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Abstract. A well-known theorem due to Zelmanov proves that a Lie PI-algebras with an
algebraic adjoint representation over a field of characteristic zero is locally finite-dimensional.
In particular, a Lie algebra (over a field of characteristic zero) whose adjoint representation
is algebraic of bounded degree is locally finite-dimensional.

Using recent results on Jordan structures in Lie algebras, we prove in this paper a propo-
sition from which Zelmanov’s theorem for Lie PI-algebras with an algebraic adjoint repre-
sentation over an algebraically closed field of characteristic zero, and its corollary for Lie
algebras with an algebraic adjoint representation of bounded degree (over an arbitrary field
of characteristic zero) are easily derived.

1. Introduction

In [17], Zelmanov proves [17, Theorem 1] that a Lie algebra L over a field of characteristic
zero with an algebraic adjoint representation is locally finite-dimensional, provided it satisfies
a a polynomial identity, thus yielding a solution of the Kurosh problem for Lie algebras. As
a corollary he obtains [17, Theorem 2] that a Lie algebra over a field of characteristic zero
with an algebraic adjoint representation of bounded degree is locally finite-dimensional. In
this note we prove:

Proposition 5.2. Let L̃ be a nondegenerate Lie algebra over an algebraically closed field Φ
of characteristic zero, and let L be a Φ-subalgebra L̃, where Φ is a subfield of Φ, such that
L has an algebraic adjoint representation and L̃ is Φ-spanned by L. Suppose that one of the
following two conditions holds:

(i) Φ = Φ and L = L̃ satisfies a polynomial identity.
(ii) The algebraic adjoint representation of L is of bounded degree.

Then L̃ is a subdirect product of a family of finite-dimensional simple Lie algebras of bounded
dimension. As a consequence, L̃ satisfies all the identities which hold in some finite-dimensional
Lie algebra.

This result enables us to shorten and simplify the proof of [17, Theorem 1] under the
additional assumption that Φ is algebraically closed, and it also provides an independent proof
of [17, Theorem 2]. To be more precise, let us give a brief outline of Zelmanov’s original
proof of [17, Theorem 1] and comment on the changes and new tools we use in the proof
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of Proposition 5.2. First Zelmanov observes that it suffices to prove that if in addition L is
nondegenerate (ad2

xL = 0 ⇒ x = 0, x ∈ L) and nonzero, then L contains a nonzero locally
finite-dimensional ideal. Then the proof splits into two cases. If L is Engel, that is, any
element of L is ad-nilpotent, he proves [17, Proposition 1] that L is locally nilpotent, so he
can assume that L contains a non-Engel element, say a. Then he takes an algebraically closed
extension F of Φ of sufficiently large cardinality, makes the scalar extension L ⊗Φ F , and
takes the quotient algebra of L ⊗Φ F by its Kostrikin radical, thus obtaining a Lie algebra
L (over an algebraically closed field which is large for L) which is nondegenerate, satisfies a
polynomial identity, and has a nontrivial finite grading (that induced by the non-Engel element
a). Moreover, he proves that L can be embedded in L. At this point the proof becomes quite
involved. Let Lα be an extreme subspace of the grading in L defined by ada. From the fact
that L satisfies a polynomial identity, he derives that the Jordan pair V = (Lα, L−α) is PI.
Moreover, V is nondegenerate, and since F is large for V , it follows from [17, Theorem JP1
and Lemma JP1] that V is actually a semiprimitive Jordan pair. By using deep results on
Lie algebras with finite gradings (the most difficult part of the paper [17, pages 543-548]) and
after a skilful manipulation of the primitive ideals of V , Zelmanov then proves: (i) the ideal
I of L generated by Lα can be embedded in a subdirect product of a family of simple Lie
algebras of finite bounded dimension, and (ii) L intersects I nontrivially. Hence he obtains a
nonzero ideal, L∩ I, of L that satisfies all the identities which hold in some finite-dimensional
Lie algebra. The last step of the proof is the following result of independent interest [17,
Lemmas 5, 6 and 7] (or [11, Theorem 5.4.6]): A Lie algebra (over a field of characteristic zero)
with an algebraic adjoint representation and satisfying all the identities that hold in some
finite-dimensional Lie algebra is locally finite-dimensional.

