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Abstract

For an ideal U of a nonassociative algebra A, the π-closure of U is
defined by U = Ann(Ann(U)), where Ann(.) denotes the annihilator rel-
ative to the algebra A. An algebra A is said to be π-complemented if
for every π-closed ideal U of A there exists a π-closed ideal V of A such
that A = U ⊕ V . In this paper we shall develop a structure theory for
π-complemented algebras.
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Introduction and preliminaries.

Throughout this paper, we will deal with algebras over a fixed field K which are
not necessarily associative. Let us start by recalling some well known concepts,
as well as the description of complemented algebras. An algebra A is said to be
complemented if every ideal of A is a direct summand of A, that is: for every
ideal U of A there exists an ideal V of A such that A = U⊕V . Examples of com-
plemented algebras are null algebras and decomposable algebras. Recall that a
null algebra is an algebra with zero product; a decomposable algebra is an alge-
bra that is isomorphic to a direct sum of simple algebras; and a simple algebra
is a non-null algebra lacking nonzero proper ideals. By regarding any algebra
as a left module over its multiplication algebra, the standard characterization
of completely reducible modules can be rewritten in this case as follows:

Description theorem for complemented algebras. For a non-null algebra
A the following assertions are equivalent:

This research was partially supported by the Spanish MEC Project MTM2005-02159 and the
Junta de Andalućıa Grant FQM290.
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(i) A is complemented,

(ii) A is isomorphic to an algebra of the form B0 ⊕ B, where B0 is a null
algebra and B is a decomposable algebra.

Given an algebra A and a closure operation ∼ on the complete lattice IA of
all ideals of A, borrowing terminology from the theory of Banach spaces, we will
say that an ∼-closed ideal U of A is ∼-complemented (resp. ∼-quasicomplemen-
ted) in A if there exists a ∼-closed ideal V of A such that

A = U ⊕ V (resp. A = (U ⊕ V )∼ ).

In such a case, V is called a ∼-complement (resp. ∼-quasicomplement) of U .
We say that A is a ∼-complemented (resp. ∼-quasicomplemented) algebra when
every ∼-closed ideal of A is ∼-complemented (resp. ∼-quasicomplemented)
in A. Clearly every ∼-complemented algebra is ∼-quasicomplemented. It is
also clear that in the case in which ∼ is the discrete closure (that is, Ũ = U
for all U ∈ IA), the concepts of complementarity, ∼-complementarity, and ∼-
quasicomplementarity agree.

Naturally the task of the description of the lattice of the ∼-closed ideals of-
ten turns out to be involved. However, the study of the lattice of all ‖ . ‖-closed
ideals and the complementarity in such a lattice has been widely discussed in
specific Banach algebras: algebras of functions, and particularly algebras of
sequences, (see, e.g., [3, Chapter 4] and [9]); and operator algebras (see, e.g.,
[7] and [8]). It is worth pointing out that ‖ . ‖-quasicomplemented algebras
are generalized annihilator normed algebras, which were introduced and stud-
ied by B. Yood in the associative context [10], and by A. Fernández and A.
Rodŕıguez in a nonassociative setting [5], and they were revisited by the au-
thors in [1]. In this latter paper, by considering every algebra as a left module
over its multiplication algebra, the ε-closure was introduced, and it was proved
that the ε-quasicomplemented algebras with zero annihilator are precisely the
multiplicativatively semiprime algebras.

Our aim in this paper is to study those algebras which are complemented
with respect to the classical π-closure. For S1, S2 subspaces of an algebra A,
we denote by S1S2 the subspace of A generated by all the products xy, for
x ∈ S1 and y ∈ S2. For the sake of brevity, we write S2 instead of SS. As
usual, for each ideal U of A, the largest ideal V of A satisfying the conditions
UV = V U = 0 is called the annihilator of U in A and is denoted by Ann(U).
The following properties are immediately verifiable and will be used without
further mention throughout the rest of this paper.

(1) If U, V are ideals of A such that U ⊆ V , then Ann(V ) ⊆ Ann(U).

(2) U ⊆ Ann(Ann(U)), for every ideal U of A.

(3) Ann(U) = Ann(Ann(Ann(U))), for every ideal U of A.
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(4) Ann(
∑

Ui) =
⋂

Ann(Ui), for every family {Ui} of ideals of A.

The π-closure of an ideal U of A is defined by

U = Ann(Ann(U)).

Note that the above property (3) can be read as follows:

Ann(U) = Ann(U) = Ann(U),

for every U ∈ IA. Of course, the π-closure is a closure operation on IA, that is,
it satisfies the following properties:

(1) If U, V are ideals of A such that U ⊆ V , then U ⊆ V .

(2) U ⊆ U , for every ideal U of A.

(3) U = U , for every ideal U of A.

(4)
⋂

Ui is a π-closed ideal of A, for every family {Ui} of π-closed ideals of A.

The set Iπ
A of all π-closed ideals of A is a complete lattice for the meet and

join operations given by

∧
Ui =

⋂
Ui and

∨
Ui =

∑
Ui.

Moreover, Ann(A) and A respectively are the smallest and the largest elements
in Iπ

A.
The set of all maximal elements of Iπ

A is denoted by Mπ
A and the set

π-Rad(A) :=
⋂

M∈Mπ
A

M

is called the π-radical of A. We say that A is a π-radical algebra whenever
Mπ

A = ∅. The set of all minimal elements of Iπ
A is denoted by mπ

A, and the set

π-Soc(A) :=
∑

B∈mπ
A

B

is called the π-socle of A. We say that A is a π-decomposable algebra whenever

A = π-Soc(A).

The first three sections of this paper are devoted to π-quasicomplemented
algebras. In section one it is shown that the π-quasicomplemented algebras
are precisely the semiprime algebras. We also study the π-closure in a direct
sum. In section two we discuss the π-closure in the quotient algebra A/U , for
a semiprime algebra A and a π-closed ideal U of A. As a consequence we will

3



obtain properties of π-Rad(A/U) and π-Soc(A/U). In section three we provide
a description of the lattice Iπ

A whenever A is an essential subdirect product of a
family of semiprime algebras. Moreover, we prove that every semiprime algebra
is a subdirect product of two semiprime algebras, one of which is π-radical and
the other is π-decomposable. Section four provides different characterizations
of π-complemented algebras. We prove that the π-complemented algebras are
precisely the semiprime algebras in which the π-closure is additive. We will also
prove that every π-complemented algebra is the direct sum of a π-radical π-
complemented algebra with a π-decomposable π-complemented algebra. More-
over, we show that the algebra of all Lebesgue measurable functions on the
unit interval is π-radical π-complemented. In the final section we set out to
describe π-decomposable π-complemented algebras. Our approach relies on the
structure theory for π-decomposable algebras due to A. Fernández, E. Garćıa,
and M. I. Tocón [4, 6]. We show that, up to isomorphism, π-decomposable π-
complemented algebras are the subalgebras of the direct product of a family of
prime algebras which contain the direct sum of the family and remain invariant
under all the block-projections.

1 π-quasicomplemented algebras

Our first goal is to prove that the π-quasicomplemented algebras are precisely
the semiprime algebras. Recall that an algebra A is said to be semiprime if 0 is
the unique ideal U of A with U2 = 0.

Lemma 1.1. Let A be an algebra with zero annihilator and U, V be ideals of
A. If A = U ⊕ V , then A = U ⊕Ann(U) and V = Ann(U).

Proof. Assume that A = U ⊕ V . Since U ∩V = 0 it follows that UV = V U = 0,
and hence V ⊆ Ann(U). Thus, A = U + Ann(U), and we see that

Ann(A) = Ann(U + Ann(U)) = Ann(U) ∩ U.

Therefore U ∩Ann(U) ⊆ Ann(A), hence U ∩Ann(U) = 0, and so

A = U ⊕Ann(U).

On the other hand, from A = U ⊕ V it follows immediately that

Ann(U) ∩Ann(V ) = Ann(U + V ) = Ann(A) = 0,

and so Ann(U) ⊆ V . Finally, from the chain V ⊆ Ann(U) ⊆ V it follows that
V = Ann(U). ¤

Lemma 1.2. If A is a π-quasicomplemented algebra, then Ann(A) = 0.

4



Proof. Since Ann(A) is a π-closed ideal of A, there exists a π-closed ideal V of
A such that

A = Ann(A)⊕ V .

Therefore

Ann(A) = Ann(Ann(A)⊕ V ) = Ann(Ann(A)) ∩Ann(V ) =

A ∩Ann(V ) = Ann(V ),

hence
A = Ann(Ann(A)) = Ann(Ann(V )) = V = V,

and so
Ann(A) = Ann(A) ∩A = Ann(A) ∩ V = 0.

¤

Proposition 1.3. Let A be an algebra. Then the following assertions are equiv-
alent:

(i) A is π-quasicomplemented.

(ii) A = U ⊕Ann(U) for every ideal U of A.

(iii) A is semiprime.

In this case, for each π-closed ideal U of A, Ann(U) is the unique π-quasicomple-
ment of U .

Proof. (i) ⇒ (ii). By Lemma 1.2, Ann(A) = 0. Now, by Lemma 1.1, we see
that A = U ⊕Ann(U), and consequently A = U ⊕Ann(U) for every ideal U of
A.

(ii) ⇒ (iii). If U is an ideal of A with U2 = 0, then U ⊆ Ann(U), and hence
U = 0.

(iii) ⇒ (i). Let U be a π-closed ideal of A. By semiprimeness we see that
Ann(U) ∩ U = 0, hence Ann(U ⊕Ann(U)) = 0, and so A = U ⊕Ann(U).

Let us assume that A satisfies the equivalent conditions in the statement.
Then it is clear that, for each π-closed ideal U of A, Ann(U) is a π-quasicomple-
ment of U . By Lemma 1.1, Ann(U) is the unique π-quasicomplement of U . ¤

From [6, Theorem 2.4] we deduce the following consequence:

Corollary 1.4. An algebra A with zero annihilator is semiprime if, and only
if, Iπ

A is a boolean algebra.

5



For a given algebra A, we denote by Dπ
A the set of all π-dense ideals of A.

It is immediately verified that

Dπ
A = {U ∈ IA : Ann(U) = Ann(A)}.

Corollary 1.5. If A is a semiprime algebra, then

Dπ
A := {U ⊕Ann(U) : U ∈ IA}.

