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Abstract. The cores of extended affine Lie algebras of reduced types were classified

except for type A1. In this paper we determine the coordinate algebra of extended
affine Lie algebras of type A1. It turns out that such an algebra is a unital Zn-graded

Jordan algebra of a certain type, called a Jordan torus. We classify Jordan tori and get

five types of Jordan tori.

Introduction

Extended affine Lie algebras form a new class of infinite dimensional Lie algebras,
which were first introduced by Høegh-Krohn and Torresani in 1990 [7] (under the name
of irreducible quasi-simple Lie algebras) as a generalization of the finite dimensional
simple Lie algebras and the affine Kac-Moody Lie algebras, and systematically studied
in the recent memoir [1].

Roughly speaking, an extended affine Lie algebra, EALA for short, is a complex
Lie algebra which has a nondegenerate symmetric invariant form, a self-centralizing
finite dimensional ad-diagonalizable abelian subalgebra and a discrete irreducible root
system such that elements from non-isotropic root spaces are ad-nilpotent. The core
of an EALA is defined as the subalgebra generated by the non-isotropic root spaces.
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2 COORDINATE ALGEBRAS OF TYPE A1

One has a description of an EALA L of type Al (l ≥ 2), Dl and El due to Berman,
Gao and Krylyuk [5]. Their description is a 2-step process:

A) describe the core Lc, and then,
B) describe how Lc sits in L.

This program is currently being worked out for the other types of EALA’s. In par-
ticular, Allison and Gao [2] describe the cores of all non-simply laced reduced types,
i.e., Bl, Cl, G2 and F4. In this paper we describe the cores of the only missing case
in reduced types, namely, EALA’s of type A1.

For motivation, we recall the definition of quantum tori and then describe the core
of an EALA of type Al, l ≥ 2.

Definition. An n×n matrix q = (qij) over a field F such that qii = 1 and qji = q−1
ij

is called a quantum matrix. The quantum torus Fq = Fq[t±1
1 , . . . , t±1

n ] determined by
a quantum matrix q is defined as the associative algebra over F with 2n generators
t±1
1 , . . . , t±1

n , and relations tit−1
i = t−1

i ti = 1 and tjti = qijtitj for all 1 ≤ i, j ≤ n.
Note that Fq is commutative if and only if q = 1 where 1 is the quantum matrix
whose entries are all 1. In this case, the quantum torus F1 becomes the algebra of
Laurent polynomials F [t±1

1 , . . . , t±1
n ] in n variables.

A quantum torus is characterized as a unital Λ-graded associative algebra A =
⊕α∈Λ Aα over F satisfying

(1) AαAβ = Aα+β for all α,β ∈ Λ, i.e., A is strongly graded,
(2) dimF Aα = 1 for all α ∈ Λ.

Note that all nonzero homogeneous elements of A are invertible.
Let

sll+1(Fq) := {X ∈Ml+1(Fq) | tr(X) ∈ [Fq, Fq]}

be the subalgebra of the Lie algebra Ml+1(Fq) over F of (l + 1) × (l + 1) matrices
over Fq where tr(X) is the trace of X and [Fq, Fq] is the span of all commutators
[a, b] = ab− ba. It is shown in [5] that the core of any EALA of type Al, l ≥ 3, is a
central extension of sll+1(Cq) for F = C, the field of complex numbers.

The central extensions of the Lie algebra sl3(Cq) are examples for cores of an EALA
of type A2, but do not give all possibilities. Rather, there exists a construction which
associates to every alternative algebra A a Lie algebra psl3(A), and it is shown in
[6] that a core of an EALA of type A2 is a central extension of psl3(A) where A

is a unital Λ-graded alternative algebra A = ⊕α∈Λ Aα over C satisfying (1) and
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(2) above. These alternative algebras have been classified in [6]. Besides Cq, there
exists up to isomorphisms one more type, the Cayley torus Ot. It is defined as Ot =
(C[t±1

1 , . . . , t±1
n ], t1, t2, t3), i.e., the octonion algebra over C[t±1

1 , . . . , t±1
n ] obtained by

the Cayley-Dickson process with the structure constants t1, t2 and t3.
Now, for EALA’s of type A1, the Tits-Kantor-Koecher construction which asso-

ciates to every Jordan algebra J a Lie algebra TKK(J), called the TKK algebra of J
(see e.g. [8]), comes into play. We show:

Theorem 1. The core of any EALA of type A1 is a central extension of TKK(J)
where J is a unital Λ-graded Jordan algebra J = ⊕α∈Λ Jα over C satisfying

(T1) {α ∈ Λ | Jα 6= (0)} generates Λ,
(T2) all nonzero homogeneous elements are invertible,
(T3) dimC Jα ≤ 1 for all α ∈ Λ.

Such a graded Jordan algebra over any field F of characteristic 6= 2 is called a
Jordan n-torus or simply a Jordan torus. We classify Jordan tori not only over C
but over F . The simplest example of Jordan tori over F is the plus algebra F+

q

of a quantum torus Fq, which is defined on the space Fq with the new product
x · y := 1

2 (xy + yx) for x, y ∈ Fq. We note that sl2(Fq) ∼= TKK(F+
q ). To state our

result, we briefly describe other examples of Jordan n-tori over F .
(a) Let ε = (εij) be a quantum matrix such that εij = 1 or −1 for all i, j. Define an

involution ∗ on Fε = Fε[t±1
1 , . . . , t±1

n ] such that t∗i = ti for all i. Then the symmetric
elements H(Fε, ∗) form a Jordan torus. It is a subalgebra of F+

ε .
Also, let E be a quadratic field extension of F with the nontrivial Galois auto-

morphism σE . Let ξ = (ξij) be a quantum matrix such that ξijσE(ξij) = 1 for all
i, j. Define a σE-semilinear involution σ on Eξ = Eξ[t±1

1 , . . . , t±1
n ] over F such that

σ(ti) = ti for all i. Then the symmetric elements H(Eξ, σ) form a Jordan torus over
F . It is an F -subalgebra of E+

ξ .
(b) Let 2 ≤ m ≤ n and let S(m) be any semilattice in Zm (see 1.2 for the precise

definition). One can construct a Jordan algebra JS(m)({aε}ε∈I) over F [t±1
1 , . . . , t±1

n ]
of a certain symmetric bilinear form which depends on S(m) and a family of nonzero
elements aε ∈ F indexed by some set I (the details are in 5.2). It turns out that
JS(m)({aε}ε∈I) is a Jordan n-torus called a Clifford torus. Clifford tori are a slight
generalization of a construction which already appeared in [1].

(c) Suppose that F contains a primitive 3rd root of unity ω. Let ω = (ωij) be a
quantum matrix such that ω12 = ω, ω21 = ω2 and ωij = 1 for the other i, j. Let At =



4 COORDINATE ALGEBRAS OF TYPE A1

(Fω, t3) be the first Tits construction, using the quantum torus Fω = Fω[t±1
1 , . . . , t±1

n ]
and the structure constant t3 (details are in 6.8). The central closure of At is a 27-
dimensional exceptional Jordan division algebra over a rational function field in n

variables. We will see that At is a Jordan torus, which is called the Albert torus. This
torus was independently found in [1] and [20]. It is a coordinate algebra of EALA’s
of type G2 (see [1] and [2]).

We can now state our main result:

Theorem 2. Let J be a Jordan torus over F . Then J is isomorphic to one of the
five tori

F+
q , H(Fε, ∗), H(Eξ, σ), JS(m)({aε}ε∈I) or At.

Since Jordan tori turn out to be strongly prime, we can use Zelmanov’s Prime
Structure Theorem [14] as the first step of our proof. Thus, a Jordan torus is either
of Hermitian, Clifford or Albert type. For each type we then determine the possible
Jordan tori.

This paper consists of 7 sections: In §1 we give the definition of an EALA and prove
Theorem 1 above. In §2 some basic concepts of Jordan algebras are reviewed. In §3
general properties of Jordan tori are described. In §4 we show that a Hermitian torus
is graded isomorphic to F+

q , H(Fε, ∗) or H(Eξ, σ). In §5 we show that any Clifford
torus is graded isomorphic to JS(m)({aε}ε∈I). In §6 the special Jordan tori of central
degree 3 are first determined. Then we prove that any Jordan torus of Albert type is
graded isomorphic to the Albert torus At. As a corollary, we obtain the classification
of Jordan tori of central degree 3, which is used in the classification of cores of EALA’s
of type G2 in [2]. In §7 the classification of Jordan tori are summarized.

This is part of my Ph.D thesis, written at the University of Ottawa. I would like
to thank my supervisor, Professor Erhard Neher, for his suggestions.

§1 Extended affine Lie algebras of type A1

We define extended affine Lie algebras [1]. Let L be a Lie algebra over C (the field
of complex numbers). Assume that

(EA1) L has a nondegenerate invariant symmetric bilinear form (·, ·).
Here ‘invariant’ means that (·, ·) satisfies ([x, y], z) = (x, [y, z]) for all x, y, z ∈ L.

(EA2) L has a nontrivial finite dimensional self-centralizing ad-diagonalizable abelian
subalgebra H.
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We will be assuming three further axioms about the triple (L, (·, ·),H). To describe
them we need some further notation. Because of (EA2), we have

L = ⊕α∈H∗ Lα and L0 = H

where H∗ is the complex dual space of H and for any α ∈ H∗ we define Lα =
{x ∈ L | [h, x] = α(h)x for all h ∈ H}. Let R = {α ∈ H∗ | Lα 6= (0)}. R

is called the root system of L. Note that since H 6= (0), we have 0 ∈ R. Also,
α, β ∈ R, α+β 6= 0 =⇒ (Lα,Lβ) = {0}. Thus, −R = R by nondegeneracy. Moreover,
(·, ·) is nondegenerate on H. As in the classical theory of finite-dimensional complex
semisimple Lie algebras, we can transfer (·, ·) to a form on H∗. Let

R× = {α ∈ R | (α, α) 6= 0} and R0 = {α ∈ R | (α, α) = 0}.

The elements of R× (resp. R0) are called non-isotropic (resp. isotropic) roots. We
have R = R× ∪R0. We further require that

(EA3) α ∈ R×, xα ∈ Lα =⇒ adxα acts locally nilpotently on L.
(EA4) R is a discrete subset of H∗.
(EA5) R is irreducible. That is,
(a) R× = R1 ∪R2, (R1, R2) = (0) =⇒ R1 = ∅ or R2 = ∅
(b) σ ∈ R0 =⇒ there exists α ∈ R× such that α+ σ ∈ R×.

If L satisfies (EA1)-(EA5), the triple (L, (·, ·),H), or simply the algebra L itself, is
called an extended affine Lie algebra or EALA for short.

Let tα be the unique element of H so that (tα, h) = α(h) for h ∈ H, and put
hα = 2

(α,α) tα. Then there exist nonzero eα ∈ Lα and fα ∈ L−α so that [hα, eα] = 2eα,
[hα, fα] = −2fα and [eα, fα] = hα. In other words, {eα, hα, fα} is an sl2-triplet. Thus
we can use sl2-theory. Assuming only (EA1), (EA2) and (EA3), one can show that
some well-known properties of finite dimensional semisimple Lie algebras over C are
also true for EALA’s.

1.1. ([1], Lemma I.1.21 and Theorem I.1.29) Let α ∈ R×, β ∈ R and r = 2 (β,α)
(α,α)

.
Then:

(i) 2 (β,α)
(α,α) ∈ Z.

(ii) dimC Lα = 1.
(iii) Assume that adeα(eβ) = 0. Then r ≥ 0,

(adfα)i(eβ) 6= 0, for all i = 0, 1, . . . , r, and (adfα)r+1(eβ) = 0. �
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In the following, L is an EALA with root system R. We recall some of the properties
ofR that we will need. First, note that if a nondegenerate invariant symmetric bilinear
form on L is multiplied by a nonzero complex number, then we still have such a form.
Since the axioms are invariant under such a change, we may as well assume that
there is some non-isotropic root α ∈ R× with (α, α) ∈ R>0. Then if β ∈ R× we
have 2 (β,α)

(α,α) ∈ Z so that (β, α) ∈ R, and hence, since 2 (α,β)
(β,β) ∈ Z we get (β, β) ∈ R if

(α, β) 6= 0. It now follows, using (EA5)(a), that (α, β) ∈ R for any α, β ∈ R. That is,
our form is real valued on the real linear span of the roots. From now on we assume
that our form is scaled so that there is at least one α ∈ R× with (α, α) > 0. Let V be
the real span of R in H. Then it was proven in [1] Theorem I.2.14 that the real valued
symmetric bilinear form (·, ·) |V is positive semidefinite on V. This was a conjecture
of Kac. Let

V0 = {α ∈ V | (α, β) = 0 for all β ∈ V}.

The nullity of R or of L is defined to be the real dimension n of V0. Let V = V/V0

and let : V −→ V be the canonical projection. Then (·, ·) induces a positive definite
symmetric bilinear form on V so that, relative to this form, the image R of R in V
is a finite irreducible (possibly non-reduced) root system [1] Proposition I.2.19. The
type of R or of L is defined to be the type of the finite root system R.

Our interest is in EALA’s of type A1. Thus R = {0,±α}. We choose a fixed
preimage α̇ ∈ R of α under . Let V̇ be the subspace spanned by α̇ of V. Then we
have V = V̇ ⊕ V0, and restricts to an isometry of V̇ onto V. Let Ṙ be the image of
R under the projection of V onto V̇ , and so Ṙ = {0,±α̇}. We define

S = {σ ∈ V0 | α̇+ σ ∈ R} and Λ = the subgroup of V0 generated by R0.

