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Abstract. We consider a polynomial version of the Cayley numbers. Namely, we define the

ring of Cayley polynomials in terms of generators and relations in the category of alternative

algebras. The ring turns out to be an octonion algebra over an ordinary polynomial ring. Also,
a localization (a ring of quotients) of the ring of Cayley polynomials gives another description

of an octonion torus. Finally, we find a subalgebra of a prime nondegenerate alternative algebra
so that the subalgebra is an octonion algebra over the center.

Introduction

Nonassociative analogues of Laurent polynomials naturally appeared in the classification
of extended affine Lie algebras and Lie tori. These Lie algebras are a natural generalization
of affine Kac-Moody Lie algebras (see [AABGP], [N], [Y2]). As the affine Kac-Moody Lie
algebras are coordinatized by the ring of Laurent polynomials in one variable, extended
affine Lie algebras or Lie tori are coordinatized by nonassociative analogues of Laurent
polynomials in several variables. Those Lie algebras have types classified by finite irreducible
root systems, and the coordinate algebras depend on the types. In particular, such Lie
algebras of type A2 are coordinatized by alternative algebras, and an alternative analogue
of Laurent polynomials (which is not associative) was found in [BGKN]. The coordinate
algebra is called an octonion torus. It turns out that the coordinate algebras of extended
affine Lie algebras or Lie tori of type A2, C3 or F4, which are not associative, are exactly
octonion tori (see also [AG], [BY], [Y1], [Y3]).

An octonion torus (an octonion n-torus) is defined by a Cayley-Dickson process over a
ring of Laurent polynomials. More precisely, it is obtained by the Cayley-Dickson process
three times over F [z±1

1 , . . . , z±1
n ] with n ≥ 3, where F is a field of characteristic 6= 2, taking
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the structure constants z1, z2 and z3, i.e., in the standard notation for the Cayley-Dickson
process (see §1),

(F [z±1
1 , . . . , z±1

n ], z1, z2, z3).

To study the algebra structure, it is enough to consider the case n = 3, the octonion 3-torus
(F [z±1

1 , z±1
2 , z±1

3 ], z1, z2, z3), which is also called the Cayley torus. Our goal is to find a simple
presentation of the Cayley torus, or essentially, a simple presentation of its subalgebra

D = (F [z1, z2, z3], z1, z2, z3).

The algebra D also appears as a certain subalgebra of a free alternative algebra generated
by more than three elements, which was discovered by Dorofeev (see Remark 3.2).

We define the algebra FC [t1, t2, t3] over F by the following relations

t2t1 = −t1t2, t3t1 = −t1t3, t3t2 = −t2t3 and (t1t2)t3 = −t1(t2t3)

in the category of alternative algebras, and call it the ring of Cayley polynomials or a
universal octonion algebra (since it covers all the octonion algebras over F ). Then we show
that FC [t1, t2, t3] is isomorphic to D. In particular, FC [t1, t2, t3] is an octonion algebra over
the center F [t21, t

2
2, t

2
3] (ordinary commutative associative polynomials in three variables t21,

t22 and t23). Also, the Cayley torus can be viewed as the ring of quotients of FC [t1, t2, t3]
by the monomials of the center F [t21, t

2
2, t

2
3]. As corollaries, we obtain a simple presentation

of the Cayley torus and also a presentation of any octonion algebra over F . Moreover, the
base field F can be generalized to a ring Φ of scalars containing 1/2, and so we will set up
the notions above over Φ.

Finally, we will discuss about Cayley-Dickson rings. Such a ring embeds into an octonion
algebra over a field. However, the ring itself is not necessarily an octonion algebra in general.
We note that our ring FC [t1, t2, t3] or an octonion torus is a Cayley-Dickson ring and also an
octonion algebra. We will see in Proposition 4.2 that there exists a subring B of a Cayley-
Dickson ring R (or of a prime nondegenerate alternative algebra R over Φ) so that B is an
octonion algebra over the center of R, and the central closure B coincides with the central
closure R.

We thank Professor Bruce Allison and Erhard Neher for several suggestions.

Throughout the paper let Φ be a unital commutative associative ring containing 1/2.
Also, all algebras are assumed to be unital.

