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Abstract Based on the construction of the discriminant algebra of an even-ranked
quadratic form and Rost’s method of shifting quadratic algebras, we give an ex-
plicit rational construction of the discriminant algebra of finite-rank algebras and,
more generally, of quadratic trace modules, over arbitrary commutative rings. The
discriminant algebra is a tensor functor with values in quadratic algebras, and a
symmetric tensor functor with values in quadratic algebras with parity. The auto-
morphism group of a separable quadratic trace module is a smooth, but in general
not reductive, group scheme admitting a Dickson type homomorphism into the
constant group schemeZ2.

Introduction

Consider ańetale algebraE over a commutative ringk which is projective of rank
r as ak-module. The discriminant ofE is the bilinear formδE on

∧r E given by

δE(x1∧·· ·∧xr , y1∧·· ·∧yr) = det
(
T(xiy j)

)
,

whereT(x) denotes the trace of left multiplicationL(x) by x. A finer invariant is
the discriminant algebra ofE, a quadratic algebra for which various definitions
have been proposed in the literature. E.g., Revoy [14] uses Galois theory while
Waterhouse [16] gives a cohomological definition. For the caser = 3, Rost [15]
constructs the discriminant algebra ofE as a shift of the discriminant algebra
of a suitable quadratic form. In [5], Deligne sketches an approach which uses
sophisticated algebraic-geometric methods and is quite different from the more
elementary one presented here.
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The present paper combines Rost’s idea and the theory developed in [12] to
give a new construction of the discriminant algebra offering the following features:

– It is rational over the base ringk in the sense that no extensions ofk are re-
quired.

– It is constructive: IfE/k ·1 is free as ak-module then the discriminant algebra
is a free quadratic algebrak[t]/(t2−bt +c), and we give explicit formulae for
the coefficientsb,c as polynomials in the structure constants ofE.

– It works in greater generality: The assumption thatE beétale is superfluous;
in fact, E need not even be an algebra. Our construction makes sense in the
following more general situation:

It is a simple but crucial observation that the discriminant ofE (and, as it turns out,
the discriminant algebra as well) depends only on the unit element, the trace and
the quadratic trace, i.e., the quadratic formQ(x) = trace

∧2 L(x). Abstracting from
their properties, we define aquadratic trace module of rank r> 1 as a quadruple
X = (X,Q,T,1) consisting of a projectivek-moduleX of rank r, a linear and a
quadratic formT andQ onX and a unimodular vector 1∈ X satisfying

T(1) = r, Q(1) =
(

r
2

)
, B(1,x) = (r−1)T(x)

for all x ∈ X, whereB is the polar form ofQ. The zero module is considered as
a quadratic trace module as well. Not all quadratic trace modules arise from an
algebra, as soon asr >3.

We construct a discriminant algebra Dis(X) for suchX as follows. Consider
the bilinear form∆X(x,y) = T(x)T(y)−B(x,y) on X. PutδX =

∧r
∆X and note

that δE = δX in the algebra case. First assumer = 2n even. Then Dis(X) is de-
fined as the shift of the discriminant algebraD(Q) of Q by (−1)n−1bn/2cδX
(this choice of shift comes from the requirement that the discriminant of Dis(X)
should beδX). If r = 2n+ 1 is odd, the discriminant algebraD(Q) is a graded
quadratic algebra of odd type which can only be separable if 2 is a unit ink. On
the other hand, quadratic trace modules admit natural direct sums, so we define
Dis(X) = Dis(E1⊕X) whereE1 = (k,0, Idk,1k) is the unique quadratic trace mod-
ule of rank 1. We also give an alternative construction of Dis(X) in the odd rank
case as a shift of the discriminant algebra of a suitable quadratic form onX/k ·1,
which generalizes Rost’s definition in the rank three case (Theorem 3.8).

Quadratic trace modules form a symmetric tensor categoryqtmk with the di-
rect sum as the product operation. Likewise, quadratic algebras admit a natural
product� with which they are a symmetric tensor categoryqak. We show in The-
orem 6.5 that the discriminant algebra functor is multiplicative:

Dis(X1⊕X2)∼= Dis(X1)�Dis(X2),

and in Theorem 6.6 that it is in fact a tensor functor. However, Dis is not a sym-
metric tensor functor, i.e., it does not commute with the symmetries ofqtmk and
qak, as foreseen by Deligne [5]. To remedy this defect, one must keep track of the
parity of the rank ofX when passing to the discriminant algebra. (For the discrim-
inant algebraD(q) of a quadratic module(M,q) this is automatic becauseD(q) is
a graded algebra of even or odd type depending on the parity of the rank ofM). We
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are thus led to introduce the categorỹqak of quadratic algebras with paritywhose
objects are pairs(D, p) consisting of a quadratick-algebraD and an idempotent
p∈ k. They, too, form a symmetric tensor category, and the extended functor

D̃is(X) = (Dis(X), rk(X) (mod 2))

is a symmetric tensor functor fromqtmk to q̃ak (Theorem 7.7).

A quadratic trace module is calledseparableif ∆X is nonsingular. This is the
case if and only if there exists a faithfully flat andétalek-algebraRsuch thatX⊗R
is isomorphic to the split quadratic trace module of rankr (Theorem 8.8). In the
last two sections we study the automorphism groupG of a separable quadratic
trace module and show first that it is a smooth group scheme of fibre dimension(r−1

2

)
(Theorem 9.3), which admits a Dickson type homomorphism into the con-

stant group schemeZ2 (Theorem 9.7). As an application, we show in 9.10 that
our construction, when applied to anétale algebra, yields a concrete realization of
Waterhouse’s abstract approach. The centre ofG is determined in Theorem 10.5;
it is an open subgroup scheme ofZ2 resp.µ2, depending on the parity ofr. Fi-
nally, we study the restriction homomorphism fromG to the orthogonal group of
the quadratic form induced byQ on the submodule of trace zero elements (The-
orems 10.8 and 10.9) and obtain necessary and sufficient conditions forG to be
reductive.

1. Basics

1.1. Definition. We work over an arbitrary commutative ringk and denote the
category of commutative associative unitalk-algebras byk-alg. Unadorned tensor
products are taken overk.

A quadratic trace module of rank r>1 overk is a quadrupleX = (X,Q,T,1)
consisting of a finitely generated and projectivek-moduleX of rankr, a quadratic
form Q with polar formB, a linear formT, called thetrace, and a unimodular
vector 1X = 1∈ X, theunit elementor base point, satisfying the conditions

T(1) = r, Q(1) =
(

r
2

)
, B(1,x) = (r−1)T(x) (1)

for all x∈X. The zero module, with the only possible choices ofQ, T and 1, is also
considered as a quadratic trace module. Morphisms between quadratic trace mod-
ules of the same rank arek-linear maps preserving quadratic forms, trace forms
and base points. We do not allow morphisms between quadratic trace modules of
different rank.

It is also possible to consider quadratic trace modules of variable rank. Then
r = rk(X): Spec(k)→N is a locally constant function, and (1) has to be interpreted
in an obvious way. However, by decomposing the base ring according to the values
of r, it is no great restriction to assumer constant. The category of quadratic trace
modules overk is denotedqtmk.

We let
Ẋ := X/k ·1 and x � // ẋ
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denote the quotient ofX by k ·1 and the canonical mapX → Ẋ. For r >1 there is
a canonical isomorphism

r−1∧
Ẋ

∼= //

r∧
X, (2)

given byẋ1∧·· ·∧ ẋr−1
� // 1∧x1∧·· ·∧xr−1.

Thediscriminant formof X is the symmetric bilinear form∆ = ∆X onX given
by

∆(x,y) := T(x)T(y)−B(x,y). (3)

Note that
∆(x,1) = rT (x)− (r−1)T(x) = T(x). (4)

1.2. Special cases.(a) Thesplit quadratic trace module of rank r over kis Er :=
(kr ,Qr ,Tr ,1r) wherekr =

⊕r
i=1 k·ei in the standard basis, 1r = e1+ · · ·+er , andTr

andQr are the first and second elementary symmetric polynomials inr variables:

T
( r

∑
i=1

xiei

)
=

r

∑
i=1

xi , Q
( r

∑
i=1

xiei

)
= ∑

16i< j6r

xix j .

Here∆(ei ,ej) = δi j so∆ is the standard scalar product onkr .

(b) The only quadratic trace modules of rank 0 resp. 1 areE0 = ({0},0,0,0)
andE1 = (k,0, Idk,1).

(c) Let X be a quadratic trace module of rank 2. Then 1.1.1 shows thatX is
entirely determined byX, Q and 1. Hence the quadratic trace modules of rank 2
are precisely the unital quadratic forms of rank 2 as in [11].

1.3. Algebras. Let A be ak-algebra with multiplicationxy = Lx(y), which is
finitely generated and projective of rankr as ak-module, and which has a left
unit element 1A. We make no assumptions on associativity or commutativity ofA.
ThenA determines a quadratic trace module

X = qt(A) = (A,Q,T,1A) where T(x) = tr(Lx), Q(x) = qtr(Lx). (1)

Here qtr( f ) = tr(
∧2 f ) is the trace of the second exterior power of an endomor-

phism f of A. This may also be expressed by saying thatT(x) andQ(x) are the
coefficients oft andt2 in the polynomial det(Id+ tLx).

If A is associative and 1A is the (two-sided) unit element ofA, then

∆(x,y) = T(xy) (2)

which follows from associativity and the well-known relation tr( f )tr(g) = tr( f ◦
g)+ qtr( f ,g) for the trace and quadratic trace of endomorphisms. Here qtr( f ,g)
denotes the polar form of the quadratic form qtr( f ).

Not every quadratic trace module comes from an associative algebra via (1)
unlessr 6 2, see below. Indeed, (2) says that the discriminant form must factor
via T. Using this fact, it is easy to give examples of quadratic trace modules of
rank>3 which are not obtained from an associative algebra. Also, qt(A) does not
depend functorially onA because a homomorphism of algebras (even of the same
rank) in general does not respect the trace and quadratic trace forms.
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1.4. Quadratic algebras. SupposeX = (X,Q,T,1) is a quadratic trace module
of rank 2. By the proof of [11, Prop. 1.6], there is a unique algebra structureD on
X such that qt(D) = X. ThenQ andT are just the usual norm and trace ofD. This
yields a functorF from quadratic trace modules of rank 2 to quadratic algebras,
i.e., unital algebras which are finitely generated and projective of rank 2 ask-
modules. Such algebras are automatically associative and commutative. However,
F is not an isomorphism of categories (contrary to the erroneous statement of [11,
Prop. 1.6]), because algebra homomorphisms between quadratic algebras need not
preserve norms and traces. We therefore introduce the categoryqak whose objects
are quadratick-algebras and whose morphisms are those algebra homomorphisms
D → D′ which preserve norms and traces; equivalently, which commute with the
standard involutions ofD andD′. Then the assignmentD � // qt(D) is an isomor-
phism betweenqak and the category of quadratic trace modules of rank 2, with
inverseF .

1.5. Direct sums. Thedirect sumof quadratic trace modulesX andX′ is X′′ =
(X⊕X′,Q′′,T ′′,1⊕1′) where

T ′′(x⊕x′) = T(x)+T ′(x′), Q′′(x⊕x′) = Q(x)+Q′(x′)+T(x)T ′(x′). (1)

Thus the quadratic formQ′′ is not simply the orthogonal sum ofQ andQ′ but
nearly so, because the difference betweenQ′′ and Q ⊥ Q′ is just the product
of two linear forms. The properties 1.1.1 forQ′′ are easily verified. It is also
straightforward to check that with the direct sum operation,qtmk becomes a
symmetric tensor category, with neutral objectE0 and the interchange of factors
ω: X⊕X′ → X′⊕X as symmetry.

Direct sums commute with the assignmentA � // qt(A) described in 1.3, and
from 1.1.3 one sees that the discriminant form satisfies

∆X⊕X′ = ∆X ⊥ ∆X′ , (2)

the usual orthogonal sum of bilinear forms. The split quadratic trace moduleEr is
just the direct sum ofr copies ofE1.

1.6. Tensor products. The tensor productof quadratic trace modulesX andX′

is X′′ = (X⊗X′,Q′′,T ′′,1⊗1′) where

T ′′ = T⊗T ′, Q′′ = T(2)⊗Q′+Q⊗T ′(2)−Q⊗Q′. (1)

HereT⊗T ′ is the linear formx⊗x′ � // T(x)T ′(x′) onX⊗X′, andT(2) the bilin-
ear form onX given byT(2)(x,y) = T(x)T(y). Tensor products between bilinear
forms and quadratic forms are defined as usual, see, e.g., [13] or [11, 2.1]. Again,
tensor products are compatible with the assignmentA � // qt(A) of 1.3.

1.7. Remarks. If r ∈ k× thenX decomposesX = k ·1⊕KerT andQ = 〈
(r

2

)
〉 ⊥

(Q
∣∣KerT). Thus in this case the category of quadratic trace modules of rankr is

equivalent to the category of quadratic modules of rankr −1. If r −1∈ k× then
T(x) = (r −1)−1B(1,x) is determined byQ, and the category of quadratic trace
modules of rankr is equivalent to the category of quadratic modules of rankr with
a unimodular base point 1 which satisfiesQ(1) =

(r
2

)
. — In general, however,
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it does not seem possible to base the theory of quadratic trace modules on the
quadratic formQ alone.

2. Discriminants

2.1. Definition. Let X = (X,Q,T,1) be a quadratic trace module of rankr. The
discriminantof X is the bilinear form

δX :=
r∧

∆X (1)

on
∧r X, where∆X is the discriminant form of 1.1.3. Forr 61, we have

∧r X = k
andδX is just multiplication ink. If X = qt(A) comes from an associative algebra
A as in 1.3, then it is clear from 1.3.2 thatδX = δA, the usual discriminant ofA,
defined by

δA(x1∧·· ·∧xr , y1∧·· ·∧yr) = det
(
T(xiy j)

)
. (2)

We also note that the discriminant is multiplicative with respect to direct sums:

δX⊕X′ = δX⊗δX′ (3)

(tensor product of bilinear forms) after identifying(
∧r X)⊗(

∧r ′ X′) and
∧r+r ′(X⊕

X′) by ξ ⊗η
� // ξ ∧η . This follows easily from 1.5.2.