Proof. Let A be a semiprime algebra. By Proposition 1.3, we see that U ⊕
Ann(U) ∈ Dπ

A for every U ∈ IA. Conversely, if D ∈ Dπ
A, then Ann(D) =

Ann(A) = 0, and hence D = D ⊕Ann(D). ¤

Remark 1.6. For every algebra A, the map

U 7→ Ann(U)

is an order-reversing involutive bijection from Iπ
A onto itself. Therefore,

mπ
A = {Ann(M) : M ∈ Mπ

A} and Mπ
A = {Ann(B) : B ∈ mπ

A}.
As a consequence, note that

(1) Ann(π−Soc(A)) = π−Rad(A).

Indeed,

Ann(π−Soc(A)) = Ann


 ∑

B∈mπ
A

B


 =

⋂

B∈mπ
A

Ann(B) =

⋂

M∈Mπ
A

M = π−Rad(A).

In particular, in the case in which Ann(A) = 0 we have

(2) A is π-decomposable if, and only if, π−Rad(A) = 0.

(3) A is π-radical if, and only if, π−Soc(A) = 0. ¤

As another consequence of Proposition 1.3 we deduce from assertion (1) in
the above remark the following statement:

Corollary 1.7. If A is a semiprime algebra, then

A = π−Soc(A)⊕ π−Rad(A).
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For an ideal U of an algebra A, we set

(U : A) := {a ∈ A : aA + Aa ⊆ U}.

It is clear that (U : A) is an ideal of A containing U .

Lemma 1.8. Let A be an algebra. If U is an ideal of A such that U ∩Ann(U) =
0, then Ann(U) = Ann(U : A). If in addition U is π-closed, then (U : A) = U .

Proof. Let U be an ideal of A such that U ∩Ann(U) = 0. Since

(U : A)Ann(U) + Ann(U)(U : A) ⊆ U ∩Ann(U),

it follows that
(U : A)Ann(U) = Ann(U)(U : A) = 0.

Therefore Ann(U) ⊆ Ann(U : A). The converse inclusion is clear. Hence
Ann(U) = Ann(U : A), and as a consequence U = (U : A). If in addition U is
π-closed, then we have

(U : A) ⊆ (U : A) = U = U ⊆ (U : A),

and hence U = (U : A). ¤

In the next statement we recall the well-known description of the lattice of
all ideals of a direct sum.

Lemma 1.9. Let {Ai}i∈I be a nonempty family of nonzero algebras, and set
A =

⊕
i∈I Ai. Then IA is the set of all subspaces U of A for which there exists

a family {Ui}i∈I , where each Ui is an ideal of Ai, satisfying
⊕

i∈I

Ui ⊆ U ⊆
⊕

i∈I

(Ui : Ai).

Proof. If U is a subspace of A such that
⊕

i∈I

Ui ⊆ U ⊆
⊕

i∈I

(Ui : Ai),

where each Ui is an ideal of Ai, then it is fairly evident that U is an ideal of A.
In order to prove the converse let us fix an ideal U of A and set Ui := U ∩ Ai

for each i ∈ I. Clearly each Ui is an ideal of Ai, and it is immediately verifiable
that ⊕

i∈I

Ui ⊆ U ⊆
⊕

i∈I

(Ui : Ai).

¤
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If A and B are algebras, and p is an algebra homomorphism from A onto B,
then it is evident that p(Ann(U)) ⊆ Ann(p(U)) for every ideal U of A. Recall
that an ideal D of an algebra A is said to be essential if for every nonzero ideal
U of A we have U ∩D 6= 0. Now, we give a description of the π-closed ideals in
the direct sum of a family of semiprime algebras.

Theorem 1.10. Let {Ai}i∈I be a nonempty family of nonzero algebras, and set
A =

⊕
i∈I Ai. Then

(1) If {Ui}i∈I is a family, where each Ui is an ideal of Ai, then

Ann(
⊕

i∈I

Ui) =
⊕

i∈I

AnnAi
(Ui) and

⊕

i∈I

Ui =
⊕

i∈I

Ui.

As a consequence, regarding each Ai inside of A,

Iπ
Ai

= {U ∈ Iπ
A : U ⊆ Ai}.

(2) A has zero annihilator if, and only if, Ai has zero annihilator for all i in
I. In this case,

mπ
A =

⋃

i∈I

mπ
Ai

,

and the essential ideals of A are only those containing one of the form⊕
i∈I Di, where Di is an essential ideal of Ai for each i ∈ I.

(3) A is semiprime if, and only if, Ai is semiprime for all i in I. In this case,

Iπ
A = {

⊕

i∈I

Ui : Ui ∈ Iπ
Ai

for every i ∈ I}.

Proof. (1) For a given family {Ui}i∈I , it is clear that
⊕

i∈I

AnnAi(Ui) ⊆ Ann(
⊕

i∈I

Ui).

For each i0 ∈ I, denote by pi0 the projection from A onto Ai0 , and note that

pi0(Ann(
⊕

i∈I

Ui)) ⊆ AnnAi0
(pi0(

⊕

i∈I

Ui)) = AnnAi0
(Ui0).

Therefore
Ann(

⊕

i∈I

Ui) ⊆
⊕

i∈I

AnnAi(Ui),

and we conclude that

Ann(
⊕

i∈I

Ui) =
⊕

i∈I

AnnAi(Ui).
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Taking annihilators in this equality, we deduce that
⊕

i∈I

Ui =
⊕

i∈I

Ui,

and hence the consequence in the statement is clear.

(2) By part (1), Ann(A) =
⊕

i∈I AnnAi
(Ai), and hence the first clause is

clear. Now, assume that Ann(A) = 0. For a fixed i, from (1) it is clear that
mπ

Ai
⊆ mπ

A. Conversely, given U ∈ mπ
A and given a family of ideals {Ui} such

that
⊕

i∈I Ui ⊆ U ⊆ ⊕
i∈I(Ui : Ai), on account of (1), we can assume that

Ui ∈ Iπ
Ai

for all i ∈ I, that is
⊕

i∈I Ui ∈ Iπ
A. If

⊕
i∈I Ui = 0, then Ui = 0,

hence (Ui : Ai) = AnnAi
(Ai) = 0 for all i, and we reach the contradiction

U = 0. Therefore
⊕

i∈I Ui 6= 0, and, by minimality, there exists i0 ∈ I such
that U = Ui0 ∈ mπ

Ai0
because of (1).

Suppose that Di is an essential ideal of Ai for each i, and U is an ideal
of A such that U ∩ (

⊕
i∈I Di) = 0. If {Ui} is a family of ideals such that⊕

i∈I Ui ⊆ U ⊆ ⊕
i∈I(Ui : Ai), then we see that (

⊕
i∈I Ui) ∩ (

⊕
i∈I Di) = 0,

hence Ui ∩ Di = 0, and so Ui = 0 for all i. Therefore U = 0. Thus
⊕

i∈I Di

is an essential ideal of A. On the other hand, given an essential ideal D of A,
taking into account that the ideals of each Ai are ideals of A, it is clear that each
Di := D ∩ Ai is an essential ideal of Ai. Moreover, the inclusion

⊕
i∈I Di ⊆ D

is obvious.

(3) The ideals of each Ai are ideals of A, and hence the semiprimeness of
A yields to the semiprimeness of all Ai’s. Conversely assume that all Ai’s are
semiprime algebras and U is an ideal of A such that U2 = 0. If {Ui} is a family
of ideals such that

⊕
i∈I Ui ⊆ U ⊆ ⊕

i∈I(Ui : Ai), then, for each i, we see that
U2

i = 0, hence Ui = 0, and so U = 0. Thus A is semiprime. Finally assume that
A is semiprime and U is a π-closed ideal of A. Consider a family {Ui}i∈I such
that

⊕
i∈I Ui ⊆ U ⊆ ⊕

i∈I(Ui : Ai). From (1) we can assume that Ui ∈ Iπ
Ai

for
all i ∈ I. Since, by Lemma 1.8, (Ui : Ai) = Ui, we see that U =

⊕
i∈I Ui. Thus

we find the inclusion

Iπ
A ⊆ {

⊕

i∈I

Ui : Ui ∈ Iπ
Ai

for every i ∈ I}.

The opposite inclusion is a direct consequence of part (1). ¤

Corollary 1.11. Let {Ai}i∈I be a nonempty family of nonzero algebras with
zero annihilator, and set A =

⊕
i∈I Ai. Then

π−Soc(A) =
⊕

i∈I

π−Soc(Ai) and π−Rad(A) =
⊕

i∈I

π−Rad(Ai).

Proof. By the above theorem,

mπ
A =

⋃

i∈I

mπ
Ai

,
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and as a consequence we have π−Soc(A) =
⊕

i∈I π−Soc(Ai). By taking anni-
hilators we deduce that π−Rad(A) =

⊕
i∈I π−Rad(Ai).

¤

A subalgebra B of an algebra A is called an essential subalgebra of A when-
ever B contains an essential ideal of A.

Proposition 1.12. Let A be an algebra, and B be an essential subalgebra of A.
If B is semiprime, then so is A.

Proof. Assume that B is semiprime and D is an essential ideal of A such that
D ⊆ B. Let U be an ideal of A such that U2 = 0. Then, U ∩D is an ideal of
B such that (U ∩D)2 = 0. Since B is semiprime it follows that U ∩D = 0, and
since D is essential we can confirm that U = 0. Thus, A is semiprime. ¤

Corollary 1.13. Let A be an algebra. Assume that U is a π-closed ideal of A
such that U ∩ Ann(U) = 0, and U and Ann(U) are semiprime algebras. Then
A is semiprime.

Proof. By Theorem 1.10.(3), U ⊕Ann(U) is a semiprime algebra. On the other
hand, it is clear that Ann(U ⊕ Ann(U)) = Ann(U) ∩ U = 0, and hence U ⊕
Ann(U) is an essential ideal of A. Finally, by Proposition 1.12, A is semiprime.

¤

We make one final observation in this section. The π-closed ideals (even
minimal π-closed ideals) and the essential subalgebras (even essential ideals) of
a semiprime algebra may not be semiprime algebras.

Example 1.14. Let B be a non-null algebra and let F be a nonzero linear map
from B into B with F 2 = 0. Consider the algebra BF consisting of the vector
space B ×K and the product defined by

(x, λ)(y, µ) = (xy + λF (y) + µF (x), λµ).