§1 Cayley-Dickson Process

We recall the Cayley-Dickson Process over a ring Φ of scalars (see [M] for detail). For an
algebra B over Φ, we assume that B is faithful, i.e., for all α ∈ Φ, α1 = 0 =⇒ α = 0. Let
∗ be a scalar involution of B over Φ, i.e., an anti-automorphism of period 2 with bb∗ ∈ Φ1.
Let µ ∈ Φ be a cancellable scalar, i.e., µb = 0 for some b ∈ B =⇒ b = 0. The Cayley-Dickson
algebra (or process) over Φ with structure constant µ constructed from B = (B, ∗) is a new
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algebra B ⊕ B with product (a, b)(c, d) = (ac + µdb∗, a∗d + cb) for a, b, c, d ∈ B. Letting
v = (0, 1) we can write this algebra as B + vB with multiplication

(1.1) (a + vb)(c + vd) = (ac + µdb∗) + v(a∗d + cb).

We call v the basic generator. Note that v2 = µ. The algebra B + vB also has the new
involution ∗, defined by (a+vb)∗ = a∗−vb, which is scalar. So one can continue the process,
and we write, for example, (B,µ, ν) instead of ((B,µ), ν)). Note that B is faithful ⇒ (B,µ)
is faithful, and ν is cancellable for B ⇔ ν is cancellable for (B,µ).

Let µ1, µ2, µ3 be any cancellable scalars of Φ. The Cayley-Dickson process twice starting
from Φ with trivial involution, say (Φ, µ1, µ2), is called a quaternion algebra, which is a 4-
dimensional free Φ-module and an associative but not commutative algebra, and three times,
say (Φ, µ1, µ2, µ3), is called an octonion algebra, which is an 8-dimensional free Φ-module
and an alternative but not associative algebra. Note that quaternion algebras and octonion
algebras are central, and if Φ is a field, they are simple.

Lemma 1.2. Let v1, v2 and v3 be the basic generators in each step of an octonion algebra
(Φ, µ1, µ2, µ3) so that v2

1 = µ1, v2
2 = µ2 and v2

3 = µ3. Then v2v1 = −v1v2, v3v1 = −v1v3,
v3v2 = −v2v3 and (v1v2)v3 = −v1(v2v3).

Proof. One can easily check these identities from (1.1). �

We will consider quaternion algebras and octonion algebras over various rings of scalars,
not necessarily Φ in the following sections.

§2 Hamilton Polynomials

The associative algebra over Φ with generators t1 and t2 and the relation t1t2 = −t2t1 is
called the ring of Hamilton polynomials or a universal quaternion algebra, denoted ΦH [t1, t2].
Note that the center of ΦH [t1, t2] is equal to Φ[t21, t

2
2] (the ordinary commutative associative

polynomials over Φ in two variables t21 and t22), and ΦH [t1, t2] is a quaternion algebra over
Φ[t21, t

2
2], i.e., (Φ[t21, t

2
2], t

2
1, t

2
2) using the notation in §1. (Consider the base ring as Φ[t21, t

2
2]

instead of Φ. Then t21 and t22 are cancellabe elements of Φ[t21, t
2
2].) Also, it is clear that any

quaternion algebra over Φ is a homomorphic image of ΦH [t1, t2].
Note that the multiplicative subset S := {tr1ts2}r,s∈2N of the center Φ[t21, t

2
2] does not con-

tain zero divisors of ΦH [t1, t2], and so one can construct the ring of quotients S−1ΦH [t1, t2]
(see e.g. [SSSZ, p.185]). Then S−1ΦH [t1, t2] is still a quaternion algebra, i.e.,

S−1ΦH [t1, t2] = (Φ[t±2
1 , t±2

2 ], t21, t
2
2).

Give the degrees (1, 0), (0, 1), (−1, 0) and (0,−1) for t1, t2, t−1
1 and t−1

2 , respectively. (Note
that t1 and t2 are invertible in S−1ΦH [t1, t2] and t−1

1 = t−2
1 t1 and t−1

2 = t−2
2 t2.) Then

S−1ΦH [t1, t2] becomes a Z2-graded algebra, called the quaternion 2-torus or the Hamilton
torus. Note that ΦH [t1, t2] embeds into S−1ΦH [t1, t2].

If A is an associative algebra over Φ generated by invertible elements a and b, and they
satisfy ab = −ba, then A is a homomorphic image of S−1ΦH [t1, t2] via t1 7→ a and t2 7→ b,

3



using the universal property of the ring of quotients. Also, the associative algebra L over
Φ with generators t±1

1 and t±1
2 and relations t1t

−1
1 = t2t

−1
2 = 1 has a natural Z2-grading as

above. So there is a natural graded homomorphism from S−1ΦH [t1, t2] onto L/(t1t2 + t2t1).
On the other hand, since S−1ΦH [t1, t2] has the relations defining L/(t1t2 + t2t1), there is
a natural graded homomorphism from L/(t1t2 + t2t1) onto S−1ΦH [t1, t2]. Hence they are
graded isomorphisms. Thus the Hamilton torus S−1ΦH [t1, t2] has a presentation in the
category of associative algebra; generators t±1

1 and t±1
2 with relations t−1

1 t1 = t2t
−1
2 = 1 and

t1t2 = −t2t1. Because of the presentation, it is reasonable to write

S−1ΦH [t1, t2] = ΦH [t±1
1 , t±1

2 ].