By applying a recent result proved in [7, Theorem 3.10] (actually this result, at least in its
germinal state, could be attributed to Zelmanov himself), we reduce the proof of Proposition
5.2 to the case that L̃ is prime. Then, as a consequence of the Kostrikin lemma (in the Engel
case) and of the existence of a nontrivial finite grading (in the non-Engel case), we obtain
that L̃ contains a nonzero Jordan element, i.e., there exists a nonzero element x in L̃ such
that, (ad3

xL̃ = 0). Then we consider the Jordan algebra L̃x of L̃ at x [4]. This Jordan algebra
inherits primeness and nondegeneracy from L̃. Moreover, we manage to prove that L̃x satisfies
a polynomial identity which is not an s-identity, i.e., L̃x is a Jordan PI-algebra, and, what is
the most striking fact, that L̃x is an algebraic Jordan algebra (Proposition 4.2(iii) and Lemma
5.1). Using the structure theory of Jordan PI-algebras [16], and the transference of inner
ideals from L̃x to L̃ [4], we obtain that L̃ contains an extremal element, say y, (adyL̃ = Φy).
Then the socle of L̃ [3] is a locally finite-dimensional simple Lie algebra, and since L̃ satisfies
a polynomial identity, Soc L̃ is actually finite-dimensional, its dimension being bounded by a
a number depending only of the degree of the polynomial identity. Hence L̃ = Soc L̃, since
any derivation of a simple finite-dimensional Lie algebra over a field of characteristic zero is
inner.

2. Lie algebras and Jordan algebras

1. Throughout this note, and unless specified otherwise, we will be dealing with Lie algebras L
[9] and [10], with [x, y] denoting the Lie bracket and adx the adjoint map determined by x, and
with linear Jordan algebras J [12], with Jordan product x·y, multiplication operators mx : y 7→
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x · y, quadratic operators Ux = 2m2
x−mx2 , and triple product {x, y, z} = Ux+zy−Uxy−Uzy,

over a field Φ of characteristic 0. We set

[x1] := x1 and [x1, x2, . . . , xn] := [x1, [x2, . . . , xn]]

for n > 1 and x1, x2, . . . , xn ∈ L. Similarly, we set

x1 · x2 · · ·xn := x1 · (x2 · · ·xn)

for n > 1 and x1, x2, . . . , xn ∈ J.
Any associative algebra A gives rise to a Lie algebra A−, with Lie bracket [x, y] := xy− yx,

and a linear Jordan algebra A+, with Jordan product x · y := 1/2(xy + yx). A Jordan algebra
J is said to be special if it is isomorphic to a subalgebra of A+ for some associative algebra A.

2. An inner ideal of J is a vector subspace B of J such that UBJ ⊆ B. Similarly, an inner
ideal of L is a vector subspace B of L such that [B, [B, L]] ⊆ B. An abelian inner ideal of L
is an inner ideal B which is also an abelian subalgebra, i.e., [B, B] = 0.

3. An element x ∈ L is called Engel if adx is a nilpotent operator. In this case, the nilpotence
index of adx is called the index of x. Engel elements of index at most 3 are called Jordan
elements. Clearly, any element of an abelian inner ideal is a Jordan element. Conversely, by
[2, Lemma 1.8], any Jordan element x generates the abelian inner ideal ad2

xL. A good reason
for this terminology is the following analogue of the fundamental identity for Jordan algebras:

ad2
ad2

xy
= ad2

xad2
yad2

x

which holds for any Jordan element x and any y ∈ L [2, Lemma 1.7(iii)]. Another reason will
be given Section 4.

4. A well-known lemma due to Kostrikin [11, Lemma 2.1.1] provides a method to construct
Jordan elements by means of Engel elements. Under our assumption that the ground field Φ
is of characteristic 0, this result reads as follows: If x ∈ L is an Engel element of index n then,
for any a ∈ L, adn−1

x a is Engel of index ≤ n− 1. Recently, Garćıa and Gómez have given the
following refinement of this result [6, Theorem 2.3 and Corollary 2.4].

