 1 states that the maximal rank reductive subalgebras are associated to infinite

grading groups, which seems to be contrary to the fact that the null component of any Zn-
grading of inner type is just a maximal rank reductive subalgebra (according to [Ka] and 3.4.b,
we choose p0, p1, . . . , pl ≥ 0 such that

∑l
j=0 njpj = n, so the Dynkin diagram of the semisimple

part is obtained removing the nodes from the affine diagram Aff1 whose attached labels are
nonzero, and the dimension of the center is the number of nonzero labels minus 1).

We next display a specific example to illustrate the situation. Taking as nonzero labels
p0 = p4 = 1, it is produced a Z3-grading of F4 whose fixed subalgebra is the direct sum of
B3 and a one-dimensional center Z. Let {hi}4

i=1 be a basis of a Cartan subalgebra of F4 such
that ∆ = {α1, α2, α3, α4} given by α1(h) = w2 − w3, α2(h) = w3 − w4, α3(h) = w4 and
α4(h) = 1

2(−w1 + w2 + w3 + w4), for h =
∑4

i=1 wihi, is a basis of the root system Φ of F4.
Thus, ∆′ = {α1, α2, α3} is a basis of the root system Φ′ of B3 (obviously contained in Φ), the
center is Z = Fh1, and the grading group of F4 based on h = B3 ⊕ Z is G = ZΦ/ZΦ′ =
{nα4 + ZΦ′ | n ∈ Z} ≈ Z. So, we obtain a Z-grading of L = L−2 ⊕ L−1 ⊕ L0 ⊕ L1 ⊕ L2, where
each Ln ≡ Lnα4+ZΦ′ = ⊕{Lα | α =

∑4
i=1 kiαi ∈ Φ, k4 = n} is an h-irreducible module.

To obtain the decomposition of F4 as a sum of h-irreducible modules, we have only to find
the roots α ∈ Φ such that α + αi /∈ Φ for i = 1, 2, 3, since the corresponding maximal vectors
generate these modules (in fact, this is a general method to decompose a semisimple Lie algebra
as a sum of h-irreducible modules for h a regular subalgebra). There are five roots in such
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situation: 2α1 + 3α2 + 4α3 + 2α4, α1 + 2α2 + 3α3 + α4, α1 + 2α2 + 2α3 (which generates B3),
−α4 and −α2 − 2α3 − 2α4. For h′ = w2h2 + w3h3 + w4h4 an arbitrary element in the Cartan
subalgebra of B3,

(2α1 + 3α2 + 4α3 + 2α4)(h′) = w2 = (α1 + α2 + α3)(h′) = λ1(h′)
(−α2 − 2α3 − 2α4)(h′) = w2 = λ1(h′)
(α1 + 2α2 + 3α3 + α4)(h′) = 1

2(w2 + w3 + w4) = 1
2(α1 + 2α2 + 3α3)(h′) = λ3(h′)

(−α4)(h′) = 1
2(w2 + w3 + w4) = λ3(h′)

and z = −2h1 acts with eigenvalue n in Ln; therefore the decomposition is

F4 = B3 ⊕ Fz ⊕ V (λ1)2 ⊕ V (λ3)1 ⊕ V (λ3)−1 ⊕ V (λ1)−2

where the super-index means the action of z, and V (λ) denotes a basic module for B3 (λi the
fundamental weight).

The Z3-grading F4 = M0̄ ⊕ M1̄ ⊕ M2̄ is obtained making M2̄ = L2 ⊕ L−1 and M1̄ =
L1⊕L−2, that is, taking the group epimorphism π : Z→ Z3 and for any g ∈ Z3 the homogeneous
component Mg =

∑
π(n)=g Ln, as in Theorem 1.c.

4 Models of F4 based on semisimple subalgebras of rank 4

We can now develop the models of F4 based on the semisimple subalgebras of rank 4 which have
not been mentioned in the introduction, namely, 2A2, A3⊕A1, C2⊕2A1 and 4A1. These models
will be valid over algebraically closed fields of characteristic zero, but they will also yield a split
simple Lie algebra of dimension 52 for arbitrary fields of characteristic different from 2 and 3,
hence, the split algebra F4.

Taking into account the marked nodes that we have to remove (or simply looking at the
decompositions of F4 as sums of irreducible modules), we know the grading groups: the ones
corresponding to A1⊕C3, 2A2 and B4 are Z2, Z3 and Z2 respectively, and the one associated to
A3 ⊕ A1 (obtained in only one step removing α3 from F

(1)
4 , although the label is 4, not prime)

is Z4. From B4 we obtain 2A1 ⊕ C2 and D4 (besides A1 ⊕ A3), both with grading groups Z2
2

(a priori a Z2-grading of another Z2-grading could lead to Z2
2 or Z4), and 2A1 ⊕ C2 breaks in a

new Z2-grading with even part 4A1, being Z3
2 the grading group related to it.

Consequently, in this section models of F4 will be given where:

1. F4 is Z3-graded with null component of type A2.

2. F4 is Z4-graded with null component of type A3 ⊕A1.

3. F4 is Z2
2-graded with null component of type C2 ⊕ 2A1.

4. F4 is Z3
2-graded with null component of type 4A1.

4.1 A Z3-grading of F4

Some Z3-gradings on exceptional Lie algebras are known. The first one arises from the Z3-
grading on the split Cayley algebra C viewed as Zorn’s vector matrix algebras (see [Ja3, p. 142]).
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This fact provides the corresponding Z3-grading on the split Lie algebra of type G2, the set of
derivations of C. In this way, for V a three-dimensional vector space,

L = sl(V )⊕ V ⊕ V ∗

is a Lie algebra of type G2, where the set of trace zero endomorphisms sl(V ) is a Lie subalgebra
of type A2, the actions of sl(V ) on V and V ∗ are the natural ones (that is, V is the natural
module and V ∗ its dual one), and

[f, u] = 3f(−)u− f(u) idV

[u, v] = 2u ∧ v (3)
[f, g] = 2f ∧ g

for any u, v ∈ V , f, g ∈ V ∗, where u ∧ v denotes the element in V ∗ given by det(u, v,−) (fixed
a nonzero trilinear alternating map det : V × V × V → F ) and f ∧ g denotes the element in V ∗

given by det∗(f, g,−), being det∗ the dual map.
The other Z3-grading is given by a very nice and symmetric model of E6 which appears in

[A, chapter 13]. Adams uses three vector spaces V1, V2 and V3 of dimension 3 (over C) and their
dual ones V ∗

1 , V ∗
2 and V ∗

3 , and thus

L = sl(V1)⊕ sl(V2)⊕ sl(V3)⊕ V1 ⊗ V2 ⊗ V3 ⊕ V ∗
1 ⊗ V ∗

2 ⊗ V ∗
3

is a Lie algebra of type E6, where
∑

sl(Vi) is a Lie subalgebra of type 3A2, its actions on
V1 ⊗ V2 ⊗ V3 and V ∗

1 ⊗ V ∗
2 ⊗ V ∗

3 are the natural ones (the ith simple ideal acts on the ith slot),
and

[⊗fi,⊗ui] =
∑

k=1,2,3

i6=j 6=k

fi(ui)fj(uj)
(
fk(−)uk − 1

3
f(uk) idVk

)

[⊗ui,⊗vi] = ⊗(ui ∧ vi) (4)
[⊗fi,⊗gi] = ⊗(fi ∧ gi)

for any ui, vi ∈ Vi, fi, gi ∈ V ∗
i , with the wedge products as in (3).