Also, a quaternion n-torus (n ≥ 2) is defined as

ΦH [t±1
1 , . . . , t±1

n ] := ΦH [t±1
1 , t±1

2 ]⊗Φ Φ[t±1
3 , . . . , t±1

n ],

where Φ[t±1
3 , . . . , t±1

n ] is the ordinary Laurent polynomial algebra over Φ in (n−2)-variables.

The following proposition is well-known in ring theory. One can prove it in the same way
as in Theorem 3.6 for octonion algebras.

Proposition 2.1. Any quaternion algebra over Φ, say (Φ, µ1, µ2) for cancellable scalars
µ1, µ2 of Φ, is isomorphic to ΦH [t1, t2]/(t21−µ1, t

2
2−µ2). Hence (Φ, µ1, µ2) has a presentation

in the category of associative algebras; generators t1 and t2 with relations t21 = µ1, t22 = µ2

and t1t2 = −t2t1.
In particular, if Φ is a field, A is an associative algebra over Φ generated by a1 and a2,

and they satisfy a1a2 = −a2a1, a2
1 = µ1 and a2

2 = µ2, then A is isomorphic to (Φ, µ1, µ2).

§3 Cayley Polynomials

We will use the commutator [a, b] = ab− ba and the associator (a, b, c) = (ab)c− a(bc) in
the subsequent claims. Alternative algebras are defined by two idendtiites: (a, a, b) = 0 =
(b, a, a). We have the alternative law (a, b, c) = −(b, a, c) = (b, c, a), etc., and the flexible
law (a, b, a) = 0, and so we can omit the parentheses for (ab)a = a(ba). We will use the
middle Moufang identity (ab)(ca) = a(bc)a in Proposition 3.1. Recall that the center of an
alternative algebra A is defined as {z ∈ A | [z, a] = (z, a, b) = 0 for all a, b ∈ A}.

The alternative algebra over Φ with generators t1, t2, t3 and the Cayley relations

(C) t2t1 = −t1t2, t3t1 = −t1t3, t3t2 = −t2t3 and (t1t2)t3 = −t1(t2t3)

is called the ring of Cayley polynomials or a universal octonion algebra, denoted ΦC [t1, t2, t3].
Note that any octonion algebra over Φ is a homomorphic image of ΦC [t1, t2, t3] by Lemma
1.2.

Let Z be the center of ΦC [t1, t2, t3]. Our main goal is to show that ΦC [t1, t2, t3] is an
octonion algebra over Z.
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Claim 1. ΦC [t1, t2, t3] has the identities (titj)tk = −ti(tjtk) (anti-associativity) and (titj)tk =
−tk(titj) (anti-commutativity) for any distinct i, j, k ∈ {1, 2, 3}.

Proof. By the anti-commutativity in (C), it suffices to show three identities for the anti-
commutativity (titj)tk = −tk(titj), say k = 1, 2, 3. However, we need to prove five identities
for the anti-associativity (titj)tk = −ti(tjtk).

By the alternative law, we have (t1, t2, t3) = −(t2, t1, t3). So

(t2t1)t3 + t2(t1t3) = (t2t1)t3 − (t2, t1, t3) + (t2t1)t3
= (t1, t2, t3)− 2(t1t2)t3 (since t2t1 = −t1t2)

= 0 (since (t1t2)t3 = −t1(t2t3)).

Hence,

(a1) (t2t1)t3 = −t2(t1t3) (anti-associativity).

Also, from (t1, t2, t3) = −(t1, t3, t2), we have (t1t2)t3 − t1(t2t3) = −(t1t3)t2 + t1(t3t2). Since
t3t2 = −t2t3, we get

(1) (t1t2)t3 = −(t1t3)t2.

For the rest of argument, we will use the identities in (C) without mentioning. By (1), we
have (t1t3)t2 + t1(t3t2) = −(t1t2)t3 + t1(t3t2) = 0. Hence,

(a2) (t1t3)t2 = −t1(t3t2) (anti-associativity).

By (a1) and (1), we get

(2) t2(t1t3) = −(t1t3)t2 (anti-commutativity for k = 2).