Lemma 2.1. If x ∈ L is an Engel element of index n, then adn−1
x L is an abelian inner ideal

of L. Hence, adn−1
x a is a Jordan element for any a ∈ L.

5. Let Λ be a torsion free abelian group and let L be a Lie algebra. A Λ-grading L =
∑

λ∈Λ Lλ

of L is said to be finite if the set Λ∗ = {λ ∈ Λ : Lλ 6= 0} is finite, and nontrivial if Λ∗ contains
a nonzero element. Notice that if a Λ-grading is finite and nontrivial, then the subgroup
G = G(Λ∗) of Λ generated by Λ∗ is free of finite rank, and therefore it is isomorphic to Zr for
some positive integer r.

Proposition 2.2. Let L be a Lie algebra with a nontrivial finite Λ-grading. Then L contains
a nonzero Jordan element.

Proof. Take a basis {λ1, . . . , λr} of G such that for some α ∈ Λ∗, α = nα1λ1 + . . . + nαrλr

with nα1 6= 0, and let π : G → Z be the homomorphism defined by putting π(λ1) = 1 and
π(λi) = 0 for 1 < i ≤ r. We may also assume that |π(β)| ≤ |π(α)| (β ∈ Λ∗). Then any x ∈ Lα

is a Jordan element: for any β ∈ Λ∗, ad3
xLβ ⊆ L3α+β = 0 since |π(3α + β)| > |π(α)|. ¤
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Corollary 2.3. Let L be a Lie algebra over an algebraically closed field Φ of characteristic
zero. If L has a nonzero element whose adjoint is algebraic, then L contains a nonzero Jordan
element.

Proof. Let a be a nonzero element of L such that ada is algebraic. If a is Engel of index, say
n, we have by Lemma 2.1 that adn−1

a b is a nonzero Jordan element for some b ∈ L. Otherwise,
by [9, Lemma 2.4.2(B)], ada yields a nontrivial finite (Φ, +)-grading on L given by

Lλ = {x ∈ L : (ada − λ1L)mx = 0 for some m ≥ 1},
with Lλ = 0 if λ ∈ Φ is not an eigenvalue of ada. By Proposition 2.2, L contains a nonzero
Jordan element. ¤
6. An element x ∈ J is called an absolute zero divisor if Ux = 0. We say J is nondegenerate

if it has no nonzero absolute zero divisors, semiprime if B2 = 0 implies B = 0, and prime
if B · C = 0 implies B = 0 or C = 0, for any ideals B, C of J . Similarly, given a Lie
algebra L, x ∈ L is an absolute zero divisor of L if ad2

x = 0 (for Lie algebras over a field
of characteristic 2, standard definition of absolute zero divisor or cover of a thin sandwich
requires ad2

x = adxadyadx = 0, y ∈ L); L is nondegenerate if it has no nonzero absolute zero
divisors, semiprime if [B, B] = 0 implies B = 0, and prime if [B, C] = 0 implies B = 0 or
C = 0, for any ideals B, C of L. Simplicity, for both Jordan and Lie algebras, means nonzero
product and the absence of nonzero proper ideals.

7. A Jordan or Lie algebra is called strongly prime if it is prime and nondegenerate. The
following elmental characterizations of strong primeness for Lie algebras L and Jordan algebras
J were proved in [5, Theorems 1.6 and 2.3]:

(i) L is strongly prime if and only if for every x, y ∈ L such that [x, [y, L]] = 0 we have
that x = 0 or y = 0.

(ii) J is strongly prime if and only if for every x, y ∈ J such that {x, J, y} = 0 we have
that x = 0 or y = 0.