Then, by [1] Chapter II, we have R0 = S + S and R = (S + S)∪ (α̇+ S)∪ (−α̇+ S).
Moreover, S is a discrete spanning set in V0, Λ is a lattice in V0 and S is a semilattice
in Λ:

Definition 1.2. A subset S of a lattice Λ which has the following three properties,

(i) 0 ∈ S,
(ii) 2σ − τ ∈ S for all σ, τ ∈ S,

(iii) S generates Λ,

is called a semilattice in Λ.

We put
Lσ := L−α̇+σ ⊕ Lσ ⊕Lα̇+σ for σ ∈ Λ.
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Then we have L = ⊕σ∈Λ Lσ and [Lσ,Lτ ] ⊂ Lσ+τ for σ, τ ∈ Λ. In other words, L is
a Λ-graded Lie algebra.

Definition 1.3. The core of L is defined to be the subalgebra Lc of L generated by
the spaces Lα, α ∈ R×.

Since Lc is generated by homogeneous elements, Lc is a Λ-graded subalgebra of L.
Thus, Lc = ⊕σ∈Λ (Lc)σ, where for σ ∈ Λ, and

(Lc)σ := Lc ∩ Lσ = L−α̇+σ ⊕
∑

τ,ν∈Λ,τ+ν=σ

[Lα̇+τ ,L−α̇+ν ]⊕Lα̇+σ.

Also, let

(Lc)−α̇ := ⊕σ∈Λ L−α̇+σ, (Lc)α̇ := ⊕σ∈Λ Lα̇+σ, (Lc)0 :=
∑
τ,ν∈Λ

[Lα̇+τ ,L−α̇+ν ].

Then we have Lc = (Lc)−α̇ ⊕ (Lc)0 ⊕ (Lc)α̇. Let Ġ := 〈eα̇, hα̇, fα̇〉 ∼= sl2(C) and
Ḣ := Chα̇, which are both subalgebras of Lc. Obviously, for each ε = 0,−1, 1

(Lc)εα̇ = {x ∈ Lc | [h, x] = εα̇(h)x for all h ∈ Ḣ},

and Lc is generated as an algebra by (Lc)−α̇ and (Lc)α̇. Therefore, Lc is graded by the
root system of type A1 as defined in [4]. By the description of such Lie algebras (see
[3] or [15]), Lc is a central extension of the TKK algebra of a unital Jordan algebra.
The Jordan algebra J , called the coordinate algebra of L of type A1, is defined as
follows. Let J := (Lc)α̇ as a C- vector space and define a multiplication on J by

xy :=
1
2
[
[x, fα̇], y

]
for x, y ∈ J.

One can check that this multiplication is commutative and satisfies the Jordan iden-
tity, and so J is a Jordan algebra over C. Note that eα̇ is the identity element of J .
Our goal is to describe the structure of J . We put Jσ := Lα̇+σ. Then 1 := eα̇ ∈ J0,
and one can easily see that J = ⊕σ∈Λ Jσ is a Λ-graded Jordan algebra over C, i.e.,
JσJτ ⊂ Jσ+τ for all σ, τ ∈ Λ. Also, by 1.1(ii), we have

dimC Jσ = 1 if σ ∈ S and Jσ = (0) if σ ∈ Λ \ S.

These conditions are not enough to classify J . To obtain a crucial property of J , ‘in-
vertibility of nonzero homogeneous elements’, we use the following well-known identity
in the theory of Jordan pairs [15]:

(1.4) Uxy =
1
2
[
x, [x, ȳ]

]
where ȳ :=

1
2
[
fα̇, [fα̇, y]

]
for all x, y ∈ J ,

where the U -operator Ux will be defined in (2.0). Also, we need the following easy
consequence of sl2-theory:
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Lemma 1.5. For σ, τ ∈ S and ε = ±1, we have

[
eεα̇+σ, [eεα̇+σ, e−εα̇+τ ]

]
6= 0,

and hence,
[
Lεα̇+σ, [Lεα̇+σ,L−εα̇+τ ]

]
= Lεα̇+2σ+τ .

Proof. We only show the case ε = 1 since the case ε = −1 is done by the same manner.
Take α := −α̇−σ and β := −α̇+τ in 1.1(iii). Then [eα, eβ ] ∈ L−2α̇−σ+τ = (0) since A1

is reduced. Also, we have 2 (β,α)
(α,α) = 2, and hence by 1.1(iii),

[
f−α̇−σ, [f−α̇−σ, e−α̇+τ ]

]
6=

0. Since dimC Lα̇+σ = 1 (see 1.1(ii)), there exists some 0 6= c ∈ C such that f−α̇−σ =
ceα̇+σ, and so 0 6=

[
eα̇+σ, [eα̇+σ, e−α̇+τ ]

]
∈ Lεα̇+2σ+τ . �

For σ ∈ S, let 0 6= x ∈ Jσ. Since S is a semilattice, there exists 0 6= y ∈ J−2σ. Then,
by 1.4 and 1.5, we have 0 6= 1

2

[
x, [x, ȳ]

]
= Uxy ∈ J2σ−2σ = J0. Since dimC J−2σ =

dimC J0 = 1 and 1 ∈ J0, there exists c ∈ C such that Ux(cy) = 1. Hence, x is
invertible (see 2.2(2)). Thus any nonzero element in Jσ for all σ ∈ S is invertible.
Consequently, we have obtained some necessary conditions of the coordinate algebra
J , namely,

Theorem 1.6. The core of an EALA of type A1 is isomorphic to a central extension
of the TKK algebra of a unital Λ-graded Jordan algebra J = ⊕σ∈Λ Jσ over C satisfying

(T1) {σ ∈ Λ | Jσ 6= (0)} generates Λ,
(T2) all nonzero homogeneous elements are invertible,
(T3) dimC Jσ ≤ 1 for all σ ∈ Λ. �

We will classify such Jordan algebras not only over C but over any field F of
ch. F 6= 2 in later sections. By the argument above, we know that 1 ∈ J0 and that
{σ ∈ Λ | Jσ 6= (0)} is a semilattice in Λ. However, we do not need to assume the
properties since such Jordan algebras already satisfy them (see 3.5).

§2 Review of Jordan algebras

Throughout F is a field of characteristic 6= 2. An algebra over F is a “linear”
nonassociative algebra A defined as a vector space over F with an F -bilinear map
A×A −→ A, called multiplication. We assume that an algebra is unital in the sense
that there exists 1 ∈ A, called an identity element, such that 1x = x = x1 for all
x ∈ A. For an algebra A and x, y, z ∈ A we define the commutator [x, y] = xy − yx
and the associator (x, y, z) = (xy)z − x(yz).
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An algebra J over F satisfying the following two identities is called a (linear)
Jordan algebra over F : for all x, y ∈ J ,

[x, y] = 0 (commutativity) and (x, y, x2) = 0 (Jordan identity).

Let us define the so-called U-operator for x ∈ J , i.e., Ux : J −→ J by

(2.0) Uxy = Ux(y) = 2x(xy)− x2y for all y ∈ J.

The plus algebra A+ of an associative algebra A over F is an example of a Jordan
algebra: for x, y ∈ A+ = (A, ·), with a new multiplication · on A defined as x · y :=
1
2 (xy + yx). For this example, the U -operator is given by Uxy = xyx. A Jordan
algebra is called special if it is isomorphic to a subalgebra of the plus algebra of some
associative algebra. A Jordan algebra is called exceptional if it is not special.

Remark 2.1. It is well known that Jordan algebras are power associative, i.e., the
subalgebra generated by any element is associative (and commutative) (see e.g. [21]
p.37, p.68).

An element x in a Jordan algebra J is called invertible if there exists y ∈ J such
that xy = 1 and x2y = x. In this case y is unique and is denoted by x−1.

We denote the subset of invertible elements of an algebra A by A×.

2.2. ([21] p.303-4) Let A be an associative algebra and J a Jordan algebra. Then:
(1) A× = (A+)×, and for x ∈ A× = (A+)×, x−1 in the associative algebra A and

the Jordan algebra A+ coincide.
(2) For x ∈ J , x ∈ J× ⇐⇒ Ux is invertible ⇐⇒ there exists y ∈ J such that

Uxy = 1. In these cases, we have U−1
x = Ux−1 and y = x−2.

(3) For x, y ∈ J , x, y ∈ J× ⇐⇒ Uxy ∈ J×. In particular, x ∈ J× ⇐⇒ xn ∈ J×

for all n ∈ Z.
(4) For any x ∈ J×, the subalgebra of J generated by x and x−1 is associative (and

commutative). �

We recall some basic notions for Jordan algebras.

Definition 2.3. Let J be a Jordan algebra. Then J is called

(i) a Jordan domain if Uxy = 0 implies x = 0 or y = 0 for all x, y ∈ J ,
(ii) nondegenerate if Ux = 0 implies x = 0 for all x ∈ J ,
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(iii) prime if UIK = (0) implies I = (0) or K = (0) for all ideals I,K of J where
UIK = {

∑
x,y Uxy | x ∈ I, y ∈ K},

(iv) strongly prime if J is nondegenerate and prime.

The nondegeneracy and primeness generalize the notion of a domain, namely,

Lemma 2.4. A Jordan domain has no nilpotents and is strongly prime.

Proof. Straightforward. �

The centre of a Jordan algebra J is defined as

Z(J) = {z ∈ J | (z, x, y) = 0 for all x, y ∈ J}.

We note that if z ∈ Z(J) is invertible, then z−1 ∈ Z(J). The following lemma is
well-known (see [13] Corollary 3.4, p.12):

2.5. Let A be a semiprime associative algebra and Z(A) its centre. Then we have
Z(A) = Z(A+). �

For a prime associative or Jordan algebra A, any 0 6= x ∈ Z := Z(A) has no
torsion element in A, i.e., xy = 0 for some y ∈ A =⇒ y = 0 (see [9] Proposition 7.6.5,
p.7.24). In particular, Z is an integral domain. Thus we can define the tensor algebra
A = Z ⊗Z A over Z where Z is the field of fractions of Z, and call it the central
closure of A. The following lemma is well-known (see e.g. [21] p.186):

2.6. Let A be a prime associative or Jordan algebra and Z = Z(A) its centre. Then
we have:

(i) A embeds into A via x 7→ 1⊗ x for all x ∈ A,
(ii) A is a central over Z, i.e., Z(A) = Z.1,
(iii) A is an associative (resp. a Jordan) domain ⇐⇒ A is an associative (resp. a

Jordan) domain. �

We mention some well-known identities on A+ for any associative algebra A. Define
x ◦ y = xy + yx for x, y ∈ A and let (·, ·, ·)◦ be the associator of this circle product.
Then the following identities which can be easily verified by expanding both sides
hold: for all x, y, z ∈ A, [

x, [y, z]
]

= (y, x, z)◦,(2.7)

[x, y]2 = x ◦ Uyx− Uxy2 − Uyx2,(2.8)

U[x,y] = Ux◦y − 2UxUy − 2UyUx.(2.9)
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By Wedderburn’s Structure Theorem, a finite dimensional associative domain is a
division algebra. Also, the following is well-known (see [8] p.156 Theorem 2).

2.10. A finite dimensional Jordan domain is a division algebra. �

Finally, there is a notion of degree for finite dimensional simple Jordan algebras
(see e.g. [8], p.209), and the degree coincides with the generic degree for them (see
[8], p.233). The following lemma seems to be known to the experts, but for the
convenience of the reader we include a proof.

2.11. Let J be a finite dimensional central special Jordan division algebra over F of
degree r. Then:

(a) r 6= 2m for m ≥ 1 =⇒ dimF J = r2,

(b) r = 3 ⇐⇒ dimF J = 9.

Proof. (a): It is clear for r = 1, and so we assume that r > 1. If J is a finite
dimensional central special Jordan division algebra over F of degree r 6= 2, then
J ∼= D+ or H(D, ∗) where D is a central associative division over the centre of
degree r and ∗ is an involution of D (see Theorem 11 and Exercise 1 in [8] p.210).
Thus, if J ∼= D+, then we have dimF J = r2. If ∗ is of the second kind, we know
dimF H(D, ∗) = r2 (see [10] p.190). If J ∼= H(D, ∗) and r 6= 2m for m ≥ 1, then
there does not exist an involution of first kind on D. For, if one exists, then D ∼= Dop

(the opposite algebra), and so the order of D in the Brauer group of F is 2. Since
any prime factor of the degree of D divides the order (see Theorem 2.7.5 [10] p.61),
the degree of D has to be a power of 2. This is a contradiction. Hence (a) has been
shown.

(b): By (a), we get r = 3 =⇒ dimF J = 9. Suppose that dimF J = 9. From the
classification of the finite dimensional simple associative algebras with involution (see
[10] p.190), we have dimF J = r2 (J ∼= D+ or ∗ is of the second kind), r(r + 1)/2 (∗
is orthogonal) or r(r− 1)/2 (∗ is symplectic). Since r(r + 1)/2 or r(r− 1)/2 is never
9, we get 9 = r2, i.e., r = 3. �

§3 General properties of Jordan tori

Whenever a class of algebras has a notion of invertibility, one can make the following
definition:
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Definition 3.1. Let G be a group. A G-graded algebra T = ⊕g∈G Tg over F

satisfying

(T1) supp T := {g ∈ G | Tg 6= (0)} generates G,
(T2) all nonzero homogeneous elements are invertible,
(T3) dimF Tg ≤ 1 for all g ∈ G,

is called a G-torus. Moreover, if

(St) T is strongly graded, i.e., TgTh = Tgh for all g, h ∈ G,

then T is called a G-torus of strong type.