Also, (t3t1)t2 + t3(t1t2) = −(t1, t2, t3) + 2(t3t1)t2 = −(t1, t2, t3)− 2(t1t3)t2 = −(t1, t2, t3) +
2(t1t2)t3 = 0 by (1). Hence,

(a3) (t3t1)t2 = −t3(t1t2) (anti-associativity).

By (1) and (a3), we get

(3) t3(t1t2) = −(t1t2)t3 (anti-commutativity for k = 3).

Now, (t3t2)t1 + t3(t2t1) = (t3, t2, t1) + 2t3(t2t1) = −(t1, t2, t3) − 2t3(t1t2) = −(t1, t2, t3) +
2(t1t2)t3 = 0 by (3). Hence,

(a4) (t3t2)t1 = −t3(t2t1) (anti-associativity).
5



By (a4), the main involution on the free alternative algebra Φ〈t1, t2, t3〉, i.e., the involution
determined by t1 7→ t1, t2 7→ t2 and t3 7→ t3, preserves the relations (C). So applying for the
induced involution to (a2), we get

(a5) (t2t3)t1 = −t2(t3t1) (anti-associativity).

Finally,

(t3t2)t1 + t1(t3t2) = −t3(t2t1) + t1(t3t2) by (a4)

= t3(t1t2)− t1(t2t3)

= −(t1t2)t3 − t1(t2t3) by (3)
= 0.

Hence,
(t3t2)t1 = −t1(t3t2) (anti-commutativity for k = 1). �

Claim 2. t21, t
2
2, t

2
3 ∈ Z.

Proof. We have [t21, ti] = (t21, ti, tj) = 0 for all i, j ∈ {1, 2, 3}. Indeed, except for the cases
(i, j) = (2, 3) and (3, 2) in the second identity, this follows from (C) and Artin’s Theorem,
that is, any subalgebra generated by 2 elements is associative. For the cases (i, j) = (2, 3)
and (3, 2), one can use the identity (a2, b, c) = (a, ab + ba, c) [SSSZ, (17), p.36] for any
alternative algebra. Hence, (t21, t2, t3) = (t21, t3, t2) = 0 by (C). Thus, t21 is central for a
generating set of ΦC [t1, t2, t3], and by the theorem of Bruck and Kleinfeld [SSSZ, Lemma
16, p.289], we obtain t21 ∈ Z. By the symmetry of our relations (C) with Claim 1, we also
obtain t22, t

2
3 ∈ Z. �

Claim 3. (t1t2)2 = −t21t
2
2, (t1t3)2 = −t21t

2
3, (t2t3)2 = −t22t

2
3 and (t1(t2t3))2 = t21t

2
2t

2
3. In

particular, they are all in the center Z.

Proof. Again, by Artin’s Theorem, we have (uv)2 = uvuv (no parentheses are needed).
So, for example, (t1t2)2 = −t21t

2
2, or for the last one, (t1(t2t3))2 = t1(t2t3)t1(t2t3) =

−(t2t3)t21(t2t3) (by Claim 1) = −t21(t2t3)
2 = t21t

2
2t

2
3. �

We can give a natural N3-grading to ΦC [t1, t2, t3], defining deg t1 = (1, 0, 0), deg t2 =
(0, 1, 0) and deg t3 = (0, 0, 1). This is possible because ΦC [t1, t2, t3] is defined by the homo-
geneous relations (C).

Proposition 3.1. Let t = ti1 · · · tik
be an element of degree (`,m, n) in ΦC [t1, t2, t3], omit-

ting various parentheses, where tij
= t1, t2 or t3, so that the total degree of t is `+m+n = k.

Then t = ±(t`1t
m
2 )tn3 .

Proof. It is clear for k = 1, 2 or 3 by Claim 1. Suppose that the total degree k > 3. Then
there exists at least one of the following parts in t: (i) a(bc), (ii) (ab)c or (iii) (ab)(cd) for
some a, b, c, d ∈ {t1, t2, t3}. For (i), if two of a, b, c are the same, then a(bc) = ±t2ptq for
some p, q ∈ {1, 2, 3} by Claim 1 and 2. Hence, t = ±t′t2p for some t′ which is a product of
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tij ’s with total degree (k − 2) by Claim 2, and by induction, t′ has the desired form, and
so does t by Claim 2. Otherwise, a(bc) = ±(t1t2)t3. Consider a next part s so that t has a
part s((t1t2)t3) or ((t1t2)t3)s. (s can be one of t1, t2, t3.) By induction and Claim 1 and 2,
s = ±tiz1, ±titjz2 (i 6= j) or ±(t1t2)t3z3, where z1, z2, z3 are products of even power of tij