We next express the (signed) discriminantδQ of Q in terms ofδX. The trans-
pose of a matrixA with entries ink is denotedA>.

2.2. Lemma. Let X be a quadratic trace module of rank r= m+ 1 and let
x1, . . . ,xm ∈ X. We putξ = 1∧ x1∧ ·· · ∧ xm, v =

(
T(x1), . . . ,T(xm)

)
∈ km (row

vector) and D=
(
B(xi ,x j)

)
∈Matm(k). Then

δX(ξ ,ξ ) = det

(
r v

v> v>v−D

)
= (−1)m ·det

(
r v

mv> D

)
. (1)

If r = 2n is even the discriminant of Q is given by

δQ = (−1)n−1 (r−1)δX =
{

1+4· (−1)n−1bn/2c
}

δX (2)

while it is
δQ = (−1)n nδX (3)

if r = 2n+1 is odd.

Remark. With the convention that the discriminant of the zero quadratic form
on the zero module is just ordinary multiplication onk, formula (2) holds also for
r = 0.

Proof. The first equation of (1) is immediate from the definitions. For the second,
multiply the first row formally byv> and subtract from the second row. This yields

det

(
r v

v> v>v−D

)
= det

(
r v

−mv> −D

)
= (−1)m ·det

(
r v

mv> D

)
.
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If r = 2n is even,δQ is (−1)n times the 2n-th exterior power of the polar formB
of Q. By 1.1.1,B(1,1) = 2

(r
2

)
= rm andB(1,xi) = mT(xi). Hence,

δQ(ξ ,ξ ) = (−1)n det

(
rm mv

mv> D

)
= m(−1)n det

(
r v

mv> D

)
.

Since(−1)m = (−1)2n−1 = −1, we have the first formula of (2), and the second
follows from the observation that

(−1)n−1(2n−1) = 1+4· (−1)n−1bn/2c. (4)

Next let r = 2n+ 1 be odd and letU be the upper triangular matrix with entries
uii = Q(xi) andui j = B(xi ,x j). ThenU +U> = D so by 11.3.5 and (1),

δQ(ξ ,ξ ) = (−1)nhdet

(
rn 2nv
0 U

)
= (−1)n det

(
rn nv

mv> D

)
= (−1)n nδX(ξ ,ξ ),

because now(−1)m = (−1)2n = 1.

2.3. Lemma. LetX be of odd rank r= 2n+1. There is a well-defined quadratic
form Q̇ onẊ given by

Q̇(ẋ) = nT(x)2− rQ(x) = n∆X(x,x)−Q(x), (1)

for all x ∈ X. The polar formḂ of Q̇ is

Ḃ(ẋ, ẏ) = 2nT(x)T(y)− rB(x,y) = 2n∆X(x,y)−B(x,y). (2)

Defineϖ(n) by the equation

(−1)n (2n+1)2n−1 = 1+4· (−1)n
ϖ(n). (3)

Thenϖ(n) ∈ N, and the discriminant oḟQ is given by

δ
Q̇

= (−1)n r r−2
δX =

{
1+4· (−1)n

ϖ(n)
}

δX, (4)

where we identify
∧r X and

∧r−1 Ẋ as in1.1.2.

Proof. It follows easily from 1.1.1 thaṫQ is a well-defined quadratic form oṅX,
and (2) is immediate from 1.1.3. It is elementary to check thatϖ(n) ∈ N.

For the proof of (4) let ˙x1, . . . ẋm ∈ Ẋ wherem= r −1 = 2n and putξ = 1∧
x1∧·· ·∧xm andη = ẋ1∧·· ·∧ ẋm. Then, withv andD as in Lemma 2.2,

δ
Q̇
(η ,η) = (−1)n det

(
− (rD−2nv>v)

)
(by (2))

= (−1)n+2nrm−1 det

(
r v

mv> D

)
(by 11.3.3)

= (−1)nr r−2(−1)m
δX(ξ ,ξ ). (by 2.2.1)

This is the asserted formula (4) since(−1)m = 1.
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2.4. Restriction to and extension from complements of1. Let X = (X,Q,T,1)
be a quadratic trace module of rankr > 1 and fix a decompositionX = k ·1⊕M
(which always exists because 1 is a unimodular vector). Let

q := Q
∣∣M, t := T

∣∣M. (1)

ThenQ andT can be reconstructed fromq andt by the formulas

Q(λ1⊕x) = λ
2

(
r
2

)
+λ (r−1)t(x)+q(x), (2)

T(λ1⊕x) = λ r + t(x). (3)

Conversely, it easy to see that, given a quadratic formq and a linear formt on
M, these formulas determine a quadratic trace module(X,Q,T,1). Thus it must
be possible to express invariants ofX by means of(q, t). We do this later for
the discriminantδX (5.2) and the discriminant algebra Dis(X) (5.3, 5.4). Note,
however, that(q, t) depend on the choice of complementM. Putting this on a more
formal basis amounts to a systematic study of the splittings of the exact sequence
0−→ k−→ X

can−→ Ẋ −→ 0, equivalently, of linear formsα on X with α(1) = 1
(unital linear forms), as was done in [11] for unital quadratic forms. It is possible
to develop the theory of the discriminant algebra in this way, but the proof of
independence of the choice of splitting becomes rather complicated. Nevertheless,
this approach will lead to effective computations of Dis(X) in section 5.

The following easily established lemma will be useful to reduce proofs to char-
acteristic zero:

2.5. Lemma. Let X be a quadratic trace module witḣX free, say with basis
ẋ1, . . . , ẋm where m= r − 1. Then also X is free with basis1X,x1, . . . ,xm. Con-
sider the polynomial ring R= Z[t i ,ai j : 16 i 6 j 6 m] and the quadrupleX′ :=
(X′,Q′,T ′,1′) where X′ is the free R-module with basis1′,x′1, . . . ,x

′
m and Q′ and

T ′ are the quadratic and linear form given by Q′(1′) =
(r

2

)
, T′(1′) = r, and

Q′(x′i) = aii , B′(x′i ,x
′
j) = ai j (i < j), B′(1′,x′i) = (r−1)t i , T ′(x′i) = t i .

ThenX′ is a quadratic trace module by2.4, and the ring homomorphism R→ k
mappingt i

� // T(xi), aii
� // Q(xi), ai j

� // B(xi ,x j) (i < j) induces an isomor-
phism

X′⊗Rk
∼= // X

of quadratic trace modules.

3. The discriminant algebra

As noted in 1.4, quadratic algebras (with morphisms respecting the involutions)
are the same as quadratic trace modules of rank 2. LetD be a quadratick-algebra,
with unit 1= 1D, traceTD, involutionσD(x) =−x+TD(x) ·1 and norm (=quadratic
trace)ND. We denote the canonical mapp: D → Ḋ = D/k · 1 by x � // ẋ. The
construction in (a) of the following lemma is due to Rost [15].
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3.1. Lemma. (a) Let ε be a bilinear form onḊ. Then the k-module D becomes
a new quadratic algebra with the same unit element, but with multiplication

x∗y = xy− ε(ẋ, ẏ) ·1, (1)

called theshift (“Verschiebung”)of D with respect toε and denoted by

D+ ε.

Obviously,
(D+ ε1)+ ε2 = D+(ε1 + ε2). (2)

The involution and the trace and norm forms of D+ ε are

σD+ε
= σD, TD+ε

= TD, ND+ε
(x) = ND(x)+ ε(ẋ, ẋ). (3)

The discriminant of D+ ε is

δD+ε
= δD−4ε. (4)

(b) Conversely, let D and D′ be quadratic algebras with the same underlying
k-module, unit element and trace. Then D′ is a shift of D.

(c) Supposeψ: D → D′ is a morphism of quadratic algebras andε and ε ′

are bilinear forms onḊ andḊ′, respectively. If the induced maṗψ: Ḋ→ Ḋ′ satis-
fiesε ′ ◦ (ψ̇ × ψ̇) = ε, thenψ: D+ ε → D′ + ε ′ is again a morphism of quadratic
algebras.

Proof. (a) It is clear that (1) defines the structure of a quadratic algebraD′ on D
with unit 1D′ = 1D. Since

x∗x = x2− ε(ẋ, ẋ) ·1 = TD(x)x−
(
ND(x)+ ε(ẋ, ẋ)

)
·1 = TD′(x)x−ND′(x) ·1,

we have (3). In (4), we identify
∧1 Ḋ = Ḋ∼=

∧2 D via ẋ � // 1∧x and thus consider
the discriminant as a bilinear form oṅD. Then

δD(ẋ, ẏ) =
∣∣∣∣ 2 T(x)
T(y) T(xy)

∣∣∣∣ ,
so

δD+ε
(ẋ, ẏ) =

∣∣∣∣ 2 T(x)
T(y) T(xy)−2ε(ẋ, ẏ)

∣∣∣∣= δD(ẋ, ẏ)−4ε(ẋ, ẏ).

(b) Denoting the multiplication inD and D′ by xy and x∗ y, respectively,
xy−x∗y depends only on ˙x andẏ, becauseD andD′ have the same unit element.
Thusβ (ẋ, ẏ) := p(xy−x∗y) is a bilinear form onḊ. SinceD andD′ have the same
trace, it follows thatβ (ẋ, ẋ) = p(x2−x∗x) = p

(
(N′(x)−N(x)) ·1

)
= 0. Henceβ

is an alternating form on the rank one moduleḊ and therefore vanishes. It follows
thatxy−x∗y = ε(ẋ, ẏ) ·1 is a multiple of 1.

(c) This is immediate from the definitions.
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3.2. Free quadratic algebras. Let D be a quadratic algebra whose underlying
k-module is free. Then there exists a basis of the form{1,z} of D [8, p. 14, Ex-
ercise 3], soz2 = bz− c1 whereb,c∈ k, or D ∼= k[t]/(t2−bt + c). We write this
as

D = ((b : c]].

Note that the algebraD does not determineb andc uniquely; rather, we have

((b : c]]∼= ((b′ : c′ ]] ⇐⇒ b′ = µb+2λ , c′ = µ
2c+λ µb+λ

2,

for someλ ∈ k, µ ∈ k×. This corresponds to changing the basis ofD to 1 and
z′ = λ1+ µz.

The split quadratic algebra isI := ((1 : 0]], often identified withk×k by map-
ping z to the first standard basis vectore1 of k2. The algebra of dual numbers is
((0 : 0]]. The discriminant of((b : c]] is

δ((b:c]] = b2−4c. (1)

If D = ((b : c]] is a free quadratic algebra, we identifyḊ = D/k ·1 canonically
with k via λ ∈ k � // λ ż∈ Ḋ. Then a bilinear formε on Ḋ is just a scalare∈ k,
and the shift ofD by e is

((b : c]]+e= ((b : c+e]]. (2)

3.3. The discriminant algebra of a quadratic form. We recall from [12] the
construction of the discriminant algebraD(q) of a quadratic module(M,q) of
even rank 2n.

Let first M be free with basisx1, . . . ,x2n, and letA be a 2n×2n-matrix such
thataii = q(xi) andai j +a ji = b(xi ,x j) whereb is the polar form ofq. ThenD(q)
is (isomorphic to) the free quadratic algebra

D(q) ∼= ((Pf(A−A>) : (−1)n+1 qdet(A) ]]

where Pf denotes the Pfaffian and qdet the quarter-determinant, cf. 11.1. A more
intrinsic construction which works for arbitraryM goes as follows.

Let a,a′ be alternating bilinear forms onM. Then-th Pfaffian powerof a is the
linear formπn(a) onL :=

∧2n M defined by

πn(a)(ξ ) = Pf
(
a(xi ,x j)

)
, (1)

whereξ = x1∧·· ·∧x2n ∈ L. Let t be an indeterminate and defineΠn(t,a,a′) by

πn(a+ ta′) = πn(a)+ t Πn(t, a, a′). (2)

A representativeof q is a bilinear formf such thatf (x,x) = q(x) for all x∈M,
which we also express asq = [ f ], thus identifying quadratic forms with equiva-
lence classes of bilinear forms modulo alternating forms. For representativesf ,g
of q define linear forms onL by

τ f := πn( f − f>), κ f g := Πn(−2, f − f>, f −g), (3)
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where f>(x,y) = f (y,x). Then

2κ f g = τ f − τg, κ f g +κgh = κ f h. (4)

There is a unique bilinear formγ f onL satisfying

γ f (ξ ,ξ ) = (−1)n+1 qdet
(

f (xi ,x j)
)
, (5)

where qdet is the quarter-determinant, see 11.1. NowD := D(q) is, as ak-module,
generated by 1 and symbolssf (ξ ), linear inξ ∈ L, subject to the relations

sf (ξ )−sg(ξ ) = κ f g(ξ ) ·1, (6)

where f andg run over all representatives ofq. There is an exact sequence

0 // k
i // D

p
// L // 0

wherep(sf (ξ )) = ξ . Trace and norm, and hence the algebra structure ofD, are
determined by

TD(sf (ξ )) = τ f (ξ ), ND(sf (ξ )) = γ f (ξ ,ξ ). (7)

3.4. Definition. Let X be a quadratic trace module of rankr. If r = 2n, the dis-
criminant algebra ofX is the shift

Dis(X) := D(Q)+(−1)n−1bn/2c ·δX (r = 2n), (1)

wherebn/2c is the integer part ofn/2. If r = 2n+ 1 is odd, it would not do to
define Dis(X) as a shift of the discriminant algebra ofQ, because this would yield
a graded quadratic algebra of odd type which cannot be separable unless 2 is a
unit of k. Therefore, we define

Dis(X) := Dis(E1⊕X) (r = 2n+1), (2)

cf. 1.2(b) and 1.5. — LetA be an associative commutativek-algebra which is
projective of rankr as ak-module. Then we define the discriminant algebra ofA
as the discriminant algebra of the associated quadratic trace module qt(A), thus

Dis(A) := Dis(qt(A)). (3)