8. Following [11, Definition 5.4.1], the smallest ideal of a Lie algebra L whose associated
quotient algebra is nondegenerate is called the Kostrikin radical of L, denoted by K(L). Put
K0(L) = 0 and let K1(L) be the ideal generated by all absolute zero divisors. Using transfinite
induction, a nondecreasing chain of ideals Kα(L) is defined by putting Kα(L) =

⋃
β<α Kβ(L)

if α is a limit ordinal, and Kα(L)/Kα−1(L) = K1(L/Kα−1(L)) otherwise. It is obvious that
K(L) =

⋃
α Kα(L). The Jordan counterpart of the Kostrikin radical is the McCrimmon

radical (also called degenerate radical) Mc(J) [12, page 92].

The following result, proved by Grishkov in [8], can be found translated to English in [11,
Theorem 5.4.2].

Theorem 2.4. Let L be a Lie algebra over a field of characteristic zero. Then K1(L) is locally
nilpotent. Hence, simple Lie algebras over a field of characteristic zero are nondegenerate.

The following characterization of the Kostrikin radical was proved in [7, Theorem 3.10].

Theorem 2.5. The Kostrikin radical K(L) of a Lie algebra L over a field of characteristic
zero is the intersection of all strongly prime ideals of L. Therefore, L is nondegenerate if, and
only if, it is a subdirect product of strongly prime Lie algebras.
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9. The socle of a Jordan algebra is the sum of all its minimal inner ideals [13]. The socle of a
Lie algebra L, SocL, is defined as the sum of all minimal inner ideals of L [3]. By [13, Theorem
17] (for Jordan algebras) and [3, Theorem 2.5] (for Lie algebras), the socle of a nondegenerate
Jordan algebra (Lie algebra) is the direct sum of its minimal ideals, each of which is a simple
Jordan algebra (Lie algebra).

10. Let L be a Lie algebra over a field Φ. Recall that a nonzero element x ∈ L is said to be
extremal if ad2

xL = Φx, that is, if it generates a one-dimensional inner ideal.

11. The adjoint representation of a Lie algebra L is said to be algebraic if adx is an algebraic
operator for each x in L. It was proved in [14] that a Lie algebra whose adjoint representation
is algebraic contains a maximal locally finite-dimensional ideal and the quotient algebra over
this ideal has no nonzero locally finite-dimensional ideals. A similar result also holds for Engel
Lie algebras (any element is Engel) with respect to the so-called locally nilpotent radical.

3. Polynomial identities

Let L(X) denote the free Lie Φ-algebra over a countable set of indeterminates X. By using
the Jacobi identity, we see that any monomial of L(X) can be written as a linear combination
of standard monomials [xi1 , . . . , xim ] (see (1) for notation). For each positive integer n, let Sn

denote the set of all permutations of 1, . . . , n.

Lemma 3.1. Let n be a positive integer. Then there exists a function fn : Sn → {0, 1,−1}
such that, for any x1, . . . , xn, xn+1 in X,

ad[x1,...,xn]xn+1 =
∑

σ∈Sn

fn(σ)[xσ(1), . . . , xσ(n), xn+1].

Proof. By induction on n. The case n = 1 is trivial. Now

ad[x1,x2,...,xn+1]xn+2 = ad[x1,[x2,...,xn+1]]xn+2 = adx1ad[x2,...,xn+1]xn+2 − ad[x2,...,xn+1]adx1xn+2.

Hence, by the induction hypothesis,

ad[x1,...,xn+1]xn+2 =
∑

σ∈Sn

fn(σ)[x1, xσ(1)+1, . . . , xσ(n)+1, xn+2]

−
∑

σ∈Sn

fn(σ)[xσ(1)+1, . . . , xσ(n)+1, x1, xn+2]

=
∑

τ∈Sn+1

fn+1(τ)[xτ(1), . . . , xτ(n+1), xn+2].

where fn is defined inductively by

fn+1(τ) =





0 if τ(1) 6= 1 and τ(n + 1) 6= 1
fn(σ) if τ(1) = 1 and σ ∈ Sn is defined by σ(i) = τ(i + 1)− 1
−fn(σ) if τ(n + 1) = 1 and σ ∈ Sn is defined by σ(i) = τ(i)− 1

¤
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Let p = p(x1, . . . , xn) be an element of a free Lie Φ-algebra L(X). We say that a Lie
algebra L satisfies the identity p = 0 if p(a1, . . . , an) = 0 for any a1, . . . , an in L. A Lie algebra
satisfying a nontrivial polynomial identity is called a Lie PI-algebra.