Both models work too for arbitrary fields of characteristic different than 2 and 3. Notice the
analogy between them.

Now, in the middle of the previous models of G2 and E6, we find the following one of F4,
obtained as the set of fixed points of certain automorphism of E6:

Theorem 2. In the model (4), let us take τ ∈ AutE6 induced by τ(v1⊗ v2⊗ v3) = v1⊗ v3⊗ v2.
If we take V1 = V2 = V3 = V = W , and S2(W ) =< {v · w + w · v | v, w ∈ W} > denotes the
second symmetric power, then

a) The Lie subalgebra of the fixed elements can be described as

L̃ = sl(V )⊕ sl(W )⊕ V ⊗ S2(W ) ⊕ V ∗ ⊗ S2(W ∗) (5)

where sl(V ) ⊕ sl(W ) is a Lie subalgebra, its actions on V ⊗ S2(W ) and V ∗ ⊗ S2(W ∗) are the
natural ones, and

[f ⊗ h · h, u⊗ w · w] = h(w)2πfu + f(u)h(w)πhw

[u⊗ w · w, v ⊗ x · x] = (u ∧ v)⊗ (w ∧ x) · (w ∧ x)
[f ⊗ h · h, g ⊗ j · j] = (f ∧ g)⊗ (h ∧ j) · (h ∧ j)
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for any u, v ∈ V, w, x ∈ W, f, g ∈ V ∗, h, j ∈ W ∗, denoting by fu ≡ f(−)u and the projection
πf ≡ f − 1

3 tr(f) id.
b) If L0̄ = sl(V )⊕ sl(W ), L1̄ = V ⊗ S2(W ) and L2̄ = V ∗ ⊗ S2(W ∗), then L̃ =

∑
i=0,1,2 Lī is

a Z3-grading.
c) L̃ is a simple Lie algebra and dimF L̃ = 52, hence L̃ is of type F4.

The proof of this theorem is immediate, once we have showed the simplicity of the resulting
model (5). To check it, and be able to use it later in the other models, we will reproduce the
general conditions of all the constructions in this work.

Lemma 1. If the Lie algebra L = ⊕g∈GLg is G-graded by a finite abelian group G, such
that h ≡ L0 is a semisimple subalgebra, {Lg}g 6=0 is a collection of pair-wise nonisomorphic h-
irreducible modules and nonisomorphic to the simple ideals of h, verifying [Lg1 ,Lg2 ] 6= 0 for any
g1, g2 ∈ G such that g1 + g2 6= 0, and h ⊂ [m, m] for m ≡ ⊕g∈G\{0}Lg, then L is simple.

Proof. Let I be an ideal of L. Since I is h-invariant (h ⊂ L), there is S ⊂ G \ {0} and h̃ an
ideal of h such that I = h̃ ⊕ ∑

s∈S Ls. If there exists an element s ∈ S, for any g ∈ G \ {0}
the irreducibility implies that Lg = [Ls,Lg−s] ⊂ I, hence m ⊂ I, h ⊂ [m, m] ⊂ I and I = L.
Otherwise, S is empty, I = h̃ verifies [I, m] = 0, [I, [m, m]] = 0, [I, h] = 0 and I ⊂ Z(h) = 0.

It is obvious that L̃ in Theorem 1 satisfies the required conditions in the Lemma.

Remarks.
i) If in a vector space L = h ⊕ m we define any bracket such that h is a Lie subalgebra

and m is an h-module, directly we have J(h, h, h) = 0 = J(h, h, m), for J(x, y, z) ≡ [[x, y], z] +
[[y, z], x] + [[z, x], y]. Besides the condition J(h,m, m) = 0 is equivalent to that the bracket
[ , ]|m⊗m : m⊗m → L is a homomorphism of h-modules. Therefore, that bracket endows L with
a Lie algebra structure if and only if J(m, m, m) = 0.

So, we can take the decomposition of F4 as a sum of irreducible h-modules as a starting
point to construct the Lie algebra F4. Even more, it is not essential the preliminary knowledge
of the decomposition of L as a direct sum of irreducible modules for its semisimple subalgebra
h, any choice as in the preceding paragraph would yield a Lie algebra.

ii) Therefore, a way to approach to the above construction of F4, alternative to Theorem
2, is to begin with the expression (5) (which appears, for example, in [LMa1, p. 25] or [LMa2,
p. 80]), that is, the decomposition of F4 as a sum of modules for its subalgebra of type 2A2.
The uniqueness of the homomorphisms between the different components (Theorem 1.d) forces
the existence of scalars α, β, γ, δ such that L̃ =

∑
i=0,1,2 Lī is a Lie algebra with the bracket in

m = L1̄ ⊕ L2̄ given by:

[f ⊗ h · h, u⊗ w · w] = αh(w)2πfu + βf(u)h(w)πhw

[u⊗ w · w, v ⊗ x · x] = γ(u ∧ v)⊗ (w ∧ x) · (w ∧ x)
[f ⊗ h · h, g ⊗ j · j] = δ(f ∧ g)⊗ (h ∧ j) · (h ∧ j)

In order to find these scalars, we have only to impose J(m, m, m) = 0. Independently of them,
J(L1,L1,L1) = 0 = J(L2,L2,L2) holds. On the other hand,

J(u⊗ x · x, v ⊗ w · w, f ⊗ g · g) =
= f(v)u⊗ (

(1
3(α + 2β)− γδ)g(w)2x · x

+2(−β + γδ)g(x)g(w)w · x + (α− γδ)g(x)2w · w)
−f(u)v⊗ (

(α− γδ)g(w)2x · x + 2(−β + γδ)g(x)g(w)w · x
+(1

3(α + 2β)− γδ)g(x)2w · w)
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is always equal to 0 if and only if α = β = γδ. The identity J(L2,L2,L1) = 0 leads to the same
conditions on the scalars. Therefore, taking α = β = γ = δ = 1 provides a Lie algebra structure
in L̃.

iii) There is a way of viewing 2A2 inside F4 without using the Albert algebra. It is described
in a symmetric version of the magic square [E, §4]: if S is a para-Hurwitz algebra of dimension
1, and S′ is a Okubo algebra (a kind of 8-dimensional symmetric composition algebra), the
algebra tri(S) ⊕ tri(S′) ⊕ (S ⊗ S′)1 ⊕ (S ⊗ S′)2 ⊕ (S ⊗ S′)3 is of type F4 (based on D4). If
θ ∈ triS, θ′ ∈ triS′ are the triality automorphisms, the map given by Ψ|tri S = θ, Ψ|tri S′ = θ′,
Ψ((s⊗s′)i) = (s⊗s′)i+1 (mod 3) defines an automorphism of order 3 in F4, and its fixed subalgebra
DerS′ ⊕ ι(S ⊗ S′) (for ι(s⊗ s′) = (s⊗ s′)1 + (s⊗ s′)2 + (s⊗ s′)3) is of type 2A2.