Clearly, Dis(X) is compatible with arbitrary base change because this is so for
the discriminant algebra of a quadratic form. It depends functorially onX with
respect to morphisms of quadratic trace modules. Indeed, consider first the even
rank case. A morphismϕ: X′ → X of quadratic trace modules is in particular a
similitude between the quadratic formsQ′ andQ. By [12, Th. 2.3(b)], we have an
induced homomorphismD(ϕ): D(Q′)→D(Q), given by 1 � // 1 and

s
ϕ∗( f )(ξ ) � // sf

(( r∧
ϕ

)
(ξ )
)
, (4)

for all representativesf of Q and ξ ∈
∧r X′. Hereϕ∗( f ) = f ◦ (ϕ × ϕ) is the

pullback of f to X′. The discriminant forms∆ ′ and ∆ of X′ andX are related
by ϕ∗(∆) = ∆ ′, whenceδX ◦ (

∧r
ϕ ×

∧r
ϕ) = δX′ . By 3.1(c), the module homo-

morphismD(ϕ) is in fact a morphism Dis(ϕ) : Dis(X′) → Dis(X) of quadratic
algebras. The odd rank case is similar.
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3.5. Special cases.For r = 0 we have a natural isomorphism

Θ0 : I = k×k
∼= // Dis(E0). (1)

Indeed, by 3.4.1, Dis(E0) = D(0) is the discriminant algebra of the zero quadratic
form on the zero module{0}. Since the Pfaffian and the quarter-determinant of
an empty matrix are 1 and 0, respectively, and

∧0{0} = k, we haveD(0) = k ·
1⊕ k · s0(1k) with the relations0(1k)

2 = s0(1k), and we obtain (1) by mapping
e1

� // s0(1k).
For r = 2, Dis(X) = D(Q) is clear from 3.4.1. On the other hand,X = qt(D)

is, by 1.4, the quadratic trace module determined by a quadratic algebraD. There
is a canonical isomorphism

Φ = ΦD : D
∼= // Dis(D) (2)

of quadratic algebras as follows. Specializing 3.3 to the present situation,D(Q)
is presented as ak-module by generators 1 andsf (x∧ y) where f runs over all
representatives ofQ, with relationssf (x∧ y)− sg(x∧ y) = κ f g(x∧ y) ·1, whereg
is another representative ofQ. Sincer = 2, we haveκ f g(x∧y) = f (x,y)−g(x,y).
Hence there is ak-module homomorphismΦ : D→D(Q) given by

Φ(1) = 1 and Φ(x) = f (x,1) ·1+sf (1∧x). (3)

A straightforward computation shows thatΦ is an isomorphism of algebras.
In particular, letD = I = k · e1⊕ k · e2 be the split quadratic algebra so that

qt(I) = E2. Let NI (λe1⊕ µe2) = λ µ be its norm form andf0 the bilinear form
with matrix

(0 0
1 0

)
which representsNI . Then 1∧e1 = (e1 +e2)∧e1 =−e1∧e2 and

f0(e1,1) = 0. HenceΦI is given by

ΦI : I
∼= // Dis(E2), ΦI (e1) =−sf0

(e1∧e2). (4)

Finally, for r = 1 we haveX = E1 andE1⊕X = E2, so 3.4.2 and (4) yield

Dis(E1)∼= I , (5)

the split quadratic algebra.

We now show that our definitions give the correct discriminants and the ex-
pected result in the split case. Consistency with Rost’s definition in caser = 3 will
be proved in 3.8, and with Waterhouse’s approach in case ofétale algebras in 9.10.

3.6. Lemma. The discriminant ofDis(X) is δX.

Proof. By [12, Th. 2.3(d)], the discriminant ofD(q), whereq is any quadratic
form on an even-ranked module, is the signed discriminantδq of q. If rk(X) = 2n
is even,

δDis(X) = δQ−4(−1)n−1bn/2cδX = (−1)n−1
{

2n−1−4bn/2c
}

δX = δX,

by 3.1.4, 2.2.2, and 2.2.4. If rk(X) = 2n+1 is odd, we have similarly

δDis(X) = δDis(E1⊕X) = δE1⊕X = δE1
⊗δX = δX

by 2.1.3, sinceδE1
is simply the bilinear form(λ ,µ) � // λ µ onk.
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3.7. The split case. Let A be the algebrakr = k ·e1⊕·· ·⊕k ·er with component-
wise operations, andEr = qt(A) the associated split quadratic trace module overk
as in 1.2 and 1.3, soT andQ are given by

T(ei) = 1, Q(ei) = 0, B(ei ,ej) = 1 (i 6= j).

In view of the definition of the discriminant algebra in the odd rank case and
sinceE1⊕E2n+1 = E2n+2, it suffices to compute Dis(E2n). Let ξ := e1∧ ·· ·∧e2n

and let f be the bilinear form onk2n whose matrix with respect to the standard
basis is the strict upper triangular matrixU2n with 1 above the diagonal. Then
f representsQ, so D(Q) is the freek-algebra with basis 1 andz := sf (ξ ) and
the relationz2 = τ f (ξ )z− γ f (ξ ,ξ )1, see 3.3. From 11.2.4 and 11.2.5 it follows
thatτ f (ξ ) = Pf(U2n−U>

2n) = 1 andγ f (ξ ,ξ ) = (−1)n−1 qdet(U2n) = (−1)nbn/2c.
HenceD(Q) is the free quadratic algebra

D(Q) = ((1 : (−1)nbn/2c ]].

Since∆Er
(ei ,ej) = δi j , we haveδE2n

(ξ ,ξ ) = 1, so by 3.2.2,

Dis(E2n) = ((1 : (−1)nbn/2c+(−1)n−1bn/2c ]] = ((1 : 0]] = k×k,

the split quadratic algebra.

3.8. Theorem. LetX be a quadratic trace module of odd rank r= 2n+1 and let
Q̇ andϖ(n) be as in2.3. Then there is a natural isomorphism

ρ : D(Q̇)+(−1)n
ϖ(n)δX

∼= // Dis(X)

of quadratic algebras as follows: Identify
∧2n Ẋ ∼=

∧2n+1 X ∼=
∧2n+2(k·e1⊕X) via

ξ := ẋ1∧·· ·∧ ẋ2n
� // ξ̃ := 1X ∧x1∧·· ·∧x2n

� // ξ̂ := e1∧1X ∧x1∧·· ·∧x2n.

For a bilinear form f onẊ representingQ̇, let f̃ be the bilinear form on X given
by

f̃ (x,y) =− f (ẋ, ẏ)+n∆(x,y),

and let f̂ be the bilinear form on̂X := k ·e1⊕X defined by

f̂ (λe1⊕x,µe1⊕y) = λT(y)+ f̃ (x,y).

Thenρ is given by1 � // 1 and sf (ξ ) � // (−1)ns
f̂
(ξ̂ )−nτ f (ξ ) ·1.

Remark. For r = 3 we have in particular Dis(X) ∼= D(Q̇) + (−δX). This is
Rost’s definition [15] of the discriminant algebra of a cubicétale algebra.

Proof. Let g be a second representative ofQ̇ and define ˜g andĝ as above. We first
show that

τ
f̂
(ξ̂ ) = (2n+1)(−1)n

τ f (ξ ), (1)

κ
f̂ ĝ

(ξ̂ ) = (2n+1)(−1)n
κ f g(ξ ). (2)
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Indeed, letv =
(
T(x1), . . . ,T(x2n)

)
∈ k2n and letF andG be the square matrices

of size 2n with entriesf (ẋi , ẋ j) andg(ẋi , ẋ j), respectively. Then, with the notations

introduced in 3.3, it follows from the definition of̂f and from 11.6.1 that

πn+1

(
f̂ − f̂>+ t( f̂ − ĝ)

)
(ξ̂ ) = Pf

(
0 r v
−r 0 0
−v> 0 F>−F + t(G−F)

)

= Pf

(
0 r
−r 0

)
· (−1)n ·Pf

(
F−F>+ t(F−G)

)
= r · (−1)n ·πn

(
f − f>+ t( f −g)

)
(ξ ). (3)

Now (1) and (2) follow from (3), 3.3.2 and 3.3.3 by comparing coefficients at
powers oft.

From the definition ofQ̇ and f̃ it is immediate thatf̃ is a representative of
Q, and hencêf is a representative of̂Q, the quadratic form ofE1⊕X. Let us put
D′ := D(Q̇) andD := D(Q̂). There is a module isomorphismρ: D′→D sending 1
to 1 andsf (ξ ) to (−1)ns

f̂
(ξ̂ )−nτ f (ξ ) ·1. Indeed, by the defining relations 3.3.6,

the equationτ f − τg = 2κ f g (cf. 3.3.4) and (2),ρ is well-defined. Sinceρ induces

the isomorphismξ
� // (−1)nξ̂ on the quotientṡD′ = D′/k ·1 andḊ = D/k ·1, it

is a module isomorphism. Furthermore,ρ preserves traces:

TD

(
ρ(sf (ξ ))

)
= TD

(
(−1)ns

f̂
(ξ̂ )−nτ f (ξ ) ·1

)
= (−1)n

τ
f̂
(ξ̂ )−2nτ f (ξ )

= (2n+1−2n)τ f (ξ ) (by (1)) = TD′

(
sf (ξ )

)
.

By Lemma 3.1(b), this already proves thatD is isomorphic to a shift ofD′. To
determine this shift, we must compute the behaviour of the norms ofD′ andD
underρ. We claim that

γ
f̂
(ξ̂ , ξ̂ ) = γ f (ξ ,ξ )+n(n+1)τ f (ξ )2 +(−1)n

{
ϖ(n)−

⌊n+1
2

⌋}
δX(ξ̃ , ξ̃ ). (4)

After localization, it suffices to prove this in caseẊ is free, and by Lemma 2.5, we
may assume thatk has no 2-torsion. We show that four times (4) holds. Indeed,
since the discriminant of the discriminant algebra of a quadratic formq with rep-
resentativef is δq = τ2

f −4γ f [12, 1.7] we have, using (1) in the second formula,

δ
Q̇
(ξ ,ξ ) = τ f (ξ )2−4γ f (ξ ,ξ ), (5)

δ
Q̂
(ξ̂ , ξ̂ ) = (2n+1)2

τ f (ξ )2−4γ
f̂
(ξ̂ , ξ̂ ). (6)

On the other hand, by 2.3.4 and 2.2.2,

δ
Q̇
(ξ ,ξ ) =

(
1+4(−1)n

ϖ(n)
)
δX(ξ̃ , ξ̃ ), (7)

δ
Q̂
(ξ̂ , ξ̂ ) =

(
1+4(−1)n

⌊n+1
2

⌋)
δ

X̂
(ξ̂ , ξ̂ ). (8)
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By 2.1.3, we haveδX(ξ̃ , ξ̃ ) = δ
X̂
(ξ̂ , ξ̂ ). Now (4) follows by equating the differ-

enceδ
Q̇
(ξ ,ξ )−δ

Q̂
(ξ̂ , ξ̂ ) computed from (5)−(6) and (7)−(8) and cancelling the

factor 4.

Let D′′ = D′ + (−1)nϖ(n)δX, and putw := sf (ξ ) and ŵ := (−1)ns
f̂
(ξ̂ ) for

short. Then
ND′′(w) = γ f (ξ ,ξ )+(−1)n

ϖ(n)δX(ξ̃ , ξ̃ ),

while, because of (1),

ND

(
ρ(w)

)
= ND

(
ŵ−nτ f (ξ )1

)
= ND

(
ŵ
)
−nTD(ŵ)τ f (ξ )+n2

τ f (ξ )2

= γ
f̂
(ξ̂ , ξ̂ )−n(−1)n

τ
f̂
(ξ̂ )τ f (ξ )+n2

τ f (ξ )2 = γ
f̂
(ξ̂ , ξ̂ )−n(n+1)τ f (ξ )2.

The image ofρ(w) = ŵ−nτ f (ξ ) ·1 in Ḋ is (−1)nξ̂ . Hence

NDis(X)(ρ(w)) = ND

(
ρ(w))+(−1)nb(n+1)/2cδ

X̂
(ξ̂ , ξ̂ )

= γ
f̂
(ξ̂ , ξ̂ )−n(n+1)τ f (ξ )2 +(−1)nb(n+1)/2cδ

X̂
(ξ̂ , ξ̂ )

= γ f (ξ ,ξ )+(−1)n
ϖ(n)δX(ξ̃ , ξ̃ ) (by (4)) = ND′′(w).

Sinceρ preserves the traces ofD′ andD, hence also those of their shiftsD′′ and
Dis(X), it follows thatρ: D′′ → Dis(X) preserves norms and traces, hence is an
isomorphism of quadratic algebras. It remains to show naturality ofρ which is left
to the reader.

4. Quadratic-linear modules

4.1. Definition. It will be useful to have the following non-unital version of quad-
ratic trace modules. Aquadratic-linear moduleis a tripleM = (M,q, t) consisting
of a finitely generated and projectivek-moduleM and a quadratic formq and a
linear formt onM. Morphisms are defined in the obvious way. Just like quadratic
trace modules, quadratic-linear modules form a symmetric tensor category with
the following direct sum operation. LetMi = (Mi ,qi , ti) be quadratic-linear mod-
ules, denote byt1⊕ t2 andt1t2 the linear resp. quadratic form onM1⊕M2 given
by

(t1⊕ t2)(x1⊕x2) = t1(x1)+ t2(x2), (t1t2)(x1⊕x2) = t1(x1)t2(x2),

and byq1 ⊥ q2 the usual orthogonal sum ofq1 andq2 onM1⊕M2. Then

M1⊕M2 := (M1⊕M2, (q1 ⊥ q2)+ t1t2, t1⊕ t2).

There is an obvious forgetful functor from quadratic trace modules to quadratic-
linear modules sendingX = (X,Q,T,1) to (X,Q,T). It is compatible with the
direct sum operation. In the opposite direction, there is a functor from quadratic-
linear modules to quadratic trace modules given by the construction of 2.4.

Let (M,q, t) be a quadratic-linear module of rankr. We define(M,q, t)] =
(M],q], t]) as the quadratic-linear module of rankr +1 where

M] = k⊕M, q](λ ⊕x) = λ t(x)+q(x), t](λ ⊕x) = λ + t(x).
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(The notationq] is incomplete becauseq] depends onq andon t.) Of course, this
is just the direct sum of(k,0, Idk) and(M,q, t). This assignment becomes a functor
] from quadratic-linear modules of rankr to those of rankr +1 by defining, for a
morphismϕ: M̃→M, the morphismϕ ]: M̃] →M] by λu⊕x � // λu⊕ϕ(x).

