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ABsTRACT. The cores of extended affine Lie algebras of reduced types were classified
except for type Aj. In this paper we determine the coordinate algebra of extended
affine Lie algebras of type Ai. It turns out that such an algebra is a unital Z™-graded
Jordan algebra of a certain type, called a Jordan torus. We classify Jordan tori and get
five types of Jordan tori.

Introduction

Extended affine Lie algebras form a new class of infinite dimensional Lie algebras,
which were first introduced by Hgegh-Krohn and Torresani in 1990 [7] (under the name
of irreducible quasi-simple Lie algebras) as a generalization of the finite dimensional
simple Lie algebras and the affine Kac-Moody Lie algebras, and systematically studied
in the recent memoir [1].

Roughly speaking, an extended affine Lie algebra, EALA for short, is a complex
Lie algebra which has a nondegenerate symmetric invariant form, a self-centralizing
finite dimensional ad-diagonalizable abelian subalgebra and a discrete irreducible root
system such that elements from non-isotropic root spaces are ad-nilpotent. The core

of an EALA is defined as the subalgebra generated by the non-isotropic root spaces.

Typeset by ApS-TEX



2 COORDINATE ALGEBRAS OF TYPE A;

One has a description of an EALA L of type A; (I > 2), D; and E; due to Berman,
Gao and Krylyuk [5]. Their description is a 2-step process:

A) describe the core L., and then,
B) describe how L. sits in L.

This program is currently being worked out for the other types of EALA’s. In par-
ticular, Allison and Gao [2] describe the cores of all non-simply laced reduced types,
i.e., By, C;, Go and Fy4. In this paper we describe the cores of the only missing case
in reduced types, namely, EALA’s of type A;.

For motivation, we recall the definition of quantum tori and then describe the core
of an EALA of type A;, [ > 2.

Definition. An n x n matrix g = (¢;;) over a field F' such that ¢;; = 1 and ¢;; = qz-;l
i,

is called a quantum matriz. The quantum torus Fq = Fy| ., tr1] determined by

a quantum matrix q is defined as the associative algebra over F' with 2n generators
titl t:tl
-

., t—", and relations titi_l = ti_lti = 1 and t;t; = g tit; for all 1 < 4,5 < n.
Note that Fj is commutative if and only if ¢ = 1 where 1 is the quantum matrix
whose entries are all 1. In this case, the quantum torus Fj becomes the algebra of

+1 +1
tE Lt

Laurent polynomials F[ ] in n variables.

A quantum torus is characterized as a unital A-graded associative algebra A =
Bacr Aq over F satisfying
(1) AqAg = Aqip forall o, B € A, ie., A is strongly graded,
(2) dimp Aq =1 for all a € A.
Note that all nonzero homogeneous elements of A are invertible.
Let
slip1 (Fg) == A{X € M1 (Fq) | tr(X) € [Fg, Fql}

be the subalgebra of the Lie algebra M ;(Fy) over F of (I + 1) x (I + 1) matrices
over Iy where tr(X) is the trace of X and [Fy, Fy] is the span of all commutators
[a,b] = ab — ba. It is shown in [5] that the core of any EALA of type A;, [ > 3, is a
central extension of slj11(Cq) for F' = C, the field of complex numbers.

The central extensions of the Lie algebra sl3(C,) are examples for cores of an EALA
of type As, but do not give all possibilities. Rather, there exists a construction which
associates to every alternative algebra A a Lie algebra psl3(A4), and it is shown in
[6] that a core of an EALA of type Ay is a central extension of psls(A) where A
is a unital A-graded alternative algebra A = @©qen Ao over C satisfying (1) and
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(2) above. These alternative algebras have been classified in [6]. Besides Cg, there
exists up to isomorphisms one more type, the Cayley torus O;. It is defined as Oy =
(C[tlﬂ, ..t 1, 19, t3), i.e., the octonion algebra over (C[tfl, ..., tF1] obtained by
the Cayley-Dickson process with the structure constants ¢y, to and t3.

Now, for EALA’s of type Ai, the Tits-Kantor-Koecher construction which asso-
ciates to every Jordan algebra J a Lie algebra TKK(J), called the TKK algebra of J
(see e.g. [8]), comes into play. We show:

Theorem 1. The core of any EALA of type Ay is a central extension of TKK(J)
where J is a unital A-graded Jordan algebra J = Gaecn Jo over C satisfying

(T1) {a € A | Jo # (0)} generates A,
(T2) all nonzero homogeneous elements are invertible,
(T3) dime Jo < 1 for all o € A.

Such a graded Jordan algebra over any field F' of characteristic # 2 is called a
Jordan n-torus or simply a Jordan torus. We classify Jordan tori not only over C
but over F. The simplest example of Jordan tori over F' is the plus algebra F(;r
of a quantum torus Fg, which is defined on the space Fy with the new product
z-y = 3(zy + yz) for z,y € Fy. We note that sly(Fy) = TKK(F,). To state our
result, we briefly describe other examples of Jordan n-tori over F'.

(a) Let € = (e;5) be a quantum matrix such that €;; = 1 or —1 for all 4, j. Define an
involution * on Fy = F, [tlil, ..., tX1 such that tf =t; for all i. Then the symmetric
elements H(Fg,*) form a Jordan torus. It is a subalgebra of F_".

Also, let E be a quadratic field extension of F' with the nontrivial Galois auto-
morphism op. Let §& = (&;) be a quantum matrix such that §;;05(&;) = 1 for all
i,j. Define a op-semilinear involution o on E¢ = E¢[ti',... ,t'] over F such that
o(t;) = t; for all . Then the symmetric elements H(F¢, o) form a Jordan torus over
F'. 1t is an F-subalgebra of Egr

(b) Let 2 < m < n and let S be any semilattice in Z™ (see 1.2 for the precise
definition). One can construct a Jordan algebra Jgom) ({ae}eer) over F[tE!, ... tE!
of a certain symmetric bilinear form which depends on S and a family of nonzero
elements a. € F indexed by some set I (the details are in 5.2). It turns out that
Jgm)({ac}tecr) is a Jordan n-torus called a Clifford torus. Clifford tori are a slight
generalization of a construction which already appeared in [1].

(c) Suppose that F' contains a primitive 3rd root of unity w. Let w = (w;;) be a

quantum matrix such that wis = w, wo; = w? and w;j = 1 for the other 7, j. Let A; =
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(Fu,t3) be the first Tits construction, using the quantum torus F,, = F,, [tiﬂ, N
and the structure constant t3 (details are in 6.8). The central closure of A; is a 27-
dimensional exceptional Jordan division algebra over a rational function field in n
variables. We will see that A; is a Jordan torus, which is called the Albert torus. This
torus was independently found in [1] and [20]. It is a coordinate algebra of EALA’s
of type G (see [1] and [2]).

We can now state our main result:

Theorem 2. Let J be a Jordan torus over F. Then J is isomorphic to one of the

five tori
Fy, H(Fe, ), H(Eg,0), Joon ({acteer) or Ay

Since Jordan tori turn out to be strongly prime, we can use Zelmanov’s Prime
Structure Theorem [14] as the first step of our proof. Thus, a Jordan torus is either
of Hermitian, Clifford or Albert type. For each type we then determine the possible
Jordan tori.

This paper consists of 7 sections: In §1 we give the definition of an EALA and prove
Theorem 1 above. In §2 some basic concepts of Jordan algebras are reviewed. In §3
general properties of Jordan tori are described. In §4 we show that a Hermitian torus
is graded isomorphic to F;', H(Fg,*) or H(Eg,0). In §5 we show that any Clifford
torus is graded isomorphic to Jgm) ({@e}ecr). In §6 the special Jordan tori of central
degree 3 are first determined. Then we prove that any Jordan torus of Albert type is
graded isomorphic to the Albert torus A;. As a corollary, we obtain the classification
of Jordan tori of central degree 3, which is used in the classification of cores of EALA’s
of type Gs in [2]. In §7 the classification of Jordan tori are summarized.

This is part of my Ph.D thesis, written at the University of Ottawa. I would like

to thank my supervisor, Professor Erhard Neher, for his suggestions.

§1 EXTENDED AFFINE LIE ALGEBRAS OF TYPE A;

We define extended affine Lie algebras [1]. Let £ be a Lie algebra over C (the field
of complex numbers). Assume that

(EA1) £ has a nondegenerate invariant symmetric bilinear form (-, -).
Here ‘invariant’ means that (-, -) satisfies ([z,y], z) = (=, [y, 2]) for all x,y, z € L.

(EA2) £ has a nontrivial finite dimensional self-centralizing ad-diagonalizable abelian
subalgebra H.
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We will be assuming three further axioms about the triple (£, (-,-), H). To describe

them we need some further notation. Because of (EA2), we have
L=®&qen Lo and Lo=H

where H* is the complex dual space of ‘H and for any o € H* we define L, =
{r € L | [hz] = a(h)x forall h € H}. Let R = {a € H* | Lo # (0)}. R
is called the root system of L. Note that since H # (0), we have 0 € R. Also,
a,f € R,a+3# 0= (L4, L3) ={0}. Thus, —R = R by nondegeneracy. Moreover,
(-, ) is nondegenerate on H. As in the classical theory of finite-dimensional complex

semisimple Lie algebras, we can transfer (-,-) to a form on H*. Let
R*={a€R|(a,a)#0} and R’={acR]|(a,a)=0}.

The elements of R* (resp. R) are called non-isotropic (resp. isotropic) roots. We
have R = R*X U R°. We further require that

(EA3) a € R*, x, € L, = ad z,, acts locally nilpotently on L.

(EA4) R is a discrete subset of H*.

(EA5) R is irreducible. That is,

(a) R* =Ry URs, (R1,R2) =(0) = Ry =0 or Ry =0

(b) 0 € R® = there exists a € R* such that a + 0 € R*.
If £ satisfies (EA1)-(EA5), the triple (£, (-,), H), or simply the algebra L itself, is
called an extended affine Lie algebra or EALA for short.

Let t, be the unique element of H so that (t,,h) = a(h) for h € H, and put
ho = m—?a)ta' Then there exist nonzero e, € L, and f, € L_,, so that [ha, eq] = 2e,,
[hey fa] = —2fa and [eq, fo] = ha. In other words, {eq, hqa, fo} is an sly-triplet. Thus
we can use slo-theory. Assuming only (EA1), (EA2) and (EA3), one can show that
some well-known properties of finite dimensional semisimple Lie algebras over C are
also true for EALA’s.

—

1.1. ([1], Lemma I.1.21 and Theorem 1.1.29) Let &« € R*, 3 € R and r = 2@2).
Then:

(i) 28 e 2.

(i) dime Lo = 1.

(iii) Assume that adey(eg) = 0. Then r > 0,

(adfa)'(eg) #0, forall i=0,1,...,7, and (adf,)"'(eg)=0. O
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In the following, £ is an EALA with root system R. We recall some of the properties
of R that we will need. First, note that if a nondegenerate invariant symmetric bilinear
form on £ is multiplied by a nonzero complex number, then we still have such a form.
Since the axioms are invariant under such a change, we may as well assume that
there is some non-isotropic root a € R* with (a,a) € Rsg. Then if § € R* we
have 2% € Z so that (3,a) € R, and hence, since 2%;2; € Z we get (8,0) € R if
(ar, B) # 0. It now follows, using (EA5)(a), that (a, 3) € R for any «, # € R. That is,
our form is real valued on the real linear span of the roots. From now on we assume

that our form is scaled so that there is at least one o € R* with (o, ) > 0. Let V be

the real span of R in H. Then it was proven in [1] Theorem 1.2.14 that the real valued
symmetric bilinear form (-,-) |, is positive semidefinite on V. This was a conjecture
of Kac. Let

W={aecV]|(a,p)=0forall gcV}.