It is clear that the map x 7→ (x, 0) allows us to regard B as a subalgebra of BF .
It is easy to check that

IBF = {I : I ∈ IB with F (I) ⊆ I}
⋃
{I ×K : I ∈ IB with F (B) ⊆ I}.

Suppose that F also satisfies the condition: F (I) ⊆ I, for I ∈ IB , implies I = 0
or B. Then we see that

IBF = {0, B,BF },

10



and consequently BF is a semiprime algebra. Moreover, B is an essential ideal
of BF and

Iπ
BF

= {0, BF }.
Now consider the product algebra B×B and the linear map F ×F from B×B
into B × B given by (F × F )(x, y) = (F (x), F (y)). Note that F × F 6= 0 and
(F × F )2 = 0. Let us denote by A the algebra (B × B)F×F . Thus, A is the
algebra consisting of the vector space B ×B ×K and the product defined by

(x, y, λ)(z, t, µ) = (xz + λF (z) + µF (x), yt + λF (t) + µF (y), λµ).

Note that 0 = 0 × 0, B1 = B × 0, B2 = 0 × B, and B1 + B2 = B × B are
(F ×F )-invariant ideals of B×B, and hence ideals of A. It is easy to show that
A is a semiprime algebra and

Iπ
A = {0, B1, B2, A}.

(Alternatively one can take into account that the map (x, y, λ) 7→ ((x, λ), (y, λ))
is an algebra monomorphism from A into BF×BF and use Theorem 3.2.) Hence

mπ
A = Mπ

A = {B1, B2}.

Let us now examine a specific pair B,F satisfying all the conditions stated
above. Let B be the three-dimensional commutative algebra with generator
{u, v, w} given by the relations

u2 = u, uv = v, v2 = w, uw = vw = w2 = 0.

It is immediately verifiable that

IB = {0,Kw,Kv +Kw,B}, Iπ
B = {0,Kw, B},

and AnnB(B) = Kw. Moreover, consider the linear map F from B into B given
by F (u) = 0 and F (v) = F (w) = u. It is clear that F 6= 0, F 2 = 0, and 0
and B are the only F -invariant ideals of B. Since B1

∼= B, B1 + B2
∼= B × B,

and B is an algebra with nonzero annihilator, we have provided an example of
a minimal π-closed ideal and of an essential ideal of a semiprime algebra which
are algebras with nonzero annihilator.

2 Quotients by a π-closed ideal

Let A be an algebra and U be an ideal of A. For a given nonempty subset C of
IA, we denote by hC(U) the hull of U relative to C, that is

hC(U) = {V ∈ C : U ⊆ V }.

We also use the set
`C(U) = {V ∈ C : V ⊆ U}.
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The quotient map q : A → A/U induces an order isomorphism from hIA(U)
onto IA/U . The aim of this section is to study the relationship between the
π-closures in A and A/U under this isomorphism. Concretely, we state the
following

Theorem 2.1. Let A be a semiprime algebra and let U be a π-closed ideal of
A. Let q : A → A/U denote the quotient map. Then

(1) A/U is a semiprime algebra.

(2) The map V 7→ q(V ) is a bijection of hDπ
A(U) onto Dπ

A/U , and of hI
π
A(U)

onto Iπ
A/U .

(3) The map
V 7→ q(V )

is a bijection of `I
π
A(Ann(U)) onto Iπ

A/U .

As a direct consequence we have the following

Corollary 2.2. If U is a π-closed ideal of a semiprime algebra A, then

(1) The map
M 7→ q(M)

is a bijection of hMπ
A(U) onto Mπ

A/U .

(2) The map
B 7→ q(B)

is a bijection of `m
π
A(Ann(U)) onto mπ

A/U .

Before proceeding to the proof of Theorem 2.1 we need some previous results.

Lemma 2.3. Let A be an algebra and U be an ideal of A. Then

(1) q−1(Ann(q(V )))V + V q−1(Ann(q(V ))) ⊆ U , for every ideal V of A.

(2) Ann(q−1(Q)) ⊆ q−1(Ann(Q)) ∩Ann(U), for every ideal Q of A/U .

Proof. (1) Let V be an ideal of A. Since

q(q−1(Ann(q(V )))V ) ⊆ q(q−1(Ann(q(V ))))q(V ) = Ann(q(V ))q(V ) = 0,

it follows that q−1(Ann(q(V )))V ⊆ U . Analogously one can prove that

V q−1(Ann(q(V ))) ⊆ U.
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(2) Let Q be an ideal of A/U . Since

q(Ann(q−1(Q)))) ⊆ Ann(qq−1(Q)) = Ann(Q)

it follows that Ann(q−1(Q)) ⊆ q−1(Ann(Q)). Moreover, from the inclusion
U ⊆ q−1(Q), it follows that Ann(q−1(Q)) ⊆ Ann(U). ¤

Proposition 2.4. Let A be an algebra and U be an ideal of A such that U ∩
Ann(U) = 0. Then

(1) q(Ann(V )) = Ann(q(V )), for every V ∈ `IA(Ann(U)).

(2) q(V ) = Ann(q(Ann(V ))), for every ideal V ∈ hIA(U).

Proof. (1) Let V be an ideal of A such that V ⊆ Ann(U). Keeping in mind
Lemma 2.3.(1) we see that

q−1(Ann(q(V )))V + V q−1(Ann(q(V )))) ⊆ U ∩Ann(U),

therefore
q−1(Ann(q(V )))V + V q−1(Ann(q(V )))) = 0,

hence
q−1(Ann(q(V ))) ⊆ Ann(V ),

and so Ann(q(V )) ⊆ q(Ann(V )). The opposite inclusion is obvious.

(2) If V is an ideal of A such that U ⊆ V , then Ann(V ) ⊆ Ann(U), and
applying part (1) to Ann(V ) we conclude the proof. ¤

Lemma 2.5. Let A be a semiprime algebra and D be an essential ideal of A.
Then Ann(U ∩D) = Ann(U) for every ideal U of A.

Proof. Clearly Ann(U) ⊆ Ann(U ∩ D). Since A is semiprime we see that
U ∩D ∩Ann(U ∩D) = 0, and since D is an essential ideal of A we deduce that
U ∩Ann(U ∩D) = 0. Therefore, Ann(U ∩D) ⊆ Ann(U). ¤

Lemma 2.6. Let A be a semiprime algebra and U be a π-closed ideal of A.
Then

(1) A/U is a semiprime algebra.

(2) If D ∈ Dπ
A, then q(D) ∈ Dπ

A/U .

(3) If Q ∈ Dπ
A/U , then q−1(Q) ∈ Dπ

A.

13



Proof. (1) If V is an ideal of A satisfying V 2 ⊆ U , then we have

(V ∩Ann(U))2 ⊆ U ∩Ann(U) = 0,

therefore V ∩ Ann(U) = 0, and so V ⊆ U = U . Thus, A/U is a semiprime
algebra.

(2) Let D ∈ Dπ
A. Taking into account Proposition 2.4.(1) and Lemma 2.5,

we see that

Ann(q(D ∩Ann(U))) = q(Ann(D ∩Ann(U))) = q(U) = q(U) = 0.

Since Ann(q(D)) ⊆ Ann(q(D ∩ Ann(U))) we deduce that Ann(q(D)) = 0, and
consequently q(D) ∈ Dπ

A/U .

(3) Let Q ∈ Dπ
A/U . Since, by part (1), A/U is semiprime, we have Ann(Q) =

0, and consequently, by Lemma 2.3.(2), Ann(q−1(Q)) = 0, and as a result
q−1(Q) ∈ Dπ

A. ¤

Proposition 2.7. Let A be a semiprime algebra and U be a π-closed ideal of
A. Then q(V ) = Ann(q(Ann(V ))) for each ideal V of A.

Proof. Given an ideal V of A, by Corollary 1.5, V + Ann(V ) ∈ Dπ
A, and

consequently, by Lemma 2.6.(2), q(V ) + q(Ann(V )) ∈ Dπ
A/U . On the other

hand, since q(Ann(V )) ⊆ Ann(q(V )) and, by Lemma 2.6.(1), A/U is semiprime,
it follows that

q(V ) ∩ q(Ann(V )) = 0.

Therefore,
A/U = q(V )⊕ q(Ann(V )).

Finally, taking into account Lemma 1.1, we conclude that

q(V ) = Ann(q(Ann(V ))).

¤

Corollary 2.8. Let A be a semiprime algebra and U be a π-closed ideal of A.
Then

(1) Ann(q(V )) = q(Ann(V )) for each ideal V of A.

(2) q(V ) = q(V ) for each ideal V of A.

(3) q−1(Q) = q−1(Q) for each ideal Q of A/U .

14



Proof. (1) follows by taking annihilators in the equality given in Proposition
2.7.

(2) For a given ideal V of A, the equality q(V ) = q(V ) follows by comparing
the equality in Proposition 2.7 for V with the equality obtained by replacing V
by V .

(3) Let Q be an ideal of A/U . By Proposition 2.4.(2), q(q−1(Q)) is a π-closed
ideal of A/U , and so, by the above part (2), we have

q(q−1(Q)) = q(q−1(Q)) = Q = q(q−1(Q)).

Since q−1(Q), q−1(Q) ∈ hIA(U), from the above it follows that q−1(Q) =
q−1(Q). ¤

We are now ready to establish the main result.

Proof of Theorem 2.1. (1) By Lemma 2.6.(1), A/U is a semiprime algebra.

(2) If V ∈ hI
π
A(U), then, by Proposition 2.4.(2), q(V ) ∈ Iπ

A/U . Conversely,
for a given Q ∈ Iπ

A/U , by Corollary 2.8.(3) q−1(Q) ∈ hI
π
A(U). Analogous asser-

tions for π-dense ideals are provided by Lemma 2.6.(2)-(3). Thus, the quotient
map q induces a bijection of hDπ

A(U) onto Dπ
A/U , and of hI

π
A(U) onto Iπ

A/U .

(3) Note that the map V 7→ Ann(V ) induces a bijection of `I
π
A(Ann(U)) onto

hI
π
A(U). Therefore, by part (2), the map V 7→ Ann(q(Ann(V ))) is a bijection of

`I
π
A(Ann(U)) onto Iπ

A/U . Now, Proposition 2.7 allow us to conclude the proof.
¤

Remark 2.9. Let A be an algebra with zero annihilator and U be a π-closed
ideal of A. Then

(1) mπ
A = `m

π
A(U)

⋃
`m

π
A(Ann(U)).