4.2. Bilinear-linear modules. Replacing the quadratic formq above by a bilin-
ear form, we also consider triples(M, f , t) consisting of a finitely generated and
projectivek-moduleM, a bilinear formf and a linear formt onM, called bilinear-
linear modules or bl-modules. For them as well, we define a direct sum operation
by

(M1, f1, t1)⊕ (M2, f2, t2) := (M1⊕M2, f12, t1⊕ t2),

where
f12 := ( f1 ⊥ f2)+ t1⊗ t2. (1)

Here f1 ⊥ f2 is the usual orthogonal sum off1 and f2, and t1⊗ t2 denotes the
bilinear form onM1⊕M2 given by

(t1⊗ t2)(x1⊕x2, y1⊕y2) = t1(x1)t2(y2).

With this operation, bl-modules form a tensor category. In particular, after identi-
fying thek-modules(M1⊕M2)⊕M3 andM1⊕ (M2⊕M3), we have the associa-
tivity law

( f12⊥ f3)+(t1⊗ t2)⊗ t3 = ( f1 ⊥ f23)+ t1⊗ (t2⊗ t3). (2)

However, bl-modules do not form a symmetric nor even braided tensor category.
The reason lies in the asymmetry of the definition oft1⊗ t2 above. This definition
is of course not canonical; for instance, it would have been equally possible to put
(t1⊗ t2)(x1⊕x2, y1⊕y2) = t1(y1)t2(x2).

There is a tensor functor from bl-modules to quadratic-linear modules given by
(M, f , t) � // (M, [ f ], t) (where[ f ] denotes the quadratic formx � // f (x,x)). In
particular, this means that iffi is a representative ofqi then f12 is a representative
of (q1 ⊥ q2)+ t1t2.

Just as before, we define(M, f , t)] = (k⊕M, f ], t]) where

f ](λ ⊕x, µ ⊕y) = λ t(y)+ f (x,y), t](λ ⊕x) = λ + t(x).

This is the same as the direct sum of the 1-dimensional bl-modulee1 := (k,0, Idk)
and (M, f , t). Note that then-fold direct sume1⊕ ·· · ⊕ e1 is (kn, Un, (1, . . . ,1))
where we identify bilinear and linear forms onkn with n× n-matrices and row
vectors, respectively, andUn is the strict upper triangular matrix with 1 above the
diagonal.

4.3. Notation. Let Mi = (Mi ,qi , ti) be quadratic-linear modules of rankr i and put
Li =

∧r i Mi . For x(i)
1

, . . . ,x(i)
r i
∈ Mi , let ξi = x(i)

1
∧ ·· · ∧ x(i)

r i
∈ Li . Let M = M1⊕M2

and identify

L1⊗L2

∼= // L :=
r∧

M

via ξ1⊗ ξ2
� // ξ = ξ1∧ ξ2. In caseM1 = (k,0, Idk) andM2 = M, we identify∧r M ∼=

∧r+1 M] by ξ = x1∧·· ·∧xr
� // ξ ] := 1∧ξ .
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For representativesfi of qi we introduce the square matricesFi =
(

fi(x
(i)
j

,x(i)
l

)
)

of sizer i×r i and the row vectorsx(i) =
(
Ti(x

(i)
1

), . . . ,Ti(x
(i)
r i

)
)
∈ kr i , and putx := x(1)

andy := x(2). Then the matrices off ′ := f1 ⊥ f2 and f := f ′+ t1⊗ t2 with respect
to thex(1)

j
,x(2)

l
are

F ′ =
(

F1 0
0 F2

)
and F =

(
F1 x>y
0 F2

)
.

4.4. Lemma. LetMi = (Mi ,qi , ti) be quadratic-linear modules of even rank ri =
2ni and putM := M1⊕M2. Let fi ,gi be bilinear forms on Mi representing qi ,
define f′ and f as in4.3and put similarly g′ = g1 ⊥ g2 and g= g′+ t1⊗ t2. Then,
with τ f , κ f g andγ f as in3.3, we have

τ f = τ f ′ , (1)

κ f g = κ f ′g′ , (2)

γ f = γ f ′ + δ
q]

1

⊗δ
q]

2

. (3)

Here q]
i

is defined as in4.1andδ
q]

i

is identified with a bilinear form on Li via the

isomorphism Li =
∧r i Mi

∼=
∧r i+1 M]

i
of 4.3 and henceδ

q]
1

⊗ δ
q]

2

with a bilinear

form on L.

Proof. Define the matricesGi for gi like theFi for fi in 4.3 and lett be an indeter-
minate. Sincef −g = f ′−g′, we have, using 11.6.1, and withn = n1 +n2,

πn
(

f − f>+ t( f −g)
)
(ξ ) = Pf

(
F1−F>

1 + t(F1−G1) x>y
−y>x F2−F>

2 + t(F2−G2)

)

= Pf

(
F1−F>

1 + t(F1−G1) 0
0 F2−F>

2 + t(F2−G2)

)
= πn

(
f ′− f ′>+ t( f ′−g′)

)
(ξ )

Then (1) and (2) follow by comparing coefficients at powers oft in view of 3.3.2
and 3.3.3. By 3.3.5 and Lemma 11.5,

(−1)n
{

γ f (ξ ,ξ )− γ f ′(ξ ,ξ )
}

=−qdet

(
F1 x>y
0 F2

)
+qdet

(
F1 0
0 F2

)
= hdet

(
0 x
0 F1

)
hdet

(
0 y
0 F2

)
. (4)

From 4.2 it follows that

(
0 x
0 F1

)
is the matrix, with respect to 1,x(1)

1
, . . . ,x(1)

r1
,

of a bilinear formf ]
1

on M]
1

representing the quadratic formq]
1
. SinceM]

1
has odd

rank 2n1 +1, the discriminant ofq]
1

is given by

δ
q]

1

(ξ ]
1, ξ

]
1) = (−1)n1hdet

(
0 x
0 F1

)
.
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An analogous formula holds forδ
q]

2

, so (3) follows.

The following result will be crucial for the proof in§6 that the discriminant
algebra is a tensor functor. The quadratic formq = (q1 ⊥ q2)+ t1t2 of the direct
sum of two quadratic-linear modules is not quite the orthogonal sum ofq1 andq2.
This is reflected in its discriminant algebraD(q) which is a shift ofD(q1 ⊥ q2).

4.5. Proposition. Let Mi be quadratic-linear modules of even rank andM =
(M1⊕M2, q, t1⊕t2) their direct sum as in4.1. Then there is a module isomorphism
ψ: D(q1 ⊥ q2)→D(q) which sends1 to 1 and

sf1⊥ f2
(ξ ) � // sf12

(ξ ) (1)

where fi is a representative of qi and f12 is as in4.2.1. Moreover,

ψ = ψM1M2
: D(q1 ⊥ q2)+

(
δ

q]
1

⊗δ
q]

2

) ∼= // D(q) (2)

is an isomorphism of quadratic algebras which is natural inM1 andM2.

Proof. Let us putD′ := D(q1 ⊥ q2) andD := D(q) for short. As ak-module,D is
generated by 1 and allsf (ξ ), subject to the relations 3.3.6 wheref ,g run over all
representatives ofq, and trace and norm ofD are determined by 3.3.7. Analogous
statements hold forD′, with f ,g replaced by representativesf ′,g′ of q′ := q1⊥ q2.
Now let fi ,gi be representatives ofqi and leth be a representative ofq′. Then also
f ′ := f1 ⊥ f2 is a representative ofq′, and f := f12 is a representative ofq. We
claim that the expression

sf (ξ )+κh f ′(ξ ) ·1 (3)

does not depend on the choice of thefi . Indeed, let alsogi be representatives ofqi ,
and defineg′ andg like f ′ and f . Then by 3.3.6 and 4.4.2 and the cocycle relation
3.3.4 forκ,

sf (ξ )+κh f ′(ξ ) ·1−sg(ξ )−κhg′(ξ ) ·1 =
(
κ f g(ξ )+κh f ′(ξ )−κhg′(ξ )

)
·1

=
(
κ f ′g′(ξ )−κ f ′h(ξ )−κhg′(ξ )

)
·1 = 0.

To prove that there exists a well-defined module homomorphismψ sendingsh(ξ )
to (3), it remains to show thatψ respects the defining relations ofD′. Thus let also
j be a representative ofq′. Thensh(ξ )− sj(ξ ) = κh j(ξ ) · 1 while, again by the
cocycle relation forκ,

sf (ξ )+κh f ′(ξ ) ·1−sf (ξ )−κ j f ′(ξ ) ·1 = κh j(ξ ) ·1,

as desired. Now we have a well-defined module homomorphismψ: D′ → D and
it satisfies (1) becauseκ f ′ f ′ = 0. Also,ψ induces the identity onL = Ḋ = Ḋ′ and
hence is a module isomorphism.

To prove (2), it suffices by Lemma 3.1 to show that the traces and norms ofD
andD′ are related by

TD(ψ(w)) = TD′(w), (4)

ND(ψ(w)) = ND′(w)+
(
δ

q]
1

⊗δ
q]

2

)
(ẇ, ẇ), (5)
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wherew ∈ D′ and ẇ = p′(w) ∈ D′/k · 1 = L. Observe thatD′ is spanned by 1
and allsh(ξ1∧ ξ2) whereξi ∈ Li is arbitrary andh is a fixed representative ofq′.
Moreover,TD′(1) = 2 andND′(1) = 1. This allows us to assumeh = f ′ = f1⊕ f2
as above, and then (4) and (5) follow from 4.4.1 and 4.4.3. Finally, naturality ofψ

is easily checked.

5. Explicit computations

In this section, we derive explicit formulas for the discriminant algebra in the
free case, based on the remark made in 2.4. The following result says, roughly
speaking, that shifting a quadratic form by asymmetricbilinear form is reflected
by a shift of its discriminant algebra.

5.1. Lemma. Let (M,q) be a quadratic module of rank2n and let h be a sym-
metric bilinear form on M. Put q′(x) := q(x)+h(x,x), i.e., q′ = q+[h].

(a) There is a well-defined isomorphism of k-modulesϕ = ϕh: D(q)→D(q′)
given by

ϕ(1) = 1, ϕ(sf (ξ )) = s′f+h(ξ ) (1)

in terms of the generators sf (ξ ) of D := D(q) and s′f+h(ξ ) of D′ := D(q′), for all

f representing q and allξ ∈ L :=
∧2n M. Moreover,εh := γ f+h−γ f is independent

of the choice of f and thus is a well-defined bilinear form on L, depending only on
h (and of course on q), and

ϕh: D(q)+ εh

∼= // D(q′)

is an isomorphism of quadratic algebras. The discriminants of q and q′ are related
by

δq′ = δq−4εh. (2)

(b) Let h′ be another symmetric bilinear form on M and put q′′ := q′ +[h′] =
q+[h+h′]. Then

εh+h′ = εh + εh′ , (3)

and the diagram

(
D(q)+ εh

)
+ εh′

ϕh // D(q′)+ εh′

ϕ
h′

��

D(q)+ εh+h′ ϕ
h+h′

// D(q′′)

(4)

is commutative.
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Proof. (a) Recall from 3.3 the linear formsτ f andκ f g and the bilinear formγ f
onL. Sinceh is symmetric,

τ f+h = πn( f +h− ( f +h)>) = πn( f − f>) = τ f , (5)

κ f+h,g+h = Πn(−2, f +h− ( f +h)>, f +h− (g+h))

= Πn(−2, f − f>, f −g) = κ f g. (6)

Now it follows immediately from (6) and 3.3.6 that (1) defines a homomorphism
of k-modules. Asϕ induces the identity onL, it is an isomorphism ofk-modules.
Moreover, from (5) and the definition of the trace ofD(q) andD(q′) (cf. 3.3.7)
we see thatϕ preserves traces. Hence by Lemma 3.1(b),ϕ is an isomorphism of
a shiftD+ ε ontoD′, and by 3.1.3 and 3.3.7,ε is given by

ε(ξ ,ξ ) = ND′

(
ϕ(sf (ξ ))

)
−ND

(
sf (ξ )

)
= γ f+h(ξ ,ξ )− γ f (ξ ,ξ ).

Finally, (2) follows from 3.1.4 and the fact that the discriminant ofD(q) is δq.

(b) By (a), we haveεh+h′ = γ f+(h+h′) − γ f = γ( f+h)+h′ − γ f+h + γ f+h− γ f =
εh′ + εh. Now the commutativity of (4) follows immediately from (1).

5.2. Proposition. LetX be a quadratic trace module of rank r>1. Fix a decom-
position X= k·1X⊕M and let q:= Q

∣∣M and t := T
∣∣M as in2.4.1, thus defining a

quadratic-linear moduleM = (M,q, t). ConsiderM] = (M],q], t]) as in4.1 and
identify M] = k⊕M with X by1k

� // 1X. Denote the polar forms of q and q] by b
and b], respectively, and identify

∧r−1 M and
∧r X viaη = x1∧·· ·∧xr−1

� // ξ =
1∧η . Then

δX = (−1)r−1
{

r ·
r−1∧

b+(r−1) ·
r∧

b]
}
. (1)

Depending on the parity of r, this can be rewritten as follows:

δX = δq] −4· (−1)n
{
bn/2c ·δq] −n·δq

}
if r = 2n is even, (2)

δX = δq−4· (−1)n+1
{
b(n+1)/2c ·δq +n·δq]

}
if r = 2n+1 is odd. (3)

Proof. We putm = r − 1 and use the notations introduced in 2.2. By 2.2.1 and
11.3.2,

δX(ξ ,ξ ) = (−1)m ·
(

r v
mv> D

)
= (−1)m

{
r ·detD+m·det

(
0 v
v> D

)}
= (−1)m

{
r · (

m∧
b)(η ,η)+m· (

r∧
b])(ξ ,ξ )

}
,

proving (1). Now we distinguish the casesr even andr odd.

(a) r = 2n is even: SinceM has odd rankm= 2n−1, the discriminant ofq
is δq = (−1)n−1∧mq, where the bilinear form

∧mq on
∧mM is given by the half-

determinant and satisfies 2
∧mq =

∧mb. Furthermore,δq] = (−1)n∧2n b]. Substi-
tuting this into (1) yields

δX = (−1)2n−1
{
(2n)(−1)n−12δq +(2n−1)(−1)n

δq]

}
,
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which together with 2.2.4 gives (2).