4.2 A Z4-grading on F4

Among the seven semisimple subalgebras of F4 of rank 4, there are three ones which divide F4

in 4 pieces, but there is only one that provides a Z4-grading, since not all the h-submodules of
F4 are selfdual: we are talking about A1 ⊕A3.

In order to describe the decomposition of F4 = h ⊕ m for h ≈ A1 ⊕ A3, recall that each
irreducible h-submodule of m is the tensor product of an A1-irreducible module by an A3-
irreducible module. But the decomposition of F4 for its regular subalgebra of type A3 [Dy,
p. 199] is

F4 = V (λ1 + λ3)⊕ 3V (0)⊕ 2V (λ1)⊕ 3V (λ2)⊕ 2V (λ3),

where V (λ1), V (λ2) and V (λ3) are the basic modules for A3, that is, the natural module W
and its exterior powers

∧2 W and
∧3 W , of dimensions 4, 6 and 4 respectively. If V ⊗ W

is one of the summands of the decomposition, V ∗ ⊗ W ∗ is another one, since m is a selfdual
h-module. Therefore, there exist A1-modules V and V ′ of dimensions 2 and 3 such that m ≈
V ⊗ W ⊕ V ′ ⊗ ∧2 W ⊕ V ⊗ ∧3 W . It is easy to check that V and V ′ do not contain trivial
submodules, hence they are the A1-modules of types V (1) and V (2) (where V (n) denotes the
only A1-irreducible module of dimension n + 1).

Now, before giving the model related to this decomposition, let us describe the homomor-
phisms which will be used for the bracket. The ones among the A3-modules are listed in the
following straightforward Lemma:

Lemma 2. If W is a four-dimensional vector space, and we identify the exterior power
∧3 W

with the sl(W ) ≈ A3-dual module W ∗ by means of the determinant (a fixed multilinear alter-
nating map det : W 4 → F ), u∧ v ∧w ≡ det(u, v, w,−), the following maps are homomorphisms
of sl(W )-modules:

W ⊗W → ∧2 W, u⊗ v 7→ u ∧ v

W ⊗∧2 W → ∧3 W, u⊗ v ∧ w 7→ u ∧ v ∧ w

W ⊗∧3 W → EndF W, u⊗ f 7→ fu ≡ f(−)u
EndF W

π→ slF (W ), G 7→ πG ≡ G− 1
4 trG idW (tr fu = f(u))

W ⊗∧3 W → F, u⊗ f 7→ f(u)∧2 W ⊗∧2 W → EndF W, (u ∧ v)⊗ (w ∧ x) 7→ (u ∧ v ∧ w)x − (u ∧ v ∧ x)w∧2 W ⊗∧2 W → F, (u ∧ v)⊗ (w ∧ x) 7→ det(u, v, w, x)∧2 W ⊗∧3 W → W, (u ∧ v)⊗ f 7→ f(u)v − f(v)u∧3 W ⊗∧3 W → ∧2 W, f ⊗ (u ∧ v ∧ w) 7→ f(u)v ∧ w + f(v)w ∧ u + f(w)u ∧ v
≡ f ∧ (u ∧ v ∧ w)
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for any u, v, w, x ∈ W , f ∈ W ∗.

On the other hand, there is a practical model for A1 and its modules of type V (n), such that
the homomorphisms are expressed in terms of transvections. We follow the notations of [D].
Let us denote by Vn the linear space over F of the homogeneous polynomials in the variables
x and y of degree n. Identifying sl(2) with the subalgebra L = span〈{x ∂

∂x − y ∂
∂y , x ∂

∂y , y ∂
∂x}〉 ≤

Der(F [x, y]), it acts naturally on Vn such that Vn is the irreducible sl(2)-module of dimension
n + 1, if the characteristic of F is 0.

For f ∈ Vi, g ∈ Vj , the transvection (f, g)q (0 ≤ q ≤ i, j) is defined by

(f, g)q =
(i− q)!

i!
(j − q)!

j!

q∑

k=0

(
(−1)k

(
q

k

)
∂qf

∂xq−k ∂yk

∂qg

∂xk ∂yq−k

)
∈ Vi+j−2q .

Since the map ( , )q : Vi × Vj → Vi+j−2q is L-invariant, it induces a homomorphism of sl(2, F )-
modules, hence so ( , )1 : V2 ⊗ Vm → Vm is.

In particular we can identify (V2, ( , )1) with the Lie algebra sl(2) and thus the action
of sl(2) on its module V1 is given by 1

2( , )1. The other involved homomorphisms are then
induced by ( , )0 : V1 × V1 → V2 (the product of the polynomials), ( , )1 : V1 × V1 → F and
( , )2 : V2 × V2 → F .

Theorem 3. Under the notations above, if

L0 = V2 ⊕ sl(W )
L1 = V1 ⊗W

L2 = V2 ⊗
∧2 W

L3 = V1 ⊗
∧3 W

and we define in L =
∑3

i=0 Li an anticommutative product given by the natural action of L0 on
Li (i = 0, 1, 2, 3) and

[a⊗ v, b⊗ w] = αab⊗ v ∧ w
[a⊗ v, b⊗ f ] = γf(v)ab + δ(a, b)1πfv

[a⊗ f, b⊗ g] = βab⊗ f ∧ g
[a⊗ v, A⊗ (w ∧ x)] = µ(a,A)1 ⊗ v ∧ w ∧ x
[a⊗ f, A⊗ (w ∧ x)] = η(a,A)1 ⊗ (f(w)x− f(x)w)
[A⊗ u ∧ v,B ⊗ w ∧ x] = θ det(u, v, w, x)(A,B)1 + ϕ(A,B)2π

(
(u ∧ v ∧ w)x − (u ∧ v ∧ x)w

)

for fixed scalars {α, β, γ, δ, µ, η, θ, ϕ} ⊂ F \ {0} and for any a, b ∈ V1, A,B ∈ V2, u, v, w, x ∈ W
and f, g ∈ W ∗, the obtained algebra verifies the Jacobi identity if and only if αη = γ = −δ = −βµ
and θ = 2ϕ = −2ηµ.

In particular, taking α = β = δ = µ = ϕ = 1, γ = η = −1 and θ = 2, L is a simple Lie
algebra of dimension 52, of type F4.

Proof. We have only to check J(Li,Lj ,Lk) = 0 for any i, j, k ∈ {1, 2, 3} because of Lemma 1
about the simplicity.