Proposition 3.2. Any Lie PI-algebra L satisfies a multilinear identity p = 0, where

p(x1, . . . , xn, xn+1) =
∑

σ∈Sn

ασ[xσ(1), . . . , xσ(n), xn+1] (ασ ∈ Φ).

Proof. As pointed out above, we may assume that L satisfies a polynomial identity p =
0, where p is a linear combination of standard monomials [xi1 , . . . , xim ]. Moreover, by [18,
Corollary of Theorem 1.5.7], we can assume that p is multilinear. Finally, by Lemma 3.1, we
can replace p by a polynomial having the required form. ¤

Recall that a Jordan polynomial p = p(x1, . . . , xn) of the free Jordan Φ-algebra J(X) is
said to be an s-identity if it is satisfied by all special Jordan algebras, but not by all Jordan
algebras. A Jordan algebra J satisfying a polynomial identity which is not an s-identity is
called a Jordan PI-algebra.

Proposition 3.3. A nonzero Jordan polynomial of the form

p(x1, . . . , xn, xn+1) =
∑

σ∈Sn

ασxσ(1) · · ·xσ(n) · xn+1 (ασ ∈ Φ)

is never an s-identity.

Proof. By relabeling the variables we may assume that ασ = 1 for σ = Id. Let Y = {y1, y2, . . .}
be a countable set. Denote by S the free semigroup generated by Y ∪{0} satisfying the relations
yiyj = 0 (j 6= i + 1) and yi0 = 0yi = 0 (i ≥ 1). Let A be the associative algebra defined by
taking S − {0} as a basis. It is easy to verify that 2np(y1, . . . , yn, yn+1) = y1 . . . ynyn+1 6= 0.
Thus the special Jordan algebra A+ does not satisfies the identity p(x1, . . . , xn, xn+1) = 0,
and therefore p(x1, . . . , xn, xn+1) is not an s-identity. ¤

4. The Jordan algebras of a Lie algebra

In [4] a Jordan algebra was attached to any Jordan element of a Lie algebra. As will be
proved in the propositions below, many properties of a Lie algebra can be transferred to its
Jordan algebras, as well as the nature of the Jordan element in question is reflected on the
structure of the attached Jordan algebra. These facts turn out to be crucial for applications
of Jordan theory to Lie algebras.

Proposition 4.1. Let a be a Jordan element of a Lie algebra L over a field Φ of characteristic
6= 2, 3. Then L with the new product defined by x ·a y := 1

2 [[x, a], y] is a nonassociative algebra
denoted by L(a), such that

(i) KerLa := {x ∈ L : [a, [a, x]] = 0} is an ideal of L(a).
(ii) La := L(a)/KerLa is a Jordan algebra, called the Jordan algebra of L at a.

Proof. [4, Theorem 2.4]. ¤
Proposition 4.2. Let a be a Jordan element of a Lie algebra L.

(i) If L is nondegenerate (strongly prime), then La is nondegenerate (strongly prime).
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(ii) If every element of L is Engel, then La is nil.
(iii) If L has an algebraic adjoint representation, then La is algebraic.
(iv) If L is PI, then La is PI.

Proof. Inheritance of nondegeneracy (strong primeness) was proved in [4, Proposition 2.15(i)]
([5, Theorem 2.2(i)]); (ii) and (iii) are consequence of the identity xn = (1/2)n−1adn−1

[x,a]x, which
holds for any x ∈ L and any positive integer n, with x → x denoting the linear mapping of
L onto La. It only remains to prove (iv). By Proposition 3.2, L satisfies a multilinear p = 0,
where

p(x1, . . . , xn, xn+1) =
∑

σ∈Sn

ασ[xσ(1), . . . , xσ(n), xn+1].