(b) r = 2n+1 is odd: ThenM has even rank 2n, so by interchanging the roles
of q andq] we now have

∧2n b = (−1)nδq. Furthermore,q] is a quadratic form
on the odd-ranked moduleX, so

∧2n+1 b] = 2· (−1)nδq] . Substituting this into (1)
yields

δX = (−1)2n
{
(2n+1)(−1)n

δq +(−1)n2·2nδq]

}
.

From 2.2.4 (withn replaced byn+1) we see(2n+1)(−1)n = 1−4 · (−1)n+1×
b(n+1)/2c. By substituting this in the above formula we obtain (3).

5.3. Proposition. LetX be a quadratic trace module of even rank r= 2n>2. We
fix a decomposition X= k ·1X ⊕M and use the notations of Prop.5.2. Then

Dis(X) ∼= D(q])+(−1)n
{⌊n

2

⌋
·δq] −n·δq

}
. (1)

Proof. Let us abbreviate

ε
] = (−1)n

{
bn/2c ·δq] −n·δq

}
, ζ = (−1)n−1bn/2c ·δX.

Also, let α: X → k be the linear form determined byα(1) = 1 and Kerα = M.
Consider the following symmetric bilinear form onX:

h(x,y) = (n−1)
[
α(x)T(y)+α(y)T(x)

]
−
[(r

2

)
− r
]
α(x)α(y).

An easy verification shows thatQ = q] +[h]. Hence Lemma 5.1 yields an isomor-

phismD(q])+ εh

∼= // D(Q) which induces in an obvious way an isomorphism

(
D(q])+ εh

)
+ζ = D(q])+(εh +ζ )

∼= // D(Q)+ζ = Dis(X),

cf. 3.4.1. Comparing this with (1), we see that it remains to prove

ε
] = εh +ζ . (2)

By Lemma 2.5 we may assume that the base ring has no 2-torsion, so it suffices to
prove that four times (2) holds. By 2.2.2, 5.2.2 and 5.1.2 we have

δQ−δX = 4·ζ , δX−δq] =−4· ε ], δq] −δQ = 4· εh.

Adding these equations yields 4· (ζ − ε ] + εh) = 0.
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5.4. Proposition. Let X be a quadratic trace module of odd rank r= 2n+ 1.
Choose a decomposition X= k ·1X ⊕M and use the notations of Prop.5.2. Then

Dis(X) ∼= D(q) + (−1)n+1
{⌊n+1

2

⌋
·δq +n·δq]

}
. (1)

Proof. Let Q̇ be the quadratic form oṅX = X/k ·1 introduced in 2.3. The canon-
ical mapX → Ẋ induces an isomorphismM ∼= Ẋ by which we identifyQ̇ with a
quadratic form, again denoteḋQ, onM. Define a bilinear formh onM by h(x,y) =
n∆X(x,y) for all x,y∈ M, so thatQ̇ = −q+[h]. Let us note thatD(q) ∼= D(−q)
by mappingsf (η) to (−1)ns− f (η) for a representativef of q and allη ∈

∧2n M.
This follows from the easily proved relationsτ− f = (−1)nτ f , κ− f ,−g = (−1)nκ f g
andγ− f = γ f ; cf. 3.3 and [12, Theorem 2.3], applied to ˜q =−q, ϕ = Id, µ =−1.
Hence by Lemma 5.1,D(q)+ εh

∼= D(−q)+ εh
∼= D(Q̇) and

(
D(q)+ εh

)
+ζ = D(q)+(εh +ζ )

∼= // D(Q̇)+ζ ∼= Dis(X),

where the last isomorphism comes from Th. 3.8 and we putζ = (−1)nϖ(n) ·δX.
Thus it remains to show that

ε := (−1)n+1
{⌊n+1

2

⌋
δq +nδq]

}
= εh +ζ .

By the same argument as in the proof of Prop. 5.3, it suffices to prove four times
this equation. By 2.3.4, 5.2.3 and 5.1.2, we have

δ
Q̇
−δX = 4·ζ , δX−δq =−4· ε, δq−δ

Q̇
= 4· εh.

As before, the assertion follows by adding these equations.

5.5. Proposition. LetX be a quadratic trace module of rank r= m+1>2, choose
a decomposition X= k ·1X ⊕M and suppose that M is free as a k-module, with
basis x1, . . . ,xm. Let v= (v1, . . . ,vm)∈ km where vi = T(xi), let f be a bilinear form
representing Q and put ai j := f (xi ,x j) so that aii = Q(xi) and ai j +a ji = B(xi ,x j)
for i 6= j. Finally, define

A = (ai j ) ∈Matm(k) and Â =
(

0 v
0 A

)
∈Matr(k).

ThenDis(X) = ((b : c]] is a free quadratic algebra where b,c ∈ k are given as
follows:

(a) If r = 2n is even,

b = Pf
(
Â− Â>

)
, (1)

c = (−1)n+1 qdet(Â)+ bn/2cdet
(
Â+ Â>

)
+nhdet(A) (2)

= (2n−1)qdet(Â)+(−1)nbn/2cb2 +nhdet(A). (3)
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(b) If r = 2n+1 is odd,

b = Pf(A−A>), (4)

c = (−1)n+1 qdet(A)−b(n+1)/2cdet
(
A+A>

)
−nhdet(Â) (5)

=−(2n+1)qdet(A)+(−1)n+1b(n+1)/2cb2−nhdet(Â). (6)

Proof. We use the notations of 5.3 and 5.4.

(a) By [12, 2.7],D(q]) = ((b : c0 ]] where

b = Pf(Â− Â>), c0 = (−1)n+1 qdet(Â).

By Prop. 5.3 and 3.2.2, Dis(X) = ((b : c0 +e]] where

e= (−1)nbn/2cδq](ξ ,ξ )+(−1)n−1nδq(η ,η),

whereη = x1∧·· ·∧xm andξ = 1∧η . On the other hand,

δq](ξ ,ξ ) = (−1)n det(Â+ Â>), δq(η ,η) = (−1)n−1hdet(A),

which yields (2). The alternative form (3) follows easily from the relations 11.1.2
and 2.2.4 becauseb2 = det(Â− Â>).

(b) r = 2n+ 1: HereD(q) is the free quadratic algebra((b : c0 ]] whereb =
Pf(A−A>) andc0 = (−1)n+1 qdet(A). By 5.4, Dis(X) = ((b : c0 ]]+e= ((b : c0+e]]
where

e= (−1)n+1
{
b(n+1)/2cδq(η ,η)+nδq](ξ ,ξ )

}
.

Sinceq andq] are quadratic forms in 2n and 2n+1 variables, we have

δq(η ,η) = (−1)n det(A+A>), δq](ξ ,ξ ) = (−1)nhdet(Â).

It follows that

c = c0 +(−1)n+1b(n+1)/2cδqM
(η ,η)+(−1)n+1nδq̂M

(ξ ,ξ )

= (−1)n+1 qdet(A)−b(n+1)/2cdet
(
A+A>

)
−nhdetÂ.

Again, (6) is an easy consequence of 2.2.4 and 11.1.2.

5.6. The caser = 3. We have qdet(A) = det(A) for a 2× 2-matrix. Moreover,
because of 11.4.1,

hdet(Â) = det

(
0 v
v> A

)
=−a11v

2
2−a22v

2
1 +(a12+a21)v1v2.

By 5.5(b) this yields

b = a12−a21,

c =−3qdet(A)+b2−hdet(Â)

=−3a11a22+a12a21+a2
12+a2

21+a11v
2
2 +a22v

2
1− (a12+a21)v1v2.
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5.7. The caser = 4. Here we use 5.5(a) and obtain

b = Pf(Â− Â>) = (a12−a21)v3 +(a31−a13)v2 +(a23−a32)v1,

c = 3qdet(Â)+b2 +2hdet(A)

= 3det

(
0 v
v> A

)
+det(Â− Â>)+det(A+A>),

by 11.1.1 and 11.4.2.

6. Multiplicativity of the discriminant algebra

6.1. The product of quadratic algebras. Recall from [11, 2.4, 2.6] that there
is a natural productD1 �D2 of quadratic algebras with which the categoryqak is
a symmetric tensor category. The product is constructed using the machinery of
unital linear forms (although there is a simpler description if the algebras areétale,
see [10, III, (2.3.4)]). We recall this quickly. A unital linear form on a quadratic
algebraD is a linear formα with α(1D) = 1. ThenD1 � D2 is generated as ak-
module by 1 and symbols ˙x1�(α1,α2)

ẋ2 wherexi ∈Di , ẋi = can(xi)∈ Ḋi = Di/k·1,
andαi is a unital linear form onDi . These symbols are bilinear in ˙x1 andẋ2 and
satisfy relations for which we refer to [11, 2.1, 2.4]. There is an exact sequence

0 // k
i // D1 �D2

p
// Ḋ1⊗ Ḋ2

// 0 (1)

wherei(1) = 1 andp(ẋ1 �(α1,α2)
ẋ2) = ẋ1⊗ ẋ2. The product of free quadratic alge-

bras is given by the formula

((b1 : c1 ]]� ((b2 : c2 ]] = ((b1b2 : c1(b
2
2−2c2)+c2(b

2
1−2c1) ]] , (2)

see [8, p. 30, p. 42, Exercise 14] and [11, Th. 2.4]. The split algebraI = k·e1⊕k·e2
(cf. 3.2) acts as a neutral element for the product�: There are natural isomor-
phisms

rD : D� I
∼= // D, lD : I �D

∼= // D, (3)

given by

ẋ�(α,β ) ė1
� // x−α(x)1, ė1 �(β ,α) ẋ � // x−α(x)1, (4)

whereβ is the unital linear form onI with β (e1) = 0 andβ (e2) = 1, andα is
any unital linear form onD, see [11, 2.6.11]. We will also need the associativity
constraints

a = aD1D2D3
: (D1 �D2)�D3

∼= // D1 � (D2 �D3)

which are as follows. Letαi be unital linear forms onDi . Then there are unique
unital linear formsαi j on Di � D j which vanish on all ˙xi �(αi ,α j )

ẋ j . Since(Di �
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D j)/k · 1∼= Ḋi ⊗ Ḋ j by (1), (D1 � D2) � D3 is generated by 1 and the elements
(ẋ1⊗ ẋ2)�(α12,α3)

ẋ3, and thena is given by

(ẋ1⊗ ẋ2)�(α12,α3)
ẋ3

� // ẋ1 �(α1,α23)
(ẋ2⊗ ẋ3). (5)

(Note that formula (7) of [11, 2.6] is incorrect and should read

η
(
u1 �α1(23)

(u2⊗u3)
)

= (u1⊗u2)�α(12)3
u3.

Line−3 of [11, p. 59] has to be modified similarly.)

The product� is a bifunctor: Ifϕi : D′
i →Di are homomorphisms, thenϕ1�ϕ2

is given by 1 � // 1 and

(ϕ1 �ϕ1)(ẋ
′
1 �(α ′

1,α
′
2)

ẋ′2) = ϕ̇1(ẋ
′
1)�(α1,α2)

ϕ̇(ẋ′2), (6)

whereα ′
i = αi ◦ϕi andẋ′i ∈ D′

i . — We show next that the product of shifted quad-
ratic algebras is a suitable shift of their product:

6.2. Lemma. Let Di (i = 1,2) be quadratic algebras, letδi = δDi
be their dis-

criminants, and letεi be bilinear forms onḊi . Then(
D1 + ε1

)
�
(
D2 + ε2) =

(
D1 �D2

)
+(ε1⊗δ2 +δ1⊗ ε2−4ε1⊗ ε2). (1)

Proof. It follows from [11, 2.1, 2.11(b)] that the underlying module, the unit ele-
ment and the trace ofD1 �D2 depend only on the modulesDi , their unit elements
and the tracesTDi

, but not on their norms. By 3.1, the shifted algebrasD′
i = Di +εi

have the same underlying modules, unit elements and traces asDi , hence so do
D′

1 �D′
2 andD1 �D2. Thus the equality sign in the statement of (1) makes sense.

For the proof, we may by localization assume that theDi = ((bi : ci ]] are free. Then,
after identifyingḊi

∼= k as in 3.2, theεi andδi are identified with scalars, and we
haveD′

i = ((bi : ci + εi ]]. By 3.2.1, the discriminants ofDi areδi = b2
i −4ci . Now

(1) follows from 6.1.2 by a straightforward computation.

6.3. We will need the productD1 � D2 in particular when theDi are the dis-
criminant algebras of quadratic forms of even rank or shifts of such algebras. Let
(Mi ,qi) (i = 1,2) be quadratic modules of even rankr i = 2ni . Choose representa-
tives fi ,gi of qi and let f ′ = f1 ⊥ f2 andg′ = g1 ⊥ g2 be their orthogonal sums,
which are then representatives ofq′ = q1 ⊥ q2. By 3.3,Di has generators 1 and
sfi

(ξi) whereξi ∈ Li =
∧r i Mi . By [12, 2.2], thefi determine unital linear formsρ fi

onDi satisfyingρ fi
◦sgi

=−κ figi
. Also, Ḋi

∼= Li via sfi
(ξi)

� // ξi . We put

ξ1 � f ′ ξ2 := ξ1 �(ρ f1
,ρ f2

) ξ2. (1)

ThenD′′ := D1 � D2 is generated by 1 and the symbolsξ1 � f ′ ξ2, bilinear inξ1

andξ2, subject to the relations

ξ1 � f ′ ξ2−ξ1 �g′ ξ2 = κ f ′g′(ξ1⊗ξ2) ·1. (2)
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By [12, Th. 2.11],D is a symmetric tensor functor from even-ranked quadratic
modules (with⊥) to quadratic algebras (with�), i.e., there are natural isomor-
phisms

ϑ : D(q1)�D(q2)
∼= // D(q1 ⊥ q2), (3)

ϑ0 : I
∼= // D(0). (4)

They are given by 1� // 1 and

ϑ(ξ1 � f ′ ξ2) = sf ′(ξ1∧ξ2), ϑ0(e1) = s0(1k). (5)

6.4. Lemma. Let (M,q) be a quadratic module of even rank r. Let f0 be the
bilinear form with matrix

(0 0
1 0

)
on k2, let f be a representative of q and letξ ∈∧r M. Then the composite isomorphism

Dis(E2)�D(q) Φ−1�Id
∼=

// I �D(q)
lD(q)

∼=
// D(q) (1)

(whereΦ = ΦI is as in3.5.4) is given explicitly by

−(e1∧e2)� f0⊥ f ξ
� // sf (ξ ). (2)

Proof. Let β be the linear form onI given by β (e1) = 0 andβ (e2) = 1. By
3.5.4 we haveΦ(e1) =−sf0

(e1∧e2) and henceΦ̇(ė1) =−e1∧e2. We claim that
ρ f0

◦Φ = β . This follows fromρ f0
(Φ(e1)) =−ρ f0

(sf0
(e1∧e2)) = 0 = β (e1) and

ρ f0
(Φ(1)) = ρ f0

(1) = 1 = β (e2) = β (e1 +e2). Now 6.1.6 and 6.3.1 imply

(Φ � Id)(ė1 �(β ,ρ f )
ξ ) =−(e1∧e2)�(ρ f0

,ρ f )
ξ =−(e1∧e2)� f0⊥ f ξ .