Let us denote a, b, c ∈ V1, A,B,C ∈ V2, u, v, w, x, y, z ∈ W and f, g, h ∈ W ∗. We will
use a family of identities relative to homogeneous polynomials and transvections, called Gordan
identities [D, p. 111]. For F ∈ Vm, G ∈ Vn, H ∈ Vp, the identity:
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∑

i≥0

(
n−α1−α3

i

)(
α2

i

)
(
m+n−2α3−i+1

i

)(
(F, G)α3+i,H)α1+α2−i = (−1)α1

∑

i≥0

(
p−α1−α2

i

)(
α3

i

)
(
m+p−2α2−i+1

i

)(
(F,H)α2+i, G)α1+α3−i

will be denoted by




F G H
m n p
α1 α2 α3


. For example,




a b c
1 1 1
0 1 0


 means that

(ab, c)1 +
1
2
(a, b)1c = (a, c)1b, (6)

and permuting in this identity a and b, and then adding and subtracting both expressions, we
get

2(ab, c)1 = (a, c)1b + (b, c)1a (7)
(a, b)1c + (b, c)1a + (c, a)1b = 0, (8)

since ( , )1 is skew. Besides adding (6) cyclicly in a, b, c, we obtain

(ab, c)1 + (bc, a)1 + (ca, b)1 = 0, (9)

so that,

J(a⊗ u, b⊗ v, c⊗ w) = −αµ
(
(c, ab)1 + (a, bc)1 + (b, ca)1

)⊗ u ∧ v ∧ w = 0

and J(L1,L1,L1) = 0 without restrictions on the scalars.
If we consider another case, (i, j, k) = (1, 1, 3),

J(a⊗ v, b⊗ w, c⊗ f) =
(
αη(ab, c)1 + δ(b, c)1a− 1

2γ(ac, b)1 + 1
4δ(a, c)1b

)⊗ f(v)w
+

(− αη(ab, c)1 + 1
2γ(bc, a)1 − 1

4δ(b, c)1a− δ(a, c)1b
)⊗ f(w)v

will be 0 if the parentheses are. By (7) and (8), the first parenthesis is

(b, c)1a
(

1
2
αη + δ +

1
2
γ

)
+ (a, c)1b

(
1
2
αη − 1

4
γ +

1
4
δ

)
,

which is 0 if and only if
αη = γ = −δ. (10)

The same conditions are obtained making null the second parenthesis.
Now, for (i, j, k) = (1, 1, 2),

J(a⊗ v, b⊗ w, A⊗ x ∧ y)
=

(
θα det(v, w, x, y)(ab,A)1 − µγ det(w, x, y, v)a(b, A)1 + µγ det(v, x, y, w)b(a,A)1

)
+

(
ϕα(ab,A)2π((v ∧ w ∧ x)y − (v ∧ w ∧ y)x)

−µδ(a, (b, A)1)1π((w ∧ x ∧ y)v) + µδ(b, (a,A)1)1π((v ∧ x ∧ y)w)
)

will be zero if its projections on sl(V ) and sl(W ) are zero.
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Using the Gordan identity




a A b
1 2 1
0 0 1


, we obtain

(a,A)1b = (ab,A)1 +
1
2
(a, b)1A. (11)

Again permuting a and b, and afterwards adding and subtracting,

(a,A)1b + (b, A)1a = 2(ab,A)1 (12)
(a,A)1b− (b, A)1a = (a, b)1A. (13)

Hence, the projection on sl(V ) is det(v, w, x, y)
(

1
2θα + γµ

) (
(a,A)1b + (b, A)1a

)
, which is null if

and only if
θα = −2γµ (14)

Now the identity




a A b
1 2 1
1 0 1


, that is,

(ab,A)2 = (a, (b, A)1)1 = (b, (a,A)1)1, (15)

implies that the projection on sl(W ) is

(ab,A)2
(
ϕαπ((v ∧ w ∧ x)y − (v ∧ w ∧ y)x)− µδπ((w ∧ x ∧ y)v − (v ∧ x ∧ y)w)

)
,

but
(v ∧ w ∧ x)y − (w ∧ x ∧ y)v + (x ∧ y ∧ v)w − (y ∧ v ∧ w)x = det(v, w, x, y) idW , (16)

hence π((v ∧w ∧ x)y − (v ∧w ∧ y)x) = π((w ∧ x ∧ y)v − (v ∧ x ∧ y)w) and the desired condition
is equivalent to

ϕα = µδ. (17)

Notice that (14) and (17) are equivalent to θ = −2µη = 2ϕ, supposed (10).
For (i, j, k) = (1, 2, 3), we will use again (11) y (13). Thus

J(a⊗ u,A⊗ w ∧ x, b⊗ f)
=

(
(a,A)1b(−βµ− γ) + (a, b)1A

(
1
2γ + 1

2δ
))⊗ f(u)w ∧ x

+
(
(a,A)1b(−βµ + δ) + (b, A)1a(−ηα− δ)

)⊗ f(w)x ∧ u
+

(
(a,A)1b(−βµ + δ) + (b, A)1a(−ηα− δ)

)⊗ f(x)u ∧ w

is zero if and only if βµ = δ = −ηα = −γ, that is, the only new condition is

βµ = δ.

We have already showed the necessity of the conditions about the scalars in the statement
of the theorem, but we have still to check the remaining identities J(Li,Lj ,Lk) = 0 for the
sufficiency.

As in case i = j = k = 1, the case i = j = k = 3 is true independently of the scalars, because
of (9), and so as i = j = k = 2, using the identities
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det(w, y, z, x)u ∧ v + det(w, y, z, v)x ∧ u + det(w, y, z, u)v ∧ x

+det(x, u, v, w)y ∧ z + det(x, u, v, y)z ∧ w + det(x, u, v, z)w ∧ y = 0

and ((B, C)1, A)1 = 1
2((B, A)2C−(C,A)2B), obtained from




A B C
2 2 2
0 1 1


 and from the Jacobi

identity in (V2, ( , )1).

On the other hand, the identity




A a B
2 1 2
0 1 1


 gives

((A, a)1, B)1 = ((A,B)1, a)1 +
1
2
((A,B)2, a)0,

and now permuting a and b, adding and subtracting, we have

((A, a)1, B)1 + ((B, a)1, A)1 = (A,B)2a (18)
((A, a)1, B)1 − ((B, a)1, A)1 = 2((A,B)1, a)1. (19)

Using them,

J(a⊗ u,A⊗ v ∧ w, B ⊗ x ∧ y)
= µη((a,A)1, B)1 ⊗ (det(u, v, w, x)y − det(u, v, w, y)x)

+θ det(v, w, x, y)1
2

1
2

(
((A, a)1, B)1 − ((B, a)1, A)1

)⊗ u
+ϕ

(
((A, a)1, B)1 + ((B, a)1, A)1

)⊗ (π((v ∧ w ∧ x)y − (v ∧ w ∧ y)x)(u))
−µη((a,B)1, A)1 ⊗ (det(u, x, y, v)w − det(u, x, y, w)v)

= ((A, a)1, B)1 ⊗
(− µη det(u, v, w, x)y + µη det(u, v, w, y)x + 1

4θ det(v, w, x, y)u
+ϕπ((v ∧ w ∧ x)y − (v ∧ w ∧ y)x)(u)

)
+((B, a)1, A)1 ⊗

(− 1
4θ det(v, w, x, y)u + µη det(u, x, y, v)w − µη det(u, x, y, w)v

+ϕπ((v ∧ w ∧ x)y − (v ∧ w ∧ y)x)(u)
)

but

det(v, w, x, u)y − det(v, w, y, u)x− 1
2 det(v, w, x, y)u = π((v ∧ w ∧ x)y − (v ∧ w ∧ y)x)(u)