The nullity of R or of £ is defined to be the real dimension n of V°. Let ¥V = V/}°
and let 7 : YV — V be the canonical projection. Then (-, -) induces a positive definite
symmetric bilinear form on V so that, relative to this form, the image R of R in V
is a finite irreducible (possibly non-reduced) root system [1] Proposition 1.2.19. The
type of R or of L is defined to be the type of the finite root system R.

Our interest is in EALA’s of type A;. Thus R = {0,4+a}. We choose a fixed
preimage & € R of @ under ~. Let V be the subspace spanned by ¢ of V. Then we
have V =V ® V°, and ~ restricts to an isometry of V onto V. Let R be the image of
R under the projection of V onto V, and so R = {0, +a}. We define

S={cecV’|a&+0ccR} and A = the subgroup of V° generated by R°.
Then, by [1] Chapter II, we have R® = S+ S and R = (S+ S)U (& + S)U (=& + S).

Moreover, S is a discrete spanning set in V°, A is a lattice in VY and S is a semilattice
in A:
Definition 1.2. A subset S of a lattice A which has the following three properties,
(i) 0 € S,

(ii) 20 =T € Sforallo,7 € S,

(iii) S generates A,
is called a semilattice in A.

We put

LY =L 416B Ly ® Lo+, for oeA.
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Then we have £ = @,epn L7 and [L7,L7] C L7FT for 0,7 € A. In other words, L is
a A-graded Lie algebra.

Definition 1.3. The core of L is defined to be the subalgebra L. of £ generated by
the spaces L., a € R*.

Since L. is generated by homogeneous elements, L. is a A-graded subalgebra of L.
Thus, L. = @een (L:)7, where for o € A, and
(Ec)o =L.NL = »C—OH—U S Z [£d+7'7 ‘C—O't-l-v] @ ‘COH-U'

rvEN,THv=0
Also, let
(Le)—a = @oer Lodro, (Lo)a = Doen Layo, (Le)o = Z [Latrs Laqv]-
TvEN
Then we have £, = (Lc)—a @ (Le)o @ (Le)a. Let G = (€as e fa) = slo(C) and
H := Chg, which are both subalgebras of £.. Obviously, for each ¢ = 0, —1, 1

(Ec)sd — {SE S Ec ‘ [h,ZC] = €Oé(h>£€ for all h € H},

and L. is generated as an algebra by (L.)_4 and (L.)s. Therefore, L. is graded by the
root system of type A; as defined in [4]. By the description of such Lie algebras (see
[3] or [15]), L. is a central extension of the TKK algebra of a unital Jordan algebra.
The Jordan algebra J, called the coordinate algebra of L of type Ai, is defined as

follows. Let J := (L.)s as a C- vector space and define a multiplication on J by

Ty = %[[w, fal,y] for x,ye
One can check that this multiplication is commutative and satisfies the Jordan iden-
tity, and so J is a Jordan algebra over C. Note that ey is the identity element of J.
Our goal is to describe the structure of J. We put J, := L44o. Then 1 :=e4 € Jy,
and one can easily see that J = ®,cp J, is a A-graded Jordan algebra over C, i.e.,
Jodr C Joyr for all o,7 € A. Also, by 1.1(ii), we have

dimegJ, =1 if o€S and J,=(0) if c€A\S.

These conditions are not enough to classify J. To obtain a crucial property of J, ‘in-
vertibility of nonzero homogeneous elements’, we use the following well-known identity

in the theory of Jordan pairs [15]:

1 1
(1.4) Uyy = 3 [:Ij', [a:,g]] where ¢ := 3 [fd, [fd,yﬂ for all z,y € J,

where the U-operator U, will be defined in (2.0). Also, we need the following easy

consequence of sly-theory:
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Lemma 1.5. For o,7 € S and € = 1, we have
[65d+07 [eed—Hn e—ed—i—TH # 0,

and hence, [‘E&Sd—f—O’? [Leato E—ed—}—TH = Leat2047

Proof. We only show the case ¢ = 1 since the case ¢ = —1 is done by the same manner.
Take a := —é&—o and  := —d&+7 in 1.1(iii). Then [eq, 5] € L_24—5++ = (0) since A;
is reduced. Also, we have 2% = 2, and hence by 1.1(iii), [f_d_,,, [fed—0o) e_d+T]] =+

0. Since dimg¢ L4+, = 1 (see 1.1(ii)), there exists some 0 # ¢ € C such that f_5_, =

Ceqio, and so 0 # [ed+g, [€atos e_d+7]] € Legrooir O

Foro € S,let 0 # x € J,. Since S is a semilattice, there exists 0 # y € J_o,. Then,
by 1.4 and 1.5, we have 0 # %[:c, [:c,gj]] = U,y € Jog_25 = Jy. Since dim¢ J_o, =
dimc Jp = 1 and 1 € Jy, there exists ¢ € C such that U,(cy) = 1. Hence, z is
invertible (see 2.2(2)). Thus any nonzero element in J, for all o € S is invertible.
Consequently, we have obtained some necessary conditions of the coordinate algebra

J, namely,

Theorem 1.6. The core of an EALA of type A1 is isomorphic to a central extension

of the TKK algebra of a unital A-graded Jordan algebra J = @®ycp J, over C satisfying
(T1) {oc € A| J, #(0)} generates A,

(T2) all nonzero homogeneous elements are invertible,
(T3) dime J, <1 forallo e A. O

We will classify such Jordan algebras not only over C but over any field F' of
ch. F' # 2 in later sections. By the argument above, we know that 1 € Jy and that
{oc € A| J, # (0)} is a semilattice in A. However, we do not need to assume the

properties since such Jordan algebras already satisfy them (see 3.5).

§2 REVIEW OF JORDAN ALGEBRAS

Throughout F' is a field of characteristic # 2. An algebra over F' is a “linear”
nonassociative algebra A defined as a vector space over F' with an F-bilinear map
A x A — A, called multiplication. We assume that an algebra is unital in the sense
that there exists 1 € A, called an identity element, such that 1z = = = z1 for all
x € A. For an algebra A and z,y,z € A we define the commutator [x,y] = zy — yz

and the associator (z,y, z) = (xy)z — x(yz).
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An algebra J over F' satisfying the following two identities is called a (linear)

Jordan algebra over F': for all x,y € J,

[z,y] =0 (commutativity) and (z,y,2%) =0 (Jordan identity).
Let us define the so-called U-operator for x € J, i.e., U, : J — J by
(2.0) Uyy = Up(y) = 22(2y) — 2y for all y € J.

The plus algebra AT of an associative algebra A over F is an example of a Jordan
algebra: for z,y € AT = (A4, "), with a new multiplication - on A defined as x -y :=
%(my + yz). For this example, the U-operator is given by U,y = xzyz. A Jordan
algebra is called special if it is isomorphic to a subalgebra of the plus algebra of some

associative algebra. A Jordan algebra is called ezceptional if it is not special.

Remark 2.1. Tt is well known that Jordan algebras are power associative, i.e., the
subalgebra generated by any element is associative (and commutative) (see e.g. [21]
p.37, p.68).

An element z in a Jordan algebra J is called invertible if there exists y € J such
that zy = 1 and 22y = 2. In this case y is unique and is denoted by z~!.

We denote the subset of invertible elements of an algebra A by A*.

2.2. ([21] p.303-4) Let A be an associative algebra and J a Jordan algebra. Then:

(1) AX = (AT)*, and for z € A = (A")*, 271 in the associative algebra A and
the Jordan algebra AT coincide.

(2) For x € J, x € J* <= U, is invertible <= there exists y € J such that
Uyy = 1. In these cases, we have U7t = U1 and y = 272,

(3) For x,y € J, z,y € J* <= U,y € J*. In particular, x € J* <= a™ € J*
foralln € Z.

(4) For any x € J*, the subalgebra of J generated by x and x~1 is associative (and

commutative). [
We recall some basic notions for Jordan algebras.

Definition 2.3. Let J be a Jordan algebra. Then J is called
(i) a Jordan domain if U,y = 0 implies x = 0 or y = 0 for all z,y € J,

(ii) nondegenerate if U, = 0 implies x = 0 for all z € J,
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(iii) prime if UK = (0) implies I = (0) or K = (0) for all ideals I, K of J where

(iv) strongly prime if J is nondegenerate and prime.

The nondegeneracy and primeness generalize the notion of a domain, namely,
Lemma 2.4. A Jordan domain has no nilpotents and is strongly prime.
Proof. Straightforward. U

The centre of a Jordan algebra J is defined as
Z(J)={z€J | (z,z,y) =0 for all z,y € J}.

We note that if z € Z(J) is invertible, then z=! € Z(J). The following lemma is
well-known (see [13] Corollary 3.4, p.12):

2.5. Let A be a semiprime associative algebra and Z(A) its centre. Then we have

Z(A) = Z(A%). O

For a prime associative or Jordan algebra A, any 0 # =z € Z := Z(A) has no
torsion element in A, i.e., xy = 0 for some y € A = y = 0 (see [9] Proposition 7.6.5,
p.7.24). In particular, Z is an integral domain. Thus we can define the tensor algebra
A =7 ®y A over Z where Z is the field of fractions of Z, and call it the central
closure of A. The following lemma is well-known (see e.g. [21] p.186):

2.6. Let A be a prime associative or Jordan algebra and Z = Z(A) its centre. Then
we have:

(i) A embeds into A via x+— 1® z for all z € A,

(ii) A is a central over Z, i.e., Z(A) = Z.1,

(iii) A is an associative (resp. a Jordan) domain <= A is an associative (resp. a

Jordan) domain. O

We mention some well-known identities on AT for any associative algebra A. Define
xoy =axy+ yx for z,y € A and let (-,-,-)° be the associator of this circle product.
Then the following identities which can be easily verified by expanding both sides
hold: for all z,y,z € A,

(2.7) [z,[y,2]] = (y, 2, 2)
(2.8) [:U y]2 zoUyzr — nyz — U2,
(2.9) Ug,y] = Usoy — 20U, U, —2U,U,.
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By Wedderburn’s Structure Theorem, a finite dimensional associative domain is a

division algebra. Also, the following is well-known (see [8] p.156 Theorem 2).
2.10. A finite dimensional Jordan domain is a division algebra. [J

Finally, there is a notion of degree for finite dimensional simple Jordan algebras
(see e.g. [8], p.209), and the degree coincides with the generic degree for them (see
[8], p.233). The following lemma seems to be known to the experts, but for the

convenience of the reader we include a proof.

2.11. Let J be a finite dimensional central special Jordan division algebra over F of
degree r. Then:

(a) 7 #2™ form > 1 = dimp J =12,

(b) r =3 <= dimp J =9.

Proof. (a): It is clear for r = 1, and so we assume that r > 1. If J is a finite
dimensional central special Jordan division algebra over F' of degree r # 2, then
J = DT or H(D,x) where D is a central associative division over the centre of
degree r and # is an involution of D (see Theorem 11 and Exercise 1 in [8] p.210).
Thus, if J = D%, then we have dimp J = r2. If x is of the second kind, we know
dimp H(D,*) = r? (see [10] p.190). If J = H(D,*) and r # 2™ for m > 1, then
there does not exist an involution of first kind on D. For, if one exists, then D = D°P
(the opposite algebra), and so the order of D in the Brauer group of F' is 2. Since
any prime factor of the degree of D divides the order (see Theorem 2.7.5 [10] p.61),
the degree of D has to be a power of 2. This is a contradiction. Hence (a) has been
shown.