On the other hand, puttingx = sf (ξ ), we have ˙x = ξ andρ f (x) = 0 so by 6.1.4,

lD(q)(ė1 �(β ,ρ f )
ξ ) = sf (ξ )

This implies (2).

6.5. Theorem. Let Xi = (Xi ,Qi ,Ti ,1i) be quadratic trace modules of rank ri and
X = X1⊕X2 = (X,Q,T,1) their direct sum. Then there are isomorphisms

Θ = ΘX1X2
: Dis(X1)�Dis(X2)

∼= // Dis(X1⊕X2) (1)

of quadratic algebras, natural inX1 andX2, defined as follows: Choose represen-
tatives fi of Qi and let

f12 = ( f1 ⊥ f2)+T1⊗T2

be the representative of Q as in4.2.1. Also, letξi ∈ Li =
∧r i Xi , and recall the

notations f] andξ ]
i

of 4.2and4.3.
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(a) If r1 and r2 are even,Dis(X) is by the definition in3.4.1a shift of D(Q)
and Dis(X1)� Dis(X2) is, by Lemma6.2, a shift of D(Q1)�D(Q2). ThenΘ is,
as a module homomorphism, the composition

D(Q1)�D(Q2)
ϑ // D(Q1 ⊥Q2)

ψ
// D(Q)

of 6.3.3and4.5. Explicitly, it is given by

ξ1 � f1⊥ f2
ξ2

� // sf12
(ξ1∧ξ2). (2)

(b) If r1 is odd and r2 is even, we haveDis(X1) = Dis(E1⊕X1) andDis(X) =
Dis(E1⊕X) by definition in3.4.2. ThenΘ is the isomorphism

Dis(E1⊕X1)�Dis(X2)
∼= // Dis(E1⊕X)

of (1), where we canonically identify(E1⊕X1)⊕X2 = E1⊕(X1⊕X2). Explicitly,
it is given by

ξ
]
1 �

f ]
1
⊥ f2

ξ2
� // s

f ]
12

(
(ξ1∧ξ2)

]
)
. (3)

(c) If r1 is even and r2 is odd, let j: X1⊕E1⊕X2 → E1⊕X be the switch
x1⊕λ ⊕x2

� // λ ⊕x1⊕x2. ThenΘ is the composition

Dis(X1)�Dis(E1⊕X2)
∼= // Dis(X1⊕E1⊕X2)

Dis( j)
// Dis(E1⊕X) = Dis(X) ,

(4)
where the first isomorphism is as in(1). Explicitly,

ξ1 �
f1⊥ f ]

2

ξ
]
2

� // s
f ]
12

(
(ξ1∧ξ2)

]
)
. (5)

(d) If r1 and r2 are odd, we haveDis(Xi) = Dis(E1⊕Xi) by definition. Let
E2 = E1⊕E1 be the split quadratic trace module of rank2 and let j: E1⊕X1⊕
E1⊕X2 → E2⊕X be the switchλ1⊕x1⊕λ2⊕x2

� // λ1⊕λ2⊕x1⊕x2. ThenΘ

is the composition

Dis(E1⊕X1)�Dis(E1⊕X2)
∼= // Dis(E1⊕X1⊕E1⊕X2)

Dis( j)
// Dis(E2⊕X)

∼= // Dis(E2)�Dis(X)
∼= // Dis(X) (6)

where the first and third maps are as in(1) and the last map is the isomorphism
6.4.1. Explicitly,Θ is given by the formula

ξ
]
1 �

f ]
1
⊥ f ]

2

ξ
]
2

� // sf12
(ξ1∧ξ2). (7)

Proof. (a) Let r i = 2ni andr = r1 + r2 = 2n. PutDi := D(Qi), D′′ := D1 � D2,
D′ := D(Q1 ⊥ Q2), andD := D(Q) for short. Recall from 3.4.1 that Dis(Xi) =
Di + εi and Dis(X) = D+ ε where

εi := (−1)ni−1bni/2cδXi
, ε := (−1)n−1bn/2cδX.
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We apply Prop. 4.5 in caseqi = Qi , and thus have to computeδ
Q]

i

. This follows

immediately from 2.2.3 and 2.1.3:

δ
Q]

i

(ξ ]
i ,ξ

]
i ) = (−1)ni niδX]

i

(ξ ]
i ,ξ

]
i ) = (−1)ni niδXi

(ξi ,ξi).

By 6.1.1,D′′/k·1= L1⊗L2 which is identified withL =
∧r X. Thus it makes sense

to shift both sides of the compositionψ ◦ϑ : D′′ → D′ → D by ε which yields an
algebra isomorphism

D′′+
(
(−1)nn1n2 δX + ε

) ∼= // D+ ε = Dis(X),

and from 6.3.5 and 4.5.1 it is clear that (2) holds. On the other hand, by 6.2.1,

Dis(X1)�Dis(X2) =
(
D1 + ε1

)
�
(
D2 + ε2

)
= D′′+(ε1⊗δ2 +δ1⊗ ε2−4ε1⊗ ε2)

whereδi = δDi
= δQi

, so it remains to show that

(−1)nn1n2 δX + ε = ε1⊗δ2 +δ1⊗ ε2−4ε1⊗ ε2. (8)

By 2.2.2 and 2.1.3,

δi = (−1)ni−1(r i −1)δXi
, δX = δX1

⊗δX2
.

Then (8) comes down to the formula

n1n2−
⌊n1 +n2

2

⌋
= (2n1−1)

⌊n2

2

⌋
+(2n2−1)

⌊n1

2

⌋
−4
⌊n1

2

⌋⌊n2

2

⌋
for all natural numbersn1, n2. The elementary proof is left to the reader.

(b) From what was proved in (a), it is clear thatΘ is an algebra isomorphism.
By specializing 4.2.2 to the case where the first factor is the bilinear-linear module
e1 of rank one, we have

f ]
12 = ( f ]

1 ⊥ f2)+T]
1 ⊗T2.

Hence (3) follows from (2) after replacingf1 by f ]
1

andξ1 by ξ ]
1

becauseξ ]
1
∧ξ2 =

(1∧ξ1)∧ξ2 = 1∧ (ξ1∧ξ2) = (ξ1∧ξ2)
] in the exterior algebra.

(c) Again, it is clear from (a) thatΘ is an algebra isomorphism, so it remains
to show (5). Putg := ( f1 ⊥ f ]

2
)+T1⊗T]

2
andh := f ]

12
. A calculation shows that

g(x1⊕λ ⊕x2, y1⊕µ ⊕y2) = f1(x1, y1)+ f2(x2, y2)+T1(x1)T2(y2)
+ µT1(x1)+λT2(y2),

j∗(h)(x1⊕λ ⊕x2, y1⊕µ ⊕y2) = f1(x1, y1)+ f2(x2, y2)+T1(x1)T2(y2)
+λT1(y1)+λT2(y2),

for λ ,µ ∈ k, xi ,yi ∈ Xi . We claim that

sj∗(h)(ξ1∧ξ
]
2) = sg(ξ1∧ξ

]
2). (9)
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By the defining relations 3.3.6 ofD(Q1⊕Q]
2
), this is equivalent toκg, j∗(h)(ξ1∧

ξ ]
2
) = 0. Let t be an indeterminate and puta = g−g> anda′ = g− j∗(h). We use

the notations introduced in 3.3 and 4.3 and put 2n = r1 + r2 +1. Then by 11.6.1,

πn(a+ ta′)(ξ1∧ξ
]
2) = Pf

 F1−F>
1 (1+ t)x> x>y

−(1+ t)x 0 y

−y>x −y> F2−F>
2


= Pf(F1−F>

1 ) ·Pf

(
0 y

−y> F2−F>
2

)
is independent oft, whenceκg, j∗(h) = 0, as asserted. Now we apply the definition
of Θ in (4) and the formula for Dis( j) in 3.4.4 which yields

ξ1 �
f1⊥ f ]

2

(ξ ]
2)

� // sg(ξ1∧ξ
]
2) = sj∗(h)(ξ1∧ξ

]
2)

� // sh

(
(
r1+r2+1∧

j)(ξ1∧ξ
]
2)
)

= s
f ]
12

(
(ξ1∧ξ2)

]
)
,

becauser1 is even.

(d) It is clear thatΘ is an algebra isomorphism so let us prove (7). LetE2 =
(k2,Q0,T0,1) be the split quadratic trace module of rank 2, soQ0(λe1 + µe2) =
λ µ, T0(λe1 + µe2) = λ + µ and 1= e1 +e2, cf. 1.2(a). Letf0 be the bilinear form
onk2 with matrix

(0 0
1 0

)
, a representative ofQ0, and put

g = ( f ]
1 ⊥ f ]

2) + T]
1 ⊗T]

2 , h = ( f0 ⊥ f12) + T0⊗ (T1⊕T2).

These are bilinear forms onX]
1
⊕X]

2
andk⊕ k⊕X1⊕X2, respectively. A compu-

tation shows that

g(λ1⊕x1⊕λ2⊕x2, µ1⊕y1⊕µ2⊕y2) = f1(x1,y1)+ f2(x2,y2)
+T1(x1)T2(y2)+λ1µ2 +λ1(T1(y1)+T2(y2))+ µ2T1(x1)+λ2T2(y2),

j∗(h)(λ1⊕x1⊕λ2⊕x2, µ1⊕y1⊕µ2⊕y2) = f1(x1,y1)+ f2(x2,y2)
+T1(x1)T2(y2)+λ2µ1 +(λ1 +λ2)(T1(y1)+T2(y2)).

We claim that
sj∗(h)(ξ

]
1∧ξ

]
2) = sg(ξ ]

1∧ξ
]
2). (10)

Similarly as in the proof of (c), leta = g−g> anda′ = g− j∗(h), and put 2n =
r1 + r2 +2. Using the notations of 4.3, let

R̃=
(

0 x
−x> F1−F>

1

)
, S̃=

(
0 y

−y> F2−F>
2

)
,

x̃ = (1,x) ∈ kn1+1 andỹ = (1+ t,y) ∈ k[t]n2+1. Then

πn(a+ ta′)(ξ ]
1∧ξ

]
2) = Pf

(
R̃ x̃>ỹ

−ỹ>x̃ S̃

)
= Pf(R̃) ·Pf(S̃)
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(by 11.6.1) is independent oft. Henceκg, j∗(h) = 0 which proves (10).
Now we can establish (7). Let us identifye1 with 1k⊕0⊕0⊕0 ande2 with

0⊕1k⊕0⊕0 in E2⊕X. Then sincer1 is odd andξ1 ∈
∧r1 X1,

(
2n∧

j)(ξ ]
1∧ξ

]
2) = (

2n∧
j)(e1∧ξ1∧e2∧ξ2) =−e1∧e2∧ξ1∧ξ2

and henceΘ maps

ξ
]
1 �

f ]
1
⊥ f ]

2

ξ
]
2

� // sg(ξ ]
1∧ξ

]
2) = sj∗(h)(ξ

]
1∧ξ

]
2)

� // −sh(e1∧e2∧ξ1∧ξ2) ∈ Dis(E2⊕X)
� // − (e1∧e2)� f0⊥ f12

(ξ1∧ξ2) ∈ Dis(E2)�Dis(X),
� // sf12

(ξ1∧ξ2),

where we used (2) in reverse in the last but one and 6.4.2 in the last step.
We finally show that the isomorphismsΘ are natural inX1 andX2. In case (a),

this follows from naturality ofϑ andψ (Prop. 4.5). The cases (b) and (c) follow
easily from this, and in case (d) one uses the naturality of the isomorphismlD(q)
which implies that also the isomorphism Dis(E2)� Dis(X) ∼= Dis(X) of 6.4.1 is
natural inX.

6.6. Theorem. The functorDis is a tensor functor from the categoryqtmk of
quadratic trace modules (with⊕) to the categoryqak of quadratic algebras (with
�).

Proof. This means [9] that, in addition to the natural isomorphismsΘ of Th. 6.5,
we have a natural isomorphismΘ0: I ∼= Dis(0) such that the following diagrams
commute for allX,Xi , where we putDi := Dis(Xi) for short:

Dis(X)� I
rD //

Id�Θ0

��

Dis(X)

Dis(X)�Dis(0)
Θ

// Dis(X⊕0)

OO
I �Dis(X)

lD //

Θ0�Id

��

Dis(X)

Dis(0)�Dis(X)
Θ

// Dis(0⊕X)

OO

(1)

(D1 �D2)�D3
a //

Θ�Id
��

D1 � (D2 �D3)
Id�Θ // D1 �Dis(X2⊕X3)

Θ

��

Dis(X1⊕X2)�D3
Θ

// Dis
(
(X1⊕X2)⊕X3

)
// Dis

(
X1⊕ (X2⊕X3)

) (2)

The commutativity of (1) is easy (use 3.5.1 and 6.1.3) so we only do the commu-
tativity of (2). The unnamed arrow on the lower right is treated as the identity. The
mapa on the upper left is as in 6.1.5. According to the parities of the ranks of
theXi , there are eight cases in which commutativity of (2) needs to be checked,
becauseΘ is defined differently in each case. We do the case where allXi have
even rank. The others follow the same pattern and are left to the reader.
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SinceDi is a shift ofD(Qi) we haveḊi = Li =
∧r i Xi . Let fi be representatives

of Qi . Specializing formula 6.1.5 to the present situation and using 6.3.1, one sees
thata is given by

(ξ1⊗ξ2)�( f1⊥ f2)⊥ f3
ξ3

� // ξ1 � f1⊥( f2⊥ f3)
(ξ2⊗ξ3).