= −π((x ∧ y ∧ v)w − (x ∧ y ∧ w)v)(u),

so the above expression is 0 because −µη − ϕ = 0 = 1
4θ − 1

2ϕ, and J(L1,L2,L2) = 0.
For the following case, (i, j, k) = (1, 3, 3), note that

v ∧ (f ∧ g) = f(v)g − g(v)f,

(notation f ∧ g as in Lemma 2), so,

J(a⊗ v, b⊗ f, c⊗ g)
=

(
1
2γ(ab, c)1 + 1

4δ(a, b)1c− µβ(a, bc)1 + δ(a, c)1b
)⊗ f(v)g

+
(−δ(a, b)1c− µβ(a, bc)1 − 1

2γ(ac, b)1 − 1
4δ(a, c)1b

)⊗ g(v)f,

which is equal to 0 because of (6) and −γ = δ = µβ.
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Denoting u ∧ v ∧ w ∧ x ≡ det(u, v, w, x), it is easy to see that

f ∧ g ∧ x ∧ y = f(x)g(y)− f(y)g(x)

and so, using the restrictions on the scalars, the projection of J(a ⊗ f, b ⊗ g, A ⊗ x ∧ y) ∈
J(L3,L3,L2) on sl(V ) is

ηγ(f(x)g(y)− f(y)g(x))(2(ab,A)1 − (b, A)1a− (a,A)1b) = 0

by (12), and its projection on sl(W ), by (15), is

ηγ(ab, A)2π(gf(x)y − gf(y)x − fg(x)y + fg(y)x + fg(x)y−g(y)x − gf(x)y−f(y)x) = 0.

Finally, for (i, j, k) = (3, 2, 2), by (18) and (19),

J(a⊗ f,A⊗ v ∧ w, B ⊗ x ∧ y)
= ϕ((A, a)1, B)1 ⊗

(
f(v)w ∧ x ∧ y − f(w)v ∧ x ∧ y + 1

2 det(v, w, x, y)f
−f ◦ π((v ∧ w ∧ x)y − (v ∧ w ∧ y)x)

)
−ϕ((B, a)1, A)1 ⊗

(
f(x)y ∧ v ∧ w − f(y)x ∧ v ∧ w + 1

2 det(v, w, x, y)f
+f ◦ π((v ∧ w ∧ x)y − (v ∧ w ∧ y)x)

)

will be 0 since f(v)w ∧ x ∧ y = f ◦ (w ∧ x ∧ y)v and (16).

4.3 A Z2
2-grading on F4

The model of F4 based on D4 can be viewed through the magic square [E, §3], whereas the one
based on C2 ⊕ 2A1, the other grading over the Klein group, provides a different perspective.

There is only one subalgebra of type B2 in F4, which is regular and gives the decomposition

F4 = V (λ2)⊕ 6V (0) ⊕ 4V (λ1)⊕ 4V (λ2);

hence the B2-modules involved in our decomposition are only the basic ones: the natural and
the spin modules. For an easier point of view, let us take V a four-dimensional vector space,
sp(V, ϕ) ≡ sp(V ) the symplectic algebra with respect to a skewsymmetric bilinear form ϕ. It is
of type C2 ≈ B2, and the above models through this isomorphism are the natural one, V , and
sym0 V = {h ∈ EndF V | tr(h) = 0, ϕ(h(x), y) = ϕ(x, h(y)) ∀x, y ∈ V }. Hence the brackets in
our model will be expressed in terms of the homomorphisms between these modules, which are

Lemma 3. The following maps are homomorphisms of sp(V )-modules

sp(V )× V → V (f, v) 7→ f(v)
sp(V )× sym0 V → sym0 V (f, g) 7→ [f, g]
V × V → symV (u, v) 7→ σu,v ≡ ϕ(u,−)v − ϕ(v,−)u
V × V → sp(V ) (u, v) 7→ ϕu,v ≡ ϕ(u,−)v + ϕ(v,−)u
V × V → F (u, v) 7→ ϕ(u, v)
sym0 V × V → V (f, u) 7→ f(u)
sym0 V × sym0 V → sp(V ) (f, g) 7→ [f, g]
sym0 V × sym0 V → F (f, g) 7→ tr(fg)
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Proposition 2. Let V be a four-dimensional vector space, and A and B be two-dimensional
vector spaces. Let ϕV : V × V → F , ϕA : A × A → F and ϕB : B × B → F be skewsymmetric
bilinear forms, all of them denoted by ϕ. We define a Z2

2-graded anticommutative algebra L =∑
(i,j)∈Z2

2
L(i,j) such that

L(0,0) = sp(A)⊕ sp(V )⊕ sp(B)
L(1,0) = A⊗ V

L(0,1) = V ⊗B

L(1,1) = A⊗ sym0 V ⊗B

where L(0,0) is a Lie subalgebra of L, the brackets [L(0,0),L(i,j)] are given by the natural action
as modules, and

[a⊗ u, a′ ⊗ v] = ε1ϕ(a, a′)ϕu,v + ε2ϕ(u, v)ϕa,a′

[a⊗ u, a′ ⊗ f ⊗ b] = γ1ϕ(a, a′)f(u)⊗ b
[a⊗ u, v ⊗ b] = γ2a⊗ πσu,v ⊗ b
[u⊗ b, a⊗ f ⊗ b′] = γ3ϕ(b, b′)a⊗ f(u)
[u⊗ b, v ⊗ b′] = ε3ϕ(b, b′)ϕu,v + ε4ϕ(u, v)ϕb,b′

[a⊗ f ⊗ b, a′ ⊗ g ⊗ b′] = ε5 tr(fg)ϕ(a, a′)ϕb,b′ + ε6 tr(fg)ϕ(b, b′)ϕa,a′ + ε7ϕ(a, a′)ϕ(b, b′)[f, g]

for fixed scalars {εi | i = 1, . . . , 7} ∪ {γi | i = 1, 2, 3} ⊂ F \ {0} and for any a, a′ ∈ A,
b, b′ ∈ B, u, v ∈ V , f, g ∈ sym0 V , with π : End V = F id⊕ sl(V ) → sl(V ) the projection
π(f) = f − 1

4 tr(f) idV .
Then L is a Lie algebra if and only if ε1 = ε2, ε3 = ε4, ε5 = ε6 = −1

2ε7, γ1γ3 = 4ε5, γ1γ2 =
2ε1, γ2γ3 = 2ε3.

Proof. We have to check the Jacobi identity J(Li,Lj ,Lk) = 0 for any i, j, k ∈ {1, 2, 3}, where
we denote L1 ≡ L(1,0), L2 ≡ L(1,1) and L3 ≡ L(0,1) for short. Besides we denote σ̃v,w ≡ πσv,w

for any v, w ∈ V .
Case 1,1,3):
J(a⊗ u, a′ ⊗ v, w⊗ b) = ϕ(a, a′)

(
ε1ϕu,v(w) + γ2γ1(−σ̃v,w(u) + σ̃w,u(v))

)⊗ b, but −σ̃v,w(u) +
σ̃w,u(v) = −1

2ϕu,v(w), so that the condition is equivalent to

γ1γ2 = 2ε1,

and analogously for case 3,3,1),
γ3γ2 = 2ε3.