By replacing each xi by [xi, a] and multiplying by (1/2)n we obtain that the Jordan polynomial

q(x1, . . . , xn, xn+1) =
∑

σ∈Sn

ασxσ(1) · · ·xσ(n) · xn+1

vanishes on La. Since by Proposition 3.3 this polynomial is not an s-identity, La is PI. ¤
Proposition 4.3. Let L be a nondegenerate Lie algebra with an algebraic adjoint represen-
tation over an algebraically closed field Φ of characteristic zero. Then any abelian minimal
inner ideal B of L is one-dimensional, so any nonzero element of B is extremal

Proof. Let x be a nonzero element of B. Then ad2
xL = B and x is a Jordan element of L. By

[4, (2.14)] together with the minimality of B, the Jordan algebra Lx of L at x has no nonzero
proper inner ideals, that is, it is a division Jordan algebra, and by [4, Proposition 2.15(ii)],
any y ∈ L such that [[x, y], x] = 2x yields the identity element y of Lx. Since Lx is algebraic
(Proposition 4.2) and Φ is algebraically closed, L = Lx = Φy. Hence B = ad2

xL = Φx. ¤

5. Main results

Given a subset X of a Lie algebra L, we will write ΦX to denote the Φ-subspace of L
spanned by X.

Lemma 5.1. Let L̃ be a Lie algebra over a field Φ of characteristic zero, and let L be a Φ-
subalgebra of L̃, where Φ is a subfield of Φ, such that L̃ = ΦL and L has an algebraic adjoint
representation of bounded degree. Then for any Jordan element a of L̃ the Jordan algebra L̃a

is algebraic.

Proof. Let a be a Jordan element of of L̃ and let y be an arbitrary element of L̃. In virtue
of the formula ym = 1/2m−1adm−1

[y,a] y , m ≥ 1, proving that y is an algebraic element of L̃a is
equivalent to seeing that the set {ads

[y,a]y | s ≥ 0} is linearly dependent over Φ.
Write a as a = α1a1 + . . . + αkak, where αi ∈ Φ and ai ∈ L, and let x be an arbitrary

element of L. For every s ≥ 1 and β1, . . . , βk ∈ Φ, we have

ads
[x,β1a1+...+βkak]x = (β1ad[x,a1] + . . . + βkad[x,ak])

sx =
∑

{i1,...,is},
1≤i1≤i2≤...≤is≤k

βi1 · · ·βis

( ∑

σ∈Ss

ad[x,aiσ(1)
] · · · ad[x,aiσ(s)

]

)
x .
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Since Φ is infinite, for each s ≥ 1 we can find a finite subset Ts of Φ such that the finite-
dimensional Φ-subspace of L spanned by all the elements ads

[x,γ1a1+...+γkak]x, γ1, . . . , γk ∈ Ts,
contains all the elements( ∑

σ∈Ss

ad[x,aiσ(1)
] · · · ad[x,aiσ(s)

]

)
x (1 ≤ i1 ≤ . . . ≤ is ≤ k) .

Hence we get that the sets {ads
[x,β1a1+...+βkak]x | (β1, . . . , βk) ∈ Φk},

{ads
[x,θ1a1+...+θkak]x | (θ1, . . . , θk) ∈ T k

s } and {ads
[x,γ1a1+...+γkak]x | (γ1, . . . , γk) ∈ Φk}

span the same (finite-dimensional) Φ-subspace W (x, s) of L̃.
Note also that we can choose the finite subset Ts on the base of standard ideas connected

with Vandermonde determinant. Hence we can assume that the number of elements of Ts is less
than or equal to some integer l(s, k), l(s, k) ≤ (s + 1)k, and, therefore, dimΦ W (x, s) ≤ l(s, k).

Since L has an algebraic adjoint representation of bounded degree, say n, it follows that for
all s ≥ n,

W (x, s) ⊆
n−1∑

t=0

W (x, t).

Hence the Φ-subspace W (x) of L̃ spanned by the set

{ads
[x,β1a1+...+βkak]x | (β1, . . . , βk) ∈ Φk

, s ≥ 0}
has finite-dimension, with dimΦ W (x) ≤ 1 + l(1, k) + . . . + l(n− 1, k).