When G = Λ is a free abelian group of rank n, T is called an n-torus, or simply a
torus. If T is associative or Jordan, it is called an associative torus or a Jordan torus,
respectively.

One can easily check that if T = ⊕g∈G Tg is a G-graded associative algebra satis-
fying (T3), then (T1) and (T2) are equivalent to (St). Thus the notions of a G-torus
and a G-torus of strong type coincide for the class of associative algebras. Note for
a G-torus T = ⊕g∈G Tg of strong type, we have dimF Tg = 1 for all g ∈ G and
supp T = G. We give examples of associative tori and Jordan tori.

From now on, Λ denotes a free abelian group of rank n.

Example 3.2. Let {σ1, . . . ,σn} be a basis of Λ. We give a Λ-grading to a quantum
torus Fq = Fq[t±1

1 , . . . , t±1
n ] (see the definition in Introduction) in the following way:

Define the degree of tα := tα1
1 · · · tαnn for α = α1σ1 + · · ·+ αnσn ∈ Λ to be α. Then

this grading makes Fq = ⊕α∈Λ Ftα into a torus, and we call the grading a toral Λ-
grading of Fq . If one needs to specify a basis of Λ, we call it a 〈σ1, . . . ,σn〉-grading of
Fq. Any associative torus is graded isomorphic to some Fq with some toral grading
(see [5] and [6]). Also, any commutative associative torus is graded isomorphic to
F1 = F [t±1

1 , . . . , t±1
n ], the algebra of Laurent polynomials over F . One can check that

the multiplication rule of Fq for q = (qij) is the following: for β = β1σ1+· · ·+βnσn ∈
Λ,

(3.3) tαtβ =
∏
i<j

q
αjβi
ij tα+β.

Clearly, F+
q with the same grading as Fq becomes a Jordan torus and the multiplica-
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tion rule is the following:

tα · tβ =
1
2

(
∏
i<j

q
αjβi
ij +

∏
i<j

q
βjαi
ij ) tα1+β1

1 · · · tαn+βn
n

=
1
2

∏
i<j

q
αjβi
ij (1 +

∏
i,j

q
αiβj
ij ) tα+β.(3.4)

We call the grading of F+
q induced from a toral grading of Fq a toral grading of F+

q .
Note that suppF+

q = Λ, and F+
q is of strong type if and only if∏

i,j

q
αiβj
ij 6= −1 for all α,β ∈ Λ.

Unlike the situation for associative tori, we may have supp J 6= Λ for a Jordan
torus J in general. We will give such examples in §4 and §5. We show that supp J
cannot be any subset of Λ, namely,

Lemma 3.5. Let J = ⊕α∈Λ Jα be a Jordan torus. Then 1 ∈ J0 and supp J is a
semilattice in Λ.

Proof. In general, we have:

Claim. Let A = ⊕g∈G Ag be a G-graded algebra. Then 1 ∈ Ae where e is the identity
element of G.

Proof. Let 1 =
∑
g∈G xg ∈ A. For any u ∈ Ah, h ∈ G, we have u = 1u =∑

g∈G xgu ∈ Ah since 1 is a left identity element. Since G is a group, we have
xeu = u (and xgu = 0 if g 6= e). Thus xe is a left identity element. Hence we have
1 = xe1 = xe ∈ Ae since 1 is a right identity element. �

By this claim, we have 1 ∈ J0. In particular, 0 ∈ supp J . Let 0 6= x ∈ Jα for
α ∈ supp J . Let x−1 =

∑
β yβ. Then

∑
β xyβ = 1 ∈ J0 and

∑
β x2yβ = x ∈ Jα

imply that xy−α = 1 and x2y−α = x (xyγ = 0 and x2yγ = 0 for all γ 6= −α). Thus,
by the uniqueness of the inverse, we get x−1 = y−α ∈ J−α, and so −α ∈ supp J . For
any α,β ∈ supp J , let 0 6= u ∈ Jα and 0 6= v ∈ J−β. Then, by 2.2(3), 0 6= Uuv =
2u(uv)− u2v ∈ J2α−β , and so 2α− β ∈ supp J . Since supp J generates Λ, supp J is
a semilattice in Λ. �

Remark. Any Jordan torus J = ⊕α∈Λ Jα satisfies UJαJβ = J2α+β for all α,β ∈
supp J .
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We recall that Λ is a totally ordered abelian group using the lexicographic order.
Thus we have:

Lemma 3.6. (i) A Jordan or an associative torus is a Jordan or an associative
domain.

(ii) Any invertible element of a Jordan or an associative torus is homogeneous.

Proof. Both statements are well-known for the associative case (see [11] p.95), and
so we only show the Jordan case. Let J = ⊕α∈Λ Jα be a Jordan torus. For 0 6=
x, y ∈ J , suppose that Uxy = 0. Let x = xα0 + (terms of higher degree) and y =
yβ0 + (terms of higher degree). Then Uxα0

yβ0 is the least homogeneous component
of Uxy, and so Uxα0

yβ0 = 0. This is a contradiction since xα0 and yβ0 are invertible
(see 2.2(3)). Hence (i) is settled.

For (ii), suppose that x ∈ J is invertible but not homogeneous, i.e., x = xα0 +
(terms of middle degree) + xα1 where α0 is the minimum degree and α1 is the max-
imum degree of x with α0 < α1. By 2.2(2), there exists y ∈ J such that Uxy = 1.
Let y = yβ0 + (terms of middle degree) + yβ1 where β0 is the minimum degree and
β1 is the maximum degree of y (could be β0 = β1). Then Uxα0

yβ0 ∈ J2α0+β0 is
the minimum degree and Uxα1

yβ1 ∈ J2α1+β1 is the maximum degree of Uxy, and
2α0 + β0 < 2α1 + β1. This contradicts the fact that Uxy = 1 is homogeneous. �

Corollary 3.7. Let T = ⊕α∈Λ Tα be a Jordan or an associative torus. Suppose that
0 6= x ∈ T and xm ∈ Tβ for some β ∈ Λ. Then we have β ∈ mΛ and x ∈ T 1

mβ
.

Proof. By 3.6(i) and 2.4, we have xm 6= 0. Since xm ∈ Tβ, xm is invertible, whence x
is invertible (see 2.2(3)). Therefore, by 3.6(ii), we have x ∈ Tγ for some γ ∈ Λ, and
so mγ = β. �

Let T = ⊕α∈Λ Tα be a Jordan or an associative torus. Then the centre Z = Z(T )
of T is a homogeneous subalgebra. Also, it is clear that Z is graded by the subgroup
Γ := {γ ∈ Λ | Tγ ∩ Z 6= (0)} of Λ, and so Z = ⊕γ∈Γ Tγ is a commutative associative
Γ-torus, which is the algebra of Laurent polynomials. We call this Γ the central
grading group of T .

Lemma 3.8. Let T = ⊕α∈Λ Tα be a Jordan or an associative torus over F with
centre Z. Let K be a field extension of F . Then the scalar extension TK = K⊗F J is
a Jordan or an associative torus over K with centre K ⊗F Z, and the central grading
groups of T and TK coincide.
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Proof. Straightforward. �

For a Jordan or an associative torus T , the central closure T = Z ⊗Z T over Z
makes sense (see 3.6(i)).

Lemma 3.9. Let T = ⊕α∈Λ Tα be a Jordan or an associative torus with its centre
Z, Γ the central grading group of T and T the central closure. For α ∈ Λ/Γ, let
Tα := ZTα and Tα := Z ⊗Z ZTα. Then:

(i) Tα = Tα′ for all α′ ∈ α, and Tα is a free Z-module of rank 1 if α ∈ supp T
and rank 0 otherwise.

(ii) T = ⊕α∈Λ/Γ Tα, which is a free Z-module and a Λ/Γ-graded algebra over Z
with rank Tα ≤ 1 for all α ∈ Λ/Γ.

(iii) T = ⊕α∈Λ/Γ Tα, which is a Λ/Γ-torus over Z with dimZ T = | suppT/Γ|.
(iv) The quotient group Λ/Γ cannot be a nontrivial cyclic group.

Proof. (i) is trivial. For (ii), we note that for all γ ∈ Γ, Tα+γ = TγTα since Tγ ⊂ Z.
Hence we have

T = ⊕α∈Λ Tα = ⊕α∈Λ/Γ

(
⊕γ∈Γ Tα+γ

)
= ⊕α∈Λ/Γ ZTα = ⊕α∈Λ/Γ Tα.

The rest of statements follows from (i). (iii) follows from (ii). For (iv), suppose that
Λ/Γ is a nontrivial cyclic group. One can easily check that any Jordan or associative
G-torus for a cyclic group G is commutative and associative. Hence, by (iii), T is
commutative and associative. By 2.6(i), T embeds into T , and so Z = T and Γ = Λ,
i.e., Λ/Γ is the trivial group. Thus we get a contradiction. �

We will start to classify Jordan tori in the next section. For this purpose we state
Zelmanov’s Prime Structure Theorem ([14] p.200) in a short form, designed for our
needs. Namely, a strongly prime Jordan algebra J is one of the following three types:
(The new terminology used below will be explained in the following sections.)

Hermitian type: J is special and q48(J ) 6= {0},

Clifford type: the central closure J is a simple Jordan algebra over Z of a
symmetric bilinear form,

Albert type: the central closure J is an Albert algebra over Z.
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Since Jordan tori are strongly prime (see 3.6(i) and 2.4), the type of Jordan tori is
defined as above.

§4 Hermitian type

We review the so-called Zelmanov polynomial q48. Let FSJ (X) be a free special
Jordan algebra on an infinite set X of variables over F . That is, FSJ (X) is the
subalgebra of FA(X)+ generated by X where FA(X) is the free associative algebra
on X . For x, y, z, w ∈ X , let

p16(x, y, z, w) =
[
[D2

x,y(z)2, Dx,y(w)], Dx,y(w)
]
∈ FA(X)

where Dx,y(z) =
[
[x, y], z

]
. For 12 variables xi, yi, zi, wi ∈ X , i = 1, 2, 3, let

q48 =
[
[p16(x1, y1, z1, w1), p16(x2, y2, z2, w2)], p16(x3, y3, z3, w3)

]
∈ FA(X).

By 2.7, we have p16, q48 ∈ FSJ (X). Moreover, q48 is homogeneous in each variable,
i.e., all monomials of q48, the monomials not only of the associative product but also
of the Jordan product, have the same partial degree in each variable. Note that the
total degree in 12 variables is 48. For any Jordan algebra J , we denote the evaluation
of q48 on J by q48(J ).

An ideal I / FSJ (X) is called formal if for all permutations σ of X ,

p(x1, . . . , xn) ∈ I =⇒ p
(
σ(x1), . . . , σ(xn)

)
∈ I.

For a formal ideal I of FSJ (X) and any special Jordan algebra J , it is well-known
that the evaluation I(J ) is an ideal of J (see [14], p.144). We define an r-tad
{p1 · · · pr} for p1, . . . , pn ∈ FSJ (X) as

{p1 · · · pr} = p1 · · · pr + pr · · · p1.

In particular, {p1p2p3p4} is called a tetrad. A formal ideal H / FSJ (X) is called
hermitian if it is closed under tetrads, i.e.,

{HHHH} ⊂ H.

An ideal I / FSJ (X) is called a linearization-invariant T-ideal if I contains all
the linearizations of any p ∈ I and T (I) ⊂ I for any algebra endomorphism T of
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FSJ (X). Let Q48 be the linearization-invariant T -ideal of FSJ (X) generated by
q48. Then it is known that Q48 is an hermitian ideal (see [14] p.198).

Now, let J be any strongly prime special Jordan algebra with q48(J ) 6= {0}. Then
the evaluation Q48(J ) is a nonzero ideal of J . Since J is special, there exists an
associative algebra A with involution ∗ such that J ⊂ H(A, ∗) = {a ∈ A | a∗ = a}.
Let P be the associative subalgebra of A generated by Q48(J ). By the Special
Hermitian Structure Theorem [14] p.146, one has H(P, ∗) = Q48(J ) and P is ∗-
prime.

Lemma 4.1. Let J be a Jordan torus over F of Hermitian type. Then J = H(P, ∗)
for some ∗-prime associative algebra P and P is generated by J .

Proof. By the observation above, we already know

H(P, ∗) = Q48(J) / J

for some ∗-prime associative algebra P and P is generated by Q48(J). Thus we only
need to show Q48(J) = J . Let B be a basis of J over F such that B consists of
homogeneous elements in J . Recall that Q48 contains q48 and all the linearizations of
q48. If the evaluations of q48 and all the linearizations of q48 on B vanish, then we have
q48(J) = {0}, which contradicts the fact that J is of Hermitian type. Hence there
exist elements b1, . . . , bm ∈ B and q′48 ∈ Q48 where q′48 = q48 or some linearization
of q48 such that q′48(b1, . . . , bm) 6= 0. Since q′48 is homogeneous in each variable,
q′48(b1, . . . , bm) is a nonzero homogeneous element in J , and hence it is invertible in J .
Thus the ideal Q48(J) contains an invertible element, and so we get Q48(J) = J . �

Definition 4.2. A Jordan torus J is called an Hermitian torus if J = H(P, ∗) for
some ∗-prime associative algebra P and P is generated by J .

We note {Hermitian tori} ⊃ {Jordan tori of Hermitian type}, but the other in-
clusion does not hold, e.g. the algebra of Laurent polynomials F1 = F [t±1

1 , . . . , t±1
n ]

is not of Hermitian type since q48(F1) = {0}. However, F1 = H(F1, id) is clearly a
Hermitian torus.