Case 1,1,1):

J(a1 ⊗ u1, a2 ⊗ u2, a3 ⊗ u3) =
∑

cyclic
1,2,3

(
ε1ϕ(a1, a2)a3 ⊗ ϕu1,u2(u3) + ε2ϕa1,a2(a3)⊗ ϕ(u1, u2)u3

)
,

and, since
∑

cyclic 1,2,3 ϕ(a1, a2)a3 = 0 (A is two-dimensional), we have
∑

cyclic
1,2,3

(
ϕ(a1, a2)a3 ⊗ ϕu1,u2(u3) + ϕa1,a2(a3)⊗ ϕ(u1, u2)u3

)
= 0,

and the identity is satisfied if and only if ε1 = ε2, and similarly for case 3,3,3), if ε3 = ε4.

21



Case 1,1,2): Under the conditions found until now,

J(a1 ⊗ u, a2 ⊗ v, a3 ⊗ f ⊗ b) = ε1

(
ϕ(a1, a2)(a3)⊗ [ϕu,v, f ] + ϕa1,a2(a3)⊗ ϕ(u, v)f

+2ϕ(a2, a3)a1 ⊗ σ̃f(v),u + 2ϕ(a3, a1)a2 ⊗ σ̃f(u),v

)⊗ b

= ε1

(
ϕ(a2, a3)a1 ⊗ (2σ̃f(v),u − [ϕu,v, f ] + ϕ(u, v)f)

+ϕ(a3, a1)a2 ⊗ (2σ̃f(u),v − [ϕu,v, f ]− ϕ(u, v)f)
)⊗ b.

Notice that we have the following identity
∑

cyclic w,x,u

(ϕ(v, w)σx,u + ϕ(w, u)σx,v) = (ϕ(v, w)ϕ(x, u) + ϕ(v, x)ϕ(u,w) + ϕ(v, u)ϕ(w, x)) idV ,

as is easy to check evaluating in v and w (x and u play the same role than w) and using that
dimV = 4. Hence,

σ̃σ̃w,x(v),u − σ̃σ̃w,x(u),v = ϕ(w, v)σx,u − ϕ(x, v)σw,u − 1
2ϕ(w, x)σv,u − ϕ(w, u)σx,v

+ϕ(x, u)σw,v + 1
2ϕ(w, x)σu,v − 1

2ϕ(σ̃w,x(v), u) id +1
2ϕ(σ̃w,x(u), v) id

= −ϕ(u, v)σw,x − (ϕ(v, w)ϕ(x, u) + ϕ(v, x)ϕ(u, w) + ϕ(v, u)ϕ(w, x)) id
−1

2(ϕ(w, v)ϕ(x, u)− ϕ(x, v)ϕ(w, u)− 1
2ϕ(w, x)ϕ(v, u)) id

+1
2(ϕ(w, u)ϕ(x, v)− ϕ(x, u)ϕ(w, v)− 1

2ϕ(w, x)ϕ(u, v)) id
= −ϕ(u, v)σw,x + 1

2ϕ(u, v)ϕ(w, x) id = −ϕ(u, v)σ̃w,x,

but the maps σ̃w,x generate the vector space sym0 V , so we have checked

σ̃f(u),v − σ̃f(v),u = ϕ(u, v)f (20)

On the other hand, σ̃f(u),v+σ̃f(v),u = σf(u),v+σf(v),u = [ϕu,v, f ] (it is direct since (ϕ(v,−)u)◦
f = ϕ(f(v),−)u and f ◦ (ϕ(v,−)u) = ϕ(v,−)f(u)), so adding it to (20) we obtain 2σ̃f(u),v =
ϕ(u, v)f + [ϕu,v, f ] and permuting u and v we finish this case. It works too in the case 3,3,2).

Case 1,2,3):

J(a⊗ u, a′ ⊗ f ⊗ b′, v ⊗ b) = ϕ(b, b′)ϕa,a′
(
γ2ε6 tr(σ̃v,u ◦ f)− γ3ε2ϕ(f(v), u)

)
+ϕ(a, a′)ϕb,b′

(
γ2ε5 tr(σ̃v,u ◦ f) + γ1ε4ϕ(f(u), v)

)
+ϕ(a, a′)ϕ(b, b′)

(
γ2ε7[σ̃v,u, f ]− γ1ε3ϕf(u),v + γ3ε1ϕf(v),u

)
,

but [σ̃v,u, f ] = ϕf(v),u−ϕf(u),v and tr(σ̃v,u ◦ f) = 2ϕ(f(v), u) = −2ϕ(f(u), v), so that the Jacobi
identity is equivalent to

γ3ε1 = γ1ε3 = −γ2ε7

γ3ε2 = 2γ2ε6

γ1ε4 = 2γ2ε5,

which, assumed the previously obtained restrictions on the scalars, are equivalent to

γ1γ3 = 4ε5, ε5 = ε6 = −1
2
ε7.

Case 1,2,2):

J(a⊗ f ⊗ b, a′ ⊗ g ⊗ b′, c⊗ u)
= ε6 tr(fg)ϕ(b, b′)ϕa,a′(c)⊗ u + ε7ϕ(a, a′)ϕ(b, b′)c⊗ [f, g](u)

+γ1γ3ϕ(a′, c)ϕ(b′, b)a⊗ f(g(u)) + γ1γ3ϕ(c, a)ϕ(b, b′)a′ ⊗ g(f(u))
= ϕ(b, b′)ε6

(
ϕ(a, c)a′ ⊗ (−2[f, g](u)− 4g(f(u)) + tr(fg)u)

+ϕ(a′, c)a⊗ (2[f, g](u)− 4f(g(u)) + tr(fg)u)
)
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Notice that σ̃u,v ◦ g + g ◦ σ̃u,v = σg(u),v + σu,g(v) −ϕ(u, v)g ∈ F idV (by (20), its projection is
σ̃g(u),v − σ̃g(v),u − ϕ(u, v)g = 0), that is, f ◦ g + g ◦ f = 1

4 tr(f ◦ g + g ◦ f) idV = 1
2 tr(f ◦ g) idV ,

hence 2f ◦ g = f ◦ g + g ◦ f + [f, g] = [f, g] + 1
2 tr(fg) idV , so that 2[f, g](u)− 4fg(u)+ tr(fg)u =

0 = −2[f, g](u)− 4gf(u) + tr(fg)u.
Finally, the case 2,2,2):

J(a1 ⊗ f1 ⊗ b1, a2 ⊗ f2 ⊗ b2, a3 ⊗ f3 ⊗ b3) = ε5
∑

cyclic

(
ϕ(a1, a2)a3 ⊗ tr(f1f2)f3 ⊗ ϕb1,b2(b3)

+ϕa1,a2(a3)⊗ tr(f1f2)f3 ⊗ ϕ(b1, b2)b3 − 2ϕ(a1, a2)a3 ⊗ [[f1, f2], f3]⊗ ϕ(b1, b2)b3

)
= 0

Now, using again Lemma 1, it follows the simplicity of the model and then:

Corolary. In case εi = −2 for i = 1, 2, 3, 4, 7, εi = 1 for i = 5, 6, γi = −2 for i = 1, 3 and
γ2 = 2, the above algebra L is simple of dimension 52, hence F4.