In particular, it follows that the Φ-subspace U(x) of W (x) spanned by all the elements

ads
[x,a]x = ads

[x,α1a1+...+αkak]x (s ≥ 0) ,

has finite dimension, with dimΦ U(x) ≤ d, where d is a positive integer depending on the
degree n of the algebraic adjoint representation of L and on the number k determined by the
chosen representation of the Jordan element a, but which is independent of the element x. In
fact, since ads

[x,a]x = adt
[x,a]ads−t

[x,a]x for any positive integers s, t such that s ≥ t, we have that

U(x) =
d−1∑

t=0

Φ adt
[x,a]x (?)

Now let y be an arbitrary element of L̃. We can write y = ψ1y1 + . . . + ψlyl, where ψi ∈ Φ
and yi ∈ L. For every t ≥ 1 and (φ1, . . . , φl) ∈ Φl, we have the equation

adt
[φ1y1+...+φlyl,a](φ1y1 + . . . + φlyl) = (φ1ad[y1,a] + . . . + φlad[yl,a])

t(φ1y1 + . . . + φlyl) =
∑

{i1,...,it+1},
1≤i1≤i2≤...≤it+1≤l

φi1 · · ·φit+1

( ∑

σ∈St+1

(ad[yiσ(1)
,a] · · · ad[yiσ(t)

,a])yiσ(t+1)

)
.

Set V0 = Φy1 + . . . + Φyl. Using the same arguments as before, we can find for each t ≥ 1 a
finite subset Ht of Φ such that the finite-dimensional Φ-subspace of L̃ spanned by the elements
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adt
[τ1y1+...+τlyl,a](τ1y1 + . . . + τlyl), (τ1, . . . , τl) ∈ H l

t , contains all the elements
∑

σ∈St+1

(ad[yiσ(1)
,a] · · · ad[yiσ(t)

,a])yiσ(t+1)
(1 ≤ i1 ≤ . . . ≤ it+1 ≤ l) .

Hence the subsets {adt
[τ1y1+...+τlyl,a](τ1y1 + . . . + τlyl) | (τ1, . . . , τl) ∈ H l

t},
{adt

[v,a]v | v ∈ V0} and {adt
[w,a]w | w ∈ ΦV0}

span the same (finite-dimensional) Φ-subspace Vt of L̃. In particular, for each s ≥ 0 there
exists v1, . . . vrs ∈ V0 such that ads

[y,a]y ∈
∑rs

j=1 U(vj), and hence, by (?),

ads
[y,a]y ∈

rs∑

j=1

U(vj) ⊆
rs∑

j=1

(d−1∑

t=0

Φadt
[vj ,a]vj

)
=

d−1∑

t=0

( rs∑

j=1

Φadt
[vj ,a]vj

) ⊆
d−1∑

t=0

Vt .

Since each Vt is a finite-dimensional Φ-subspace of L̃, the set {ads
[y,a]y | s ≥ 0} is linearly

dependent over Φ, as required. ¤

Proposition 5.2. Let L̃ be a nondegenerate Lie algebra over an algebraically closed field Φ
of characteristic zero, and let L be a Φ-subalgebra L̃, where Φ is a subfield of Φ, such that
L has an algebraic adjoint representation and L̃ is Φ-spanned by L. Suppose that one of the
following two conditions holds:

(i) Φ = Φ and L = L̃ satisfies a polynomial identity.
(ii) The algebraic adjoint representation of L is of bounded degree.

Then L̃ is a subdirect product of a family of finite-dimensional simple Lie algebras of bounded
dimension. As a consequence, L̃ satisfies all the identities which hold in some finite-dimensional
Lie algebra.