’s
and so z1, z2, z3 ∈ Z. If zi 6= 1, then one can use induction again for the part after taking
off zi from t. Hence we can assume that s = ti, titj (i 6= j) or ±(t1t2)t3. Then s((t1t2)t3)
or ((t1t2)t3)s has, correspondingly, the factor t2i , (titj)2 = −t2i t

2
j or ((t1t2)t3)2 = t21t

2
2t

2
3 (by

Claim 1 and 3), and so t = ±t′t2i , t = ±t′t2i t
2
j or t = ±t′t21t

2
2t

2
3 for some t′ which is a product

of tij
’s with total degree k − 2, k − 4 or k − 6. Hence, by induction, t′ has the desired

form, and so does t by Claim 2. The case (ii) returns to the case (i) by Claim 1. For (iii),
two of a, b, c, d should be the same, and so by Claim 1, 2 and the middle Moufang identity,
(ab)(cd) = ±t2p(tqtr) for some p, q, r ∈ {1, 2, 3}. Hence, by the same argument in the first
case of (i), t has the desired form. �

Now, let Φ[z1, z2, z3] be the ordinary polynomial algebra over Φ in three variables, and
let

D = (Φ[z1, z2, z3], z1, z2, z3)

be the octonion algebra, i.e., the Cayley-Dickson process over Φ[z1, z2, z3] three times with
structure constants z1, z2 and z3 starting with trivial involution. Let v1, v2 and v3 be the
basic generators in each step of D so that v2

1 = z1, v2
2 = z2 and v2

3 = z3. Then D has a
natural N3-grading, defining deg v1 = (1, 0, 0), deg v2 = (0, 1, 0) and deg v3 = (0, 0, 1). It is
easily seen that every homogeneous space is a 1-dimensional free Φ-module.

Remark 3.2. The algebra D appears as a subalgebra of a free alternative algebra, discov-
ered by Dorofeev (see [SSSZ, Theorem 13, p.296]). More precisely, let F be the free alter-
native algebra over Φ generated by distinct elements a, b and c. Let u = [a, b], v = (a, b, c)
and w = (u, v, a). Then the subalgebra of F generated by u, v and w is isomorphic to D
via u 7→ v1, v 7→ v2 and w 7→ v3.

We now prove our main theorem.

Theorem 3.3. ΦC [t1, t2, t3] is graded isomorphic to D. In particular, Z = Φ[t21, t
2
2, t

2
3],

which is the ordinary polynomial algebra over Φ in three variables t21, t22, t23, and ΦC [t1, t2, t3]
is an octonion algebra (Z, t21, t

2
2, t

2
3).

Proof. By Lemma 1.2, there exists the epimorphism from ΦC [t1, t2, t3] onto D defined by
t1 7→ v1, t2 7→ v2 and t3 7→ v3. So it is enough to show that every homogeneous space for
the natural N3-grading of ΦC [t1, t2, t3] is generated by one element. But this follows from
Proposition 3.1. �

We note that the multiplicative subset

S := {zp
1zq

2zr
3}p,q,r∈N

of the center Φ[z1, z2, z3] of D does not contain zero divisors of the octonion algebra D (which
is 8-dimensional over the center), and so the ring of quotients S−1D is also 8-dimensional
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over the center Φ[z±1
1 , z±1

2 , z±1
3 ] with generators v1, v2 and v3, and the multiplication table

respect to the generators is the same as the multiplication table on D. Hence it is the
octonion algebra

S−1D = (Φ[z±1
1 , z±1

2 , z±1
3 ], z1, z2, z3).

Note that v1, v2 and v3 are invertible in S−1D, and v−1
1 = z−1

1 v1, v−1
2 = z−1

2 v2 and v−1
3 =

z−1
3 v3. Thus defining deg v−1

1 = (−1, 0, 0), deg v−1
2 = (0,−1, 0) and deg v−1

3 = (0, 0,−1),
S−1D has a Z3-grading, and the Z3-graded algebra S−1D is called the octonion 3-torus or
the Cayley torus. Note that D embeds into S−1D. Clearly, every homogeneous space of the
Cayley torus is a 1-dimensional free Φ-module.

Corollary 3.4. Let T = {tp1t
q
2t

r
3}p,q,r∈2N be the subset of ΦC [t1, t2, t3].

(1) T is a multiplicative subset of the center of ΦC [t1, t2, t3], which does not contain zero
divisors of ΦC [t1, t2, t3], and T−1ΦC [t1, t2, t3] can be identified with the Cayley torus S−1D
via t1 7→ v1, t2 7→ v2 and t3 7→ v3.