(b): By (a), we get r = 3 = dimp J = 9. Suppose that dimp J = 9. From the
classification of the finite dimensional simple associative algebras with involution (see
[10] p.190), we have dimp J = 72 (J = D% or * is of the second kind), r(r + 1)/2 (*
is orthogonal) or r(r — 1)/2 (x is symplectic). Since r(r +1)/2 or r(r — 1)/2 is never
9, weget 9 =r2ie,r=3. 0O

§3 GENERAL PROPERTIES OF JORDAN TORI

Whenever a class of algebras has a notion of invertibility, one can make the following

definition:
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Definition 3.1. Let G be a group. A G-graded algebra T' = @©4cq T, over F
satisfying

(T1) suppT :={g € G| T, # (0)} generates G,
(T2) all nonzero homogeneous elements are invertible,
(T3) dimp T, <1 forall g € G,

is called a G-torus. Moreover, if
(St) T is strongly graded, i.e., T,T}, = Ty, for all g,h € G,

then T is called a G-torus of strong type.

When G = A is a free abelian group of rank n, T is called an n-torus, or simply a
torus. If T' is associative or Jordan, it is called an associative torus or a Jordan torus,

respectively.

One can easily check that if T' = ©4cq T, is a G-graded associative algebra satis-
fying (T3), then (T1) and (T2) are equivalent to (St). Thus the notions of a G-torus
and a G-torus of strong type coincide for the class of associative algebras. Note for
a G-torus T' = @4eq T, of strong type, we have dimp T, = 1 for all ¢ € G and

supp1 = G. We give examples of associative tori and Jordan tori.

From now on, A denotes a free abelian group of rank n.

Example 3.2. Let {o1,...,0,} be a basis of A. We give a A-grading to a quantum
torus Fy, = Fy[tT!,... ,tF'] (see the definition in Introduction) in the following way:
Define the degree of to :=t{* - -t%" for « = 101 + -+ - + @0, € A to be a. Then
this grading makes Fqy = @qecn Flo into a torus, and we call the grading a toral A-
grading of Fy. If one needs to specify a basis of A, we call it a (o1, ..., 0,)-grading of
F4. Any associative torus is graded isomorphic to some F, with some toral grading
(see [5] and [6]). Also, any commutative associative torus is graded isomorphic to
K =F [tlil, ..., tF1] the algebra of Laurent polynomials over F. One can check that
the multiplication rule of Fy for g = (g;;) is the following: for 3 = f1o1+- - -+ Fr0, €
A

Y

(3.3) tats = [ 47" tars.
1<J

Clearly, F ;' with the same grading as F; becomes a Jordan torus and the multiplica-
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tion rule is the following:

1 8. o
totp = ST ™ + T] ™) 6 gt

1<j 1<j
1 i Bi i85
(3.4) =3 I 77+ 47) tass.
1<j (2¥]

We call the grading of F\ induced from a toral grading of Fyy a toral grading of Ff.
Note that supp F, = A, and F is of strong type if and only if

H qio‘jiﬁj;é—l for all o,3 € A.

(2]

Unlike the situation for associative tori, we may have suppJ # A for a Jordan
torus J in general. We will give such examples in §4 and §5. We show that supp J

cannot be any subset of A, namely,

Lemma 3.5. Let J = ©qenr Jo be a Jordan torus. Then 1 € Jy and suppJ is a

semilattice in A.
Proof. In general, we have:

Claim. Let A= @®g4eq Ay be a G-graded algebra. Then 1 € A, where e is the identity
element of G.

Proof. Let 1 = 37 o x4 € A. For any u € A, h € G, we have u = lu =
> geG Lol € Ap, since 1 is a left identity element. Since G is a group, we have
zeu = u (and zgu = 0 if g # e). Thus x. is a left identity element. Hence we have

1=x.1=ux, € A, since 1 is a right identity element. [J

By this claim, we have 1 € Jy. In particular, 0 € suppJ. Let 0 # x € J, for
a €suppJ. Let x7' =375 yg. Then X5 ayg =1€ Jo and > 5 2°yg = 2 € Jao
imply that zy_o = 1 and 2%y_ = x (zyy = 0 and z?y, = 0 for all v # —a). Thus,
by the uniqueness of the inverse, we get 7! = y_o € J_q, and so —a € supp J. For
any o, 3 € suppJ, let 0 # u € Jo and 0 # v € J_g. Then, by 2.2(3), 0 # U,v =
2u(uv) — uv € Jag-g, and so 2ac — 3 € supp J. Since supp J generates A, supp J is
a semilattice in A. [

Remark. Any Jordan torus J = @©qen Jo satisfies Uy, Jg = Joa+p for all o, 8 €
supp J.
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We recall that A is a totally ordered abelian group using the lexicographic order.

Thus we have:

Lemma 3.6. (i) A Jordan or an associative torus is a Jordan or an associative
domain.

(ii) Any invertible element of a Jordan or an associative torus is homogeneous.

Proof. Both statements are well-known for the associative case (see [11] p.95), and
so we only show the Jordan case. Let J = @©qep Jo be a Jordan torus. For 0 #
x,y € J, suppose that U,y = 0. Let x = x4, + (terms of higher degree) and y =
Y, + (terms of higher degree). Then U,, yg, is the least homogeneous component
of Upy, and so U, yg, = 0. This is a contradiction since zq, and yg, are invertible
(see 2.2(3)). Hence (i) is settled.

For (ii), suppose that = € J is invertible but not homogeneous, i.e., * = xq, +
(terms of middle degree) + z, where o is the minimum degree and «; is the max-
imum degree of z with ag < a1. By 2.2(2), there exists y € J such that U,y = 1.
Let y = yg, + (terms of middle degree) + yg, where By is the minimum degree and
B1 is the maximum degree of y (could be By = B1). Then U, yg, € J2a9+8, 18
the minimum degree and Uy, Y3, € J2a,+p, 18 the maximum degree of U,y, and
20 + Bo < 21 + B1. This contradicts the fact that U,y = 1 is homogeneous. [J

Corollary 3.7. Let T = @aecp Ta be a Jordan or an associative torus. Suppose that
0#z €T and x™ € T for some B € A. Then we have 3 € mA and x € T'1 g.

Proof. By 3.6(i) and 2.4, we have 2™ # 0. Since 2™ € T, ™ is invertible, whence x
is invertible (see 2.2(3)). Therefore, by 3.6(ii), we have z € T., for some v € A, and
somy=03. O

Let T'= ®qen To be a Jordan or an associative torus. Then the centre Z = Z(T)
of T is a homogeneous subalgebra. Also, it is clear that Z is graded by the subgroup
F'={yeA|TyNZ#(0)} of A, and so Z = @cr T+ is a commutative associative
[-torus, which is the algebra of Laurent polynomials. We call this I' the central
grading group of T.

Lemma 3.8. Let T' = ©qen Ta be a Jordan or an associative torus over F with
centre Z. Let K be a field extension of F'. Then the scalar extension Txy = K ®p J is
a Jordan or an associative torus over K with centre K @ Z, and the central grading

groups of T and Tx coincide.
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Proof. Straightforward. U

For a Jordan or an associative torus 7', the central closure T = Z @z T over Z

makes sense (see 3.6(i)).

Lemma 3.9. Let T = ®aecar To be a Jordan or an associative torus with its centre
Z, T the central grading group of T and T the central closure. For & € AJT, let
Te =27, and Tg = 2Z @4 ZT,,. Then:

(i) Taq = T for all & € @, and T is a free Z-module of rank 1 if a € suppT
and rank O otherwise.

(ii) T' = ®aea/r Ta, which is a free Z-module and a A/T'-graded algebra over Z
with rank Tg < 1 for all@ € A/T.

(iii) T = ®gen/r T, which is a A/T-torus over Z with dimzT = |supp T/T|.

(iv) The quotient group AJT' cannot be a nontrivial cyclic group.

Proof. (i) is trivial. For (ii), we note that for all v € I, Ty = T, T since Ty C Z.

Hence we have
T =®ach Ta = @aeA/F (@'yef Ta—l—'y) = EBEGA/F ZTo = EBEGA/F T&.

The rest of statements follows from (i). (iii) follows from (ii). For (iv), suppose that
A /T is a nontrivial cyclic group. One can easily check that any Jordan or associative
G-torus for a cyclic group G is commutative and associative. Hence, by (iii), T is
commutative and associative. By 2.6(i), T embeds into T, and so Z = T and I = A,

i.e., A/T is the trivial group. Thus we get a contradiction. [

We will start to classify Jordan tori in the next section. For this purpose we state
Zelmanov’s Prime Structure Theorem ([14] p.200) in a short form, designed for our
needs. Namely, a strongly prime Jordan algebra 7 is one of the following three types:

(The new terminology used below will be explained in the following sections.)
Hermitian type: J is special and q45(J) # {0},

Clifford type: the central closure J is a simple Jordan algebra over Z of a

symmetric bilinear form,

Albert type: the central closure J is an Albert algebra over Z.
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Since Jordan tori are strongly prime (see 3.6(i) and 2.4), the type of Jordan tori is

defined as above.

4 HERMITIAN TYPE

We review the so-called Zelmanov polynomial q4s. Let FST(X) be a free special
Jordan algebra on an infinite set X of variables over F'. That is, FSJ(X) is the
subalgebra of FA(X)" generated by X where FA(X) is the free associative algebra
on X. For z,y,z,w € X, let

p16(z,y, 2, w) = [[D?c,y(z)QvDm,y<w>]7Dm,y<w>} € FAX)
where D, ,(z) = [[m,y],z}. For 12 variables x;,v;, z;,w; € X, 1 =1,2,3, let

qa8 = [[pw(ﬂ?l,yl,21,w1),p16($27y2722,wz)]7p16(5€3,y37»237w3)] € FA(X).

By 2.7, we have p1g, qus € FST(X). Moreover, q45 is homogeneous in each variable,
i.e., all monomials of g4g, the monomials not only of the associative product but also
of the Jordan product, have the same partial degree in each variable. Note that the

total degree in 12 variables is 48. For any Jordan algebra [J, we denote the evaluation

of qus on J by qus(J).
An ideal Z 9 FSJ(X) is called formal if for all permutations o of X,

p(z1,...,2n) €L = p(o(z1),... ,0(zn)) €L

For a formal ideal Z of FSJ(X) and any special Jordan algebra 7, it is well-known
that the evaluation Z(J) is an ideal of J (see [14], p.144). We define an r-tad
{p1---pr} forp1,... ,pp, € FST(X) as

{pl...pr}:pl...p’r—f—pr...pl.

In particular, {p1p2psps} is called a tetrad. A formal ideal H <« FST(X) is called

hermitian if it is closed under tetrads, i.e.,

{HHHH} C H.

An ideal Z « FSJ(X) is called a linearization-invariant T-ideal if 7 contains all
the linearizations of any p € Z and T(Z) C Z for any algebra endomorphism 7" of
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FST(X). Let Qs be the linearization-invariant T-ideal of FSJ(X) generated by
qss. Then it is known that Q4s is an hermitian ideal (see [14] p.198).

Now, let J be any strongly prime special Jordan algebra with qus(J) # {0}. Then
the evaluation Q4s(J) is a nonzero ideal of J. Since J is special, there exists an
associative algebra A with involution * such that 7 C H(A,x) = {a € A | a* = a}.
Let P be the associative subalgebra of A generated by Qus(J). By the Special
Hermitian Structure Theorem [14] p.146, one has H(P,*) = Qus(J) and P is x-

prime.

Lemma 4.1. Let J be a Jordan torus over F' of Hermitian type. Then J = H (P, x)

for some x-prime associative algebra P and P is generated by J.