4.4 A Z3
2-grading of F4

Our last subalgebra, of type 4A1, provides a Z3
2-grading of F4, so it divides F4 in more pieces

than before, but with the advantage that all the pieces are easily handled with because of its
small size, since there are only trivial and natural modules for each of the A1’s.

A precedent is the model for D4 based in 4A1, which appears in [LMa2], where there is an
interesting version of triality for the split algebra D4 over R. Take four two-dimensional vector
spaces Vi, i = 1, 2, 3, 4, and bi : Vi × Vi → F nondegenerate forms on each of them. Then L =∑

sl(Vi)⊕(V1⊗V2⊗V3⊗V4) is a Lie algebra of type D4, with
∑

sl(Vi) a Lie subalgebra acting on
⊗Vi in the obvious way, and being the bracket [⊗vi,⊗wi] =

∑4
i=1 Πj 6=ibj(vj , wj)viwi, by means

of the natural isomorphisms S2Vi → sl(Vi). Then, the three eight-dimensional representations
are (V1⊗V2)⊕ (V3⊗V4), (V1⊗V3)⊕ (V2⊗V4) and (V1⊗V4)⊕ (V2⊗V3), inequivalent, where the
action of sl(Vi) is the obvious one and the action of ⊗Vi is given by [v1⊗ v2⊗ v3⊗ v4, ui⊗ uj ] =
bi(vi, ui)bj(vj , uj)vk ⊗ vl (i, j, k, l different indices).

Now, only one step is necessary to give a model for F4 based on 4A1, taking into account
the isomorphism between F4 and D4 plus its three three-dimensional representations: the de-
termination of the suitable scalars.

Theorem 4. Let Vi be a two-dimensional vector space, and bi ≈ b : Vi×Vi → F a skew-symmetric
bilinear form, for any i = 1, 2, 3, 4. We define a Z3

2-graded anticommutative algebra

L = sp(V1)⊕ sp(V2)⊕ sp(V3)⊕ sp(V4)⊕ V1 ⊗ V2 ⊗ V3 ⊗ V4 ⊕
∑

i<j

Vi ⊗ Vj

such that L(0,0,0) =
∑4

i=1 sp(Vi), L(a1,a2,a3) = ⊗{Vi | i = 1, 2, 3, 4, ai = 1}, being a4 =
a1 + a2 + a3 ∈ Z2, where L(0,0,0) is a Lie subalgebra, the brackets [L(0,0,0),L(a1,a2,a3)] are given
by the natural action as modules and

[v1 ⊗ v2 ⊗ v3 ⊗ v4, w1 ⊗ w2 ⊗ w3 ⊗ w4] =
∑4

i=1(ϕvi,wiπj 6=ib(vj , wj))
[v1 ⊗ v2 ⊗ v3 ⊗ v4, wi ⊗ wj ] = γijb(vi, wi)b(vj , wj)vk ⊗ vl

[vi ⊗ vj , wi ⊗ wj ] = εij(b(vi, wi)ϕvj ,wj + b(vj , wj)ϕvi,wi)
[vi ⊗ vj , wi ⊗ wk] = βilb(vi, wi)vj ⊗ wk

[vi ⊗ vj , vk ⊗ vl] = αijv1 ⊗ v2 ⊗ v3 ⊗ v4
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for any vi, wi ∈ Vi, where the indices i, j, k, l are distinct, ϕu,v ≡ b(v,−)w + b(w,−)v, and the
scalars are

γij =
{

2 if i, j 6= 4
−1 i or j = 4

αij =
{

1 if i, j 6= 4
−1 i or j = 4

εij =
{

1 if i, j 6= 4
1
2 i or j = 4

βij =





1 if i, j 6= 4
−1 j = 4
1
2 i = 4

Then L is a simple Lie algebra of dimension 52, of type F4.

Remark. It is a straightforward computation that the Jacobi identity is verified if and only
if γijγkl = −2, γijεkl = αij , γijβkj = −γjkβil, εij = βilβjl, βijαkl = βilαjk, and αikγij =
βijβjk − βjiβil, hence the above choice is a right possibility.

But a shorter way to choose suitable scalars is from the recent approach of the magic square
due to Elduque [E2, §3.1] using symmetric composition algebras.

5 Final comments

5.1 Once described the models associated to the subalgebras, let us look at the close relationship
between several of them. As in 3.3, if F4 = ⊕g∈GLg is a G-grading with L0 = h semisimple of rank
4, and G̃ is a subgroup of G, then hG̃ := ⊕g∈G̃Lg is also semisimple and F4 = ⊕a+G̃∈G/G̃La+G̃

is G/G̃-graded, with La+G̃ =
∑

g+G̃=a+G̃ Lg, thus the pieces in the first grading fit in this one.
Obviously h{0} = h and hG = F4.

Let us examine, for example, the nontrivial subgroups for G = Z3
2. In this case h =

∑
sp(Vi)

and F4 =
∑

sp(Vi)⊕ V1 ⊗ V2 ⊗ V3 ⊗ V4 ⊕
∑

i<j Vi ⊗ Vj , and thus the following subalgebras are
obtained related to the following subgroups:

• for G1 = 〈(1, 1, 0)〉 we get hG1 = L(0,0,0)⊕L(1,1,0) = (sp(V1)⊕ sp(V2)⊕ V1⊗ V2)⊕ sp(V3)⊕
sp(V4), of type C2 ⊕A1 ⊕A1 (the grading group is G/G1 ≈ Z2

2);
• for G2 = 〈(1, 1, 1)〉 we get hG2 = L(0,0,0) ⊕L(1,1,1) =

∑
sp(Vi)⊕ V1 ⊗ V2 ⊗ V3 ⊗ V4, of type

D4 (the grading group is G/G2 ≈ Z2
2);

• for G3 = {(a1, a2, a3) |
∑3

i=1 ai = 0} we get hG3 = L(0,0,0) ⊕ L(1,1,0) ⊕ L(0,1,1) ⊕ L(1,0,1) =
(sp(V1)⊕ sp(V2)⊕ sp(V3)⊕ V1 ⊗ V2 ⊕ V2 ⊗ V3 ⊕ V1 ⊗ V3)⊕ sp(V4), of type C3 ⊕A1 (the grading
group is G/G3 ≈ Z2);

• for G4 = 〈(1, 1, 0), (1, 1, 1)〉 we get hG4 = L(0,0,0)⊕L(1,1,0)⊕L(1,1,1)⊕L(0,0,1) =
∑

sp(Vi)⊕
V1 ⊗ V2 ⊕ V1 ⊗ V2 ⊗ V3 ⊗ V4 ⊕ V3 ⊗ V4, of type B4 (the grading group is G/G4 ≈ Z2).
Consequently, the 4A1-construction is a refinement of five of the seven described models of F4.