Proof. By Theorem 2.5, we may reduce the proof to the case that L̃ is strongly prime. Since
in both cases, (i) and (ii), L is PI and L̃ is spanned by L, we have that L̃ satisfies a mul-
tilinear identity, say of degree n. Moreover, it follows from Corollary 2.3 that L̃ contains a
nonzero Jordan element, say a. By Proposition 4.2, the Jordan algebra L̃a inherits primeness,
nondegeneracy and the PI-condition from L̃. Moreover, L̃a is algebraic by Lemma 5.1. Using
just the fact that L̃a is strongly prime and PI, it follows from [16, Theorems 5 and 7] that
the centre Z(L̃a) of L̃a is nonzero and its central localization Z(L̃a)−1LL̃a is a simple unital
Jordan algebra containing minimal inner ideal. Moreover, since L̃a is algebraic over Φ and Φ
is algebraically closed, Z(L̃a) coincides with Φ and L̃a is itself a simple unital Jordan algebra
with minimal inner ideals. But minimal inner ideals of L̃a give rise to abelian minimal inner
ideals of L̃ [4, (2.14)], so L̃ contains abelian minimal inner ideals and hence extremal elements
by Proposition 4.3. Let e be an extremal element of L̃, and let S denote the ideal of L̃ gener-
ated by e. By [3, Proposition 1.15], S is a minimal ideal of L̃ which is simple as an algebra,
and by [17, Lemma 15], S is locally finite-dimensional. Since the ground field is algebraically
closed and of characteristic zero, and L̃ is PI, we have by [1, Theorem 2])(see also its proof)
that S is actually finite-dimensional. Since no matrix algebra Mr(Φ) satisfies an identity of
degree less than 2r and the Lie algebra Mr(Φ)− can be embedded in each one of the simple
Lie algebras Ar, Br, Cr and Dr, S is isomorphic to one of the algebras G2, F4, E6, E7, E8, Ar,
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Br, Cr, or Dr, where r ≤ [n/2]. Finally, by primeness, L̃ can be embedded in Der(S) via the
adjoint representation. Hence L̃ = S because every derivation of a simple finite-dimensional
Lie algebra over a field of characteristic zero is inner. ¤

Corollary 5.3. Let L be a Lie algebra with an algebraic adjoint representation over a field Φ
of characteristic zero. Suppose that some of the following two conditions holds:

(i) Φ is algebraically closed and L satisfies a polynomial identity.
(ii) The algebraic adjoint representation of L is of bounded degree.

Then L is locally finite-dimensional.

Proof. As in the proof of [17, Theorem 1], after factorizing by the largest locally finite-
dimensional ideal (11), it suffices to prove that L contains a nonzero locally finite-dimensional
ideal. Moreover, since K1(L) is locally nilpotent by Theorem 2.4 (in particular, locally finite-
dimensional), we may suppose that L is nondegenerate.

Let Φ be the algebraic closure of Φ and L = Φ ⊗Φ L (Φ = Φ and L = L if (i)), and set
L̃ = L/K(L). Now K(L) = 0 implies by [17, Proposition 2 and Corollary 1] that L∩K(L) = 0,
so L can be regarded as a Φ-subalgebra of L̃. Since L̃ is Φ-spanned by L, it follows from
Proposition 5.2 that L satisfies all the identities which hold in some finite-dimensional algebra.
Hence, by [17, Lemma 7] (or [11, Theorem 5.4.6]), L is locally-finite dimensional. ¤

As a further illustration of our methods we give an alternative proof of following result.

Proposition 5.4. (Zelmanov) Any Engel Lie PI-algebra L over a field of characteristic zero
is locally nilpotent.

Proof. Suppose that L is not locally nilpotent. As in Zelmanov’s original proof, after factor-
izing L by its locally nilpotent radical we may assume that L is nonzero and nondegenerate.
By Lemma 2.1, L contains a nonzero Jordan element a, and by Proposition 4.2, La is a non-
degenerate Lie PI-algebra which is also nil. Then, by [15, Theorem 4], La = Mc(La) = 0, and
hence ad2

aL = 0, which is a contradiction since L is nondegenerate. ¤

Acknowledgement. The first author would like to thank Esther Garćıa, Miguel Gómez
Lozano, Ottmar Loos, and Angel Rodŕıguez Palacios for helpful discussions about a prelimi-
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[6] E. Garćıa and M. Gómez Lozano, A note on a result of Kostrikin, Comm. Algebra 37 (2009), 2405-2409.
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