(2) If A is an alternative algebra over Φ generated by a1, a2 and a3, and they satisfy the
Cayley relations a1a2 = −a2a1, a1a3 = −a3a1, a2a3 = −a3a2 and (a1a2)a3 = −a1(a2a3),
then A is a homomorphic image of ΦC [t1, t2, t3] via t1 7→ a1, t2 7→ a2 and t3 7→ a3, and a2

1,
a2
2 and a2

3 are central in A.
If, moreover, a1, a2 and a3 are invertible, then A is a homomorphic image of the Cayley

torus T−1ΦC [t1, t2, t3] via the same map.
(3) The Cayley torus has a presentation in the category of alternative algebras; generators

t±1
1 , t±1

2 and t±1
3 with relations tit

−1
i = 1 for i = 1, 2, 3 and the Cayley relations (C).

Proof. (1) is now clear by Theorem 3.3. For (2), let ϕ : ΦC [t1, t2, t3] −→ A be the epimor-
phism defined by t1 7→ a1, t2 7→ a2 and t3 7→ a3. Then the elements of ϕ(T ) are central
in A by Theorem 3.3. For the second statement, since ϕ(T ) are invertible, ϕ extends to
T−1ΦC [t1, t2, t3] by the universal property of the ring of quotients.

For (3), let Q be the alternative algebra having the presentation in the assertion. Define
deg t±1

1 = (±1, 0, 0), deg t±1
2 = (0,±1, 0) and deg t±1

3 = (0, 0 ± 1). Let Qα be the space
generated by the monomials of degree α ∈ Z3. Then Q =

∑
α∈Z3 Qα. Since the Cayley

torus T−1ΦC [t1, t2, t3] has the relations in the assertion, there is a natural homomorphism
from Q onto the Cayley torus so that Qα is mapped onto the homogeneous space of degree
α in the Cayley torus. Hence Q = ⊕α∈Z3 Qα (the sum becomes direct). On the other hand,
by (2), there is a natural graded homomorphism from T−1ΦC [t1, t2, t3] onto Q. Hence they
are graded isomorphisms. �

We note that Part (3) of Corollary 3.4 was obtained independently by Bruce Allison
(unpublished). Because of the presentation of the Cayley torus, it is reasonable to write

T−1ΦC [t1, t2, t3] = ΦC [t±1
1 , t±1

2 , t±1
3 ].

Also, an octonion n-torus (n ≥ 3) (Φ[z±1
1 , . . . , z±1

n ], z1, z2, z3) can be written as

ΦC [t±1
1 , . . . , t±1

n ] : = ΦC [t±1
1 , t±1

2 , t±1
3 ]⊗Φ Φ[t±1

4 , . . . , t±1
n ]
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where Φ[t±1
4 , . . . , t±1

n ] is the Laurent polynomial algebra over Φ in (n−3)-variables. Letting
P := Φ[t±1

4 , . . . , t±1
n ], the octonion torus ΦC [t±1

1 , . . . , t±1
n ] can be considered as the Cayley

torus over P , i.e., PC [t±1
1 , t±1

2 , t±1
3 ].

One can start with the alternative algebra ΦC [t1, . . . , tn] over Φ with generators t1, . . . ,
tn (n ≥ 3) and the Cayley relations (C), and the central relations

(Z) [ti, tk] = (ti, tj , tk) = 0 for i < j < k with i, j = 1, . . . , n and k = 4, . . . , n.

Then by the same argument as above, we obtain the following:

Theorem 3.5. ΦC [t1, . . . , tn] is graded isomorphic to (Φ[z1, . . . , zn], z1, z2, z3). In par-
ticular, the center Z = Φ[t21, t

2
2, t

2
3, t4, . . . , tn], and ΦC [t1, . . . , tn] is an octonion algebra

(Z, t21, t
2
2, t

2
3).

Moreover, generators t±1
1 , . . . , t±1

n with the Cayley relations (C), the central relations (Z),
and the invertible relations tit

−1
i = 1 for i = 1, . . . , n give a presentation of an octonion

torus ΦC [t±1
1 , . . . , t±1

n ] in the category of alternative algebras.

An octonion torus (under the name of the alternative torus) was found in [BGKN] on the
classification of extended affine Lie algebras (under the name of quasi-simple Lie algebras).
The generators and relations of an octonion torus will be useful for determining generators
and relations for certain extended affine Lie algebras.

The following theorem gives a presentation of an octonion algebra over Φ.