Something similar occurs for the group Z4. In this case h = sl(V ) ⊕ sl(W ) ≈ A1 ⊕ A3 and
F4 = h⊕ V ⊗W ⊕ S2V ⊗∧2 W ⊕ V ⊗W ∗, and for its subgroup G̃ = {0, 2}, the corresponding
subalgebra is hG̃ = sl(V ) ⊕ sl(W ) ⊕ S2V ⊗∧2 W , of type B4, and its grading group is G/G̃ =
Z4/{(0, 2)} ≈ Z2, as we knew.

In particular, the only maximal semisimple subalgebras of F4 of rank 4 are 2A2, C3 ⊕ A1

and B4, because Z2 and Z3 are the only simple grading groups, as we knew from 2.2 and 3.4.
In Dynkin’s work [Dy, table 12], the subalgebra of type A1⊕A3 is considered maximal because
of a mistake.

5.2 All the models and gradings of the exceptional Lie algebras G2 and E6 relative to
semisimple subalgebras of maximal rank have already been described in this work.
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The semisimple subalgebras of rank 2 of G2 are only 2A1 and A2, which produce a Z2- and a
Z3-grading of G2 respectively, and the semisimple subalgebras of rank 6 of E6 are A1 ⊕A5 and
3A2, which again produce a Z2- and a Z3-grading of E6 respectively. The models are described
in the introduction (1) and 4.1, and they had appeared in [A, Ch 13], [BeDrE1], [E2].

As regards the remaining exceptional Lie algebras, the situation is richer. Let us put our
attention in E8. There are 14 semisimple subalgebras of rank 8, namely:

D8, E7 ⊕A1 → Z2 A8, E6 ⊕A2 → Z3

D6 ⊕ 2A1, 2D4 → Z2
2 4A2 → Z2

3

2A3 ⊕ 2A1 → Z2 × Z4 A5 ⊕A2 ⊕A1 → Z6

D4 ⊕ 4A1 → Z3
2 2A4 → Z5

8A1 → Z4
2 A7 ⊕A1, D5 ⊕A3 → Z4

where we have written too the associated grading groups according to Theorem 1. From them,
the most known models of E8 are the ones based on A8 [FuH, §22.4], D8 [A, Ch 7], and 2D4

(magic squares, for instance [E]), joined with E6 ⊕ A1 and E7 ⊕ A1 (1). Hence it is possible to
develop several unknown models of E8 based on subalgebras of rank 8. For instance, if V and
W are 5-dimensional vector subspaces, we obtain the Z5-grading

E8 = sl(V )⊕ sl(W )⊕ V ⊗
2∧

W ⊕
2∧

V ⊗W ∗ ⊕
2∧

V ∗ ⊗W ⊕ V ∗ ⊗
2∧

W ∗

and the products between the components are very easy to describe. Other examples using
trace-zero endomorphisms and exterior powers of a vector space are the Z6-grading

E8 = sl(U)⊕ sl(V )⊕ sl(W )
⊕U ⊗ V ⊗W ⊕ F ⊗ V ∗ ⊗∧2 W ⊕ U ⊗ F ⊗∧3 W ⊕ F ⊗ V ⊗∧4 W ⊕ U ⊗ V ∗ ⊗∧5 W

for U , V and W vector spaces of dimensions 2, 3 and 6 respectively, and the more complicated
Z2 × Z4-grading

E8 = sl(W )2 ⊕ sl(V )2 ⊕W ⊗W ⊗ V ⊗ F ⊕∧2 W ⊗∧2 W ⊗ F ⊗ F

⊕W ∗ ⊗W ∗ ⊗ V ∗ ⊗ F ⊕ F ⊗∧2 W ⊗ V ⊗ V ⊕W ⊗W ∗ ⊗ F ⊗ V

⊕∧2 W ⊗ F ⊗ V ⊗ V ⊕W ∗ ⊗W ⊗ F ⊗ V

for W and V spaces of dimension 4 and 2 respectively. Though the decompositions don’t look
very nice, the products are quite simple, in terms of tensors. It is slightly difficult if h contains an
ideal of type Dn, since the spin modules appear in the decomposition. The less known gradings
are the Z4-grading

E8 = D5 ⊕ sl(V )⊕ V (λ4)⊗ V ⊕ V (λ1)⊗
2∧

V ⊕ V (λ5)⊗ V ∗

for V a 4-dimensional vector space, and the Z2
2-grading

E8 = sl(U)⊕D6 ⊕ sl(V )⊕ U ⊗ V (λ5)⊗ F ⊕ U ⊗ V (λ1)⊗ V ⊕ F ⊗ V (λ6)⊗ V

for U and V two-dimensional vector spaces. A complete description of the products with suitable
scalars has recently be exposed in [DrMar], part of a work in preparation.
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5.3 There are some series of decompositions for the exceptional Lie algebras based on
semisimple subalgebras of maximal rank, with unified descriptions, which allow to give models
for the five exceptional Lie algebras with the same grading group.

For example, the authors in [LMa1] consider, over the complex numbers,

g(A) = so8⊕t(A)⊕O1 ⊗A1 ⊕O2 ⊗A2 ⊕O3 ⊗A3

g(A) = sl3⊕ sl3(A)⊕ C3 ⊗H(M3(A))⊕ C3∗ ⊗H(M3(A))∗

g(A) = sl2⊕ sp6(A)⊕ C2 ⊗∧<3> A6

The first one provides a Z2
2-grading of F4, E6, E7 and E8 based on D4, D4 ⊕ 2F , D4 ⊕ 3A1 and

2D4 respectively (this case is worked out in a version of the Freudenthal magic square, so the
related models are known); the second case provides a Z3-grading of F4, E6, E7 and E8 based
on 2A2, 3A2, A2 ⊕ A5 and A2 ⊕ E6 respectively; and the third one a Z2-grading of F4, E6, E7

and E8 based on A1 ⊕ C3, A1 ⊕ A5, A1 ⊕ D6 and A1 ⊕ E7 respectively (corresponding to the
construction (1)).

5.4 All our models are compatible with the root system in the following sense: if L =
⊕g∈GLg is one of our gradings, then there is a Cartan subalgebra H with associated root de-
composition L = H ⊕ (⊕α∈ΦLα) such that, for any g ∈ G, Lg = (H ∩ Lg) ⊕ (⊕α∈ΦLα ∩ Lg).
Conversely, if the simple Lie algebra L is graded by a group G in a way compatible with the
root system, then L0 is a maximal rank reductive subalgebra (it is regular and it contains H).
There are some researchers interested precisely in gradings not compatible with the root decom-
position, for example in fine gradings [P], related to contractions and physics problems [PPoW].

5.5 The decomposition of F4 as a sum of modules for its subalgebra of type C3 is F4 ≈
V (2λ1)⊕ 2V (λ2)⊕ 3V (0), a grading by the root system C3, which is usually called a ∆-grading,
since 2λ1 and λ2 are the maximal long and short roots respectively.

If h is another simple regular subalgebra of F4 and ∆ is the root system of h, F4 is not
∆-graded, as it is easily checked from the previous decompositions of F4 as a sum of modules.

In fact, F4 decomposes as a sum of h-submodules of types adjoint, trivial, V (λi) and V (2λi),
for λi a fundamental weight. Notice that the same happens in E8, without modules of type
V (2λi), so m as h-module is sum of only basic and trivial modules.
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