Proof. By the observation above, we already know
H(P, >I<) = Q48(J> aJ

for some *-prime associative algebra P and P is generated by Qus(J). Thus we only
need to show Qus(J) = J. Let B be a basis of J over F such that B consists of
homogeneous elements in J. Recall that ()45 contains g5 and all the linearizations of
qss. If the evaluations of q4s and all the linearizations of g4 on B vanish, then we have
qss(J) = {0}, which contradicts the fact that J is of Hermitian type. Hence there
exist elements by,...,b,, € B and qjg € Qus where ¢jg = qug or some linearization
of qus such that ¢jg(b1,...,bn) # 0. Since ¢jg is homogeneous in each variable,
¢4s(b1, ... ,by) is a nonzero homogeneous element in .J, and hence it is invertible in J.
Thus the ideal Q45(J) contains an invertible element, and so we get Qus(J) =J. O

Definition 4.2. A Jordan torus J is called an Hermitian torus if J = H(P,x*) for

some *-prime associative algebra P and P is generated by J.

We note {Hermitian tori} D {Jordan tori of Hermitian type}, but the other in-
clusion does not hold, e.g. the algebra of Laurent polynomials Fy = F[t{', ... tF]
is not of Hermitian type since qus(Fy) = {0}. However, F; = H(F},id) is clearly a

Hermitian torus.

Example 4.3. (1) The Jordan torus F (see Example 3.2) is a Hermitian torus. In
fact, let P = Fy @ FjP be the associative algebra, where FgP is the opposite algebra
of Fy, and let * be the exchange involution of P. Then F = H(P,*) and one can

easily check that P satisfies the conditions unless ¢ = 1.
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(2) Let € = (e45) be a quantum matrix such that ¢;; = 1 or —1. We call such an
e elementary. For the quantum torus Fy = F.[tT!, ... tF!], there exists a unique
involution * on F, such that ¢ = ¢; for all <. Thus the symmetric elements J :=
H(F¢, ) form a Jordan algebra. Since * is graded relative to a (o1, ..., o,)-grading
of Fe, J = ®aen (FtaNJ)is a A-graded algebra and dimp(FtoNJ) < 1. In general,
the inverse of a symmetric element is also symmetric. Since tq,... ,t, € J, J generates
F¢ and supp J generates A. Thus J = H(Fg, %) is a Hermitian n-torus. If g # 1, then
(tit;)* = —t;t; for some i, j, and so we have F't;t;NJ = {0}. Hence o; +0; ¢ supp J.
Therefore, suppJ = A if and only if g = 1, ie., J = F[tfl, ., t1]. In particular,
J is never of strong type unless ¢ = 1. We call the grading of H(F¢,*) induced from
a toral grading of F. a toral grading of H(Fe,*). (In [2] p.16, H(F.,*) is used to
construct EALA’s of type C.)

(3) Let E be a quadratic field extension of F'. Let o be the non-trivial Galois

automorphism of E over F. Let £ = (&;;) be a quantum matrix over E such that

(4.4) 0p(§ij)éii =1 (<= 0gp(&j;) =E;) forall i,
For the quantum torus F¢ = Eg[tlﬂ, ...,tF1] over E, there exists a unique op-
semilinear involution o on E¢ over F such that o(¢;) = ¢; for all ¢. Thus the symmetric
elements H(F¢, o) form a Jordan algebra over F, and the A-grading induced from a
toral grading of E¢ makes H (FE¢, o) into a A-graded algebra. One can easily check that
H(Eg, o) is a Hermitian torus over F' with supp H(E¢,0) = A. We call the grading
of H(Eg, o) induced from a toral grading of E¢ a toral grading of H(E¢, o). Also, we

will identify £ @ H(FEg, o) with Egr viaz®t > at forx € E and t € H(Eg,0).

The following lemma is known for Jordan division algebras in [9] p.8.24. This is
true for Jordan domains, and the proof is the same. But for the convenience of the

reader, we prove it.

Lemma 4.5. Let J be a Jordan domain satisfying J = H(P,*) for an associative
algebra P with involution * such that P is generated by J. Suppose that there exists
v € P such that vv* = 0 and v + v* is invertible in J. Then J = BT for some

associative algebra B.

Proof. For any y € J = H(P,*) we claim that v*yv = v*v = vyv* = 0. Clearly we
have v*yv € H(P,x) = J. Also, Uy+yl = (v*yv)? = (v*yv) - (viyv) = v*yov*yv = 0
since vv* = 0. Hence v*yv = 0 since J is a Jordan domain. In particular, v*v = 0 for

y = 1. By the same argument, we get vyv* = 0, and so our claim is settled.
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Now, since v+v* is invertible in J, there exists z € J such that (v+v*)z(v+v*) = 1.
By the claim, we have e + e* = 1 where e := vzv and ee® = e*e = 0. Also, we have
e =ele+e*) =€ and e = e*(e + €*) = e*?

orthogonal idempotents in P. By the claim, we have e*Je = eJe* = {0}. Since

. Thus e and e* are supplementary

J generates P, we get e*Pe = ePe* = {0}. Therefore, for the associative algebra
B := ePe, we have P = B ® B*. Since J = H(P, ), we obtain an isomorphism of
Jordan algebras f: J ={b+b* | be B}—B". O

We write A =) B if A and B are A-graded isomorphic. Also, we write A =, Fy,
Fj, H(Fg, ) or H(Eg,0), if Ais A-graded isomorphic to one of them ‘for some toral
grading’.

Lemma 4.6. Let J = ®qen Jo be a Jordan torus over F. If J = BT for some

associative algebra B, then B is an associative torus and J =p F;' for some q.

Proof. Let f : J—B% be an isomorphism and By := f(J4) for all @ € A. Then
BT = @aen Ba is a Jordan torus such that J =, BT. We show that B = ®qcp Ba
is an associative torus. Since supp B = supp B, we have A = (supp B™) = (supp B).
Also, all nonzero elements of B, are invertible in BT, and so are they in B. Since
dimp By = dimp Jo < 1, we only need to show that BoBg C Ba4g for all a, 3 € A.
Note that we have By - Bg = Bo 0 Bg C Ba+g. If B4 = (0) or Bg = (0), we
have nothing to prove. Otherwise, for 0 # x € B, and 0 # y € Bg, zy and yz are
invertible in B and so are they in BT. Hence, by 3.6(ii), 2y € B, and yz € Bs for
some v,0 € A. If zoy =ay+yx #0, then 0 # x oy € Baig N (B + Bs), which
forces aa + 3 = v = 6. So we get 2y € Boyg. lf xoy =axy+yx =0, ie., yr = —xy,

then we have [22,y?] = 0, and so 22 - y? = 22y?. Thus we get

0# (zy)* = (zy) - (vy) = ayry = —2°y> = —2° - y* € Bay N Boayop.
Hence v = a + B and we obtain xy € Baig. Therefore, B = ©qecn Ba is an
associative torus, and so B =, Fy for some q and we get J =, F;'. U

Since Jordan tori are Jordan domains, one gets (a) of the following by 4.5 and 4.6:

Proposition 4.7. Let J = ©aep Jo be a Jordan torus over F satisfying J = H (P, %)
for an associative algebra P with involution x such that P is generated by J.

(a) Suppose that there exists v € P such that vvo* = 0 and v+ v* is invertible in J.
Then J =\ F,f for some q.
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(b) Suppose that there exist an invertible element u € P so that u* = —u and
0# y € Jy for some v € A such that the following three conditions hold:

(i) u® € Joy, (i1) wy tueJy, (i) [u,y] € Josy.

Then J = F; or E@p J =) E;r for some q where E is a quadratic field extension
of F.

Proof. We only need to show (b). By dimp J, < 1for all & € A, there exist a, b, c € F,
a,b # 0, such that

(1) u? = ay?,
(2) buy lu =y =1 yu = buy_l),
(3) [u,y] = uy — yu = cu®,

1 1

By (3), we have uyu™! — y = cu. By (2), we have bu?y~! — y = cu. By (1), we have

aby?y~! —y = cu. Hence we get cu = aby —y € J. Since u ¢ J, we obtain ¢ = 0 and
hence
(4) wy = yu.

Let v := u++/a yif \/a € F. Otherwise, let F := F(y/a), Jg := EQpJ, Pp := EQpP,
x:=id®* and v :=1Qu+ /a®y =u+ +/a y. Then since u* = —u, we have

W*:{ (ut+vay)(~u+Vay)=—u>+ay*> =0
(1®u+vaoy)(-lou+/a®y) =1 (—u?+ay?) =0,

by (4) and (1). Also, v + v* = 2y/a y or 2y/a ® y is invertible in J or in Jg. Thus,
by (a), we get J =5 Ff if \/a € F. If \/a ¢ F, then we can apply (a) for the Jordan
torus Jg = H(Pg, *) over E, and obtain Jg =y Ef. O

For the next proposition, we need the following fact:

4.8. If A and B are associative algebras, B has no zero-divisors and f : AT — BT
is a homomorphism of Jordan algebras, then f: A — B is either a homomorphism

or anti-homomorphism of associative algebras ([9] Theorem 1.1.7, p.1.4). O
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Proposition 4.9. Let E D F be fields with [E : F| = 2, and o is the nontrivial
Galois automorphism of E over F. Let q € M, (FE) be a quantum matriz over E.
(1) Suppose that T is a og-semilinear involution of E;’ = Eq[tfl, o EET over
F such that 7(t;) = t; for all i. Then:
(i) g € M, (F) and 7 is an automorphism of Eq over F or
(ii) ¢ = & and 7 is an involution of E¢ over F, where § satisfies (4.4). In
particular, T = o where o is defined in 4.3(3).
(2) Let J be a Jordan torus over F. Suppose that Jp = E Qp J = E(‘]". Then:
(i) g € M, (F) and J =5 F] or
(ii) J = H(Eg,0), which is a Hermitian torus defined in 4.3(3). In this case we
can identify E ®@p H(Eg,0) = EgL so that op ®id = 0.

Proof. (1): Since E4 has no zero-divisors, 7 is an order 2 automorphism or an invo-

lution of the associative F-algebra Eq (see 4.8). If 7 is an automorphism, then
titi — qijtit; = 0 = 7(tti — qijtit;) = tits — op(qi;)tit;,

which forces 0g(qij) = ¢ij, and so ¢;; € F for all ¢, 5, i.e., g € M, (F).

If 7 is an involution, then
0= T(tjti — qijtitj) = titj — O'E(qij)tjti = titj — aE(qij)qijtitj.

Hence we get 0g(gi;)qi; = 1 for all i, j and obtain ¢ = €. In particular, 7 = o since
o is a unique op-semilinear involution of E¢ such that o(t;) = ¢; for all .

(2): Let 7 := op ® id, which is a opg-semilinear involution of Jg = F ®p J.
Identifying J with 1® J, we have J = H(Jg, 7), the set of fixed points by 7. Also, we
identify Jp with Ef, and so J = H(E], 7). Since supp J = supp Jg = supp E = A,
one can choose t1,... ,t, € Ey such that Eq = E [t*,... '] and 7(t;) = t; for all
i. Thus one can apply (1). For the case (i), one gets H(E,,7) = Fy[tf!, ... tF],
and so J = F;. For the case (ii), one obtains ¢q =§, 7 =0 and J = H(E¢,0). O

We note the following fact about semilattices:

4.10. Let S be a semilattice in A. Then there exists a basis {1, - ,0,} of A such
that each o; € S ([1] p.24 Proposition 1.11). O

The reader is reminded that any Jordan division algebra of Hermitian type is iso-
morphic to A" or H(B, %) for some associative division algebra A or some associative
division algebra B with involution *. We are now ready to prove an analogous result

for Hermitian tori.
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Theorem 4.11. Any Hermitian torus over F is graded isomorphic to one of the
three tori F;, H(F,,*) or H(E¢,0) for some toral grading, as described in 4.3, and

conversely, these three tori are all Hermaitian tori.