Let ( fi j ,Ti j ) := ( fi ,Ti)⊕ ( f j ,Tj) as in 4.2. ThusTi j = Ti ⊕Tj , fi j = ( fi ⊥ f j)+Ti ⊗
Tj and fi j is a representative of the quadratic formQi j = Qi ⊥Q j +TiTj of Xi⊕X j .
Formula 6.5.2 yields

Θ(ξi � fi⊥ f j
ξ j) = sfi j

(ξi ∧ξ j),

and therefore the maṗΘ : Di �D j →Dis(Xi⊕X j) is given byΘ̇(ξi⊗ξ j) = ξi∧ξ j .
Now we can compute the effect of going across and down in (2):

(ξ1⊗ξ2)�( f1⊥ f2)⊥ f3
ξ3

� a // ξ1 � f1⊥( f2⊥ f3)
(ξ2⊗ξ3)

� Id�Θ // ξ1 � f1⊥ f23
(ξ2∧ξ3)

� Θ // s( f1⊥ f23)+T1⊗T23

(
ξ1∧ (ξ2∧ξ3)

)
. (3)

Going down and across is easier and results in

(ξ1⊗ξ2)�( f1⊥ f2)⊥ f3
ξ3

� Θ�Id // (ξ1∧ξ2)� f12⊥ f3
ξ3

� Θ // s( f12⊥ f3)+T12⊗T3

(
(ξ1∧ξ2)∧ξ3

)
. (4)

By 4.2.2 we have the associative law

( f12⊥ f3) + T12⊗T3 = ( f1 ⊥ f23) + T1⊗T23 (5)

so the commutativity of (2) follows.

7. The discriminant algebra as a symmetric tensor functor

7.1. Notations. Let F2 be the functor fromk-alg to the category of commutative
rings which assigns toR the setF2(R) of all continuous maps from Spec(R) to F2,
the ring with two elements, with the obvious ring structure. We usually identify an
elementf ∈ F2(R) with the idempotentp∈Rsuch thatf−1(1) = Spec(Rp). Then
the addition inF2(R) is given by

pu p′ = p(1− p′)+ p′(1− p) = p+ p′−2pp′,

while multiplication is the usual product of idempotents inR. We denote byZ2
thek-group functor assigning toR∈ k-alg the additive group ofF2(R). There is a
homomorphism

χ: Z2 → µ2, p � // 1−2p = (−1)p,

whereµ2 is thek-group functor of second roots of unity.



32 Ottmar Loos

7.2. Involutions of quadratic algebras. A quadratic algebraD has a natural in-
volution σ = σD given byx+ σ(x) = TD(x) ·1. By [11, 5.3] there is a homomor-
phism

hD: Z2 → Aut(D), hD(p) := σ
p := (1− p) · Id+ p·σ . (1)

HereAut(D) is thek-group functorR � // Aut(D⊗R). Explicitly, this means

hD(p) ·x = σ
p(x) = pTD(x) ·1+(1−2p)x, (2)

for all p ∈ Z2(R), x ∈ D⊗R, R∈ k-alg. Hence the map induced byσ p on Ḋ is
given by

χ(p) : ẋ � // (1−2p)ẋ = (−1)pẋ. (3)

SinceḊ∼=
∧2 D under the map ˙x � // 1∧x, it follows that

dethD(p) = χ(p) = (−1)p.

Suppose in particular thatD = ((b : c]] = k ·1⊕ k · z is free, and identifyGL(D)
with GL2 by means of the basis 1,z. Then it is easily seen thatAut(D) ⊂ GL2 is
the subgroup of all matrices

h =
(

1 λ

0 µ

)
(4)

whereµ is a unit and

2λ = b(1−µ), λ (b−λ ) = c(1−µ
2). (5)

Also, (2) applied tox = z shows that

hD(p) =
(

1 pb
0 1−2p

)
. (6)

7.3. Proposition. Let D1 and D2 be quadratic algebras with product D= D1 �
D2. For automorphisms hi of Di let h1 �h2 be the automorphism of D as in6.1.6.

(a) The map(h1,h2)
� // h1 �h2 induces a homomorphism of group functors

� : Aut(D1)×Aut(D2)→ Aut(D). (1)

(b) Let Di = ((bi : ci ]] = k·1⊕k·zi be free and D= ((b : c]] as in6.1.2. Writing

hi =
(

1 λi
0 µi

)
as in7.2.4, we have(

1 λ1
0 µ1

)
�

(
1 λ2
0 µ2

)
=
(

1 λ1b2 +λ2b1−2λ1λ2
0 µ1µ2

)
. (2)

(c) The following diagram is commutative:

Z2×Z2

u

��

hD1
×hD2 // Aut(D1)×Aut(D2)

�
��

Z2 hD1�D2

// Aut(D1 �D2)

(3)
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In particular, for p∈ Z2(k),

σ
p
D1

� IdD2
= IdD1

�σ
p
D2

= σ
p
D. (4)

Proof. (a) This is clear because the product� of quadratic algebras is a bifunctor
commuting with base change.

(b) Letαi : Di → k be the linear form given byαi(1) = 1 andαi(zi) = 0. Then
D = k ·1⊕ k · z wherez= ż1 �(α1,α2)

ż2. Now putβi = αi ◦hi . Sinceḣi(żi) = µi żi ,
6.1.6 shows

(h1 �h2)(ż1 �(β1,β2)
ż2) = µ1µ2(ż1 �(α1,α2)

ż2).

Definetαi
∈ Ḋ∗

i by tαi
(ẋ) = TDi

(x−αi(x) ·1). Then

βi(zi) = αi(λi ·1+ µizi) = λi , tαi
(żi) = TDi

(zi −αi(zi)) = bi .

By the defining relations ofD1 �D2 (cf. [11, 2.1]),

ż1 �(α1,α2)
ż2 = ż1 �(β1,β2)

ż2 +c
αβ

(ż1⊗ ż2) ·1,

wherec
αβ

= c
α1β1

⊗ tα2
+ tα1

⊗c
α2β2

−2c
α1β1

⊗c
α2β2

, see [11, 2.1.4]. Substituting
the above data, we obtainc

αβ
(ż1⊗ ż2) = λ1b2 + λ2b1−2λ1λ2, and therefore, by

an easy computation,

(h1 �h2)(z) = (λ1b2 +λ2b1−2λ1λ2) ·1+ µ1µ2 ·z.

In matrix notation, this is (2).

(c) Since everything is compatible with base change, it suffices to prove the
commutativity of (3) when the group functors are evaluated atR= k. By localiza-
tion, we may assumeDi and henceD free. Then the assertion follows by direct
computation from 7.2.6 and (2).

7.4. Quadratic algebras with parity. The categoriesqtmk of quadratic trace
modules andqak of quadratic algebras are symmetric tensor categories. It is thus
natural to ask whether the tensor functor Dis:qtmk → qak respects the symme-
tries. This is not the case, but becomes true after replacingqak with a bigger
category which we now define. Let̃qak be the direct product ofqak and the dis-
crete categoryF2(k). Thus the objects of̃qak are pairsD̃ = (D, p) consisting of
a quadratic algebraD and an elementp ∈ F2(k), called theparity of D̃, and the
morphisms are

Mor
(
(D, p),(D′, p′)

)
=
{

Mor(D,D′) if p = p′

/0 if p 6= p′

}
.

An objectD̃ ∈ q̃ak will be called even or odd if its parity is 0 or 1, respectively.
ForR∈ k-alg, the base change of̃D is D̃⊗R= (D⊗R, p⊗1R). We leave it to the
reader to show that̃qak becomes a tensor category with product

(D, p)� (D′, p′) = (D�D′, pu p′),
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unit Ĩ = (I ,0) and the associativity, left and right unit constraintsã, l̃, r̃ derived
in the obvious way from the corresponding ones in 6.1. The symmetryc̃ of q̃ak is
defined as follows. First,qak is a symmetric tensor category with the symmetry

c = cD1D2
: D1 �D2

∼= // D2 �D1, ẋ1 �(α1,α2)
ẋ2

� // ẋ2 �(α2,α1)
ẋ1, (1)

see [11, Th. 2.6]. Now definẽc: D̃1 � D̃2 → D̃2 � D̃1 for D̃i = (Di , pi) ∈ q̃ak by

c̃
D̃1D̃2

:= cD1D2
◦hD1�D2

(p1p2) = hD2�D1
(p1p2)◦ cD1D2

. (2)

7.5. Lemma. With the symmetries̃c defined as above,̃qak is a symmetric tensor
category.

Proof. Since the automorphismsσ p have period two, it is clear that(c̃
D̃1,D̃2

)−1 =
c̃
D̃2,D̃1

. It remains to show the commutativity of the diagram

(D̃1 � D̃2)� D̃3
c̃�Id //

ã

��

(D̃2 � D̃1)� D̃3
ã // D̃2 � (D̃1 � D̃3)

Id�c̃

��

D̃1 � (D̃2 � D̃3) c̃
// (D̃2 � D̃3)� D̃1 ã

// D̃2 � (D̃3 � D̃1)

(1)

By 7.3.4 and because the automorphismsh(p) = σ p commute with morphisms of
qak, we can collect the powers ofσ in going around the diagram. This yields for
the upper leg

(Id� c̃)◦ ã◦ (c̃� Id) = σ
p1p2 ◦σ

p1p3 ◦ (Id� c)◦a◦ (c� Id),

while the lower leg results in

ã◦ c̃◦ ã = σ
p1(p2up3) ◦a◦ c◦a.

Now σ p1p2 ◦σ p1p3 = σ p1p2up1p3 = σ p1(p2up3) becausep � // σ p is a group homo-
morphism, and(Id� c)◦a◦ (c� Id) = a◦ c◦a becauseqak is a symmetric tensor
category.

7.6. Definition. Let X be a quadratic trace module. Thediscriminant algebra
with parity ofX is defined as

D̃is(X) =
(

Dis(X), rk(X) (mod 2)
)
.

For example, the discriminant algebras with parity of the split quadratic trace mod-
ulesE1 andE2 are now different, namely

D̃is(E1) = (Dis(E2),1)∼= (I ,1), D̃is(E2) = (Dis(E2),0)∼= (I ,0) = Ĩ ,

while their ordinary discriminant algebras are the same. IfX has nonconstant rank,
rk(X): Spec(k)→ Z is locally constant, so rk(X) (mod 2) ∈ F2(k). Since by defi-
nition there are no morphisms between quadratic trace modules of different rank,
it is clear thatD̃is is a functor fromqtmk to q̃ak.
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7.7. Theorem. D̃is: qtmk → q̃ak is a symmetric tensor functor.

Proof. Let Xi = (Xi ,Qi ,Ti ,1i) be quadratic trace modules with paritiespi = rk(Xi)
(mod 2). Then rk(X1⊕X2) (mod 2) = p1 u p2, and hence the isomorphismΘ =
ΘX1X2

of Theorem 6.5 induces an isomorphism

Θ̃ : D̃is(X1)� D̃is(X2)→ D̃is(X1⊕X2).

It is easy to check, using Th. 6.6, that with these isomorphismsD̃is is a tensor
functor fromqtmk to q̃ak. The symmetry inqtmk is the switchω: X1⊕X2 →
X2⊕X1, x1⊕ x2

� // x2⊕ x1. Thus forD̃is to be a symmetric tensor functor, it
remains to check that the diagrams

D̃is(X1)� D̃is(X2)
Θ̃ //

c̃

��

D̃is(X1⊕X2)

D̃is(ω)
��

D̃is(X2)� D̃is(X1)
Θ̃

// D̃is(X2⊕X1)

(1)

commute. After decomposing the base ring, we may assume thatr i = rk(Xi) is
constant on Spec(k). Then there are four cases, depending on the paritypi of r i .
We do the case wherer1 andr2 are odd and leave the other cases, which follow a
similar pattern but are easier, to the reader.

Let fi be bilinear forms onXi representingQi and letQi j be the quadratic
form of Xi ⊕X j . Then fi j := ( fi ⊥ f j) + Ti ⊗ Tj is a bilinear form onXi ⊕Xj

representingQi j , cf. 4.2. PutDi = Dis(Xi) andDi j = Dis(Xi ⊕X j) for short, and
let z = ξ ]

1
�

f ]
1
⊥ f ]

2

ξ ]
2
∈ D1 � D2, where we use the notations of Th. 6.5(d). Since

Θ̃ is justΘ as a map onD1 �D2, we have by 6.5.7 that̃Θ(z) = sf12
(ξ1∧ξ2). We

claim that the effect of going across and down in (1) is

D̃is(ω)
(
Θ̃(z)

)
= σD21

(
sf21

(ξ2∧ξ1)
)
. (2)

Indeed, let us note first that(
∧r1+r2 ω)(ξ1∧ξ2) = (−1)r1r2ξ2∧ξ1 =−ξ2∧ξ1, since

ξi ∈
∧r i Xi and bothr1 andr2 are odd. Hence, by 3.4.4,

Dis(ω)
(
sg(ξ1∧ξ2)

)
=−sf21

(ξ2∧ξ1), (3)

where the pullbackg := ω∗( f21) to X1⊕X2 is

g(x1⊕x2, y1⊕y2) = f1(x1,y1)+ f2(x2,y2)+T1(y1)T2(x2).

Let f := f12 for short. By the defining relations 3.3.6 ofD12, we havesf − sg =
κ f g ·1, so we compute nextκ f g. Let 2n= r1 + r2, and use the notations introduced
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in 4.3. Then by 11.6.2 and 3.3.3,

πn
(

f − f>+ t( f −g)
)
(ξ1∧ξ2) = Pf

(
F1−F>

1 (1+ t)x>y
−(1+ t)y>x F2−F>

2

)

= Pf

(
0 (1+ t)x

−(1+ t)x> F1−F>
1

)
·Pf

(
0 y

−y> F2−F>
2

)

= (1+ t)Pf

(
0 x

−x> F1−F>
1

)
·Pf

(
0 y

−y> F2−F>
2

)

= (1+ t)Pf

(
F1−F>

1 x>y
−y>x F2−F>

2

)
= (1+ t)πn( f − f>)(ξ1∧ξ2) = (1+ t)τ f (ξ1∧ξ2).