Example 4.3. (1) The Jordan torus F+
q (see Example 3.2) is a Hermitian torus. In

fact, let P = Fq ⊕ F opq be the associative algebra, where F opq is the opposite algebra
of Fq, and let ∗ be the exchange involution of P . Then F+

q
∼= H(P, ∗) and one can

easily check that P satisfies the conditions unless q = 1.
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(2) Let ε = (εij) be a quantum matrix such that εij = 1 or −1. We call such an
ε elementary. For the quantum torus Fε = Fε[t±1

1 , . . . , t±1
n ], there exists a unique

involution ∗ on Fε such that t∗i = ti for all i. Thus the symmetric elements J :=
H(Fε, ∗) form a Jordan algebra. Since ∗ is graded relative to a 〈σ1, . . . ,σn〉-grading
of Fε, J = ⊕α∈Λ (Ftα∩J) is a Λ-graded algebra and dimF (Ftα∩J) ≤ 1. In general,
the inverse of a symmetric element is also symmetric. Since t1, . . . , tn ∈ J , J generates
Fε and supp J generates Λ. Thus J = H(Fε, ∗) is a Hermitian n-torus. If q 6= 1, then
(titj)∗ = −titj for some i, j, and so we have Ftitj ∩J = {0}. Hence σi+σj /∈ supp J .
Therefore, supp J = Λ if and only if q = 1, i.e., J = F [t±1

1 , . . . , t±1
n ]. In particular,

J is never of strong type unless q = 1. We call the grading of H(Fε, ∗) induced from
a toral grading of Fε a toral grading of H(Fε, ∗). (In [2] p.16, H(Fε, ∗) is used to
construct EALA’s of type C.)

(3) Let E be a quadratic field extension of F . Let σE be the non-trivial Galois
automorphism of E over F . Let ξ = (ξij) be a quantum matrix over E such that

(4.4) σE(ξij)ξij = 1 (⇐⇒ σE(ξij) = ξji) for all i, j.

For the quantum torus Eξ = Eξ[t±1
1 , . . . , t±1

n ] over E, there exists a unique σE-
semilinear involution σ on Eξ over F such that σ(ti) = ti for all i. Thus the symmetric
elements H(Eξ, σ) form a Jordan algebra over F , and the Λ-grading induced from a
toral grading of Eξ makes H(Eξ, σ) into a Λ-graded algebra. One can easily check that
H(Eξ, σ) is a Hermitian torus over F with suppH(Eξ, σ) = Λ. We call the grading
of H(Eξ, σ) induced from a toral grading of Eξ a toral grading of H(Eξ, σ). Also, we
will identify E ⊗F H(Eξ, σ) with E+

ξ via x⊗ t↔ xt for x ∈ E and t ∈ H(Eξ, σ).

The following lemma is known for Jordan division algebras in [9] p.8.24. This is
true for Jordan domains, and the proof is the same. But for the convenience of the
reader, we prove it.

Lemma 4.5. Let J be a Jordan domain satisfying J = H(P, ∗) for an associative
algebra P with involution ∗ such that P is generated by J . Suppose that there exists
v ∈ P such that vv∗ = 0 and v + v∗ is invertible in J . Then J ∼= B+ for some
associative algebra B.

Proof. For any y ∈ J = H(P, ∗) we claim that v∗yv = v∗v = vyv∗ = 0. Clearly we
have v∗yv ∈ H(P, ∗) = J . Also, Uv∗yv1 = (v∗yv)2 = (v∗yv) · (v∗yv) = v∗yvv∗yv = 0
since vv∗ = 0. Hence v∗yv = 0 since J is a Jordan domain. In particular, v∗v = 0 for
y = 1. By the same argument, we get vyv∗ = 0, and so our claim is settled.
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Now, since v+v∗ is invertible in J , there exists z ∈ J such that (v+v∗)z(v+v∗) = 1.
By the claim, we have e + e∗ = 1 where e := vzv and ee∗ = e∗e = 0. Also, we have
e = e(e + e∗) = e2 and e∗ = e∗(e + e∗) = e∗2. Thus e and e∗ are supplementary
orthogonal idempotents in P . By the claim, we have e∗Je = eJe∗ = {0}. Since
J generates P , we get e∗Pe = ePe∗ = {0}. Therefore, for the associative algebra
B := ePe, we have P = B ⊕ B∗. Since J = H(P, ∗), we obtain an isomorphism of
Jordan algebras f : J = {b+ b∗ | b ∈ B}−̃→B+. �

We write A ∼=Λ B if A and B are Λ-graded isomorphic. Also, we write A ∼=Λ Fq,
F+
q , H(Fε, ∗) or H(Eξ, σ), if A is Λ-graded isomorphic to one of them ‘for some toral

grading’.

Lemma 4.6. Let J = ⊕α∈Λ Jα be a Jordan torus over F . If J ∼= B+ for some
associative algebra B, then B is an associative torus and J ∼=Λ F+

q for some q.

Proof. Let f : J−̃→B+ be an isomorphism and Bα := f(Jα) for all α ∈ Λ. Then
B+ = ⊕α∈Λ Bα is a Jordan torus such that J ∼=Λ B+. We show that B = ⊕α∈Λ Bα

is an associative torus. Since suppB = suppB+, we have Λ = 〈suppB+〉 = 〈suppB〉.
Also, all nonzero elements of Bα are invertible in B+, and so are they in B. Since
dimF Bα = dimF Jα ≤ 1, we only need to show that BαBβ ⊂ Bα+β for all α,β ∈ Λ.
Note that we have Bα · Bβ = Bα ◦ Bβ ⊂ Bα+β. If Bα = (0) or Bβ = (0), we
have nothing to prove. Otherwise, for 0 6= x ∈ Bα and 0 6= y ∈ Bβ, xy and yx are
invertible in B and so are they in B+. Hence, by 3.6(ii), xy ∈ Bγ and yx ∈ Bδ for
some γ, δ ∈ Λ. If x ◦ y = xy + yx 6= 0, then 0 6= x ◦ y ∈ Bα+β ∩ (Bγ + Bδ), which
forces α+ β = γ = δ. So we get xy ∈ Bα+β. If x ◦ y = xy + yx = 0, i.e., yx = −xy,
then we have [x2, y2] = 0, and so x2 · y2 = x2y2. Thus we get

0 6= (xy)2 = (xy) · (xy) = xyxy = −x2y2 = −x2 · y2 ∈ B2γ ∩B2α+2β.

Hence γ = α + β and we obtain xy ∈ Bα+β. Therefore, B = ⊕α∈Λ Bα is an
associative torus, and so B ∼=Λ Fq for some q and we get J ∼=Λ F+

q . �

Since Jordan tori are Jordan domains, one gets (a) of the following by 4.5 and 4.6:

Proposition 4.7. Let J = ⊕α∈Λ Jα be a Jordan torus over F satisfying J = H(P, ∗)
for an associative algebra P with involution ∗ such that P is generated by J .

(a) Suppose that there exists v ∈ P such that vv∗ = 0 and v+ v∗ is invertible in J .
Then J ∼=Λ F+

q for some q.
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(b) Suppose that there exist an invertible element u ∈ P so that u∗ = −u and
0 6= y ∈ Jγ for some γ ∈ Λ such that the following three conditions hold:

(i) u2 ∈ J2γ , (ii) uy−1u ∈ Jγ , (iii) [u, y] ∈ J2γ .

Then J ∼=Λ F+
q or E ⊗F J ∼=Λ E+

q for some q where E is a quadratic field extension
of F .

Proof. We only need to show (b). By dimF Jα ≤ 1 for allα ∈ Λ, there exist a, b, c ∈ F ,
a, b 6= 0, such that

u2 = ay2,(1)

buy−1u = y (⇐⇒ yu−1 = buy−1),(2)

[u, y] = uy − yu = cu2.(3)

By (3), we have uyu−1 − y = cu. By (2), we have bu2y−1 − y = cu. By (1), we have
aby2y−1 − y = cu. Hence we get cu = aby − y ∈ J . Since u /∈ J , we obtain c = 0 and
hence

(4) uy = yu.

Let v := u+
√
a y if

√
a ∈ F . Otherwise, let E := F (

√
a), JE := E⊗F J , PE := E⊗FP ,

∗ := id⊗∗ and v := 1⊗ u+
√
a⊗ y = u+

√
a y. Then since u∗ = −u, we have

vv∗ =
{

(u+
√
a y)(−u+

√
a y) = −u2 + ay2 = 0

(1⊗ u+
√
a⊗ y)(−1⊗ u+

√
a⊗ y) = 1⊗ (−u2 + ay2) = 0,

by (4) and (1). Also, v + v∗ = 2
√
a y or 2

√
a ⊗ y is invertible in J or in JE . Thus,

by (a), we get J ∼=Λ F+
q if

√
a ∈ F . If

√
a /∈ F , then we can apply (a) for the Jordan

torus JE = H(PE , ∗) over E, and obtain JE ∼=Λ E+
q . �

For the next proposition, we need the following fact:

4.8. If A and B are associative algebras, B has no zero-divisors and f : A+ −→ B+

is a homomorphism of Jordan algebras, then f : A −→ B is either a homomorphism
or anti-homomorphism of associative algebras ([9] Theorem 1.1.7, p.1.4). �
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Proposition 4.9. Let E ⊃ F be fields with [E : F ] = 2, and σE is the nontrivial
Galois automorphism of E over F . Let q ∈Mn(E) be a quantum matrix over E.

(1) Suppose that τ is a σE-semilinear involution of E+
q = Eq[t±1

1 , . . . , t±1
n ]+ over

F such that τ(ti) = ti for all i. Then:
(i) q ∈Mn(F ) and τ is an automorphism of Eq over F or
(ii) q = ξ and τ is an involution of Eξ over F , where ξ satisfies (4.4). In

particular, τ = σ where σ is defined in 4.3(3).
(2) Let J be a Jordan torus over F . Suppose that JE = E ⊗F J ∼=Λ E+

q . Then:
(i) q ∈Mn(F ) and J ∼=Λ F+

q or
(ii) J ∼=Λ H(Eξ, σ), which is a Hermitian torus defined in 4.3(3). In this case we

can identify E ⊗F H(Eξ, σ) = E+
ξ so that σE ⊗ id = σ.

Proof. (1): Since Eq has no zero-divisors, τ is an order 2 automorphism or an invo-
lution of the associative F -algebra Eq (see 4.8). If τ is an automorphism, then

tjti − qijtitj = 0 = τ(tjti − qijtitj) = tjti − σE(qij)titj ,

which forces σE(qij) = qij , and so qij ∈ F for all i, j, i.e., q ∈Mn(F ).
If τ is an involution, then

0 = τ(tjti − qijtitj) = titj − σE(qij)tjti = titj − σE(qij)qijtitj .

Hence we get σE(qij)qij = 1 for all i, j and obtain q = ξ. In particular, τ = σ since
σ is a unique σE-semilinear involution of Eξ such that σ(ti) = ti for all i.

(2): Let τ := σE ⊗ id, which is a σE-semilinear involution of JE = E ⊗F J .
Identifying J with 1⊗J , we have J = H(JE , τ), the set of fixed points by τ . Also, we
identify JE with E+

q , and so J = H(E+
q , τ). Since supp J = supp JE = suppE+

q = Λ,
one can choose t1, . . . , tn ∈ Eq such that Eq = Eq[t±1

1 , . . . , t±1
n ] and τ(ti) = ti for all

i. Thus one can apply (1). For the case (i), one gets H(Eq, τ) = Fq[t±1
1 , . . . , t±1

n ],
and so J = F+

q . For the case (ii), one obtains q = ξ, τ = σ and J = H(Eξ, σ). �

We note the following fact about semilattices:

4.10. Let S be a semilattice in Λ. Then there exists a basis {σ1, · · · ,σn} of Λ such
that each σi ∈ S ([1] p.24 Proposition 1.11). �

The reader is reminded that any Jordan division algebra of Hermitian type is iso-
morphic to A+ or H(B, ∗) for some associative division algebra A or some associative
division algebra B with involution ∗. We are now ready to prove an analogous result
for Hermitian tori.
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Theorem 4.11. Any Hermitian torus over F is graded isomorphic to one of the
three tori F+

q , H(Fε, ∗) or H(Eξ, σ) for some toral grading, as described in 4.3, and
conversely, these three tori are all Hermitian tori.

Proof. We only need to show the first statement. Let J = ⊕α∈Λ Jα be a Hermitian
torus over F , i.e., J = H(P, ∗) for some ∗-prime associative algebra P which is
generated by J . Let 〈σ1, . . . ,σn〉 be a basis of Λ such that each σi ∈ supp J (see
4.10), and let 0 6= xi ∈ Jσi , i = 1, . . . , n. We first consider the case where the
following two conditions hold:

(A) for all 1 ≤ i, j ≤ n, [xi, xj] = 0 or xi ◦ xj = 0, i.e., xjxi = ±xixj for all
1 ≤ i, j ≤ n,

(B) J is generated by r-tads {xε1i1 · · ·x
εr
ir
} where r > 0, i1, . . . , ir ∈ {1, . . . , n} and

εk = ±1.

We will show J ∼=Λ H(Fε, ∗) in this case. Since J generates P and every r-tad
is generated by 1-tads 2x±1

1 , . . . , 2x±1
n as an associative algebra, P is generated by

x±1
1 , . . . , x±1

n . Thus, by (A), there exist an elementary quantum matrix ε and an
epimorphism ϕ from Fε = Fε[t±1 , . . . , t

±
n ] onto P such that ϕ(ti) = xi for i = 1, . . . , n.