Indeed, for a given B ∈ mπ
A, it is clear that B ∩ U is a π-closed ideal of A

contained in B. In the case B∩U 6= 0 we see that B∩U = B, and consequently
B ⊆ U , whereas in the case B ∩ U = 0 we clearly obtain that B ⊆ Ann(U).

As a consequence of (1) we have

(2) π−Soc(A) ⊆ U + Ann(U).

Analogously, we may prove that

(3) Mπ
A = hMπ

A(U)
⋃

hMπ
A(Ann(U)),

and as a consequence

(4) π−Rad(A) ⊇ U ∩Ann(U).

Evidently, (3) can be deduced from (1), by taking into account Remark 1.6 and
the following fact:
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(5) hMπ
A(U) = {Ann(B) : B ∈ `m

π
A(Ann(U))}

and
`m

π
A(U) = {Ann(M) : M ∈ hMπ

A(Ann(U))}.
Note that from (5) it follows immediately that

(6) U =
⋂

M∈hMπ
A (U)

M if, and only if, Ann(U) =
∑

B∈`m
π
A (Ann(U))

B.

¤

We can now deduce several properties for the π-socle and the π-radical.

Corollary 2.10. Let A be a semiprime algebra and U be a π-closed ideal of A.
Then

(1) q(π−Soc(A)) ⊆ π−Soc(A/U) ⊆ q(π−Soc(A)).

(2) π−Rad(A/U) = q(π−Rad(A)).

(3) q−1(π−Rad(A/U)) =
⋂

M∈hMπ
A (U)

M .

(4) If U ⊆ π−Rad(A), then

π−Rad(A/U) = π−Rad(A)/U.

Proof. (1) Using Corollary 2.2.(2) and Assertion (1) in the above remark we see
that

π−Soc(A/U) =
∑

C∈mπ
A/U

C =
∑

B∈`m
π
A (Ann(U))

q(B) =
∑

B∈mπ
A

q(B).

Therefore ∑

B∈mπ
A

q(B) ⊆ π−Soc(A/U) ⊆
∑

B∈mπ
A

q(B).

Since ∑

B∈mπ
A

q(B) = q(
∑

B∈mπ
A

B) = q(π−Soc(A)),

it follows that

q(π−Soc(A)) ⊆ π−Soc(A/U) ⊆ q(π−Soc(A)).

(2) By taking annihilators in (1) we see that

Ann(π−Soc(A/U)) = Ann(q(π−Soc(A))).
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On the other hand, by Corollary 2.8.(1) we have

Ann(q(π−Soc(A))) = q(Ann(π−Soc(A))).

From these equalities, taking into account Remark 1.6.(1), we deduce that

π−Rad(A/U) = q(π−Rad(A)).

(3) By Corollary 2.2.(1),

π−Rad(A/U) =
⋂

Q∈Mπ
A/U

Q =
⋂

M∈hMπ
A (U)

q(M).

Therefore,

q−1(π−Rad(A/U)) = q−1


 ⋂

M∈hMπ
A (U)

q(M)


 =

⋂

M∈hMπ
A (U)

q−1(q(M)) =
⋂

M∈hMπ
A (U)

M.

(4) If U ⊆ π−Rad(A), then hMπ
A(U) = Mπ

A. Therefore, by part (3),
q−1(π−Rad(A/U)) =

⋂
M∈Mπ

A
M = π−Rad(A), and hence π−Rad(A/U) =

q(π−Rad(A)), as required. ¤

Corollary 2.11. Let A be a semiprime algebra and U be a π-closed ideal of A.
Then

(1) The following assertions are equivalent:

(i) A/U is a π-radical algebra.

(ii) π−Soc(A) ⊆ U .

(iii) Ann(U) ⊆ π−Rad(A).

(2) The following assertions are equivalent:

(i) A/U is a π-decomposable algebra.

(ii) U =
⋂

M∈hMπ
A (U)

M .

(iii) Ann(U) =
∑

B∈`m
π
A (Ann(U))

B.

(iv) π−Rad(A) ⊆ U .

Proof. (1) (i) ⇒ (ii). If A/U is a π-radical algebra, then, by Remark 1.6.(3),
π−Soc(A/U) = 0. Therefore, by Corollary 2.10.(1), we have q(π−Soc(A)) = 0,
and hence π−Soc(A) ⊆ U .
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(ii) ⇒ (iii). This implication follows by taking annihilators.
(iii) ⇒ (i). If Ann(U) ⊆ π−Rad(A), then Mπ

A = hMπ
A(Ann(U)) and

hMπ
A(U) = ∅ because of Remark 2.9.(3) and Corollary 1.5. Now, by Corol-

lary 2.2.(1), Mπ
A/U = ∅, and consequently A/U is π-radical.

(2) (i) ⇒ (ii). If A/U is a π-decomposable algebra, then, by Remark 1.6.(2),
π−Rad(A/U) = 0. Therefore, by Corollary 2.10.(3), we have

U = q−1(0) = q−1(π−Rad(A/U)) =
⋂

M∈hMπ
A (U)

M.

(ii) ⇒ (iii). This implication was noted in Remark 2.9.(6).
(iii) ⇒ (iv). If Ann(U) =

∑
B∈`m

π
A (Ann(U))

B, then Ann(U) ⊆ π−Soc(A),
and taking annihilator we deduce that π−Rad(A) ⊆ U .

(iv) ⇒ (i). If π−Rad(A) ⊆ U , then q(π−Rad(A)) = 0. Therefore, by
Corollary 2.10.(2), we have π−Rad(A/U) = 0, and so A/U is π-decomposable
because of Remark 1.6.(2). ¤

On account of Remark 1.6, as a direct consequence of the above corollary
we have the following result.

Corollary 2.12. Let A be a semiprime algebra and U be a π-closed ideal of A.
Then

(1) If A is π-radical, then A/U is π-radical.

(2) If A is π-decomposable, then A/U is π-decomposable.

Example 1.14 allows us to answer some questions on π-socle and π-radical.
If A and B denote the specific algebras in Example 1.14, then

π−Soc(A) = B1 + B2
∼= B ×B and π−Rad(A) = 0.

Since A/π−Soc(A) ∼= K it follows that A/π−Soc(A) is not π-radical. Note
also that π−Rad(B) = Kw, therefore π−Rad(B1) 6= 0, and so π−Rad(B1) *
π−Rad(A).

3 π-closed ideals in an essential subdirect prod-
uct

We begin this section by providing a description of the lattice of the π-closed
ideals in an essential subdirect product. Recall that an algebra A is a subdirect
product of a family of algebras {Ai}i∈I if there exists a monomorphism f from
A into the full direct product

∏
i∈I Ai such that, for every i ∈ I, fi = pi ◦ f

maps onto Ai, where pi is the canonical projection from
∏

i∈I Ai onto Ai. In
the case in which f(A) is an essential subalgebra of

∏
i∈I Ai, we say that A is

an essential subdirect product.
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Lemma 3.1. Let {Ai}i∈I be a nonempty family of nonzero semiprime algebras
and Di be an essential ideal of Ai for each i ∈ I. Assume that A is a subalgebra
of

∏
i∈I Ai containing

⊕
i∈I Di and such that pi(A) = Ai for each i ∈ I. Then

(1) Ann
(
(
∏

i∈I Ui) ∩A
)

= Ann
(
(
⊕

i∈I Ui) ∩A
)

= (
∏

i∈I AnnAi
(Ui))∩A for

each family {Ui}, where Ui is an ideal of Ai.

(2) If U is an ideal of A, then Ui := U∩Ai is an ideal of Ai for each i ∈ I, and
Ann(U) = (

∏
i∈I AnnAi

(Ui)) ∩A. As a consequence, U = (
∏

i∈I Ui) ∩A.

Proof. (1) Let {Ui} be a family, where each Ui is an ideal of Ai. Since
⊕

i∈I

(Ui ∩Di) ⊆
⊕

i∈I

Ui ⊆
∏

i∈I

Ui,

it is obvious that

Ann

(
(
∏

i∈I

Ui) ∩A

)
⊆ Ann

(
(
⊕

i∈I

Ui) ∩A

)
⊆ Ann

(⊕

i∈I

(Ui ∩Di)

)
.

On the other hand, it is also clear that
(∏

i∈I

AnnAi(Ui)

)
∩A ⊆ Ann

(
(
∏

i∈I

Ui) ∩A

)
,

and therefore, to prove the equalities in the statement it is sufficient to show
that

Ann

(⊕

i∈I

(Ui ∩Di)

)
⊆

(∏

i∈I

AnnAi(Ui)

)
∩A.

In order to do this, fix j ∈ I and consider the projection pj from A onto Aj .
Since

pj

(
Ann(

⊕

i∈I

(Ui ∩Di))

)
⊆ AnnAj

(
pj(

⊕

i∈I

(Ui ∩Di))

)
= AnnAj

(Uj ∩Dj),

by Lemma 2.5, we conclude that

pj

(
Ann(

⊕

i∈I

(Ui ∩Di))

)
⊆ AnnAj (Uj).

From this we deduce that Ann
(⊕

i∈I(Ui ∩Di)
) ⊆ (∏

i∈I AnnAi(Ui)
) ∩ A, and

so (1) is proved.

(2) Let us fix an ideal U of A and set Ui := U ∩ Ai for each i ∈ I. Clearly
A∩Ai is an ideal of A, and hence Ui = U ∩ (A∩Ai) is an ideal of A contained
in Ai. Therefore Ui = pi(Ui) is an ideal of Ai. Note that

pi(U)Di = pi(U)pi(Di) = pi(UDi) ⊆ pi(U ∩Di) = U ∩Di ⊆ Ui,
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and as a consequence (pi(U)∩AnnAi(Ui))Di ⊆ Ui ∩AnnAi(Ui) = 0, and there-
fore (pi(U) ∩AnnAi

(Ui))Di = 0. Analogously we can prove that

Di(pi(U) ∩AnnAi
(Ui)) = 0.

Thus pi(U) ∩AnnAi
(Ui) ⊆ AnnAi

(Di) = 0, hence pi(U) ⊆ Ui, and so

U ⊆
(∏

i∈I

Ui

)
∩A.