Proof. We only need to show the first statement. Let J = &4cn Jo be a Hermitian
torus over F, i.e., J = H(P,*) for some *-prime associative algebra P which is
generated by J. Let (o1,...,0,) be a basis of A such that each o; € supp J (see
4.10), and let 0 # z; € Js,, @ = 1,...,n. We first consider the case where the
following two conditions hold:
(A) for all 1 < 4,5 < n, [z;,x;] = 0or z;ox; =0, e, zjz; = tx;x; for all
1<2,75<mn,
(B) J is generated by r-tads {x;} --- 2"} where r >0, 4y,... ,i, € {1,... ,n} and
€ = £1.
We will show J =, H(Fg,*) in this case. Since J generates P and every r-tad
is generated by 1-tads leil, ...,2xt! as an associative algebra, P is generated by
xlﬂ, ...,z Thus, by (A), there exist an elementary quantum matrix € and an
epimorphism ¢ from Fy = F.[tT,... ,tF] onto P such that o(t;) = z; fori =1,... ,n.
We give F; the (o1, ... ,0,)-grading, and show injectivity of ¢. Suppose that ¢(t) = 0
fort =73 cpn Gala Where aq € I, to = 11" ---to" and a = 1oy + -+ - + a0, € A.

So we have

1) S tata =0,

Qn
n

J and in P. We need to show that all a,, = 0. Put

where x4 := x{" -+ - z&". Note that all x4 are invertible in P since z; is invertible in

M ={aecA|zqeJ} and N:={BecA|zg¢ J}
Then we have ) )/ @aTa =0 and ZﬁeN agrg = 0 since x4 € J are symmetric
and zg ¢ J are skew relative to * (note ch. F' # 2).
Claim 1. Assuming only (A), we have vo € J = o € Jq.
Proof. By (A), the subalgebra of A generated by {z?}"™_; is commutative, and so the

Jordan product and the associative product coincide in the subalgebra. Therefore,

2 2001 200, 2001 200 2« _
xZ, = £yt = (- (2™ x23™?) - 20Y) € Janyoy 4 +2an0, = J2a-
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Hence, by 3.7, we get xo € Jo. U

By Claim 1, we obtain a, = 0 for all @« € M. If N = (), we are done. Otherwise
we pick any By € N. Multiply (1) by zg,. Then, by (A), we have

Y aprpip, = 0.
BEN

Applying the same argument for this equation instead of (1), we have

Z tagrgig, =0 and Z +tayTy+8, = 0,

BeM, YEN;
where My :={B € N | 2348, € J} and Ny :={y € N | 2443, ¢ J}. By Claim 1, we
get agxs+8, € J3+4,, and hence ag = 0 for all 3 € M;. Since N = M; UN; (disjoint
union) and By € M; (because z2g, € J), we have Ny C N. If N7 = (), we are done.
Otherwise, repeating this method for the finite set Ny, we get some r > 1 such that
N, =0 and ag =0 for all B € My U---L M, = N;. Consequently, we obtain ao =0
for all & € A. Thus t = 0 and ¢ is injective.

We have shown that ¢ is an isomorphism. Further, P is graded with Py, = J,,

and ¢ is a graded isomorphism. Also, through this isomorphism, we get an involution
« of F such that tf =t; for i =1,... ,n. Therefore, we obtain J =, H(Fg, *).

We consider the second case: the negation of (A), i.e.,
there exist some ¢, j such that u := [z;, z;] # 0 and z; o z; # 0.
We divide the case into two subcases:
M) w?*=0 and (II) w*#0.

Note that u* = —u.
(I): We have uu* = —u? = 0. We need the following claim which can be proven in

the same manner as in the classification of Jordan division algebras (see [9] p.8.25).
Claim 2. There exists y € J such that for v = yu, v+ v* # 0.

Proof. Otherwise, for all y € J, we have v+0v* = 0 for v = yu, i.e., yu = —u*y* = uy.
So for all w € P, we have (uy)(uw) = u?yw = 0, and hence we have (uJ)(uP) =
{0}. Since P is generated by J, we get (uP)? = {0}. Then we have (PuP)? =
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PuPPuP = PuPuP = P(uP)? = {0}. Moreover, (PuP)* = Pu*P = PuP, and so
PuP is a nonzero x-ideal. This contradicts the fact that P is s-prime (x-semiprime
is enough!). O
Let y € J be such an element as in Claim 2 so that

v+t =yu—uy = [y, u] # 0.
Decompose y into nonzero distinct homogeneous elements, namely, y = > ¥a-
Let vg = you for all yo. Suppose that ve + v} = 0 for all v4. Then we have
Yo, U] = Yot — UYa = Vo + v}, = 0 for all yo. Therefore,

v+t = [y, ul = [Z yauu} :Z (Yo, u] =0,

x

which contradicts our choice of y. Hence there exists some v, such that ve + v, # 0.

By 2.7, we have
0 7£ Vo ‘f‘U:; = [yaau] = [yaa [m’bxju = (miayaaxj>o S Ja'i—|—a+aj-

Hence v, + v}, is invertible in J. Also, we have vo v}, = yauu*y}, = —Yal?Ye = 0.

Therefore, by 4.7(a), we get J 5 F; for some q.

(IT): Let 0 # y := x; o x; € Jy where «v := 0; + 0;. We show that these u and y
satisfy the three conditions in 4.7(b). By 2.8, we have
0#u? = [:Ui,.fﬂj]Q =xzi0Uy;m; — Ux:c§ — ij:c? € Joy.

2

Hence w2 is invertible in J and hence in P. Thus u is invertible in P and u? € oy .

By 2.9, we have
uy_lu = Uuy_1 = U[xi,xj]y_l = (Umiomj —2Uy, Uy, — 22Uy, Umi)y—1 € Jy
since y~! € J_,. By 2.7, we have

[u,y] = [[mi,mj],xi omj} = —(x5,zi02j,x;)° € Jay.

Thus v and y satisfy the conditions in 4.7(b), and we get J = F, or Jg =5 EJ.
Then, by 4.9(2), we obtain J 2 F; or H(Eg,0).

We consider the final case: (A) with the negation of (B), i,e.,
assuming the relation (A), J is not generated by r-tads {x;! --- 25" }.

By our assumption, there exist v € A and 0 # y € J, such that y is not generated by
r-tads {z;! - 2;7}. Let v = y101 + -+ + 100
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Claim 3. u:=z]"---z)" ¢ J.

Proof. Otherwise we have 2u = {z]'---2)"}, and by Claim 1, u € J,. So we get
y = au for some a € F by dimp J, <1, i.e,, y = 2a{z]* -+ -z}, which contradicts

our setting of y. U

Now, we show that these u and y € J, satisfy the conditions in 4.7(b). Observe
first that u* = +u by (A) and hence v* = —u by Claim 3. Next, by definition, u is
clearly invertible, and by (A), we have u? = 423" ---22» € .J. Hence u? € Ja, by

Claim 1. Secondly we have

Y1

"o, .w;ylny_lw}/l .. ZC,?ILn — iw?l - .x;ybny_lx;ybn - .xl

Uy ' =uylu=2]
=+U,n - Uppny ™" € Jy

In particular, we get a formula for wu:

(2) Uy =2Upn - Ugyn.

Thirdly, since uv* = —u and [u,y|* = [y*,u*] = —[y,u] = [u,y], we have [u,y] € J.
Also, we have by 2.8 and (2),

[u7y]2 =yoUyy — Uyu2 — Uuy2 € J47.

Hence, by 3.7, we get [u,y] € Ja,. Thus, by 4.7(b) and 4.9(2), we get J =2, F or
H(Ee,0). O

85 CLIFFORD TYPE

Definition 5.1. A Jordan torus of Clifford type, i.e., the central closure is a Jordan

algebra of a symmetric bilinear form, is called a Clifford torus.

Example 5.2. Let A = A,, be a free abelian group of rank n > 2. Let 2 < m <n
and let A,, and A, _,, be subgroups of A of rank m and n —m, respectively, such that
A=Ay ®Ap_pm. Let S be a semilattice in A, and {o1,...,0,,} a basis of A,,.

Extend {o1,...,0,} to abasis {o1,... ,0m,Fmi1,-..,0,} of A. Let

I'=2A,,®A,_,, and Z:= F[zlil, ...,z with a toral I'-grading, i.e.,

Z = ®~er Fzy where

2y =2tz for ¥y =270 4 -+ 290+ Y101 + o YnOn.
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We fix
a representative set I of (S(™)/2A,,)\ {0}.

Let V be a free Z-module with basis {te¢}ecr. Define a Z-bilinear form f : VxV — Z
by

aezoe ife=m

() flterta) =

0 otherwise
for all €,m € I, where 0 # a. € F. Let
J = Jsom ({aetecr) =2V
be the Jordan algebra over Z of f. Then
{zy | vyeT}U{24te | v€T, ec 1}

is an F-basis of J. For a € S(™ @ A,,_,,, there exist unique o’ € I" and € € I U {0}
such that o = o’ + €. Put tg := 1 and

ta =

{ Zoarte fa e S™ A, .

0 otherwise.

Then we get J = @qen Fto as a graded F-vector space. By (%), we have, for
a=a +e B=0+ncS™ @A,_,, where o/, 3 €T, €,n € IU{0},

UeZa'+3 %2¢ = Qetatrg fe=m#0

Za/+ﬁ/t5 = ta+ﬁ if n = 0
Kk tals = (Za'te)(zgty) =
() atp = (zarte) (28 Tl) Za 4@ty = tats ife=0
0 otherwise,

and so we obtain totg C Fteyp foralla,8 € A. Fora =a’+e € S & Ay, since
t2a = GeZ2ar22¢ 1S invertible, t, is invertible. Since suppJ = S @ Ay, supp J
generates A and hence J = ©qyep Fty is a Jordan torus over F. One can check that
the centre Z(J) of J is Z and the central closure is a Jordan algebra of the extended
bilinear form of f. Hence J is a Clifford torus.

We call J = Jg(m) ({ac}ecs) the Clifford torus determined by S™) of type {ac}ecr.
The A-grading of J determined by a basis (o1,...,0,) of A is called a toral grading
ora(o1,...,0,)-grading of J. Also, when ae = 1 for all € € I, we call the J = Jg(m)
the standard Clifford torus determined by S™).
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Remark 5.3. (1) One can easily check that

Jgom) ({ae}eer) =a J' ®F F[Zi:z}i-h S 72?51]

where J’ is the Clifford torus as constructed in 5.2 for n = m. When m = n, the
standard Clifford torus Jg) appeared in [1] as the first example of an EALA of type
A, graded by an arbitrary semilattice.

(2) If any element of F' has a square root in F, e.g. F' is an algebraically closed
field, then one can make ae =1 for all € € I by switching ¢ to (y/ae) te. Thus, for
such a base field F, a Clifford torus J = Jgim) ({ae}ecr) is always graded isomorphic
to the standard Clifford torus Jgem).

(3) A Clifford torus J = Jgwm) ({ae}ecr) is, by (xx), never of strong type, even if
we take S(™) = A,

We now start the classification. Let J = @qecp Jo be a Clifford torus over F, i.e.,
the central closure .J is a Jordan algebra over Z of a symmetric bilinear form where
Z = Z(J) is the centre of J and Z is the field of fractions of Z. Thus J has degree
< 2 over Z, i.e., there exist a Z-linear form tr : J — Z and a Z-quadratic map
n:J — Z with n(1) = 1 such that for all x € J,

2? —tr(x)x +n(z)l = 0.

If dimjj = 1, then J = Z since J embeds into J. Hence J is a commutative

associative torus, and so J =, F[tE!, ... tF1].

Claim 1. Let J = ®qcr Ja be a Clifford torus such that dim77 # 1. Let I be the
central grading group of J. Then, for any a € A\ T, we have tr(Jy) = {0}, and there

exists a basis {o1,... ,0,} of A such that

I'=2%01+ -+ 200, + ZOpmt1+ -+ Zo,, for some2 <m < n.