We give Fε the 〈σ1, . . . ,σn〉-grading, and show injectivity of ϕ. Suppose that ϕ(t) = 0
for t =

∑
α∈Λ aαtα where aα ∈ F , tα = tα1

1 · · · tαnn and α = α1σ1 + · · ·+ αnσn ∈ Λ.
So we have

(1)
∑
α∈Λ

aαxα = 0,

where xα := xα1
1 · · ·xαnn . Note that all xα are invertible in P since xi is invertible in

J and in P . We need to show that all aα = 0. Put

M := {α ∈ Λ | xα ∈ J} and N := {β ∈ Λ | xβ /∈ J}.

Then we have
∑
α∈M aαxα = 0 and

∑
β∈N aβxβ = 0 since xα ∈ J are symmetric

and xβ /∈ J are skew relative to ∗ (note ch. F 6= 2).

Claim 1. Assuming only (A), we have xα ∈ J =⇒ xα ∈ Jα.

Proof. By (A), the subalgebra of A generated by {x2
i }ni=1 is commutative, and so the

Jordan product and the associative product coincide in the subalgebra. Therefore,

x2
α = ±x2α1

1 · · ·x2αn
n = ±(· · (x2α1

1 · x2α2
2 ) · · · · x2αn

n ) ∈ J2α1σ1+···+2αnσn = J2α.
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Hence, by 3.7, we get xα ∈ Jα. �

By Claim 1, we obtain aα = 0 for all α ∈ M . If N = ∅, we are done. Otherwise
we pick any β0 ∈ N . Multiply (1) by xβ0 . Then, by (A), we have∑

β∈N
±aβxβ+β0 = 0.

Applying the same argument for this equation instead of (1), we have∑
β∈M1

±aβxβ+β0 = 0 and
∑
γ∈N1

±aγxγ+β0 = 0,

where M1 := {β ∈ N | xβ+β0 ∈ J} and N1 := {γ ∈ N | xγ+β0 /∈ J}. By Claim 1, we
get aβxβ+β0 ∈ Jβ+β0 , and hence aβ = 0 for all β ∈M1. Since N = M1tN1 (disjoint
union) and β0 ∈ M1 (because x2β0 ∈ J), we have N1 ( N . If N1 = ∅, we are done.
Otherwise, repeating this method for the finite set N1, we get some r > 1 such that
Nr = ∅ and aβ = 0 for all β ∈M2 t · · · tMr = N1. Consequently, we obtain aα = 0
for all α ∈ Λ. Thus t = 0 and ϕ is injective.

We have shown that ϕ is an isomorphism. Further, P is graded with Pσi = Jσi
and ϕ is a graded isomorphism. Also, through this isomorphism, we get an involution
∗ of Fε such that t∗i = ti for i = 1, . . . , n. Therefore, we obtain J ∼=Λ H(Fε, ∗).

We consider the second case: the negation of (A), i.e.,

there exist some i, j such that u := [xi, xj] 6= 0 and xi ◦ xj 6= 0.

We divide the case into two subcases:

(I) u2 = 0 and (II) u2 6= 0.

Note that u∗ = −u.
(I): We have uu∗ = −u2 = 0. We need the following claim which can be proven in

the same manner as in the classification of Jordan division algebras (see [9] p.8.25).

Claim 2. There exists y ∈ J such that for v = yu, v + v∗ 6= 0.

Proof. Otherwise, for all y ∈ J , we have v+v∗ = 0 for v = yu, i.e., yu = −u∗y∗ = uy.
So for all w ∈ P , we have (uy)(uw) = u2yw = 0, and hence we have (uJ)(uP ) =
{0}. Since P is generated by J , we get (uP )2 = {0}. Then we have (PuP )2 =
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PuPPuP = PuPuP = P (uP )2 = {0}. Moreover, (PuP )∗ = Pu∗P = PuP , and so
PuP is a nonzero ∗-ideal. This contradicts the fact that P is ∗-prime (∗-semiprime
is enough!). �

Let y ∈ J be such an element as in Claim 2 so that

v + v∗ = yu− uy = [y, u] 6= 0.

Decompose y into nonzero distinct homogeneous elements, namely, y =
∑
α yα.

Let vα := yαu for all yα. Suppose that vα + v∗α = 0 for all vα. Then we have
[yα, u] = yαu− uyα = vα + v∗α = 0 for all yα. Therefore,

v + v∗ = [y, u] =
[∑
α

yα, u
]

=
∑
α

[yα, u] = 0,

which contradicts our choice of y. Hence there exists some vα such that vα+ v∗α 6= 0.
By 2.7, we have

0 6= vα + v∗α = [yα, u] =
[
yα, [xi, xj]

]
= (xi, yα, xj)◦ ∈ Jσi+α+σj .

Hence vα + v∗α is invertible in J . Also, we have vαv∗α = yαuu
∗y∗α = −yαu2yα = 0.

Therefore, by 4.7(a), we get J ∼=Λ F+
q for some q.

(II): Let 0 6= y := xi ◦ xj ∈ Jγ where γ := σi + σj . We show that these u and y

satisfy the three conditions in 4.7(b). By 2.8, we have

0 6= u2 = [xi, xj]2 = xi ◦ Uxjxi − Uxix2
j − Uxjx2

i ∈ J2γ .

Hence u2 is invertible in J and hence in P . Thus u is invertible in P and u2 ∈ J2γ .
By 2.9, we have

uy−1u = Uuy
−1 = U[xi,xj ]y

−1 = (Uxi◦xj − 2UxiUxj − 2UxjUxi)y
−1 ∈ Jγ

since y−1 ∈ J−γ . By 2.7, we have

[u, y] =
[
[xi, xj], xi ◦ xj

]
= −(xi, xi ◦ xj , xj)◦ ∈ J2γ .

Thus u and y satisfy the conditions in 4.7(b), and we get J ∼=Λ F+
q or JE ∼=Λ E+

q .
Then, by 4.9(2), we obtain J ∼=Λ F+

q or H(Eξ, σ).

We consider the final case: (A) with the negation of (B), i,e.,

assuming the relation (A), J is not generated by r-tads {xε1i1 · · ·x
εr
ir
}.

By our assumption, there exist γ ∈ Λ and 0 6= y ∈ Jγ such that y is not generated by
r-tads {xε1i1 · · ·x

εr
ir
}. Let γ = γ1σ1 + · · ·+ γnσn.
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Claim 3. u := xγ1
1 · · ·xγnn /∈ J .

Proof. Otherwise we have 2u = {xγ1
1 · · ·xγnn }, and by Claim 1, u ∈ Jγ . So we get

y = au for some a ∈ F by dimF Jγ ≤ 1, i.e., y = 1
2a{x

γ1
1 · · ·xγnn }, which contradicts

our setting of y. �

Now, we show that these u and y ∈ Jγ satisfy the conditions in 4.7(b). Observe
first that u∗ = ±u by (A) and hence u∗ = −u by Claim 3. Next, by definition, u is
clearly invertible, and by (A), we have u2 = ±x2γ1

1 · · ·x2γn
n ∈ J . Hence u2 ∈ J2γ by

Claim 1. Secondly we have

Uuy
−1 = uy−1u = xγ1

1 · · ·xγnn y−1xγ1
1 · · ·xγnn = ±xγ1

1 · · ·xγnn y−1xγnn · · ·x
γ1
1

= ±Uxγ1
1
· · ·Uxγnn y−1 ∈ Jγ .

In particular, we get a formula for u:

(2) Uu = ±Uxγ1
1
· · ·Uxγnn .

Thirdly, since u∗ = −u and [u, y]∗ = [y∗, u∗] = −[y, u] = [u, y], we have [u, y] ∈ J .
Also, we have by 2.8 and (2),

[u, y]2 = y ◦ Uuy − Uyu2 − Uuy2 ∈ J4γ .

Hence, by 3.7, we get [u, y] ∈ J2γ . Thus, by 4.7(b) and 4.9(2), we get J ∼=Λ F+
q or

H(Eξ, σ). �

§5 Clifford type

Definition 5.1. A Jordan torus of Clifford type, i.e., the central closure is a Jordan
algebra of a symmetric bilinear form, is called a Clifford torus.

Example 5.2. Let Λ = Λn be a free abelian group of rank n ≥ 2. Let 2 ≤ m ≤ n

and let Λm and Λn−m be subgroups of Λ of rank m and n−m, respectively, such that
Λ = Λm ⊕ Λn−m. Let S(m) be a semilattice in Λm and {σ1, . . . ,σm} a basis of Λm.
Extend {σ1, . . . ,σm} to a basis {σ1, . . . ,σm,σm+1, . . . ,σn} of Λ. Let

Γ := 2Λm ⊕ Λn−m and Z := F [z±1
1 , . . . , z±1

n ] with a toral Γ-grading, i.e.,

Z = ⊕γ∈Γ Fzγ where

zγ = zγ1
1 · · · zγnn for γ = 2γ1σ1 + · · ·+ 2γmσm + γm+1σm+1 + · · ·+ γnσn.
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We fix
a representative set I of (S(m)/2Λm) \ {0}.

Let V be a free Z-module with basis {tε}ε∈I . Define a Z-bilinear form f : V ×V −→ Z

by

(∗) f(tε, tη) =
{
aεz2ε if ε = η

0 otherwise

for all ε,η ∈ I, where 0 6= aε ∈ F . Let

J = JS(m)({aε}ε∈I) := Z ⊕ V

be the Jordan algebra over Z of f . Then

{zγ | γ ∈ Γ} ∪ {zγtε | γ ∈ Γ, ε ∈ I}

is an F -basis of J . For α ∈ S(m) ⊕ Λn−m, there exist unique α′ ∈ Γ and ε ∈ I ∪ {0}
such that α = α′ + ε. Put t0 := 1 and

tα =
{
zα′tε if α ∈ S(m) ⊕ Λn−m
0 otherwise.

Then we get J = ⊕α∈Λ Ftα as a graded F -vector space. By (∗), we have, for
α = α′ + ε, β = β′ + η ∈ S(m) ⊕ Λn−m where α′,β′ ∈ Γ, ε,η ∈ I ∪ {0},

(∗∗) tαtβ = (zα′ tε)(zβ′tη) =


aεzα′+β′z2ε = aεtα+β if ε = η 6= 0

zα′+β′ tε = tα+β if η = 0

zα′+β′ tη = tα+β if ε = 0

0 otherwise,

and so we obtain tαtβ ⊂ Ftα+β for all α,β ∈ Λ. For α = α′+ε ∈ S(m)⊕Λn−m, since
t2α = aεz2α′z2ε is invertible, tα is invertible. Since supp J = S(m) ⊕ Λn−m, supp J
generates Λ and hence J = ⊕α∈Λ Ftα is a Jordan torus over F . One can check that
the centre Z(J) of J is Z and the central closure is a Jordan algebra of the extended
bilinear form of f . Hence J is a Clifford torus.

We call J = JS(m)({aε}ε∈I) the Clifford torus determined by S(m) of type {aε}ε∈I .
The Λ-grading of J determined by a basis 〈σ1, . . . ,σn〉 of Λ is called a toral grading
or a 〈σ1, . . . ,σn〉-grading of J . Also, when aε = 1 for all ε ∈ I, we call the J = JS(m)

the standard Clifford torus determined by S(m).
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Remark 5.3. (1) One can easily check that

JS(m)({aε}ε∈I) ∼=Λ J ′ ⊗F F [z±1
m+1, . . . , z

±1
n ]

where J ′ is the Clifford torus as constructed in 5.2 for n = m. When m = n, the
standard Clifford torus JS(n) appeared in [1] as the first example of an EALA of type
A1 graded by an arbitrary semilattice.

(2) If any element of F has a square root in F , e.g. F is an algebraically closed
field, then one can make aε = 1 for all ε ∈ I by switching tε to (

√
aε)−1tε. Thus, for

such a base field F , a Clifford torus J = JS(m)({aε}ε∈I) is always graded isomorphic
to the standard Clifford torus JS(m) .

(3) A Clifford torus J = JS(m)({aε}ε∈I) is, by (∗∗), never of strong type, even if
we take S(m) = Λm.

We now start the classification. Let J = ⊕α∈Λ Jα be a Clifford torus over F , i.e.,
the central closure J is a Jordan algebra over Z of a symmetric bilinear form where
Z = Z(J) is the centre of J and Z is the field of fractions of Z. Thus J has degree
≤ 2 over Z, i.e., there exist a Z-linear form tr : J −→ Z and a Z-quadratic map
n : J −→ Z with n(1) = 1 such that for all x ∈ J ,

x2 − tr(x)x+ n(x)1 = 0.

If dimZ J = 1, then J = Z since J embeds into J . Hence J is a commutative
associative torus, and so J ∼=Λ F [t±1

1 , . . . , t±1
n ].

Claim 1. Let J = ⊕α∈Λ Jα be a Clifford torus such that dimZ J 6= 1. Let Γ be the
central grading group of J . Then, for any α ∈ Λ\Γ, we have tr(Jα) = {0}, and there
exists a basis {σ1, . . . ,σn} of Λ such that

Γ = 2Zσ1 + · · ·+ 2Zσm + Zσm+1 + · · ·+ Zσn for some 2 ≤ m ≤ n.