Theorem 3.6. Any octonion algebra over Φ, say (Φ, µ1, µ2, µ3) for cancellable scalars
µ1, µ2, µ3 of Φ, is isomorphic to ΦC [t1, t2, t3]/(t21−µ1, t

2
2−µ2, t

2
3−µ3). Hence (Φ, µ1, µ2, µ3)

has a presentation in the category of alternative algebras; generators t1, t2 and t3 with Cayley
relations (C) and t21 = µ1, t22 = µ2 and t23 = µ3.

In particular, if Φ is a field, A is an alternative algebra over Φ generated by a1, a2 and a3,
and they satisfy a2

1 = µ1, a2
2 = µ2, a2

3 = µ3, and the Cayley relations a1a2 = −a2a1, a1a3 =
−a3a1, a2a3 = −a3a2 and (a1a2)a3 = −a1(a2a3), then A is isomorphic to (Φ, µ1, µ2, µ3).

Proof. Let B := ΦC [t1, t2, t3]/(t21 − µ1, t
2
2 − µ2, t

2
3 − µ3). Let v1, v2 and v3 be the basic

generators of (Φ, µ1, µ2, µ3) so that v2
1 = µ1, v2

2 = µ2 and v2
3 = µ3. Let ϕ : ΦC [t1, t2, t3] −→

(Φ, µ1, µ2, µ3) be the epimorphism defined by t1 7→ v1, t2 7→ v2 and t3 7→ v3. Since the ideal
(t21 − µ1, t

2
2 − µ2, t

2
3 − µ3) is contained in the kernel of ϕ, ϕ descends to an epimorphism

ϕ : B −→ (Φ, µ1, µ2, µ3). By Theorem 3.3, ΦC [t1, t2, t3] is an 8-dimensional free Φ[t21, t
2
2, t

2
3]-

module with basis {1, t1, t2, t3, t1t2, t1t3, t2t3, (t1t2)t3}. So {1, t1, t2, t3, t1t2, t1t3, t2t3, (t1t2)t3}
generates B over Φ, where is the canonical map from ΦC [t1, t2, t3] onto B. Since ϕ(ti) = vi

(i = 1, 2, 3) and {1, v1, v2, v3, v1v2, v1v3, v2v3, (v1v2)v3} is linearly independent over Φ, ϕ is
injective and we get B ∼= (Φ, µ1, µ2, µ3).

For the second statement, one gets A ∼= B since A is a homomorphic image of the simple
algebra B and A 6= 0. �
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§4 Cayley-Dickson rings

Let R be an alternative ring with a nonzero center Z which does not contain zero divisors
of R (e.g. R is prime). Then Z∗ = Z \ {0} is a multiplicative subset of Z, and one can
construct the ring of quotients (Z∗)−1R, which is called the central closure of R, denoted
R. We note that R embeds into R, Z = (Z∗)−1Z is a field of fractions of Z, R is a
central Z-algebra, and R ∼= Z ⊗Z R. Moreover, R is called a Cayley-Dickson ring if the
central closure R is an octonion algebra over Z (see [SSSZ, p.193]). For example, if Φ is a
domain, our ring of Cayley polynomials ΦC [t1, t2, t3] or an octonion torus ΦC [t±1

1 , . . . , t±1
n ]

is a Cayley-Dickson ring so that the central closure is (Z, t21, t
2
2, t

2
3), where Z = Φ(t21, t

2
2, t

2
3) or

Φ(t21, t
2
2, t

2
3, t4, . . . , tn) (rational function fields over the field of fractions Φ in 3 or n variables),

respectively. However, a Cayley-Dickson ring is not necessarily an octonion algebra over the
center (see Example 4.3).

Lemma 4.1. Let A be an alternative algebra over Φ with center Z which does not contain
zero divisors of A. Assume that A is generated by a1, a2 and a3, and they satisfy the Cayley
relations a1a2 = −a2a1, a1a3 = −a3a1, a2a3 = −a3a2 and (a1a2)a3 = −a1(a2a3), then A is
an octonion algebra over Z, isomorphic to (Z, a2

1, a
2
2, a

2
3).

Proof. Since A embeds into A, a1, a2 and a3 also satisfy the Cayley relations in A. Also,
a2
1, a

2
2, a

2
3 ∈ Z by Corollary 3.4 (2). Hence, by Theorem 3.6, A is an octonion algebra over

the field Z, i.e., A = (Z, a2
1, a

2
2, a

2
3). In particular, A is an 8-dimensional free Z-module with

basis {1, a1, a2, a3, a1a2, a1a3, a2a3, (a1a2)a3}, which is also a basis of A. Moreover, A and
A has the same multiplication table relative to the basis, and so A = (Z, a2

1, a
2
2, a

2
3). �

Let us state a celebrating theorem in alternative theory [SSSZ, Theorem 9, p.194]:

Slater’s Theorem. Any prime nondegenerate alternative algebra that is not associative is
a Cayley-Dickson ring.