Proof. Recall that J = @gea,r Ja is a A/T-graded algebra over Z (see 3.9(iii)). Note
that dim J # 1 implies A/T # {0}, and so supp J # {0}. For any a € suppJ \ T,
let 0 # 2 € Jo. Then 22 + n(x)1 = tr(z)r € J&. If tr(x) # 0, then 20 = @ since
z? # 0. Hence @ = 0, which contradicts our choice of a. So we get tr(x) = 0.
Then 22 = —n(x)1 € Z1. Since 0 # 22 € Joo N Z1 C Jog N jﬁ, we get 2a = 0.
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Therefore, 2A C T, and the exponent of A/T"is 2, i.e., A/T" = Z7" for some 1 < m < n.
By 3.6(iv), m = 1 cannot happen. Thus the statement is clear by the Fundamental

Theorem of finitely generated abelian groups. [

Let W := {x € J | tr(z) = 0}. Then J = Z1 ® W is a Jordan algebra over Z of
the symmetric bilinear form

1

h = —§n(-, ) ‘WXW .

Recall that J = ©geca/r Ja is a A/I'-graded algebra over Z in 3.9(ii). By Claim 1,
we have tr(Jg) = {0} for @ # 0, and so

V= Par0 JgCW
and J = Z ®V as a direct sum of Z-modules. For all x,y € V, we have zy =
h(z,y)l € JNZ1=JNZ(J)= Z. Therefore, J = Z @V is a Jordan algebra over Z
of f:=h|yxy. Let S:=suppJ and A,, := Zo1 + - - - + Zo,, where {o1,...,0,} is

a basis of A chosen in Claim 1.
Claim 2. S(™) .= SN A,, is a semilattice in A.

Proof. Since S is a semilattice in A and A,,, is a subgroup of A, we have 0,2a — 3 €
Sm) for all a, B € S™). We need to show that S(™) generates A,,. For any § =
o1+ -+0,0, €5, wehave 8’ :=0pr10m11+- -+ 00, €. Let 0 £ x € Js and
0+# 2z Js. Then 0 # 22~ ! € Js_5, and hence § — 8’ = 6101 + -+ + 60 € S,
Since S generates A, we have for a € A,,, C A,
a=>Y 1s6=>Y Is5(6-0)
scU scU

where U is a finite subset of S and lg is a positive integer. Therefore, S("™) generates
A,,. O

We fix a representative set I of (S™)/2A,,) \ {0}, as in 5.2. For € € I, let
0 # te € Je. Then we get V = Bz0 Ja = @ecs Zte as direct sums of Z-modules.
Since Z = ®~er J is a commutative associative I'-torus, Z can be identified with
F[zif', ..., zF!] with the toral I-grading as in 5.2. Moreover, for € # 1 € I, we have
e+n ¢l and so

tetn = f(te.tn) € Jem N Jg = (0).

Also, we have 0 # t2 = f(te,te) € Joe = Fzae. Thus there exists 0 # a. € F such that
f(te,te) = aecz2e. Hence the bilinear form f coincides with f in 5.2. Consequently,

we have shown the following:
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Theorem 5.5. Any Jgum) ({ac}ecr) as defined in Example 5.2 is a Clifford n-torus
and conversely any Clifford n-torus is graded isomorphic to Jgwm)({ae}ecr), or to the

algebra of Laurent polynomials in n variables, for some toral grading.
Also, by Remark 5.3(2) we have:

Corollary 5.6. Suppose that any element of the base field F' has a square root. Then
a Clifford torus is graded isomorphic to a standard Clifford n-torus Jgwny as defined in

5.2, or to the algebra of Laurent polynomials in n variables, for some toral grading. [

§6 ALBERT TYPE

We classify Jordan tori of Albert type, i.e., Jordan tori whose central closure is an
Albert algebra. An Albert algebra is defined as either a first or a second Tits con-
struction, which are both 27-dimensional central simple exceptional Jordan algebras
of degree 3. We recall the first Tits construction but not the second one since second
Tits constructions do not occur in the class of Jordan tori.

Let A be a central simple associative algebra over F' of (generic) degree 3 with

generic trace tr. For a,b € A, let

1
a-b= E(ab+ba),

1 1 1
axb=a-b— 5 tr(a)b — 3 tr(b)a + §(tr(a) tr(b) — tr(a - b))1,
1
Ezaxlzi(tr(a)l—a).
Note that
1=1 and a(axa)=(axa)a=n(a)

where n is the generic norm on A.

Let 0 # p € F. A first Tits construction (A, u) over F obtained from A and the
structure constant p is the direct sum A ® A @& A as F-spaces with the following
F-bilinear multiplication:

For (ag,a1,as), (b, b1,b2) € (A,u) = ADASD A,

(ao, a1, az)(bo, b1,b2) = (ao - bo + arbz + bray,
(61) a()bl —1—50@1 + ,u_lag X bg, bgao + CEQEO + pag X bl)

We will always identify A with (A, 0,0) as F-spaces.
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Remark 6.2. Let x := (0,1,0) and y := (0,0, 1). Since a = tr(a)l + 2a = tr(a)l + 2a,
we have A -z = (0,4,0) and A - 2?2 = (0,0, uA) = (0,0, A). Thus (A, p1) is generated
by A and z. Also, since x = uy?, (A, i) is generated by A and y.

The following lemma is well-known ([8] p.422, Exercise 1).

6.3. Let (A, p) be a first Tits construction. Let a € A be invertible and x = (0, a,0),y =
(0,0,a) € (A, ). Then:

(i) 0 # 23 € F1, and there exists an isomorphism ® from (A, u) onto (A, z3) over
F = F1 (identify) such that ® | 4= id and ®(z) = (0,1,0),

(ii) 0 # y=3 € F1, and there exists an isomorphism ¥ from (A, u) onto (A,y=3)
over F'= F1 such that ¥ | 4= id and ¥(y) = (0,0,1). O

The theory of first Tits constructions over a ring does not seem to be much devel-
oped. As far as the author knows, the most general paper is [16]. For our purpose,
we do not need this generality, but only a very special case. One might say that this

is almost the classical case (i.e., Tits constructions over a field above).

Definition 6.4. We say that a prime Jordan or associative algebra P over F' has
central degree 3 if the central closure P = Z @, P is finite dimensional and has

(generic) degree 3 over Z.

Lemma 6.5. Let A be a prime associative algebra over F of central degree 3, and
w € Z a unit where Z = Z(A) is the centre of A. Assume that tr(A) C Z where
tr is the generic trace of the central closure A over Z. Then, the subset (A, p) =
A® A® A of the first Tits construction (A,u) = A® A D A is a Z-subalgebra such
that (A, ) = (A, ).

Proof. By the multiplication rule of (4, u) (see 6.1), and our assumption tr(A) C Z,
it is clear that (A, u) is a Z-subalgebra of (A, u). Let Z(A, i) be the centre of (A, p).
Then we have Z C Z(A,pu) C Z(A) = Z, and so Z(A, u) = Z. Therefore, the central

closure (A, ) of (A, p) is given as Z ®z (A, i), which is a Z-subalgebra of (A, p).

Thus we only need to show that (A4, u) C (A, ). But this is clear because we have,
for z; € Zand a; € A, 1 =0,1,2,

1 1 1
<— ® ap, — ®ar, — @ az) = (1® z122a0,1 ® 2p22a1,1 ® zp2102)
A 20%R1%22

u
)
=
3
=
@

(o)}
&

=

=
I

>

=
O
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We call this (A, ) a first Tits construction over Z. This is a special type of the

general first Tits construction studied in [16].

Remark 6.6. This (A, ) is also generated as a Z-algebra by A and x = (0, 1,0) or by
A and y = (0,0, 1) as in the classical case (see 6.2). Thus (A, u) is characterized as
the Z-subalgebra of (A, 1) generated by A and = or by A and y.

Before giving examples of Jordan tori of central degree 3, we show general proper-

ties of them.

Proposition 6.7. Let T = ©qep To be a division A-graded Jordan or associative
algebra over F' of central degree 3. Let tr be the generic trace of the central closure
T. Then there erists a basis {o1,...,0,} of A such that the central grading group of

T is given as
I'=3%01+ - -+ 3%Z0,, + ZOpyi1 + -+ Zo,, for some 2 < m < n,

and suppT = A. Moreover, for any o € A\ T', we have tr(Ty) = {0}.

Proof. If I' = A, then dimgf = 1, and hence T does not have central degree 3.
Therefore, I' # A and supp T/T" # {0}. Let 0 # B € suppT/T and 0 # x € TE' Since
T = ®gea/r Ta (see 3.9(iii)), has generic degree 3, we have

22+ 22 + zom + z31 =0 for some zq, 29, 23 € Z and z; = — tr(x).
If 28 = 0, then 33 = 3 and therefore,
234 zox = —z22 — 231 € TEQT— = (0).

Hence we get 234201 = x(22+221) = 0. Since T is a Jordan or an associative domain,
the subalgebra Z|[x] of T generated by x is a commutative associative algebra domain
over Z. So 24251 = 0 since z # 0. Since x ¢ T, the polynomial f(\) = A2+ 2, is the
minimal polynomial of z over Z. If f()) is reducible over Z, say f(\) = (A—a)(A—b),
a,b € Z, then (z — al)(z — bl) = 0 in Z[z]. Hence, x = al or x = bl, and so
v € Z1 = Tg, i.e., B = 0, which is a contradiction. Therefore, f()) is irreducible
over Z. Note that the minimal polynomial and the generic minimal polynomial of an
element have the same irreducible factors (see [8] p.224). Since f(A) is the irreducible

minimal polynomial of x, the generic minimal polynomial of  has to be a power of
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f(A). However, this is impossible since the degree of the generic minimal polynomial
of x is 3. Therefore, 23 # 0. This implies that 33 # B. Since B8 # 0, we have
% 7& % Hence {%, 6} N {%, B} = @ So (T% + Tﬁ) N (Tﬁ P TE> = (0) Since

234 231 = —z2% — 21 € (Tﬁ—kfﬁ) N(Tzz® TH),

we get two equalities 23 + 231 = 0 and —z122 — 202 = 0.

By the first identity, we have 0 # 23 = —231 € Tﬁ N Tﬁ, and hence 38 = 0.
Thus 3A C T, and so the exponent of A/T" is 3. Hence, by 3.9(iv), A/T" = Z7* for
some 2 < m < n, and so the first statement follows from the Fundamental Theorem
of finitely generated abelian groups. Also, we have 3A C supp 1. Since suppT is a
semilattice, A = 3A — 2A C supp 7', and so supp T = A.

By the second identity and by the same reason above, we have —z1x — 251 = 0.
Then —z1x = 251 € TE NTg = (0). Hence z; = 0, i.e., tr(x) = 0. Therefore, for any
a € A\ T, we have tr(Ty) = {0}. O

We give examples of Jordan tori of central degree 3.