Proof. Recall that J = ⊕α∈Λ/Γ Jα is a Λ/Γ-graded algebra over Z (see 3.9(iii)). Note
that dimZ J 6= 1 implies Λ/Γ 6= {0}, and so supp J 6= {0}. For any α ∈ supp J \ Γ,
let 0 6= x ∈ Jα. Then x2 + n(x)1 = tr(x)x ∈ Jα. If tr(x) 6= 0, then 2α = α since
x2 6= 0. Hence α = 0, which contradicts our choice of α. So we get tr(x) = 0.
Then x2 = −n(x)1 ∈ Z1. Since 0 6= x2 ∈ J2α ∩ Z1 ⊂ J2α ∩ J0, we get 2α = 0.
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Therefore, 2Λ ⊂ Γ, and the exponent of Λ/Γ is 2, i.e., Λ/Γ ∼= Zm2 for some 1 ≤ m ≤ n.
By 3.6(iv), m = 1 cannot happen. Thus the statement is clear by the Fundamental
Theorem of finitely generated abelian groups. �

Let W := {x ∈ J | tr(x) = 0}. Then J = Z1 ⊕W is a Jordan algebra over Z of
the symmetric bilinear form

h := −1
2
n(·, ·) |W×W .

Recall that J = ⊕α∈Λ/Γ Jα is a Λ/Γ-graded algebra over Z in 3.9(ii). By Claim 1,
we have tr(Jα) = {0} for α 6= 0, and so

V := ⊕α 6=0 Jα ⊂W

and J = Z ⊕ V as a direct sum of Z-modules. For all x, y ∈ V , we have xy =
h(x, y)1 ∈ J ∩Z1 = J ∩Z(J) = Z. Therefore, J = Z ⊕ V is a Jordan algebra over Z
of f := h |V×V . Let S := supp J and Λm := Zσ1 + · · ·+ Zσm where {σ1, . . . ,σn} is
a basis of Λ chosen in Claim 1.

Claim 2. S(m) := S ∩ Λm is a semilattice in Λ.

Proof. Since S is a semilattice in Λ and Λm is a subgroup of Λ, we have 0, 2α− β ∈
S(m) for all α,β ∈ S(m). We need to show that S(m) generates Λm. For any δ =
δ1σ1 + · · ·+δnσn ∈ S, we have δ′ := δm+1σm+1 + · · ·+δnσn ∈ Γ. Let 0 6= x ∈ Jδ and
0 6= z ∈ Jδ′ . Then 0 6= xz−1 ∈ Jδ−δ′ , and hence δ − δ′ = δ1σ1 + · · ·+ δmσm ∈ S(m).
Since S generates Λ, we have for α ∈ Λm ⊂ Λ,

α =
∑
δ∈U

lδδ =
∑
δ∈U

lδ(δ − δ′)

where U is a finite subset of S and lδ is a positive integer. Therefore, S(m) generates
Λm. �

We fix a representative set I of (S(m)/2Λm) \ {0}, as in 5.2. For ε ∈ I, let
0 6= tε ∈ Jε. Then we get V = ⊕α 6=0 Jα = ⊕ε∈I Ztε as direct sums of Z-modules.
Since Z = ⊕γ∈Γ Jγ is a commutative associative Γ-torus, Z can be identified with
F [z±1

1 , . . . , z±1
n ] with the toral Γ-grading as in 5.2. Moreover, for ε 6= η ∈ I, we have

ε+ η /∈ Γ, and so
tεtη = f(tε, tη) ∈ Jε+η ∩ J0 = (0).

Also, we have 0 6= t2ε = f(tε, tε) ∈ J2ε = Fz2ε. Thus there exists 0 6= aε ∈ F such that
f(tε, tε) = aεz2ε. Hence the bilinear form f coincides with f in 5.2. Consequently,
we have shown the following:
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Theorem 5.5. Any JS(m)({aε}ε∈I) as defined in Example 5.2 is a Clifford n-torus
and conversely any Clifford n-torus is graded isomorphic to JS(m)({aε}ε∈I), or to the
algebra of Laurent polynomials in n variables, for some toral grading.

Also, by Remark 5.3(2) we have:

Corollary 5.6. Suppose that any element of the base field F has a square root. Then
a Clifford torus is graded isomorphic to a standard Clifford n-torus JS(m) as defined in
5.2, or to the algebra of Laurent polynomials in n variables, for some toral grading. �

§6 Albert type

We classify Jordan tori of Albert type, i.e., Jordan tori whose central closure is an
Albert algebra. An Albert algebra is defined as either a first or a second Tits con-
struction, which are both 27-dimensional central simple exceptional Jordan algebras
of degree 3. We recall the first Tits construction but not the second one since second
Tits constructions do not occur in the class of Jordan tori.

Let A be a central simple associative algebra over F of (generic) degree 3 with
generic trace tr. For a, b ∈ A, let

a · b =
1
2

(ab+ ba),

a× b = a · b− 1
2

tr(a)b− 1
2

tr(b)a+
1
2
(

tr(a) tr(b)− tr(a · b)
)
1,

a = a× 1 =
1
2
(

tr(a)1− a
)
.

Note that
1 = 1 and a(a× a) = (a× a)a = n(a)

where n is the generic norm on A.
Let 0 6= µ ∈ F . A first Tits construction (A, µ) over F obtained from A and the

structure constant µ is the direct sum A ⊕ A ⊕ A as F -spaces with the following
F -bilinear multiplication:

For (a0, a1, a2), (b0, b1, b2) ∈ (A, µ) = A⊕ A⊕A,

(a0, a1, a2)(b0, b1, b2) = (a0 · b0 + a1b2 + b1a2,

a0b1 + b0a1 + µ−1a2 × b2, b2a0 + a2b0 + µa1 × b1)(6.1)

We will always identify A with (A, 0, 0) as F -spaces.



30 COORDINATE ALGEBRAS OF TYPE A1

Remark 6.2. Let x := (0, 1, 0) and y := (0, 0, 1). Since a = tr(a)1 + 2a = tr(a)1 + 2a,
we have A · x = (0, A, 0) and A · x2 = (0, 0, µA) = (0, 0, A). Thus (A, µ) is generated
by A and x. Also, since x = µy2, (A, µ) is generated by A and y.

The following lemma is well-known ([8] p.422, Exercise 1).

6.3. Let (A, µ) be a first Tits construction. Let a ∈ A be invertible and x = (0, a, 0), y =
(0, 0, a) ∈ (A, µ). Then:

(i) 0 6= x3 ∈ F1, and there exists an isomorphism Φ from (A, µ) onto (A, x3) over
F = F1 (identify) such that Φ |A= id and Φ(x) = (0, 1, 0),

(ii) 0 6= y−3 ∈ F1, and there exists an isomorphism Ψ from (A, µ) onto (A, y−3)
over F = F1 such that Ψ |A= id and Ψ(y) = (0, 0, 1). �

The theory of first Tits constructions over a ring does not seem to be much devel-
oped. As far as the author knows, the most general paper is [16]. For our purpose,
we do not need this generality, but only a very special case. One might say that this
is almost the classical case (i.e., Tits constructions over a field above).

Definition 6.4. We say that a prime Jordan or associative algebra P over F has
central degree 3 if the central closure P = Z ⊗Z P is finite dimensional and has
(generic) degree 3 over Z.

Lemma 6.5. Let A be a prime associative algebra over F of central degree 3, and
µ ∈ Z a unit where Z = Z(A) is the centre of A. Assume that tr(A) ⊂ Z where
tr is the generic trace of the central closure A over Z. Then, the subset (A, µ) :=
A ⊕ A ⊕ A of the first Tits construction (A, µ) = A ⊕ A ⊕ A is a Z-subalgebra such
that (A, µ) = (A, µ).

Proof. By the multiplication rule of (A, µ) (see 6.1), and our assumption tr(A) ⊂ Z,
it is clear that (A, µ) is a Z-subalgebra of (A, µ). Let Z(A, µ) be the centre of (A, µ).
Then we have Z ⊂ Z(A, µ) ⊂ Z(A) = Z, and so Z(A, µ) = Z. Therefore, the central
closure (A, µ) of (A, µ) is given as Z ⊗Z (A, µ), which is a Z-subalgebra of (A, µ).
Thus we only need to show that (A, µ) ⊂ (A, µ). But this is clear because we have,
for zi ∈ Z and ai ∈ A, i = 0, 1, 2,(

1
z0
⊗ a0,

1
z1
⊗ a1,

1
z2
⊗ a2

)
=

1
z0z1z2

(1⊗ z1z2a0, 1⊗ z0z2a1, 1⊗ z0z1a2)

Hence we get (A, µ) = (A, µ). �
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We call this (A, µ) a first Tits construction over Z. This is a special type of the
general first Tits construction studied in [16].

Remark 6.6. This (A, µ) is also generated as a Z-algebra by A and x = (0, 1, 0) or by
A and y = (0, 0, 1) as in the classical case (see 6.2). Thus (A, µ) is characterized as
the Z-subalgebra of (A, µ) generated by A and x or by A and y.

Before giving examples of Jordan tori of central degree 3, we show general proper-
ties of them.

Proposition 6.7. Let T = ⊕α∈Λ Tα be a division Λ-graded Jordan or associative
algebra over F of central degree 3. Let tr be the generic trace of the central closure
T . Then there exists a basis {σ1, . . . ,σn} of Λ such that the central grading group of
T is given as

Γ = 3Zσ1 + · · ·+ 3Zσm + Zσm+1 + · · ·+ Zσn for some 2 ≤ m ≤ n,

and supp T = Λ. Moreover, for any α ∈ Λ \ Γ, we have tr(Tα) = {0}.

Proof. If Γ = Λ, then dimZ T = 1, and hence T does not have central degree 3.
Therefore, Γ 6= Λ and supp T/Γ 6= {0}. Let 0 6= β ∈ supp T/Γ and 0 6= x ∈ Tβ. Since
T = ⊕α∈Λ/Γ Tα (see 3.9(iii)), has generic degree 3, we have

x3 + z1x
2 + z2x+ z31 = 0 for some z1, z2, z3 ∈ Z and z1 = − tr(x).

If 2β = 0, then 3β = β and therefore,

x3 + z2x = −z1x
2 − z31 ∈ Tβ ∩ T 0 = (0).

Hence we get x3+z2x = x(x2+z21) = 0. Since T is a Jordan or an associative domain,
the subalgebra Z[x] of T generated by x is a commutative associative algebra domain
over Z. So x2+z21 = 0 since x 6= 0. Since x /∈ T 0, the polynomial f(λ) = λ2+z2 is the
minimal polynomial of x over Z. If f(λ) is reducible over Z, say f(λ) = (λ−a)(λ−b),
a, b ∈ Z, then (x − a1)(x − b1) = 0 in Z[x]. Hence, x = a1 or x = b1, and so
x ∈ Z1 = T 0, i.e., β = 0, which is a contradiction. Therefore, f(λ) is irreducible
over Z. Note that the minimal polynomial and the generic minimal polynomial of an
element have the same irreducible factors (see [8] p.224). Since f(λ) is the irreducible
minimal polynomial of x, the generic minimal polynomial of x has to be a power of
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f(λ). However, this is impossible since the degree of the generic minimal polynomial
of x is 3. Therefore, 2β 6= 0. This implies that 3β 6= β. Since β 6= 0, we have
3β 6= 2β. Hence {3β, 0} ∩ {2β,β} = ∅. So (T 3β + T 0) ∩ (T 2β ⊕ Tβ) = (0). Since

x3 + z31 = −z1x
2 − z2x ∈ (T 3β + T 0) ∩ (T 2β ⊕ Tβ),

we get two equalities x3 + z31 = 0 and −z1x
2 − z2x = 0.

By the first identity, we have 0 6= x3 = −z31 ∈ T 3β ∩ T 0, and hence 3β = 0.
Thus 3Λ ⊂ Γ, and so the exponent of Λ/Γ is 3. Hence, by 3.9(iv), Λ/Γ ∼= Zm3 for
some 2 ≤ m ≤ n, and so the first statement follows from the Fundamental Theorem
of finitely generated abelian groups. Also, we have 3Λ ⊂ supp T . Since supp T is a
semilattice, Λ = 3Λ− 2Λ ⊂ supp T , and so supp T = Λ.

By the second identity and by the same reason above, we have −z1x − z21 = 0.
Then −z1x = z21 ∈ Tβ ∩ T 0 = (0). Hence z1 = 0, i.e., tr(x) = 0. Therefore, for any
α ∈ Λ \ Γ, we have tr(Tα) = {0}. �

We give examples of Jordan tori of central degree 3.

Example 6.8. (1) Assume that F contains a primitive 3rd root of unity ω. Let ω
be an n× n (n ≥ 2) quantum matrix

ω = ωn =


1 ω 1 · · · 1

ω−1 1 1
...

1 1 1
...

...
. . . 1

1 · · · · · · 1 1


where the (1, 2)-entry is ω, the (2, 1)-entry is ω−1 and the other entries are all 1. Let
Fω = Fω[u±1

1 , . . . , u±1
n ] be the quantum torus determined by ω and Z = Z(Fω) the

centre of Fω. One finds that Z = F [u±3
1 , u±3

2 , u±1
3 , . . . , u±1

n ], the algebra of Laurent
polynomials in the variables u3

1, u
3
2, u3, . . . , un. So for a 〈σ1, . . . ,σn〉-grading of Fω,

the central grading group of Fω is 3Zσ1 + 3Zσ2 + Zσ3 + · · ·+ Zσn, and the central
closure Fω is a (Z3 × Z3)-torus over Z. So the dimension of Fω over Z is 9. Since
Fω is a domain, Fω is a division algebra, by Wedderburn’s Structure Theorem, and
Fω has degree 3 over Z. Thus Fω has central degree 3. We claim that F+

ω is a
special Jordan torus of central degree 3. In fact, we have, by 2.5, Z(F+

ω ) = Z(Fω).
So the central closure F+

ω is a 9-dimensional central special Jordan division algebra
over Z(F+

ω ) = Z(Fω). Hence, by 2.11(b), it has degree 3.
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(2) Assume that n ≥ 3. Let Fω = Fω[u±1
1 , . . . , u±1

n ] as defined in (1), Z(Fω) its
centre and tr the generic trace of the central closure Fω. Then, by 6.7, we have
tr(ui1u

j
2) = 0 if i 6≡ 0 or j 6≡ 0 (mod 3), and so

tr(Fω) ⊂ Z(Fω) = F [u±3
1 , u±3

2 , u±1
3 , . . . , u±1

n ].