Now, keeping in mind part (1), as a consequence of the inclusions

(
⊕

i∈I

Ui) ∩A ⊆ U ⊆
(∏

i∈I

Ui

)
∩A

we see that
Ann(U) = (

∏

i∈I

AnnAi
(Ui)) ∩A.

From this, and again using (1), we also find that

U = (
∏

i∈I

Ui) ∩A.

¤

Theorem 3.2. Let {Ai}i∈I be a nonempty family of nonzero algebras and Di

be an essential ideal of Ai for each i ∈ I. Assume that A is a subalgebra of∏
i∈I Ai containing

⊕
i∈I Di and such that pi(A) = Ai for each i ∈ I. Then the

following assertions are equivalent:

(i) A is a semiprime algebra.

(ii) Ai is a semiprime algebra for all i ∈ I.

In this case,

(1) Iπ
A = {(∏i∈I Ui) ∩ A : Ui ∈ Iπ

Ai
for each i ∈ I}, and (

∏
i∈I Ui) ∩ A 6=

(
∏

i∈I Vi) ∩A for families {Ui} 6= {Vi}.
(2)

⊕
i∈I Si ⊆ π−Soc(A) ⊆ ⊕

i∈I π−Soc(Ai), where each Si is an ideal of Ai

contained in Di such that AnnAi(Si) = AnnAi(π−Soc(Ai)).

(3) π−Rad(A) = (
∏

i∈I π−Rad(Ai)) ∩A.

(4) The essential ideals of A are only those containing one of the form
⊕

i∈I Ci,
where, for each i ∈ I, Ci is an essential ideal of Ai contained in Di.
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Proof. (i) ⇒ (ii). Assume that Ui is an ideal of Ai such that U2
i = 0. Then

Ui ∩Di is an ideal of A such that (Ui ∩Di)2 = 0. Since A is semiprime and Di

is essential in Ai it follows that Ui = 0. Thus Ai is semiprime.

(ii) ⇒ (i). By Lemma 3.1.(1),

Ann(A) = Ann

(
(
∏

i∈I

Ai) ∩A

)
= (

∏

i∈I

AnnAi
(Ai)) ∩A = 0.

Suppose that U is an ideal of A such that U2 = 0 and define Ui = U ∩ Ai for
each i ∈ I. By Lemma 3.1.(2), each Ui is an ideal of Ai, and clearly we have
U2

i = 0. Therefore, by semiprimeness, Ui = 0 for each i ∈ I. Moreover, by
Lemma 3.1.(2), we see that Ann(U) = (

∏
i∈I Ai) ∩A = A, hence U ⊆ Ann(A),

and as a consequence U = 0. Thus A is semiprime.

Now, assume that A is an algebra satisfying the equivalent conditions in the
statement, and allow us to prove clauses (1)-(4).

(1) Note that the description of Iπ
A is a direct consequence of the above

lemma. If for families {Ui}, {Vi} of π-closed ideals we have (
∏

i∈I Ui) ∩ A =
(
∏

i∈I Vi)∩A, then (
∏

i∈I Ui)∩ (
⊕

i∈I Di) = (
∏

i∈I Vi)∩ (
⊕

i∈I Di). Therefore,
for each i, Ui ∩Di = Vi ∩Di, and taking into account Lemma 2.5 we see that
Ann(Ui) = Ann(Vi), and consequently Ui = Vi.

(2) By part (1) it follows that

mπ
A =

⋃

i∈I

{Bij ∩A : Bij ∈ mπ
Ai
},

and hence
π−Soc(A) =

⊕

i∈I

∑

Bij∈mπ
Ai

(Bij ∩A).

For each i ∈ I, consider

Si :=
∑

Bij∈mπ
Ai

(Bij ∩Di).

It is clear that

Si ⊆
∑

Bij∈mπ
Ai

(Bij ∩A) ⊆
∑

Bij∈mπ
Ai

Bij = π−Soc(Ai),

and hence ⊕

i∈I

Si ⊆ π−Soc(A) ⊆
⊕

i∈I

π−Soc(Ai).

Moreover, each Si is an ideal of Ai and, keeping in mind Lemma 2.5, we see
that

AnnAi(Si) = AnnAi(
∑

Bij∈mπ
Ai

(Bij ∩Di)) =
⋂

Bij∈mπ
Ai

AnnAi(Bij ∩Di) =

21



⋂

Bij∈mπ
Ai

AnnAi
(Bij) = AnnAi

(
∑

Bij∈mπ
Ai

Bij) = AnnAi
(π−Soc(Ai)).

(3) This clause follows from (2) by taking annihilators and by using Lemma
3.1.(2).

(4) If Ci is an essential ideal of Ai contained in Di, then, by Lemma 3.1.(1),

Ann

(⊕

i∈I

Ci

)
= (

∏

i∈I

AnnAi
(Ci)) ∩A = 0,

and hence
⊕

i∈I Ci is an essential ideal of A.
Let U be an essential ideal of A. Set Ui = U ∩ Ai and Ci = Ui ∩ Di. On

account of Lemmas 3.1.(2) and 2.5 we have

0 = Ann(U) =

(∏

i∈I

AnnAi
(Ui)

)⋂
A =

(∏

i∈I

AnnAi
(Ci)

) ⋂
A,

therefore AnnAi(Ci) ∩ Di = 0 for each i ∈ I. Since Di is an essential ideal of
Ai, it follows that AnnAi(Ci) = 0, and consequently Ci is an essential ideal of
Ai. Thus U contains the essential ideal

⊕
i∈I Ci. ¤

Our final goal in this section is to prove that every semiprime algebra is an es-
sential subdirect product of a π-radical semiprime algebra and a π-decomposable
semiprime algebra.

Lemma 3.3. Let A be an algebra and U be a π-closed ideal of A. If U ∩
Ann(U) = 0, then Ann(q(Ann(U))) = 0, and consequently q(Ann(U)) is an
essential ideal of A/U .

Proof. Assume that U ∩Ann(U) = 0. By Proposition 2.4.(2) we have

Ann(q(Ann(U)))) = q(U) = q(U) = 0,

therefore Ann(q(Ann(U))) = 0, and hence q(Ann(U)) is an essential ideal of
A/U . ¤

Proposition 3.4. Let A be a semiprime algebra and U be a π-closed ideal of
A. Then A is an essential subdirect product of the algebras A/U and A/Ann(U)
and

Iπ
A = {V ∩W : V ∈ hI

π
A(U), W ∈ hI

π
A(Ann(U))}.
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Proof. Let us denote by q0 and q1 the quotient maps from A onto A0 := A/U and
A1 := A/Ann(U) respectively. Consider the homomorphism f : A → A0 × A1

defined by f(a) = (q0(a), q1(a)). Since

ker(f) = ker(q0) ∩ ker(q1) = U ∩Ann(U) = 0,

we see that f is injective. On the other hand, it is fairly evident that q0 and q1

are surjective, and

f(A) ⊇ f(U ⊕Ann(U)) = q0(Ann(U))× q1(U).

Thus, in order to prove that A is an essential subdirect product of A0 and A1,
it is sufficient to show that q0(Ann(U))× q1(U) is an essential ideal of A0×A1.
Since AnnA0(A0) = (U : A)/U and AnnA1(A1) = (Ann(U) : A)/Ann(U), by
Lemma 1.8, it follows that both algebras A0 and A1 have zero annihilator.
On the other hand, by Lemma 3.3, it follows that q0(Ann(U)) and q1(U) are
essential ideals of A0 and A1 respectively. Now, taking into account Theorem
1.10.(2), we conclude that q0(Ann(U))× q1(U) is an essential ideal of A0 ×A1.

Finally, given V ∈ hI
π
A(U) and W ∈ hI

π
A(Ann(U)), it is easy to verify that

f(V ∩W ) = (q0(V ) × q1(W )) ∩ f(A). Since, by Theorems 3.2.(1) and 2.1.(2),
we have Iπ

f(A) = {(q0(V )× q1(W )) ∩ f(A) : V ∈ hI
π
A(U), W ∈ hI

π
A(Ann(U))},

we see that Iπ
A = {V ∩W : V ∈ hI

π
A(U), W ∈ hI

π
A(Ann(U))}. ¤

Theorem 3.5. Let A be an algebra. Then the following assertions are equiva-
lent:

(i) A is semiprime.

(ii) A is an essential subdirect product of two algebras A0 and A1, where A0

is a π-radical semiprime algebra and A1 is a π-decomposable semiprime
algebra.

In this case,

Iπ
A = {U ∩ V : U ∈ hI

π
A(π−Soc(A)), V ∈ hI

π
A(π−Rad(A))}.

Proof. The implication (ii) ⇒ (i) is a consequence of Theorem 3.2. The im-
plication (i) ⇒ (ii) and the description of Iπ

A follow from Proposition 3.4 by
taking U = π−Soc(A) and by considering the algebras A0 = A/π−Soc(A)
and A1 = A/π−Rad(A). Note that, by Theorem 2.1.(1), both algebras are
semiprime and, by Corollary 2.11, A0 is π-radical and A1 is π-decomposable. ¤

4 π-complemented algebras

In this section we shall first establish the minimal character of the π-closure for
the complementarity. Our main goal is to provide different characterizations of
π-complemented algebras.
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We start with the following observation.

Lemma 4.1. Let A be an algebra with zero annihilator and U, V be ideals of
A. If A = U ⊕ V , then V = Ann(U) and U = Ann(V ). Consequently U and V
are π-closed.

Proof. Assume that A = U ⊕ V . From Lemma 1.1 it follows that V ⊆ Ann(U)
and U ∩Ann(U) = 0. Therefore, the equality A = U ⊕ V yields to the equality
A = U ⊕Ann(U). From this it follows immediately that V = Ann(U). Finally,
by interchanging the roles we also obtain that U = Ann(V ). ¤

Now we can establish the minimal character of the π-closure for the comple-
mentarity.

Proposition 4.2. Let A be an algebra with zero annihilator and let ∼ be a
closure operation on IA. Assume that Ũ ⊆ U for all U ∈ IA. If A is ∼-
complemented, then Ũ = U for all U ∈ IA.

Proof. Suppose that A is ∼-complemented. Then, given U ∈ IA, we know that
A = Ũ ⊕ V for a suitable ∼-closed ideal V of A. From Lemma 4.1 it follows
that Ũ is π-closed, and hence we see that

U ⊆ Ũ = Ũ ⊆ U.