Example 6.8. (1) Assume that F' contains a primitive 3rd root of unity w. Let w

be an n x n (n > 2) quantum matrix

1 w | |
w11 ;
W =Wwp = 1 1 1

: o1

1 e e 101
where the (1,2)-entry is w, the (2, 1)-entry is w™! and the other entries are all 1. Let
F, = F,[uf',... ,u*'] be the quantum torus determined by w and Z = Z(F,,) the
centre of F,,. One finds that Z = F[uf?’, u%t?’,u?jfl, ...,ur', the algebra of Laurent
polynomials in the variables u$, u3,us, ... ,u,. So for a (o1,...,0,)-grading of F,,,

the central grading group of F,, is 3Zoy + 3Zoo + Zos + - - - + Zo,,, and the central
closure F, is a (Z3 x Zs3)-torus over Z. So the dimension of F,, over Z is 9. Since
F,, is a domain, F, is a division algebra, by Wedderburn’s Structure Theorem, and
F,, has degree 3 over Z. Thus F,, has central degree 3. We claim that F is a
special Jordan torus of central degree 3. In fact, we have, by 2.5, Z(F}) = Z(F,).
So the central closure F—;," is a 9-dimensional central special Jordan division algebra
over Z(F}) = Z(F,,). Hence, by 2.11(b), it has degree 3.
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(2) Assume that n > 3. Let F,, = F,[uf',... uF'] as defined in (1), Z(F,) its
centre and tr the generic trace of the central closure F,,. Then, by 6.7, we have
tr(uiul) =0if i £ 0 or j # 0 (mod 3), and so

tr(F,) C Z(F,) = Flu? ui? it ... utl).
Thus, by 6.5, we have the first Tits construction A; = (F,,, u3) over Z. Namely,
A= (F,,u3) =F,dF, ®F,.
Let (o1,...,0,) be a basis of A and
A =701 + Zoy + 3%03 + Loy + - -+ Zo,.

We give F,, a toral A-grading, i.e.,

61,02, 0 Sn
Fw - EB5€A FU5 where us = u11u22u33 Ce U

for d = 0101 + 9909 + 30303 + 0404 + - - + 0y 0.

For a = cyo1 + -+ - + a0, € A, we put

(Uq, 0,0) if az=0 (mod 3)
ta =4 (0,Uq-05,0) ifaz=1 (mod 3)
(0,0, uq+e;) ifag=2 (mod 3).

Then we obtain to # 0 for all @« € A and A; = ®qepFta. Thus, A; is a A-graded
vector space over F' whose homogeneous spaces are all 1-dimensional over F. We
note that ty, = (0,1,0), ta, = t2, = (0,0,u3) and t_o, = t;! = (0,0,1). By the
multiplication rule of Tits first constructions (see 6.1), one can check that A; is a

A-graded algebra and the structure constants relative to the basis {tq }aca are
1 w
{17w7w27 _57 _57 __}

Hence A, is a Jordan torus over F of strong type, which is called the Albert torus over
F. We call the grading of A; above a toral grading or a (o1, ... ,0,)-grading. By 6.5,
the central closure A; of A; is an Albert algebra (F,,u3) over Z, and so the Albert

torus is in fact a Jordan torus of Albert type. By 2.10, the central closure of a Jordan
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torus of Albert type is a division algebra since this central closure is a 27-dimensional
Jordan domain. In particular, the central closure A, is a division algebra.

(3) Suppose that /-3 ¢ F. Let E = F(v/=3) and consider the Jordan torus
H(E,, o) defined in 4.3(3). Since EQp H(E,,,0) =z E},, the central grading group of
H(E,,, o) coincides with the one of E,, (see 3.8), which is 3Zo1+3Zoy+Zos+- - -+ Lo,
by (1). Therefore, the central closure H(E,, o) is a 9-dimensional central special
Jordan algebra, which by 2.10 is a division algebra. Then, by 2.11(b), H(E,,, o) has

central degree 3.

We first classify associative tori of central degree 3. Let T = @©4ecpn 1o be an
associative torus over I’ of central degree 3 and T the central closure over Z. By 6.7,
we have dimgf = 3™ for some 2 < m < n. Since T is a finite dimensional associative
domain, T is a division algebra by Wedderburn’s Structure Theorem. Hence m = 2,
i.e., dimzT = 9. Thus there exists a basis {1,...,0,} of A such that the central
grading group I' of T is 3Zoy + 3Zoy + Zos + - - - + Zo,. Also, it is clear that an
associative torus whose central grading group is I' has central degree 3.

Now, we classify associative tori whose central grading group is I'. Let 0 # ¢; € 75,
for 1 <4 < mn. Then since t;t1 = t1t;, tita = tot; and t;t; = t;t; for all 3 <7 < n and
1 <5 < n, we can identify such a T with the quantum torus Fy = Fy [tiﬂ, ,
determined by g = q(q) where the (1,2)-entry of g is some ¢ € F'*, the (2,1)-entry
is ¢~ and the other entries are all 1. Moreover, since t3 € Z, we have t,t3 = tit; =
¢@tits, and so ¢ = 1. If ¢ = 1, then ¢ = q(1) = 1, but the algebra of Laurent
polynomials F; cannot have central degree 3 since Z = Z(Fy) = F;. Hence q # 1,
and F has to contain a primitive 3rd root of unity, say w. Since g can be either w or
w1t let q := g(w) and ¢’ := g(w™'). One can easily see that F, & Fy via t; — to,

t2|—>t1 andti»—nfz- fori:?),...,n.

Remark 6.11. Note that Fg can be identified with the opposite algebra Fg¥ of Fy.

Then Fy and Fy are both algebras over their common centre
+3 ,+3 ,+1 +1
Z = F[t3 ¢3¢0 .. 1.

We showed that Fy = Fy over F', but we note that Fy 22 Fy over Z. In general, if
A is an associative domain of central degree 3, then we always have A 2 A°P over
Z. For, if A = A° over Z, then A = A% over Z, which cannot happen since A is

a central associative division algebra of degree 3. (See e.g. [19]; if A = XOP, then
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[4]? = 1 in the Brauer group. But the order of A in the Brauer group has to divide
the degree.)

We summarize the above results as a proposition.

Proposition 6.12. (1) For an associative torus T over F' we have: T has central
degree 3 <= the central grading group of T is 3Zo1 + 3Zoy + Zos + - - -+ Lo, for
some basis {o1,...,0,} of A.

(2) If w € F, then an associative torus over F of central degree 3 exists, and any
such torus is isomorphic to the quantum torus F,,. If w ¢ F, e.g. ch. F' =3, no such

torus exists. [

Unlike the other types, we will show that the Albert torus A; is the only Jordan
torus of Albert type. We begin with the following;:

Proposition 6.13. Let J be a special Jordan torus over F' of central degree 3. Then
ch. F # 3, and

[ FZ ifweF

- H(E,,o) otherwise
where E = F(y/=3). Conversely, the algebras F and H(E,,, o) are special Jordan

tori of central degree 3.

Remark. If ch. F' # 3, there exists a primitive 3rd root of unity w in some extension
field of F'. Note that F(w) = F(1/—3).

Proof. Only the 1st part remains to be proven. We know that a special Jordan torus
J is either a Hermitian torus or a Clifford torus. Since a Clifford torus does not have
central degree 3, special Jordan tori of central degree 3 have to be Hermitian tori, i.e.,
J=p Ff, H(Fe, ) or H(Eg,0) (see 4.3 and 4.11). Let Z = Z(J) be the centre of J.
By 6.7, there exists a basis {o1,...,0,} of A such that the central grading group T’
of J has the form

I'=3%01+ -+ 3%op + Loy + -+ Loy,

for some 2 < m < n and suppJ = A. In particular, there exists a homogeneous
element t € J such that t* ¢ Z (for example, take ¢ to be a nonzero element of degree
o1). If ¢ : J=H(Fg,x) is a graded isomorphism, then by 3.6(ii), ¢(t) is homoge-
neous in H(F,,*), and ¢(t)* ¢ ¢(Z) = Z(H(F.,*)). However, for any homogeneous
element x € H(F,,x*), 2* € Z(H(Fe,*)) since the entries of € are +1. Thus we get
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a contradiction. Hence the only possible candidates of central degree 3 are F, ; and
H(Eg,o). Since the central closure J is a finite dimensional central special Jordan
division algebra over Z of degree 3, we have, by 2.11(b), dim3.J = 9. So m has to be
2, by 3.9(iii).

If J =25 Ff, then by 2.5, Z = Z(F}) = Z(F,), and hence the central grading
group of Fg is I'. Thus, by 6.12, we have w € F', and so ch. F' # 3, and ¢ = w, i.e.,
J =\ FF.

Suppose that J = H(E¢, o). We identify them. So we have Jp = E ®p J = Egr
Hence, by 2.5 and 3.8, the grading group of Z(Eg) = Z(E¢) is I. Then, by 6.12,
we get ch. F # 3, w € F and £ = w, i.e., J = H(E,,0). Since wo(w) = 1, we have
o(w) # w, and so w ¢ F. Since [F : F] = 2, we obtain E = F(w) = F(v/=3). O

By Zelmanov’s Prime Structure Theorem, if J is a strongly prime exceptional
Jordan algebra J over F', then J has central degree 3 and the central closure J is
an Albert algebra. Let Tr be the generic trace of J over Z. For a subalgebra U of 7,
let

Ut ={rcJ| Tr(Uz) =0y cJc J.

Note that the central closure of an exceptional Jordan domain is an Albert division
algebra. The following lemma for an exceptional Jordan domain serves as preparation
for the classification of Jordan tori of Albert type. We will show that such a torus

satisfies all the assumptions of the lemma.

Lemma 6.14. Let J be an exceptional Jordan domain over F, Z = Z(J) the centre
of J and Tr the generic trace of J. Let U be a subdomain of J and Z(U) the centre
of U. We assume the following conditions:

(i) Z=Z(U) and U has central degree 3,

(ii) U = AT for some associative algebra A over F,

(iii) Tr(U) C Z,

(iv) there exists an element x € UL such that 2> € U+ and z == 23 € Z is
invertible.

Then, J contains a subalgebra J' so that there exists

a Z-isomorphism ¢ : (A, z)——J" with ¢ |4=id and ¢©((0,1,0)) = = or,
a Z-isomorphism 1 : (A, z71)—>J" with ¢ | 4= id and ¥((0,0,1)) = =,

where (A, z) and (A, z71) are defined in 6.5.
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Moreover, assume that

(v) there exists an F-isomorphism f from A onto the opposite algebra A°P such
that foTr=Trof and f(z) =

Then there exists an F-isomorphism f : (A, 2)—=(A,z~') with f |a= f and
f((O, 1, 0)) =(0,0,1). In particular, J always contains a subalgebra F'-isomorphic to
(A, z).

Proof. As mentioned above, the central closure J is an Albert division algebra over
Z. By (i), U = Z(U) QzuyU =Z ®z U C T is a central division subalgebra over Z
of degree 3, and tr := Tr |7 is the generic trace of U. By (ii) and 2.5, we have

U= Z(A+) Rz a+) AT = (A) ®zA) AT = ( (A) ®z(A) A) (7\)+

Hence B := A is a central associative division algebra over Z of degree 3, and so A
has central degree 3 with tr(.A) = tr(U) = Tr(U) C Z by (iii). Note that the generic
trace of A coincides with the generic trace tr of U = A™ (see [8] p.230).

Now, since J contains &/ = B1 for the central simple associative algebra B over
7 of degree 3, we have J = (B, i) over Z for some 0 # p € Z (see [8] p.420). Note
that this isomorphism is the identity map on B. So we identify J with (B, ut). Since
U =Bt = (0, B, B) (see e.g. [18] p.349), we have, by (iv), = (0,u,v) for some

2 = (2uw,u',v") for

u,v € B. By the multiplication rule 6.1 of (B, ), we have x
some u/,v’ € B. Since 2?2 € U+, we have 2uv = 0, and so tr(uv)l = uv. Hence
0 = 2uw = 2tr(uv)l = 2tr(uv)l, and so uv = 0. Since B is an associative division
algebra, we have v = 0 or v = 0. If u = v = 0, then = 0 which contradicts the
invertibility of 3. Thus we obtain z = (0,u,0) or z = (0,0,v) for some nonzero
u,v € B. Then, by 6.3, there exists a Z-isomorphism ® from (B, u) onto (B, z)
or a Z-isomorphism ¥ from (B, u) onto (B, z~ 1) such that ® |4= id or ¥ |4=
and ®(z) = (0,1,0) or ¥(x) = (0,0,1). So, ®(J) contains A and (0,1,0) in (B, 2),
or ¥(J) contains A and (0,0,1) in (B,27!). Hence ®(J) contains (A, z) or ¥(J)
contains (A, z71) (see 6.6). Let J' = ®7!((A,2)) or J' = U1((A4,27")). Then
@ :=® 1 |4, and ¢ := U~ | 4 1) are the required Z-isomorphisms, and so we
have shown the first statement.