Thus, by 6.5, we have the first Tits construction At = (Fω, u3) over Z. Namely,

At = (Fω, u3) = Fω ⊕ Fω ⊕ Fω.

Let 〈σ1, . . . ,σn〉 be a basis of Λ and

∆ := Zσ1 + Zσ2 + 3Zσ3 + Zσ4 + · · ·+ Zσn.

We give Fω a toral ∆-grading, i.e.,

Fω = ⊕δ∈∆ Fuδ where uδ = uδ11 u
δ2
2 u

δ3
3 · · ·uδnn

for δ = δ1σ1 + δ2σ2 + 3δ3σ3 + δ4σ4 + · · ·+ δnσn.
For α = α1σ1 + · · ·+ αnσn ∈ Λ, we put

tα :=


(uα, 0, 0) if α3 ≡ 0 (mod 3)
(0, uα−σ3 , 0) if α3 ≡ 1 (mod 3)
(0, 0, uα+σ3) if α3 ≡ 2 (mod 3).

Then we obtain tα 6= 0 for all α ∈ Λ and At = ⊕α∈ΛFtα. Thus, At is a Λ-graded
vector space over F whose homogeneous spaces are all 1-dimensional over F . We
note that tσ3 = (0, 1, 0), t2σ3 = t2σ3

= (0, 0, u3) and t−σ3 = t−1
σ3

= (0, 0, 1). By the
multiplication rule of Tits first constructions (see 6.1), one can check that At is a
Λ-graded algebra and the structure constants relative to the basis {tα}α∈Λ are

{1, ω, ω2,−1
2
,−ω

2
,−ω

2

2
}.

Hence At is a Jordan torus over F of strong type, which is called the Albert torus over
F . We call the grading of At above a toral grading or a 〈σ1, . . . ,σn〉-grading. By 6.5,
the central closure At of At is an Albert algebra (Fω, u3) over Z, and so the Albert
torus is in fact a Jordan torus of Albert type. By 2.10, the central closure of a Jordan
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torus of Albert type is a division algebra since this central closure is a 27-dimensional
Jordan domain. In particular, the central closure At is a division algebra.

(3) Suppose that
√
−3 /∈ F . Let E = F (

√
−3) and consider the Jordan torus

H(Eω, σ) defined in 4.3(3). Since E⊗FH(Eω, σ) ∼=Λ E+
ω , the central grading group of

H(Eω, σ) coincides with the one of Eω (see 3.8), which is 3Zσ1+3Zσ2+Zσ3+· · ·+Zσn
by (1). Therefore, the central closure H(Eω, σ) is a 9-dimensional central special
Jordan algebra, which by 2.10 is a division algebra. Then, by 2.11(b), H(Eω, σ) has
central degree 3.

We first classify associative tori of central degree 3. Let T = ⊕α∈Λ Tα be an
associative torus over F of central degree 3 and T the central closure over Z. By 6.7,
we have dimZ T = 3m for some 2 ≤ m ≤ n. Since T is a finite dimensional associative
domain, T is a division algebra by Wedderburn’s Structure Theorem. Hence m = 2,
i.e., dimZ T = 9. Thus there exists a basis {σ1, . . . ,σn} of Λ such that the central
grading group Γ of T is 3Zσ1 + 3Zσ2 + Zσ3 + · · · + Zσn. Also, it is clear that an
associative torus whose central grading group is Γ has central degree 3.

Now, we classify associative tori whose central grading group is Γ. Let 0 6= ti ∈ Tσi
for 1 ≤ i ≤ n. Then since tit1 = t1ti, tit2 = t2ti and tjti = titj for all 3 ≤ i ≤ n and
1 ≤ j ≤ n, we can identify such a T with the quantum torus Fq = Fq[t±1

1 , . . . , t±1
n ]

determined by q = q(q) where the (1, 2)-entry of q is some q ∈ F×, the (2, 1)-entry
is q−1 and the other entries are all 1. Moreover, since t32 ∈ Z, we have t1t32 = t32t1 =
q3t1t

3
2, and so q3 = 1. If q = 1, then q = q(1) = 1, but the algebra of Laurent

polynomials F1 cannot have central degree 3 since Z = Z(F1) = F1. Hence q 6= 1,
and F has to contain a primitive 3rd root of unity, say ω. Since q can be either ω or
ω−1, let q := q(ω) and q′ := q(ω−1). One can easily see that Fq ∼= Fq′ via t1 7→ t2,
t2 7→ t1 and ti 7→ ti for i = 3, . . . , n.

Remark 6.11. Note that Fq′ can be identified with the opposite algebra F opq of Fq.
Then Fq and Fq′ are both algebras over their common centre

Z = F [t±3
1 , t±3

2 , t±1
3 . . . , t±1

n ].

We showed that Fq ∼= Fq′ over F , but we note that Fq � Fq′ over Z. In general, if
A is an associative domain of central degree 3, then we always have A � Aop over
Z. For, if A ∼= Aop over Z, then A ∼= A

op
over Z, which cannot happen since A is

a central associative division algebra of degree 3. (See e.g. [19]; if A ∼= A
op

, then
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[A]2 = 1 in the Brauer group. But the order of A in the Brauer group has to divide
the degree.)

We summarize the above results as a proposition.

Proposition 6.12. (1) For an associative torus T over F we have: T has central
degree 3 ⇐⇒ the central grading group of T is 3Zσ1 + 3Zσ2 + Zσ3 + · · ·+ Zσn for
some basis {σ1, . . . ,σn} of Λ.

(2) If ω ∈ F , then an associative torus over F of central degree 3 exists, and any
such torus is isomorphic to the quantum torus Fω. If ω /∈ F , e.g. ch. F = 3, no such
torus exists. �

Unlike the other types, we will show that the Albert torus At is the only Jordan
torus of Albert type. We begin with the following:

Proposition 6.13. Let J be a special Jordan torus over F of central degree 3. Then
ch. F 6= 3, and

J ∼=Λ

{
F+
ω if ω ∈ F
H(Eω, σ) otherwise

where E = F (
√
−3). Conversely, the algebras F+

ω and H(Eω, σ) are special Jordan
tori of central degree 3.

Remark. If ch. F 6= 3, there exists a primitive 3rd root of unity ω in some extension
field of F . Note that F (ω) = F (

√
−3).

Proof. Only the 1st part remains to be proven. We know that a special Jordan torus
J is either a Hermitian torus or a Clifford torus. Since a Clifford torus does not have
central degree 3, special Jordan tori of central degree 3 have to be Hermitian tori, i.e.,
J ∼=Λ F+

q , H(Fε, ∗) or H(Eξ, σ) (see 4.3 and 4.11). Let Z = Z(J) be the centre of J .
By 6.7, there exists a basis {σ1, . . . ,σn} of Λ such that the central grading group Γ
of J has the form

Γ = 3Zσ1 + · · ·+ 3Zσm + Zσm+1 + · · ·+ Zσn

for some 2 ≤ m ≤ n and supp J = Λ. In particular, there exists a homogeneous
element t ∈ J such that t2 /∈ Z (for example, take t to be a nonzero element of degree
σ1). If ϕ : J−̃→H(Fε, ∗) is a graded isomorphism, then by 3.6(ii), ϕ(t) is homoge-
neous in H(Fε, ∗), and ϕ(t)2 /∈ ϕ(Z) = Z

(
H(Fε, ∗)

)
. However, for any homogeneous

element x ∈ H(Fε, ∗), x2 ∈ Z
(
H(Fε, ∗)

)
since the entries of ε are ±1. Thus we get
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a contradiction. Hence the only possible candidates of central degree 3 are F+
q and

H(Eξ, σ). Since the central closure J is a finite dimensional central special Jordan
division algebra over Z of degree 3, we have, by 2.11(b), dimZ J = 9. So m has to be
2, by 3.9(iii).

If J ∼=Λ F+
q , then by 2.5, Z = Z(F+

q ) = Z(Fq), and hence the central grading
group of Fq is Γ. Thus, by 6.12, we have ω ∈ F , and so ch. F 6= 3, and q = ω, i.e.,
J ∼=Λ F+

ω .
Suppose that J ∼=Λ H(Eξ, σ). We identify them. So we have JE = E ⊗F J = E+

ξ .
Hence, by 2.5 and 3.8, the grading group of Z(E+

ξ ) = Z(Eξ) is Γ. Then, by 6.12,
we get ch. E 6= 3, ω ∈ E and ξ = ω, i.e., J = H(Eω, σ). Since ωσ(ω) = 1, we have
σ(ω) 6= ω, and so ω /∈ F . Since [E : F ] = 2, we obtain E = F (ω) = F (

√
−3). �

By Zelmanov’s Prime Structure Theorem, if J is a strongly prime exceptional
Jordan algebra J over F , then J has central degree 3 and the central closure J is
an Albert algebra. Let Tr be the generic trace of J over Z. For a subalgebra U of J ,
let

U⊥ := {x ∈ J | Tr(Ux) = 0} ⊂ J ⊂ J .

Note that the central closure of an exceptional Jordan domain is an Albert division
algebra. The following lemma for an exceptional Jordan domain serves as preparation
for the classification of Jordan tori of Albert type. We will show that such a torus
satisfies all the assumptions of the lemma.

Lemma 6.14. Let J be an exceptional Jordan domain over F , Z = Z(J ) the centre
of J and Tr the generic trace of J . Let U be a subdomain of J and Z(U) the centre
of U . We assume the following conditions:

(i) Z = Z(U) and U has central degree 3,
(ii) U = A+ for some associative algebra A over F ,
(iii) Tr(U) ⊂ Z,
(iv) there exists an element x ∈ U⊥ such that x2 ∈ U⊥ and z := x3 ∈ Z is

invertible.
Then, J contains a subalgebra J ′ so that there exists

a Z-isomorphism ϕ : (A, z)−̃→J ′ with ϕ |A= id and ϕ
(
(0, 1, 0)

)
= x or,

a Z-isomorphism ψ : (A, z−1)−̃→J ′ with ψ |A= id and ψ
(
(0, 0, 1)

)
= x,

where (A, z) and (A, z−1) are defined in 6.5.
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Moreover, assume that
(v) there exists an F -isomorphism f from A onto the opposite algebra Aop such

that f ◦ Tr = Tr ◦f and f(z) = z.
Then there exists an F -isomorphism f̃ : (A, z)−̃→(A, z−1) with f̃ |A= f and

f̃
(
(0, 1, 0)

)
= (0, 0, 1). In particular, J always contains a subalgebra F -isomorphic to

(A, z).

Proof. As mentioned above, the central closure J is an Albert division algebra over
Z. By (i), U = Z(U)⊗Z(U) U = Z ⊗Z U ⊂ J is a central division subalgebra over Z
of degree 3, and tr := Tr |U is the generic trace of U . By (ii) and 2.5, we have

U = Z(A+)⊗Z(A+) A+ = Z(A)⊗Z(A) A+ =
(
Z(A)⊗Z(A) A

)+ = (A)+.

Hence B := A is a central associative division algebra over Z of degree 3, and so A
has central degree 3 with tr(A) = tr(U) = Tr(U) ⊂ Z by (iii). Note that the generic
trace of A coincides with the generic trace tr of U = A+ (see [8] p.230).

Now, since J contains U = B+ for the central simple associative algebra B over
Z of degree 3, we have J ∼= (B, µ) over Z for some 0 6= µ ∈ Z (see [8] p.420). Note
that this isomorphism is the identity map on B. So we identify J with (B, µ). Since
U⊥ = B⊥ = (0, B, B) (see e.g. [18] p.349), we have, by (iv), x = (0, u, v) for some
u, v ∈ B. By the multiplication rule 6.1 of (B, µ), we have x2 = (2uv, u′, v′) for
some u′, v′ ∈ B. Since x2 ∈ U⊥, we have 2uv = 0, and so tr(uv)1 = uv. Hence
0 = 2uv = 2tr(uv)1 = 2 tr(uv)1, and so uv = 0. Since B is an associative division
algebra, we have u = 0 or v = 0. If u = v = 0, then x = 0 which contradicts the
invertibility of x3. Thus we obtain x = (0, u, 0) or x = (0, 0, v) for some nonzero
u, v ∈ B. Then, by 6.3, there exists a Z-isomorphism Φ from (B, µ) onto (B, z)
or a Z-isomorphism Ψ from (B, µ) onto (B, z−1) such that Φ |A= id or Ψ |A= id
and Φ(x) = (0, 1, 0) or Ψ(x) = (0, 0, 1). So, Φ(J ) contains A and (0, 1, 0) in (B, z),
or Ψ(J ) contains A and (0, 0, 1) in (B, z−1). Hence Φ(J ) contains (A, z) or Ψ(J )
contains (A, z−1) (see 6.6). Let J ′ = Φ−1

(
(A, z)

)
or J ′ = Ψ−1

(
(A, z−1)

)
. Then

ϕ := Φ−1 |(A,z) and ψ := Ψ−1 |(A,z−1) are the required Z-isomorphisms, and so we
have shown the first statement.