Thus, Ũ = U . ¤

We say that the π-closure in an algebra A is additive whenever U + V =
U + V for all U, V ideals of A. Given an ideal U of an algebra A, for each ideal
I of U , we denote by AnnU (I) the annihilator of I relative to the algebra U ,
and we denote by I

U
the π-closure of I relative to the algebra U .

Theorem 4.3. Let A be an algebra. Then the following assertions are equiva-
lent:

(i) A is π-complemented

(ii) A = U ⊕Ann(U) for every ideal U of A.

(iii) A is semiprime, and U + V is a π-closed ideal of A for all U, V π-closed
ideals of A.

(iv) A is semiprime, and Ann(U∩V ) = Ann(U)+Ann(V ) for all U, V π-closed
ideals of A.

(v) A is semiprime, and the π-closure is additive.

24



In this case, every π-closed ideal U of A is a π-complemented algebra, and
Iπ

A = {V ⊕W : V ∈ Iπ
U ,W ∈ Iπ

Ann(U)}. Moreover, AnnU (I) = Ann(I)∩U and

I
U

= I for every ideal I of U .

Proof. (i) ⇒ (ii). Given an ideal U of A, there exists a π-closed ideal V of A
such that A = U ⊕ V . By Lemma 4.1 we see that V = Ann(U) = Ann(U), and
hence

A = U ⊕Ann(U).

(ii) ⇒ (iii). The semiprimeness is a consequence of Proposition 1.3. In
order to prove the second clause, assume first that U, V are π-closed ideals of
A such that U ∩ V = 0. Then V ⊆ Ann(U), and in particular V is an ideal
of Ann(U). Since, by assumption A = U ⊕ Ann(U), Theorem 1.10.(1) yields
that V is a π-closed ideal of Ann(U), and U ⊕ V is a π-closed ideal of A in
this case. Now, assume that U, V are arbitrary π-closed ideals of A. Keeping
in mind that A = U ⊕ Ann(U), parts (3) and (1) of Theorem 1.10 allow us to
write V = V0⊕V1, where V0 and V1 are π-closed ideals of A contained in U and
Ann(U) respectively. Therefore U + V = U + (V0 ⊕ V1) = U ⊕ V1, and the first
part of the argument entails U + V is a π-closed ideal of A, as desired.

(iii)⇒ (iv). For all U, V π-closed ideals of A, by applying (iii) to the π-closed
ideals Ann(U), Ann(V ) we have

Ann(U) + Ann(V ) = Ann(U) + Ann(V ),

and hence

Ann(U) + Ann(V ) = Ann(U ∩ V ) = Ann(U ∩ V ).

(iv) ⇒ (v). For U, V ideals of A, by applying (iv) to the π-closed ideals
Ann(U), Ann(V ) we have

Ann(Ann(U) ∩Ann(V )) = U + V ,

and hence Ann(Ann(U + V )) = U + V , that is U + V = U + V .

(v) ⇒ (i). For every π-closed ideal U of A, by Proposition 1.3, we see that

A = U ⊕Ann(U) = U ⊕Ann(U) = U ⊕Ann(U).

Thus A is a π-complemented algebra.

Now, assume that A satisfies the equivalent conditions in the statement and
suppose that U is a π-closed ideal of A. Since A = U⊕Ann(U), by Theorem 1.10,
we have Iπ

A = {V ⊕W : V ∈ Iπ
U ,W ∈ Iπ

Ann(U)}, and AnnU (I) = Ann(I) ∩ U

and I
U

= I for every ideal I of U . From these last two equalities we see that

U = U ∩A = U ∩ (I ⊕Ann(I)) = I ⊕ (U ∩Ann(I)) = I
U ⊕AnnU (I).

Thus, U is a π-complemented algebra, and the proof is complete.
¤
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Corollary 4.4. Let A be a π-complemented algebra and U be a π-closed ideal
of A. Then

(1) π−Soc(A) = π−Soc(U)⊕π−Soc(Ann(U)) and π−Rad(A) = π−Rad(U)⊕
π−Rad(Ann(U)).

(2) A/U is a π-complemented algebra, Iπ
A/U = {q(V ) : V ∈ `I

π
A(Ann(U))},

π−Soc(A/U) = π−Soc(A)/U , and π−Rad(A/U) = π−Rad(A)/U .

Proof. (1) This assertion follows from Corollary 1.11 because A = U ⊕Ann(U).

(2) Since the decomposition A = U ⊕ Ann(U) gives an isomorphism q′ :
Ann(U) ∼= A/U , the above theorem yields that A/U is a π-complemented alge-
bra, and

Iπ
A/U = {q′(V ) : V ∈ Iπ

Ann(U)} = {q(V ) : V ∈ `I
π
A(Ann(U))},

where q : A → A/U is the quotient map. Moreover, from part (1) we deduce
that

q(π−Soc(A)) = q(π−Soc(Ann(U)))

and
q(π−Rad(A)) = q(π−Rad(Ann(U))).

Since
q(π−Soc(Ann(U))) = q′(π−Soc(Ann(U))) = π−Soc(A/U),

and
q(π−Rad(Ann(U))) = q′(π−Rad(Ann(U))) = π−Rad(A/U),

we conclude that

q(π−Soc(A)) = π−Soc(A/U) and q(π−Rad(A)) = π−Rad(A/U).

¤

Corollary 4.5. If A is a finite-dimensional π-complemented algebra, then A =
π − Soc(A).

Proof. Assume that A 6= 0. Since every descending chain of π-closed ideals
is a chain of subspaces of decreasing dimension, it follows that A has minimal
π-closed ideals. Choose a minimal π-closed ideal B1 of A. If B1 = A, then the
proof is concluded. Otherwise, by Theorem 4.3, A = B1⊕Ann(B1), Ann(B1) is
a nonzero π-complemented algebra, and mπ

A = {B1} ∪mπ
Ann(B1)

. On iterating
the procedure, the finite dimension ensures that in finitely many steps we arrive
at the desired decomposition. ¤

Given a π-complemented algebra A, for each π-closed ideal U of A, the
decomposition A = U ⊕Ann(U) determines a projection PU on A: For each a ∈
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A, PU (a) is the unique element b in U satisfying a−b ∈ Ann(U). Given a family
{Ai}i∈I of π-complemented algebras and a family {Ui}i∈I of π-closed ideals, we
consider the projection P{Ui} on

∏
i∈I Ai given by P{Ui}(ai) = (PUi

(ai)).

Proposition 4.6. Let {Ai}i∈I be a nonempty family of nonzero algebras. As-
sume that A is a subalgebra of

∏
i∈I Ai containing

⊕
i∈I Ai. Then the following

assertions are equivalent:

(i) A is π-complemented.

(ii) Ai is π-complemented for all i ∈ I, and P{Ui}(A) ⊆ A for every family of
π-closed ideals {Ui}i∈I .

(iii) Ai is π-complemented for all i ∈ I, and A = P{Ui}(A) ⊕ P{AnnAi
(Ui)}(A)

for every family of π-closed ideals {Ui}i∈I .

In this case, Iπ
A = {P{Ui}(A) : {Ui}i∈I ∈ F}, where F = {{Ui}i∈I : Ui ∈

Iπ
Ai

for each i ∈ I}.

Proof. (i) ⇒ (ii). Since A is semiprime, by Theorem 3.2, each Ai is semiprime
and Iπ

A = {(∏i∈I Ui) ∩ A : Ui ∈ Iπ
Ai

for each i ∈ I}. Moreover, since each
Ai is a π-closed ideal of A, by Theorem 4.3, Ai is a π-complemented algebra.
Given a family {Ui} with Ui ∈ Iπ

Ai
, keeping in mind Lemma 3.1, we have the

decomposition

A =

[
(
∏

i∈I

Ui) ∩A

] ⊕ [
(
∏

i∈I

AnnAi(Ui)) ∩A

]
,

and as a consequence P{Ui}(A) ⊆ A.

(ii) ⇒ (iii). Let {Ui}i∈I be a family with Ui ∈ Iπ
A. From the definition

of P{Ui}, it is clear that P{Ui}(A) ⊆ ∏
i∈I Ui. Since Ui ∩ AnnAi(Ui) = 0 for

all i ∈ I, we see that (
∏

i∈I Ui) ∩ (
∏

i∈I AnnAi(Ui)) = 0, and consequently
P{Ui}(A) ∩ P{AnnAi

(Ui)}(A) = 0. For a given a = (ai) ∈ A, writing each ai

in the form ai = bi + ci with bi ∈ Ui and ci ∈ AnnAi(Ui), we see that (bi) =
P{Ui}(a) and (ci) = P{AnnAi

(Ui)}(a). Hence a ∈ P{Ui}(A) ⊕ P{AnnAi
(Ui)}(A).

Therefore A ⊆ P{Ui}(A)⊕P{AnnAi
(Ui)}(A). The converse inclusion follows from

the assumption.

(iii) ⇒ (i). Since each Ai is semiprime, by Theorem 3.2.(1),

Iπ
A = {(

∏

i∈I

Ui) ∩A : Ui ∈ Iπ
Ai

for each i ∈ I}.

Given a family {Ui} with Ui ∈ Iπ
Ai

, note that P{Ui}(A) ⊆ ∏
i∈I Ui, and so, as a

consequence of the equality A = P{Ui}(A)⊕ P{AnnAi
(Ui)}(A), we deduce that

A =

[
(
∏

i∈I

Ui) ∩A

] ⊕ [
(
∏

i∈I

AnnAi(Ui)) ∩A

]
.
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Thus, A is π-complemented.

Now, assume that A satisfies the equivalent conditions in the statement.
Given a family {Ui} with Ui ∈ Iπ

Ai
, from the inclusion P{Ui}(A) ⊆ A it is fairly

evident that P{Ui}(A) = (
∏

i∈I Ui)∩A, and hence the description of Iπ
A follows

from the argument used above. ¤

Corollary 4.7. If {Ai}i∈I is a nonempty family of nonzero algebras, then the
following assertions are equivalent:

(i)
∏

i∈I Ai is π-complemented.

(ii)
⊕

i∈I Ai is π-complemented.

(iii) Ai is π-complemented for all i ∈ I.

Theorem 3.5 can be perfected for π-complemented algebras as follows.

Theorem 4.8. For every algebra A the following assertions are equivalent:

(i) A is π-complemented.

(ii) A is isomorphic to A0 ⊕ A1, where A0 is a π-radical π-complemented
algebra and A1 is a π-decomposable π-complemented algebra.