For the second statement, we use the well-known fact that there exists an iso-
morphism g : (B, z)——(B, z7!) over Z defined by g((ao,a1,a2)) = (ao,az,ay) for
ao, ay,az € A (see [8] p.422, Exercise 2). Thus

hi=g ez (A 2)——= (AP, 271
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is a Z-isomorphism. We note that A°P has central degree 3, and has the same centre
as A. Also, the generic trace of A°P coincides with the generic trace tr of A. The F-
isomorphism f : 4A—.A° in our assumption (v) satisfies f(z) = z and fotr = foTr =
Trof = trof. So one can check that the map f : (A, 27 1) — (A, 27 1) defined by
f((ao, ai, (lg)) = (f(ao), f(ay), f(ag)) is an F-isomorphism. Consequently, we obtain
an F-isomorphism f := f~1oh : (A, 2)——(A,z"1) with f(((), 1,0)) = (0,0,1). For
the last statement, the composition map 1 o f gives an F-isomorphism from (A, z)
onto J'. O

Remark. In 6.14, if (A, 2) = (A, 2z71) over Z, then (A, z2) = (A,z71) over Z. Since
(A, 2) is an Albert division algebra, this cannot happen by [17], p.204 (see 6.11). Hence
we always have (A, z) 2 (A, z71) over Z though it may happen that (A, z) = (A, z71)

over F'. For example, this is the case if (A4, z) is a Jordan torus of Albert type below.

We start to classify Jordan tori of Albert type. Let J = @©qen Jo be a Jordan
torus of Albert type, i.e., the central closure J is an Albert algebra over Z. Recall
that an Albert algebra is a 27-dimensional central simple exceptional Jordan algebra
of degree 3. By 6.7 and the fact that we have degree 3 and dimension 27, it follows
that suppJ = A, n > 3, and there exists a basis {o1,...,0,} of A such that the

central grading group I' of J is given as

I' =3%Zo1 + 3%Z05 + 3Z03 + Zoy + - - + Zoy,.
Let U = ®qea Ja, where

A =701 + Zoy + 3%03 + Loy + - -+ Zo,.

We claim that Z(U) = Z(J). Since U C J, we have Z(U) D Z(J) and so the central
grading group A of U lies in between A and I', i.e., A > Ay >T. If I' # A1 # A,
we get |[A/Aq| = 3 since |A/T| = 9. Hence the grading group of the central closure
U is A/A, = Z3. But by 3.9(iv), this cannot happen. Suppose then that A; = A.
Then U is commutative and associative. We show, using the method of Lemma 2 in
[8] p.420, that this cannot happen:

Suppose that U is commutative and associative. Since J is an Albert division
algebra by 3.4.7, the commutative associative subalgebra Z ®z U becomes a subfield

of J, which is 9-dimensional since |A/T’| = 9. But this is impossible. Indeed, take an
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algebraic closure € containing Z. Then, in Jq, we have 1 = e; + - - - 4+ eg where ¢; for
i=1,...,9 are orthogonal idempotents. Hence, by Lemma 1 in [8] p.229, the degree
of Jq is > 9, which is a contradiction since the degree of Jq is equal to the degree of
J which is 3 (see [8] p.223).

Thus we get Ay =T, i.e., Z(U) = Z. In particular, we have U = Z @7 U C J.
Note that U is a central subalgebra of the division algebra .J which is 9-dimensional
since |A/T'| = 9. So by the classification of finite dimensional central simple Jordan
algebras, U is special (see [8] Corollary 2 p.204 and p.207). Hence, by 2.11, U has
degree 3. So U is a special Jordan torus of central degree 3. Therefore, by 6.13,
ch. F # 3 and U can be identified with F. if v € F and with H(E,,, o) otherwise,
where £ = F(v/-3) = F(w).

We first consider the case U = F_}. Let x be an arbitrary nonzero element in Jy,.
Let u; be an arbitrary nonzero element in J,, for ¢ # 3 and ug := 3 € J305. Then
F,=F, [ulil, ... ,ur1] is a A-torus with a (o1, 0, 303,04, ... ,0,)-grading. Let Tr
be the generic trace of J and U+ = {y € J | Tr(Uy) = 0}. We claim that z, 2% € U+,
Since Tr is Z-linear and U is a free Z-module with basis {uiu} | i,j = 0,1, 2}, it is
enough to show that Tr ((u’lu%)xk) =0 foralli,j =0,1,2 and k = 1,2. Since such
(u’lu%)xk are all homogeneous and their degrees are not contained in I', we get, by
6.7, Tr ((uﬁu%)wk) = 0. Hence our claim is settled.

Since 2% = uz € Z is invertible and Tr(F,,) C Z, we have shown the conditions
(i)-(iv) for J = J, U = FJ and z = ug in 6.14. Therefore, by 6.14, J contains a
subalgebra J' so that

Case (I) ¢ : (F,,u3) — J' is a Z-isomorphism
with ¢ |p,=id and ¢((0,1,0)) =z, or

Case (II) 1 : (F,,uz') — J' is a Z-isomorphism
with ¢ |p,=id and ¢((0,0,1)) = z.

We give a (o71,...,0,)-grading to (F,,us) so that A; = (F,,,us) is the Albert
torus, i.e., Ay = @aen Fta, and to, = u; for i # 3 and t,, = (0,1,0) (see 6.8(2)).

Case (I): We have ¢(t,,) = u; € Jo, for i # 3 and ¢(ty,) = = € Jo,. Thus one gets
the injective Z-homomorphism ¢ : A; — J with p(Fts,) = Jo, foralli=1,... ,n.

Since A; is of strong type, we have, for any a« = ayo1 + - - - + a0, € A,

0 @(ui’ - (ug® - (t53 - (ug* -+ upr)...)) € Ja,
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and hence ¢ is surjective. Therefore, J = A, over Z and J =) A,.
Case (II): We first show that F,, = F,,[uf!,... ,uF!] satisfies the condition (v) in
6.14. Clearly the F-linear map f from F, into FZP defined by

flughug?ug® - -upr) = uptuptug® - ugn
(exchange the first two variables and leave alone the remaining variables) for all
a=a101+a09+30303+ 404+ -+ a0, € Ais an F-algebra isomorphism (see
6.11). It is also clear that foTr = Trof and f(u3) = us. Hence the condition (v) in
6.14 is satisfied, and so there exists an F-isomorphism f : A, = (F,, us)——(F.,, uz ")
with f |p,= f and £((0,1,0)) = (0,0,1). Thus, by 6.14, we get an injective F-
homomorphism ) o f : Ay — J with ¢ o f(Fty,) = Jo,, ¥ 0 f(Flg,) = J,, and
Yo f(Fty,) = Jo, for all i = 3,...,n. Since A, is of strong type, we have, for any

a=o101+ -+ a,0, €A,

0o flu? (ug' - (¢33 - (ug* - ui™)...)) € Ja,

and hence o f is surjective. Therefore, we obtain J = A, over F'. Note that 1o f is not
graded for the (o1, ... ,0,)-grading of A;. However, if we give a (03,01,03... ,0,)-

grading to A4, ¢ o f is graded and so J = A;.

We finally consider the case U = H(E,,,0) where E = F(w). Let Jp = E®p J
be the Jordan torus over E. Let 7 := o ® id be a og-semilinear involution of
Jg over ' where og is the nontrivial Galois automorphism of E over F. Then
Up = E®p U = EJ is an E-subalgebra of Jg. Also, by 4.9(2), we have 7 |p_,= o

since w ¢ M, (F'). In particular, we have
(615) T(U1UQ> = O'(U1UQ> = Ua2U1q.

Now, since J is exceptional, so is Jg. Hence the Jordan torus Jg over E must be
of Albert type since the other two types are special. Since Jg contains the subalgebra
Ugr = EZ, we can apply the previous argument for 0 # = € J,, C EQpJs,. Precisely,

3. we have

for us :=x
Ay = (Fw,us3) be the Albert torus over E,

and there are two cases: for ¢t := (0,1,0) € A,
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Case (I): 1 : Jg——A, such that [ |y, = [ |g_ = id and I(z) = t.
Case (II): I' : Jp——A, such that I'(x) = t, I'(uy) = up, I'(up) = uy and I |y, =

' | g, is an automorphism of the associative algebra E,,.

Case (I): Let 7 be the induced involution of A; from 7 via the isomorphism between

Jg and A, namely, 7 = l o7 o [~!. Then we have 7(u;) = u; for i = 1,...,n and
7(t) = t. Moreover, by 6.15, we have T(ujus) = usuy. Let tr be the generic trace
of E,,. Since tr(ui) = tr(us) = tr(ujuz) = 0, we have uy = —%ul, Uy = —%ug and
U Uy = _%UJUQ. Hence, by 6.1,

1
(*) (uruz) -t = (uguz) - (0,1,0) = (0, —§U1U2,0)

= Uj - (O,UQ,O) = —2u1 . (UQ . t)
On the other hand,

(%) (wuqug) -t = (uguy) - t = T(ugug) - 7(t)

= #((ws) 1) = ~27( - (12-1)) by (4

and so (ujug) -t = (wuque) - t = w(ujueg) - t, which is absurd since (uqus) -t # 0.

Case (II): Similarly, let 7 := 1’ o 70 I'"" be the induced involution of A;. Then we
have 7(u1) = uy, T(ug) = ug, 7(t) = t and 7(ujuz) = uguy. Thus (%) and (xx) also

hold for this 7. So we get a contradiction.

Consequently, the case w ¢ F' cannot happen. Thus we have proven the following:

Theorem 6.16. Let J be a Jordan n-torus of Albert type over F. Then n > 3,
w € F and J =5 Ay for some toral grading. Conversely, A; is a Jordan torus of
Albert type. [

Combined with Proposition 6.13, we get the following result which is used in [2]
Proposition 2.17 p.15 to classify extended affine Lie algebras of type Ga:

Corollary 6.17. Let J be a Jordan torus over F' of central degree 3. Then ch. F # 3

and

s FforhA, ifweF
H(E,, o) otherwise
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where E = F(w). Conversely, the algebras F}, H(Ey,0) and A, are Jordan tori of
central degree 3. [

§7 SUMMARY
By 4.11, 5.5 and 6.16, we complete the classification of Jordan tori:

Theorem 7.1. Let J be a Jordan n-torus over F. Then J is graded isomorphic to

one of the four special Jordan tori
Ff, H(F.,*), H(Ee,0) and Jgom) ({aeteer),

or to the Albert torus Ay if n > 3 and F' contains a primitive 3rd root of unity. [
Also, by 5.6, we have the following:

Corollary 7.2. Let J be a Jordan n-torus over an algebraically closed field F'. Then

J 1s graded isomorphic to one of the three special Jordan tori
Ff, H(F.,*) and a standard Clifford torus Jgom),

or to the Albert torus Ay if n >3 and ch. FF £ 3. 0O

Remark. Martinez and Zelmanov classified strongly prime Z-graded Jordan algebras
of a certain type in [12]. Our Jordan tori are strongly prime Z"-graded Jordan algebras
of a very special type. The intersection of their algebras and Jordan tori consists of

Jordan 1-tori, which are isomorphic to the algebra of Laurent polynomials F[t,t71].
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