For the second statement, we use the well-known fact that there exists an iso-
morphism g : (B, z)−̃→(Bop, z−1) over Z defined by g

(
(a0, a1, a2)

)
= (a0, a2, a1) for

a0, a1, a2 ∈ A (see [8] p.422, Exercise 2). Thus

h := g |(A,z): (A, z)−̃→(Aop, z−1)
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is a Z-isomorphism. We note that Aop has central degree 3, and has the same centre
as A. Also, the generic trace of Aop coincides with the generic trace tr of A. The F -
isomorphism f : A−̃→Aop in our assumption (v) satisfies f(z) = z and f ◦tr = f ◦Tr =
Tr ◦f = tr ◦f . So one can check that the map f̄ : (A, z−1) −→ (Aop, z−1) defined by
f̄
(
(a0, a1, a2)

)
=
(
f(a0), f(a1), f(a2)

)
is an F -isomorphism. Consequently, we obtain

an F -isomorphism f̃ := f̄−1 ◦ h : (A, z)−̃→(A, z−1) with f̃
(
(0, 1, 0)

)
= (0, 0, 1). For

the last statement, the composition map ψ ◦ f̃ gives an F -isomorphism from (A, z)
onto J ′. �

Remark. In 6.14, if (A, z) ∼= (A, z−1) over Z, then (A, z) ∼= (A, z−1) over Z. Since
(A, z) is an Albert division algebra, this cannot happen by [17], p.204 (see 6.11). Hence
we always have (A, z) � (A, z−1) over Z though it may happen that (A, z) ∼= (A, z−1)
over F . For example, this is the case if (A, z) is a Jordan torus of Albert type below.

We start to classify Jordan tori of Albert type. Let J = ⊕α∈Λ Jα be a Jordan
torus of Albert type, i.e., the central closure J is an Albert algebra over Z. Recall
that an Albert algebra is a 27-dimensional central simple exceptional Jordan algebra
of degree 3. By 6.7 and the fact that we have degree 3 and dimension 27, it follows
that supp J = Λ, n ≥ 3, and there exists a basis {σ1, . . . ,σn} of Λ such that the
central grading group Γ of J is given as

Γ = 3Zσ1 + 3Zσ2 + 3Zσ3 + Zσ4 + · · ·+ Zσn.

Let U = ⊕α∈∆ Jα, where

∆ := Zσ1 + Zσ2 + 3Zσ3 + Zσ4 + · · ·+ Zσn.

We claim that Z(U) = Z(J). Since U ⊂ J , we have Z(U) ⊃ Z(J) and so the central
grading group ∆1 of U lies in between ∆ and Γ, i.e., ∆ > ∆1 > Γ. If Γ 6= ∆1 6= ∆,
we get |∆/∆1| = 3 since |∆/Γ| = 9. Hence the grading group of the central closure
U is ∆/∆1 = Z3. But by 3.9(iv), this cannot happen. Suppose then that ∆1 = ∆.
Then U is commutative and associative. We show, using the method of Lemma 2 in
[8] p.420, that this cannot happen:

Suppose that U is commutative and associative. Since J is an Albert division
algebra by 3.4.7, the commutative associative subalgebra Z ⊗Z U becomes a subfield
of J , which is 9-dimensional since |∆/Γ| = 9. But this is impossible. Indeed, take an
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algebraic closure Ω containing Z. Then, in JΩ, we have 1 = e1 + · · ·+ e9 where ei for
i = 1, . . . , 9 are orthogonal idempotents. Hence, by Lemma 1 in [8] p.229, the degree
of JΩ is ≥ 9, which is a contradiction since the degree of JΩ is equal to the degree of
J which is 3 (see [8] p.223).

Thus we get ∆1 = Γ, i.e., Z(U) = Z. In particular, we have U = Z ⊗Z U ⊂ J .
Note that U is a central subalgebra of the division algebra J which is 9-dimensional
since |∆/Γ| = 9. So by the classification of finite dimensional central simple Jordan
algebras, U is special (see [8] Corollary 2 p.204 and p.207). Hence, by 2.11, U has
degree 3. So U is a special Jordan torus of central degree 3. Therefore, by 6.13,
ch. F 6= 3 and U can be identified with F+

ω if ω ∈ F and with H(Eω, σ) otherwise,
where E = F (

√
−3) = F (ω).

We first consider the case U = F+
ω . Let x be an arbitrary nonzero element in Jσ3 .

Let ui be an arbitrary nonzero element in Jσi for i 6= 3 and u3 := x3 ∈ J3σ3 . Then
Fω = Fω[u±1

1 , . . . , u±1
n ] is a ∆-torus with a 〈σ1,σ2, 3σ3,σ4, . . . ,σn〉-grading. Let Tr

be the generic trace of J and U⊥ = {y ∈ J | Tr(Uy) = 0}. We claim that x, x2 ∈ U⊥.
Since Tr is Z-linear and U is a free Z-module with basis {ui1u

j
2 | i, j = 0, 1, 2}, it is

enough to show that Tr
(
(ui1u

j
2)xk

)
= 0 for all i, j = 0, 1, 2 and k = 1, 2. Since such

(ui1u
j
2)xk are all homogeneous and their degrees are not contained in Γ, we get, by

6.7, Tr
(
(ui1u

j
2)xk

)
= 0. Hence our claim is settled.

Since x3 = u3 ∈ Z is invertible and Tr(Fω) ⊂ Z, we have shown the conditions
(i)-(iv) for J = J , U = F+

ω and z = u3 in 6.14. Therefore, by 6.14, J contains a
subalgebra J ′ so that

Case (I) ϕ : (Fω, u3) −̃→ J ′ is a Z-isomorphism

with ϕ |Fω= id and ϕ
(
(0, 1, 0)

)
= x, or

Case (II) ψ : (Fω, u−1
3 ) −̃→ J ′ is a Z-isomorphism

with ψ |Fω= id and ψ
(
(0, 0, 1)

)
= x.

We give a 〈σ1, . . . ,σn〉-grading to (Fω, u3) so that At = (Fω, u3) is the Albert
torus, i.e., At = ⊕α∈Λ Ftα, and tσi = ui for i 6= 3 and tσ3 = (0, 1, 0) (see 6.8(2)).

Case (I): We have ϕ(tσi) = ui ∈ Jσi for i 6= 3 and ϕ(tσ3) = x ∈ Jσ3 . Thus one gets
the injective Z-homomorphism ϕ : At −→ J with ϕ(Ftσi) = Jσi for all i = 1, . . . , n.
Since At is of strong type, we have, for any α = α1σ1 + · · ·+ αnσn ∈ Λ,

0 6= ϕ
(
uα1

1 · (uα2
2 · (tα3

σ3
· (uα4

4 · · ·uαnn )...)
)
∈ Jα,
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and hence ϕ is surjective. Therefore, J ∼= At over Z and J ∼=Λ At.
Case (II): We first show that Fω = Fω[u±1

1 , . . . , u±1
n ] satisfies the condition (v) in

6.14. Clearly the F -linear map f from Fω into F opω defined by

f(uα1
1 uα2

2 uα3
3 · · ·uαnn ) = uα1

2 uα2
1 uα3

3 · · ·uαnn

(exchange the first two variables and leave alone the remaining variables) for all
α = α1σ1 +α2σ2 +3α3σ3 +α4σ4 + · · ·+αnσn ∈ ∆ is an F -algebra isomorphism (see
6.11). It is also clear that f ◦Tr = Tr ◦f and f(u3) = u3. Hence the condition (v) in
6.14 is satisfied, and so there exists an F -isomorphism f̃ : At = (Fω, u3)−̃→(Fω, u−1

3 )
with f̃ |Fω= f and f̃

(
(0, 1, 0)

)
= (0, 0, 1). Thus, by 6.14, we get an injective F -

homomorphism ψ ◦ f̃ : At −→ J with ψ ◦ f̃(Ftσ1) = Jσ2 , ψ ◦ f̃(Ftσ2) = Jσ1 and
ψ ◦ f̃(Ftσi) = Jσi for all i = 3, . . . , n. Since At is of strong type, we have, for any
α = α1σ1 + · · ·+ αnσn ∈ Λ,

0 6= ψ ◦ f̃
(
uα2

1 · (uα1
2 · (tα3

σ3
· (uα4

4 · · ·uαnn )...)
)
∈ Jα,

and hence ψ◦f̃ is surjective. Therefore, we obtain J ∼= At over F . Note that ψ◦f̃ is not
graded for the 〈σ1, . . . ,σn〉-grading of At. However, if we give a 〈σ2,σ1,σ3 . . . ,σn〉-
grading to At, ψ ◦ f̃ is graded and so J ∼=Λ At.

We finally consider the case U = H(Eω, σ) where E = F (ω). Let JE = E ⊗F J
be the Jordan torus over E. Let τ := σE ⊗ id be a σE-semilinear involution of
JE over F where σE is the nontrivial Galois automorphism of E over F . Then
UE = E ⊗F U = E+

ω is an E-subalgebra of JE . Also, by 4.9(2), we have τ |Eω= σ

since ω /∈Mn(F ). In particular, we have

(6.15) τ(u1u2) = σ(u1u2) = u2u1.

Now, since J is exceptional, so is JE . Hence the Jordan torus JE over E must be
of Albert type since the other two types are special. Since JE contains the subalgebra
UE = E+

ω , we can apply the previous argument for 0 6= x ∈ Jσ3 ⊂ E⊗F Jσ3 . Precisely,
for u3 := x3, we have

Ãt := (Eω, u3) be the Albert torus over E,

and there are two cases: for t := (0, 1, 0) ∈ Ãt,
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Case (I): l : JE−̃→Ãt such that l |UE= l |Eω= id and l(x) = t.
Case (II): l′ : JE−̃→Ãt such that l′(x) = t, l′(u1) = u2, l′(u2) = u1 and l′ |UE=

l′ |Eω is an automorphism of the associative algebra Eω.

Case (I): Let τ̃ be the induced involution of Ãt from τ via the isomorphism between
JE and Ãt, namely, τ̃ = l ◦ τ ◦ l−1. Then we have τ̃(ui) = ui for i = 1, . . . , n and
τ̃(t) = t. Moreover, by 6.15, we have τ̃(u1u2) = u2u1. Let tr be the generic trace
of Eω. Since tr(u1) = tr(u2) = tr(u1u2) = 0, we have u1 = −1

2u1, u2 = −1
2u2 and

u1u2 = −1
2
u1u2. Hence, by 6.1,

(u1u2) · t = (u1u2) · (0, 1, 0) = (0,−1
2
u1u2, 0)(∗)

= u1 · (0, u2, 0) = −2u1 · (u2 · t).

On the other hand,

(ωu1u2) · t = (u2u1) · t = τ̃(u1u2) · τ̃(t)(∗∗)
= τ̃

(
(u1u2) · t

)
= −2τ̃

(
u1 · (u2 · t)

)
by (∗)

= −2τ̃ (u1) ·
(
τ̃(u2) · τ̃(t)

)
= −2u1 · (u2 · t),

and so (u1u2) · t = (ωu1u2) · t = ω(u1u2) · t, which is absurd since (u1u2) · t 6= 0.

Case (II): Similarly, let τ̃ := l′ ◦ τ ◦ l′−1 be the induced involution of Ãt. Then we
have τ̃(u1) = u1, τ̃(u2) = u2, τ̃(t) = t and τ̃(u1u2) = u2u1. Thus (∗) and (∗∗) also
hold for this τ̃ . So we get a contradiction.

Consequently, the case ω /∈ F cannot happen. Thus we have proven the following:

Theorem 6.16. Let J be a Jordan n-torus of Albert type over F . Then n ≥ 3,
ω ∈ F and J ∼=Λ At for some toral grading. Conversely, At is a Jordan torus of
Albert type. �

Combined with Proposition 6.13, we get the following result which is used in [2]
Proposition 2.17 p.15 to classify extended affine Lie algebras of type G2:

Corollary 6.17. Let J be a Jordan torus over F of central degree 3. Then ch. F 6= 3
and

J ∼=Λ

{
F+
ω or At if ω ∈ F
H(Eω, σ) otherwise
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where E = F (ω). Conversely, the algebras F+
ω , H(Eω, σ) and At are Jordan tori of

central degree 3. �

§7 Summary

By 4.11, 5.5 and 6.16, we complete the classification of Jordan tori:

Theorem 7.1. Let J be a Jordan n-torus over F . Then J is graded isomorphic to
one of the four special Jordan tori

F+
q , H(Fε, ∗), H(Eξ, σ) and JS(m)({aε}ε∈I),

or to the Albert torus At if n ≥ 3 and F contains a primitive 3rd root of unity. �

Also, by 5.6, we have the following:

Corollary 7.2. Let J be a Jordan n-torus over an algebraically closed field F . Then
J is graded isomorphic to one of the three special Jordan tori

F+
q , H(Fε, ∗) and a standard Clifford torus JS(m) ,

or to the Albert torus At if n ≥ 3 and ch. F 6= 3. �

Remark. Martinez and Zelmanov classified strongly prime Z-graded Jordan algebras
of a certain type in [12]. Our Jordan tori are strongly prime Zn-graded Jordan algebras
of a very special type. The intersection of their algebras and Jordan tori consists of
Jordan 1-tori, which are isomorphic to the algebra of Laurent polynomials F [t, t−1].
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