In this case,

A0
∼= π−Rad(A) and A1

∼= π−Soc(A).

Proof. (i) ⇒ (ii). Let A be a π-complemented algebra and set A0 = π−Rad(A)
and A1 = π−Soc(A). Since A0 is a π-closed ideal of A and Ann(A0) = A1,
by Theorem 4.3, it follows that A = A0 ⊕ A1, and both A0 and A1 are π-
complemented algebras which satisfy

Iπ
A0

= `I
π
A(A0) and Iπ

A1
= `I

π
A(A1).

It is clear that mπ
A0

= ∅ and mπ
A1

= mπ
A. Hence A0 is π-radical and A1 is

π-decomposable.

(ii) ⇒ (i). Let A0 be a π-radical π-complemented algebra and let A1 be
a π-decomposable π-complemented algebra. By Corollary 4.7, it follows that
A0 ⊕A1 is a π-complemented algebra. Moreover, by Corollary 1.11, we have

π−Rad(A0 ⊕A1) = π−Rad(A0)⊕ π−Rad(A1) = A0.

By taking annihilators we see that π−Soc(A0 ⊕A1) = A1, and the proof is
complete. ¤
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To conclude this section we give an example of a π-radical π-complemented
algebra. Note that, as a consequence of Corollary 4.5, such an algebra must
necessarily be infinite dimensional. Our example is an algebra of measurable
functions. For the definition and properties of the Lebesgue measure we refer the
reader to the classical book [2] and merely establish some notation. We denote
byM the σ-algebra of all Lebesgue measurable subsets of the unit interval [0, 1],
and by λ : M→ [0, 1] the Lebesgue measure.

We start with the following elemental fact.

Lemma 4.9. For each subset A of [0, 1], there exist A∗, A∗ ∈ M such that
A∗ ⊆ A ⊆ A∗ and λ(E\A∗) = λ(A∗\F ) = 0, for all E,F ∈M with E ⊆ A ⊆ F .

Proof. Set

α = inf{λ(F\E) : E,F ∈M such that E ⊆ A ⊆ F}

and, for each n ∈ N, choose En, Fn ∈ M such that En ⊆ A ⊆ Fn and
λ(Fn\En) ≤ α + 1

n . Now, consider the sets A∗ =
⋃

n∈NEn and A∗ =
⋂

n∈N Fn,
and note that A∗, A∗ ∈M and A∗ ⊆ A ⊆ A∗. Moreover, since A∗\A∗ ⊆ Fn\En

for every n, it follows that

α ≤ λ(A∗\A∗) ≤ λ(Fn\En) ≤ α +
1
n

,

and as a result λ(A∗\A∗) = α. Given E, F ∈ M with E ⊆ A ⊆ F , note
that A∗ ∪ E ⊆ A ⊆ A∗ ∩ F and (A∗ ∩ F )\(A∗ ∪ E) ⊆ A∗\A∗, and hence
λ((A∗ ∩ F )\(A∗ ∪ E)) = α. Moreover, by considering the decomposition

A∗\A∗ = (E\A∗) ∪ [(A∗ ∩ F )\(A∗ ∪ E)] ∪ (A∗\F ),

we see that

α = λ(A∗\A∗) = λ(E\A∗) + λ((A∗ ∩ F )\(A∗ ∪ E)) + λ(A∗\F )

= λ(E\A∗) + α + λ(A∗\F ),

hence λ(E\A∗) = λ(A∗\F ) = 0, and the proof is complete. ¤

Example 4.10. The algebraM of all equivalence classes (under equality almost
everywhere) of Lebesgue measurable functions on [0, 1] with pointwise opera-
tions is a π-radical π-complemented algebra.

ClearlyM is a commutative associative algebra with a unit 1. Given E ∈M,
note that the characteristic function χE is an idempotent ofM, χEχEc = 0, and
1 = χE + χEc , where Ec denotes the complement of E in [0, 1]. Therefore

M = χEM⊕ χEcM. (1)
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By Lemma 4.1, χEM ∈ Iπ
M and Ann(χEM) = χEcM. We claim that

Iπ
M = {χEM : E ∈M}.

Given f ∈ M, consider the measurable set Sf := {x ∈ [0, 1] : f(x) 6= 0}, and
note that f = χSf

f and χSf
= fg, where g is the measurable function defined

by g(x) = f(x)−1 if x ∈ Sf and g(x) = 0 otherwise. Therefore fM = χSf
M.

Note that, for a given π-closed ideal U of M, we have

U = Ann(Ann(U)) = Ann(
∑

f∈Ann(U)

χSf
M)

=
⋂

f∈Ann(U)

Ann(χSf
M) =

⋂

f∈Ann(U)

χSc
f
M.

Therefore
Iπ
M = {

⋂

i∈I

χEi
M : {Ei : i ∈ I} ⊆ M}.

Given a family {Ei : i ∈ I} ⊆ M, it is immediately verified that
⋂

i∈I χEiM =
χEM, where E = (

⋂
i∈I Ei)∗, and so we have proved our claim. Now, from (1)

we can confirm that M is π-complemented. Finally, note that χEM = 0 if, and
only if, λ(E) = 0. Therefore, if U is a nonzero π-closed ideal, and U = χEM
for suitable E ∈ M, then by choosing F ⊆ E with 0 < λ(F ) < λ(E) we see
that χFM is a nonzero π-closed ideal of M strictly contained in U . Thus, M is
π-radical.

5 π-decomposable π-complemented algebras

The aim of this section is to obtain a description theorem for π-decomposable π-
complemented algebras. The main tool is the structure theory of π-decomposable
algebras developed in [4] and [6].

Let us start by determining the relationship between π-closed prime ideals
and π-closed maximal ideals in a semiprime algebra. Recall that an algebra A
is said to be prime if, for ideals U and V of A, the condition UV = 0 implies
either U = 0 or V = 0. An ideal P of an algebra A is said to be a prime ideal
if the quotient algebra A/P is a prime algebra. Clearly P is a prime ideal of A
if, and only if, for ideals U and V of A, the condition UV ⊆ P implies either
U ⊆ P or V ⊆ P . We set

PA := {U : U is a proper prime ideal of A}
and

Pπ
A := {U : U is a proper π-closed prime ideal of A}.
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Proposition 5.1. Let A be a semiprime algebra. Then

(1) PA ⊆ Mπ
A ∪Dπ

A.

(2) Pπ
A = Mπ

A.

Proof. (1) Let P ∈ PA and let U be a π-closed ideal of A such that P ⊆ U .
Since UAnn(U) = 0, it follows that either U ⊆ P or Ann(U) ⊆ P . In the first
case we have U = P . In the second one, we see that Ann(U) ⊆ U , therefore
Ann(U) = 0, and so U = A. In the particular case in which we take U = P ,
the above reasoning shows that P is either π-closed or π-dense. Moreover, in
the case in which P is π-closed, the above reasoning again shows that P is a
maximal π-closed ideal of A.

(2) The inclusion Pπ
A ⊆ Mπ

A follows from (1). In order to prove the opposite
inclusion let us fix a maximal π-closed ideal M of A, and assume that U, V
are ideals of A such that UV ⊆ M . If U * M , then U ∩ Ann(M) 6= 0.
From this, taking into account that Ann(M) is a minimal π-closed ideal of
A, it follows that U ∩Ann(M) = Ann(M). On the other hand, we see that
(U ∩ Ann(M))V ⊆ Ann(M) ∩ M = 0, and hence U ∩ Ann(M) ⊆ Ann(V ).
Therefore, Ann(M) = U ∩Ann(M) ⊆ Ann(V ), and consequently V ⊆ M .
Thus M is a prime ideal of A. ¤

Now we show basic examples of π-decomposable π-complemented algebras.

Corollary 5.2. For a nonnull algebra A the following assertions are equivalent:

(i) A is prime

(ii) Iπ
A = {0, A}.

In this case, A is a π-decomposable π-complemented algebra.

Proof. (i) ⇒ (ii). Clearly A is semiprime and 0 ∈ Pπ
A. By Proposition 5.1, we

have 0 ∈ Mπ
A, and consequently Iπ

A = {0, A}.
(ii) ⇒ (i). Since A is nonnull and Ann(A) ∈ Iπ

A, it follows that Ann(A) = 0.
Let U be an ideal of A such that U2 = 0. Then U ⊆ Ann(U). Since Ann(U) is
π-closed, it follows that either Ann(U) = 0 or Ann(U) = A. In the first case,
we have U = 0. In the second one, we see that U ⊆ Ann(A), and hence we also
have U = 0. Therefore, A is semiprime. Since, by assumption, 0 ∈ Mπ

A, from
Proposition 5.1 it follows that 0 ∈ Pπ

A, and so A is a prime algebra.

Finally, from (ii) it is clear that A is π-decomposable and π-complemented.
¤

31



Corollary 5.3. Let A be a nonzero algebra with zero annihilator. If a minimal
π-closed ideal B of A is a direct summand of A, then B is a prime algebra. In
particular, the minimal π-closed ideals of a π-complemented algebra are prime
algebras.

Proof. Assume that B is a minimal π-closed ideal of A and A = B ⊕ C for
a suitable ideal C of A. Keeping in mind Theorem 1.10.(1)-(2) we see that
Iπ

B = {0, B} and AnnB(B) = 0, and hence B is a nonnull algebra. Thus, B is
a prime algebra by the corollary above. ¤

By combining Theorem 1.10 with the corollaries above we obtain the follow-
ing result.

Corollary 5.4. Let A be a nonzero algebra with zero annihilator. Then the
following assertions are equivalent:

(i) A = π−Soc(A).

(ii) A is isomorphic to a direct sum of a nonempty family of nonzero prime
algebras.

(iii) Iπ
A = {⊕i∈J Bi : J ⊆ I}, where {Bi}i∈I is the family of all minimal

π-closed ideals of A.

In this case, A is a π-decomposable π-complemented algebra.

Proof. (i) ⇒ (ii). This implication follows from the above corollary.

(ii)⇒ (iii). Let {Ai}i∈I be a nonempty family of nonzero prime algebras. By
Corollary 5.2, Iπ

Ai
= {0, Ai} for each i ∈ I. Now, by Theorem 1.10.(3), we see

that Iπ
⊕i∈IAi

= {⊕i∈J Ai : J ⊆ I}, and in particular mπ
⊕i∈IAi

= {Ai : i ∈ I}.
(iii) ⇒ (i). This implication is clear.