(It is also true that every Cayley-Dickson ring is a prime nondegenerate ring [SSSZ,
Proposition 3, p.193].) Using the theorem, we have the following:

Proposition 4.2. Let R be a prime nondegenerate alternative algebra that is not associative
over Φ, and Z = Z(R) its center. Then there exist a subalgebra A of R so that Z(A) ⊂ Z
and A is an octonion algebra over the center Z(A). Moreover, the subalgebra B := ZA is
an octonion algebra over the center Z and the central closures of B and R coincide, i.e.,
B = R.

Also, R is a base field extension of A, namely, R ∼= Z ⊗K A, where K = Z(A).

Proof. By Slater’s Theorem, R is an octonion algebra over the field Z. Let v1, v2 and v3

be the basic generators and so they satisfy the Cayley relations. Note that v1 = z−1
1 r1,

v2 = z−1
2 r2 and v3 = z−1

3 r3 for some z1, z2, z3 ∈ Z∗ and r1, r2, r3 ∈ R. So a1 := z1z2z3v1,
a2 := z1z2z3v2 and a3 := z1z2z3v3 also satisfy the Cayley relations and they are in R. Let
A be the subalgebra of R generated by a1, a2 and a3. Note that if z ∈ Z(A), then z is,
in particular, central for a generating set {a1, a2, a3} of A, and so is for a generating set
{v1, v2, v3} of R. Hence, by the theorem of Bruck and Kleinfeld [SSSZ, Lemma 16, p.289],
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z is central for R, and so z ∈ Z. Thus, Z(A) does not contain zero divisors of A, and hence
by Lemma 4.1, A = (Z(A), a2

1, a
2
2, a

2
3).

Now, we have Z ⊂ Z(B) ⊂ Z, and so Z = Z(B). Thus by Lemma 4.1 again, B =
(Z, a2

1, a
2
2, a

2
3). Finally, for any r ∈ R, there exists some z ∈ Z∗ such that zr ∈ B. In

fact, r = f(v1, v2, v3) = f(z−1
1 z−1

2 z−1
3 a1, z

−1
1 z−1

2 z−1
3 a2, z

−1
1 z−1

2 z−1
3 a3) for some polynomial

f over Z. So there exists z ∈ Z∗ such that zf(z−1
1 z−1

2 z−1
3 a1, z

−1
1 z−1

2 z−1
3 a2, z

−1
1 z−1

2 z−1
3 a3) =

g(a1, a2, a3) for some polynomial g over Z. Hence zr = g(a1, a2, a3) ∈ B. Thus r = z−1b for
some b ∈ B, and so R ⊂ B. Since the other inclusion is clear, we obtain R = B.

For the last statement, let ϕ be a K-linear map from Z⊗K A to R defined by ϕ(ui⊗wj) =
uiwj for a basis {ui} of Z over K and a basis {wi} of A over K. Then ϕ is a homomorphism,
and Z-linear. Since Z ⊗K A and R are both 8-dimensional over Z, it is enough to show
that ϕ is onto. For v−1r ∈ R (v ∈ Z∗ and r ∈ R), there exists z ∈ Z∗ and b ∈ B such
that zr = b by the above, and so zr =

∑
k zkak for some zk ∈ Z and ak ∈ A. Hence

v−1r = v−1z−1
∑

k zkak = ϕ(
∑

k v−1z−1zk ⊗ ak), and so ϕ is onto. �

Let us finally give an example of a prime nondegenerate algebra which is not an octonion
algebra over the center.

Example 4.3. For simplicity, let F be a field of characteristic 6= 2, and let F [z] be the
ordinary polynomial algebra over F . Let F [z]C [t1, t2, t3] be the ring of Cayley polynomials
over F [z]. Let R be the F -subalgebra of F [z]C [t1, t2, t3] generated by t1, t2, t3 and zt1.
Then the center Z = Z(R) = F [t21, t

2
2, t

2
3, z

2t21, zt21], and R is a 12-dimensional free Z-module
with basis

{1, t1, t2, t3, t1t2, t1t3, t2t3, (t1t2)t3, zt1, zt1t2, zt1t3, zt1(t2t3)}.

Hence R is not an octonion algebra over Z. But the central closure R is an octonion algebra
over Z = F (z, t21, t

2
2, t

2
3), i.e., R = (Z, t21, t

2
2, t

2
3) (by Theorem 3.6), and so R is a Cayley-

Dickson ring. One can take a subalgebra A of R in Proposition 4.2 as A = FC [t1, t2, t3].
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