Finally, assume that A is an algebra satisfying the equivalent conditions in
the statement. From (iii) it is clear that A is π-decomposable and π-complemen-
ted. ¤

Corollary 5.5. For K = R or C, the algebra c00 of all quasi-null sequences is
a π-decomposable π-complemented algebra such that c00 = π−Soc(c00).

Let us turn our attention to the structure theory for π-decomposable alge-
bras. We begin with the following elemental fact.
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Lemma 5.6. Let A be a semiprime algebra. If {Bj}j∈J is a nonempty family
of minimal π-closed ideals of A, then

∑
j∈J Bj = ⊕j∈JBj, and ⊕j∈J\{j0}Bj ⊆

Ann(Bj0) for every j0 ∈ J .

Proof. Fix j0 ∈ J and note that Bj0 ∩ Bj = 0, and hence Bj0Bj = 0, for
all j ∈ J with j 6= j0. Therefore, we have Bj0(

∑
j∈J\{j0}Bj) = 0. From

the semiprimeness of A it follows that
∑

j∈J\{j0}Bj ⊆ Ann(Bj0) and Bj0 ∩
(
∑

j∈J\{j0}Bj) = 0. By running j0 ∈ J we conclude that
∑

j∈J Bj = ⊕j∈JBj .
¤

The next statement collect the structure theory of π-decomposable algebras,
including Yood’s π-decomposition theorem proved in [6, Theorem 6.3] for the
more general context of pseudocomplemented lattices, and the description the-
orem for π-decomposable algebras proved in [4, Theorem 4.1]. We will give a
proof of these results for the sake of completeness. Recall that a nonzero algebra
A with zero annihilator is called π-atomic if each nonzero π-closed ideal of A
contains a minimal π-closed ideal.

Theorem 5.7. Let A be a nonzero algebra with zero annihilator. Then the
following assertions are equivalent:

(i) A is π-decomposable.

(ii) A is semiprime and π-atomic.

(iii) A is an essential subdirect product of a nonempty family of nonzero prime
algebras.

(iv) Iπ
A = {⊕i∈JBi : J ⊆ I}, where {Bi}i∈I is the family of all minimal

π-closed ideals of A.

Proof. (i) ⇒ (ii). Let U be a π-closed ideal of A. Write mπ
A = {Bi : i ∈ I}.

If Bi * U for all i, then, by minimality of Bi, we have Bi ∩ U = 0, and so
Bi ⊆ Ann(U) for all i. As a result,

A =
∑

i∈I

Bi ⊆ Ann(U).

Therefore U ⊆ Ann(A), and so U = 0. Thus, A is π-atomic.
In order to prove that A is semiprime we begin by noting that B2

i 6= 0 for
all i ∈ I. Indeed, if there exists i0 ∈ I such that B2

i0
= 0, then

Bi0 ⊆ Ann

(∑

i∈I

Bi

)
= Ann

(∑

i∈I

Bi

)
= Ann(A) = 0,
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and so Bi0 = 0, which is a contradiction. Now, assume the existence of a
nonzero ideal U of A such that U2 = 0. From the equality U2 = 0, it follows
that U ⊆ Ann(U), therefore U

2 ⊆ UAnn(U) = 0, and hence U
2

= 0. Since A
is π-atomic, there exists i0 ∈ I such that Bi0 ⊆ U , and in this way we find the
contradiction B2

i0
= 0. Thus A is semiprime.

(ii) ⇒ (iii). Let us write mπ
A = {Bi : i ∈ I}. From Proposition 5.1.(2) it

follows that each Ann(Bi) is a prime ideal of A, and so Ai := A/Ann(Bi) is
a prime algebra. For each i ∈ I, let qi : A → Ai be the quotient map, and
consider the map f : A → ∏

i∈I Ai given by f(a) = (qi(a)). It is clear that f is
an algebra homomorphism. Moreover,

ker(f) =
⋂

i∈I

ker(qi) =
⋂

i∈I

Ann(Bi),

and hence Bi * ker(f) for all i ∈ I. Since A is π-atomic, it follows that ker(f) =
0, and so f is an isomorphism from A onto f(A). Clearly qi(A) = Ai, and hence
we have that A is a subdirect product of the family {Ai}i∈I . Moreover, taking
into account Lemma 5.6, we see that

⊕

i∈I

qi(Bi) = f(
⊕

i∈I

Bi) ⊆ f(A).

Since qi(Bi) is a nonzero ideal of the prime algebra Ai, it follows that qi(Bi) is
an essential ideal of Ai, and, taking into account Theorem 3.2.(4), we conclude
that A is an essential subdirect product of the family {Ai}i∈I .

(iii) ⇒ (iv). Assume the existence of a nonempty family of nonzero prime
algebras {Ai}i∈I such that A can be seen as an essential subalgebra of

∏
i∈I Ai

satisfying pi(A) = Ai. Taking into account Corollary 5.2, from Theorem 3.2.(1)
we have

Iπ
A = {(

∏

i∈J

Ai) ∩A : J ⊆ I}.

Therefore, {Ai ∩ A : i ∈ I} is the family of all minimal π-closed ideals of A.
For a fixed subset J of I, it is clear that (

∏
i∈J Ai) ∩A is the smallest π-closed

ideal of A containing
⊕

i∈J(Ai ∩A), and so
⊕

i∈J(Ai ∩A) = (
∏

i∈J Ai) ∩A.

(iv) ⇒ (i). This implication is obvious.
¤

Since every finite dimensional algebra with zero annihilator is π-atomic, we
have the following consequence.

Corollary 5.8. For every finite dimensional algebra A with zero annihilator
the following assertions are equivalent:

(i) A is π-decomposable.
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(ii) A is semiprime.

π-decomposable (even finite-dimensional) algebras may not be π-comple-
mented. The specific algebra A in Example 1.14 is such an example. An infinite
dimensional example is provided by the algebra c of all convergent sequences
over K = R or C. Note that mπ

c = {Bi : i ∈ N} and c =
⊕

i∈NBi, where

Bi = {{an} : an = 0 for all n 6= i}.

Thus c is π-decomposable. However, c is not π-complemented because

U = {{an} ∈ c : a2n = 0 for all n ∈ N}

is a π-closed ideal of c with

Ann(U) = {{an} ∈ c : a2n−1 = 0 for all n ∈ N}

and c 6= U ⊕Ann(U).

Given a family of algebras {Ai}i∈I , for each J ⊆ I, we consider the block-
projection pJ :

∏
i∈I Ai →

∏
i∈I Ai given by pJ(ai) = (bi), where bi = ai if i ∈ J

and bi = 0 otherwise.
Our main result in this section is the following description theorem.

Theorem 5.9. Let A be a nonzero algebra. Then the following assertions are
equivalent:

(i) A is π-decomposable π-complemented.

(ii) There exists a nonempty family of nonzero prime algebras {Ai}i∈I such
that A can be regarded as a subalgebra of

∏
i∈I Ai containing

⊕
i∈I Ai, and

pJ(A) ⊆ A for all J ⊆ I.

In this case, Iπ
A = {pJ(A) : J ⊆ I}.

Proof. (i) ⇒ (ii). By Theorem 5.7, there exists a nonempty family of nonzero
prime algebras {Ai}i∈I and an essential ideal D of

∏
i∈I Ai such that A can

be regarded as a subalgebra of
∏

i∈I Ai containing D, and pi(A) = Ai for all
i ∈ I. It is clear that Di := D ∩Ai is an essential ideal of Ai for each i ∈ I. By
Theorem 3.2.(1), Iπ

A = {(∏i∈I Ui) ∩ A : Ui ∈ Iπ
Ai

for each i ∈ I}. Since A is
π-complemented, keeping in mind Lemma 3.1.(1), for each i0 ∈ I we have the
decomposition

A = [Ai0 ∩A]
⊕


(

∏

i∈I\{i0}
Ai) ∩A


 .
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Therefore Ai0 = pi0(A) = Ai0 ∩A, and hence Ai0 ⊆ A. Thus, ⊕i∈IAi ⊆ A. For
a given subset J of I, note that pJ = P{Ui} for the family {Ui} where Ui = Ai

for i ∈ J and Ui = 0 otherwise. By Proposition 4.6, it follows that pJ(A) ⊆ A.

(ii) ⇒ (i). By Theorem 3.2, A is semiprime. Now, by Theorem 5.7, A is
π-decomposable. Moreover, keeping in mind Corollary 5.2, by Proposition 4.6
we conclude that A is π-complemented and Iπ

A = {pJ(A) : J ⊆ I}. ¤

The following immediate consequence can also be deduced from Theorem
4.3 and Corollary 2.12.

Corollary 5.10. Every nonzero π-closed ideal of a π-decomposable π-comple-
mented algebra is a π-decomposable π-complemented algebra.

Another consequences of Theorem 5.9 are the following:

Corollary 5.11. The direct product of a family of prime algebras is a π-
decomposable π-complemented algebra.

Corollary 5.12. For K = R or C, the following algebras are examples of π-
decomposable π-complemented algebras:

(1) The algebra c0 of all null sequences.

(2) The algebra `p (1 ≤ p < ∞) of all absolutely p-summable sequences.

(3) The algebra `∞ of all bounded sequences.
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[5] A. Fernández and A. Rodŕıguez, A Wedderburn theorem for nonasso-
ciative complete normed algebras, J. London Math. Soc. 33 (1986), 328-338.

36



[6] A. Fernández and M. I. Tocón, Pseudocomplemented semilattices,
boolean algebras, and compatible products, J. Algebra 242 (2001), 60-91.

[7] N. J. Laustsen, R. J. Loy, and Ch. J. Read, The lattice of closed
ideals in the Banach algebra of operators on certain Banach spaces. J.
Funct. Anal. 214 (2004), 106-121. Erratum 220 (2005), 240-241.

[8] B. Sari, Th. Schlumprecht, N. Tomczak-Jaegermann, and V. G.
Troitdky, On norm closed ideals in L(`p, `q). Studia Math. 179 (2007),
239-262.

[9] K. White, Amenability and ideal structure of some Banach sequence al-
gebras. J. London Math. Soc. 68 (2003), 444-460.

[10] B. Yood, Closed prime ideals in topological rings. Proc. London Math.
Soc. 24 (1972), 307-323.

37