On the other hand, by 3.3.2,

πn
(

f − f>+ t( f −g)
)

= πn( f − f>)+ t Πn(t, f − f>, f −g).

By comparing coefficients att we see thatΠn(t, f − f>, f −g) = τ f is independent
of t. Thereforeκ f g = Πn(−2, f − f>, f −g) = τ f andsf − sg = τ f ·1. Since the
trace ofsf (ξ1∧ξ2) is τ f (ξ1∧ξ2), it follows that

σD12

(
sf (ξ1∧ξ2)

)
= τ f (ξ1∧ξ2) ·1−sf (ξ1∧ξ2) =−sg(ξ1∧ξ2),

so (3) implies

Dis(ω)
(
σD12

(sf (ξ1∧ξ2))
)

= sf21
(ξ2∧ξ1).

But Dis(ω) commutes with the standard involutions ofD12 andD21, whence

Dis(ω)
(
sf (ξ1∧ξ2)

)
= σD21

(
sf21

(ξ2∧ξ1)
)
.

This proves (2). On the other hand, going down and across in (1) yields, sinceΘ

commutes with the involutions,

z � c̃ // σD2�D1
(c(z)) = σD2�D1

(ξ ]
2 �

ξ ]
2
⊥ξ ]

1

ξ
]
1)

� Θ̃ // σD21

(
Θ(ξ ]

2 �
ξ ]

2
⊥ξ ]

1

ξ
]
1)
)

= σD21

(
sf21

(ξ2∧ξ1)
)
.

This completes the proof.
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8. Separable quadratic trace modules

8.1. Definition. A quadratic trace moduleX is calledseparableif its discriminant
form ∆ = ∆X is nonsingular; equivalently, if the discriminantδX is nonsingular or
if the discriminant algebra Dis(X) is a separable quadratic algebra (Lemma 3.6).
Separability is preserved under arbitrary base changes and descends from faith-
fully flat base changes.

Since the discriminant form of the split quadratic trace moduleEr is the stan-
dard scalar product onkr , it is clear thatEr is separable. The goal of this section is
to show that, conversely, a separable quadratic trace module is, locally in theétale
topology, isomorphic toEr .

In the sequel, ak-functor means a set-valued covariant functor on the category
k-alg. Following [6], schemes are considered as specialk-functors. The affinek-
scheme defined by ak-algebraA is Spec(A)(R) = Homk-alg(A,R). For ak-module
X let Xa denote thek-functorR � // X⊗k R. If X is finitely generated and projec-
tive thenXa is an affine finitely presentedk-scheme whose affine algebra is the
symmetric algebra over the dual moduleX∗.

For an arbitrary quadratic trace moduleX, definek-functorsY andU by

Y(R) = {x∈ X⊗R : T(x) = 1, Q(x) = 0}, (1)

U(R) = {u∈ Y(R) : 1−u unimodular}, (2)

for all R∈ k-alg. SinceXa is finitely presented and affine so isY. Let α1, . . . ,αn be
a set of generators of the dual moduleX∗ and letϕi(x) = αi(1−x). ThenU ⊂ Y
is the union of the open affine subschemesY i of Y whereϕi does not vanish, i.e.,
u ∈ U(R) ⇐⇒ u ∈ Y(R) and ∑i Rϕi(u) = R, see [6, I,§1, 3.6]. HenceU is a
quasi-affine finitely presentedk-scheme. We will see that it plays the role of the
unit sphere in Euclidean geometry. Note thatY = Spec({0}) is empty (Y(R) = /0
for all R 6= {0}) if r = rk(X) = 0, andY = Spec(k) is the one-point functor for
r = 1, whileU is empty forr = 0,1.

8.2. Proposition. LetX = (X,Q,T,1) be a quadratic trace module of rank r and
let u∈U(k) (hence r>2). Let X′ := u⊥ with respect to∆ = ∆X, put1′ := 1−u and
denote by Q′ and T′ the restrictions of Q and T to X′. ThenX′ := (X′,Q′,T ′,1′) is
a quadratic trace module of rank r−1 and

X = k ·u⊕X′ ∼= E1⊕X′, (1)

the direct sum of quadratic trace modules as in1.5. Moreover,X is separable if
and only ifX′ is separable.

Proof. We have∆(u,u) = T(u)2−2Q(u) = 1, so the direct sum of modules in (1)
is clear. Next,∆(u,1−u) = ∆(u,1)−1 = T(u)−1 (by 1.1.4)= 0, which proves
1′ ∈ X′.

ClearlyX′ is finitely generated and projective of rankr−1, and 1′ is unimodu-
lar by definition ofU. Furthermore, by 1.1.1,T ′(1′) = T(1−u) = T(1)−1= r−1
and

Q′(1′) = Q(1−u) = Q(1)−B(1,u)+Q(u) =
(

r
2

)
− (r−1)+0 =

(
r−1

2

)
.
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Finally, letx′ ∈ X′. ThenB′(1′,x′) = B(1−u,x′) = T(1−u)T(x′)−∆(1−u,x′) =
(r−1)T(x′)−∆(1,x′)+0 = (r−2)T(x′), by 1.1.4. HenceX′ is a quadratic trace
module of rankr−1.

We show thatX ∼= E1⊕X′ as quadratic trace modules. Clearly 1= u⊕ 1′

andT(λu⊕x′) = λT(u)+T(x′) = λ +T ′(x′). Moreover,Q(λu⊕x′) = λ 2Q(u)+
λB(u,x′) + Q(x′) = 0+ λ

(
T(u)T(x′)−∆(u,x′)

)
+ Q(x′) = λT ′(x′) + Q′(x′) be-

causeu ⊥ x′ with respect to∆ . The statement concerning separability follows
from 1.5.2.

8.3. Lemma. LetX = (X,Q,T,1) be separable of rank r. If r>1 then T: X → k
is surjective. If r>2, the restriction of Q to X0 := KerT is primitive.

Proof. By separability,∆ induces an isomorphism betweenX and its dualX∗, and
1.1.4 shows thatT ∈ X∗ is the image of 1X. Since 1X is unimodular so isT. Hence
there existsu∈ X∗∗ ∼= X with T(u) = 1.

For the second statement, we may assume thatk is an algebraically closed field
and then have to show thatQ

∣∣X0 6= 0. If r = 2, X = qt(D) is the quadratic trace
module determined by a separable quadratic algebra, soD∼= k2 = k·e1⊕k·e2, and
D0 = k·(e1−e2), with Q(e1−e2) = Q(e1)−B(e1,e2)+Q(e2) =−1. If r >3, pick
an elementu∈ X with T(u) = 1 so thatX = k·u⊕X0. Assume thatQ vanishes on

X0. After choosing a basis inX0, the matrix of∆ has the form

(
λ v
v> 0

)
where

λ = ∆(u,u) ∈ k andv is a row vector of lengthr −1> 2. Such a matrix must be
singular, contradiction.

8.4. Lemma. If X is separable of rank r>2 over an algebraically closed field K
thenU(K) 6= /0.

Proof. By Lemma 8.3 there existx,y∈ X with T(y) = 1, T(x) = 0 andQ(x) 6= 0.
Putu = y+λx and determine the scalarλ ∈ K by the requirementQ(u) = 0. This
yields the quadratic equation

λ
2Q(x)+λB(x,y)+Q(y) = 0

which has a solution sinceK is algebraically closed. Ifu 6= 1 we are done. Oth-
erwise,

(r
2

)
= Q(1) = Q(u) = 0 in K which impliesr >3. Also,T(1) = T(u) = 1

soX = K ·1⊕X0. SinceQ does not vanish onX0 and dimX0 > 2, there exists a
non-zero isotropic vectorz∈ X0. Putũ = 1+z. Thenũ 6= 1, T(ũ) = T(1) = 1 and
Q(ũ) = Q(1)+B(1,z)+Q(z) = 0+(r−1)T(z)+0 = 0, as required.

8.5. Corollary. A separable quadratic trace moduleX over an algebraically
closed field is split.

Proof. If X has rank61 this is evident, so we assumer = rk(X) > 2. Then the
assertion follows by induction from Prop. 8.2 and Lemma 8.4.
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8.6. Theorem. LetX be a separable quadratic trace module of rank r>2. Then
U is a smooth quasi-affine finitely presented k-scheme. The geometric fibres ofU
have dimension r−2. They consist of two points if r= 2 and are connected and
non-empty for r>3.

Proof. As noted in 8.1,U is quasi-affine and finitely presented. By [6, I,§4,
Cor. 4.6],U is smooth if and only if, for everyR∈ k-alg and every idealn of square
zero inR, the canonical mapU(R) → U(R/n) is surjective. After a base change
from k to Rwe may assumeR= k to simplify notation. Denote the canonical maps
k→ k̄ := k/n andX→ X̄ := X/nX = X⊗k/n by a bar, and letv∈U(k/n). Decom-
poseX̄ = k̄ ·v⊕ X̄′ with X̄′ separable of rankr −1 as in Prop. 8.2. Choosex∈ X
with x̄ = v. ThenT(x) = 1+ δ andQ(x) = ε whereδ ,ε ∈ n. Sincen has square
zero, 1+ δ ∈ k× with (1+ δ )−1 = 1− δ . After replacingx by (1− δ )x, we may
assumeT(x) = 1. Then∆(x,x) = T(x)2−B(x,x) = 1−2ε ∈ k×, soX decomposes
X = k ·x⊕M whereM = x⊥ with respect to∆ , andM̄ = X̄′. By Lemma 8.3, there
existsw∈ X̄′ with T(w) = 1. Choosey∈M with ȳ= w. ThenT(y) = 1+γ ∈ 1+n
is invertible, so after replacingy by (1+ γ)−1y, we have found an elementy∈ M
with T(y) = 1. Since alsoT(x) = 1, it follows that

0 = ∆(x,y) = T(x)T(y)−B(x,y) = 1−B(x,y).

Now putu := x+ ε(x−y). Thenū = x̄ = v, T(u) = 1+ ε(1−1) = 1, and

Q(u) = Q(x)+ εB(x,x−y) = Q(x)+ ε
(
2Q(x)−B(x,y)

)
= ε + ε(2ε −1) = 0.

It remains to show that 1−u is unimodular. Sincē1−v is unimodular inX̄, there
exists a linear formβ ∈ X̄∗ with β (1̄− v) = 1. Now X̄∗ ∼= X∗ ⊗ k̄ sinceX is
finitely generated and projective, so there existsα ∈ X∗ with ᾱ = β . This implies
α(1−u) = 1 and thereforeα(1−u) ∈ 1+n⊂ k×, as required.

To determine the geometric fibres ofU we may, after a base change, assume
thatk = K is an algebraically closed field. By Lemma 8.4 and Cor. 8.5,U(K) 6= /0
andX∼= Er is split. Putm= r−1 and identifyX with Kr by means of the standard
basise0, . . . ,em. Let Greek indices run from 0 tom and Latin indices from 1 tom.
ThenY(K)⊂ Km+1 is described by the equations

∑
λ

x
λ

= 1, ∑
λ<µ

x
λ
xµ = 0, (1)

and x ∈ U(K) if in addition x 6= 1X = (1, . . . ,1). For r = 2, Y(K) = U(K) =
{(1,0), (0,1)} consists of two points. Assumer > 3 and use the first equation of
(1), x0 = 1−∑xi , to eliminatex0 from the second equation. ThenY(K) becomes
identified with the affine quadric inKm with equation

f (x1, . . . ,xm) = ∑
i

xi −∑
i6 j

xix j = 0. (2)

Sincem> 2, it is easily seen that the polynomialf (x1, . . . ,xm) ∈ K[x1, . . . ,xm] is
irreducible, soY(K) is an irreducible algebraic variety. HenceU(K) is connected
[2, II, §4.1, Prop. 1].



40 Ottmar Loos

8.7. Remark. In the situation of Th. 8.6, define

S(R) = Y(R)∩{1XR
}

for all R∈ k-alg. ThenS is a closed subscheme ofY, isomorphic toSpec(k/kd1)
where

d1 = d1(r) =
{

2n−1 if r = 2n is even
n if r = 2n+1 is odd

}
. (1)

Moreover,Y is geometrically the union ofU andS, andU is precisely the set of
points ofY where the canonical projectionY → Spec(k) is smooth. The proof is
left to the reader. As a consequence, we note:

U = Y ⇐⇒ d1(r) ·1k ∈ k×.

Clearlyd1(r) = 1 if and only if r = 2 or r = 3. HenceU = Y is affine forr = 2,3.

8.8. Theorem. LetX be a quadratic trace module of rank r. ThenX is separable
if and only if there exists ańetale cover R of k (i.e., ańetale and faithfully flat
R∈ k-alg) such thatX⊗R∼= Er ⊗R.

Proof. The condition is necessary because separability descends from faithfully
flat base extensions. The proof of the converse is by induction onr. The casesr =
0,1 being trivial, we assumer >2. By Th. 8.6 and [7, Cor. 17.16.3(ii)], there exists
an étale coverk′ ∈ k-alg such thatU(k′) 6= /0. Chooseu ∈ U(k′). Then Prop. 8.2
shows thatX⊗k′ ∼= (E1⊗k′)⊕X′ whereX′ is separable of rankr−1 overk′. By
induction,X′⊗k′ R

∼= Er−1⊗k R whereR is anétale cover ofk′ and hence ofk. It
follows thatX⊗k R∼= (E1⊗R)⊕ (X′⊗k′ R)∼= Er ⊗R.

9. The automorphism group I

9.1. Definition. Let X = (X,Q,T,1) be a quadratic trace module of rankr. An
automorphism ofX is an elementg of GL(X) such that

g(1) = 1 and T(g(x)) = T(x), Q(g(x)) = Q(x), for all x∈ X. (1)

We denote by Aut(X) the set of all automorphisms ofX, and letG = Aut(X) be the
k-group functorG(R) = Aut(X⊗R), for all R∈ k-alg. Note that the automorphism
group is trivial if r 61.

From the fact thatX is finitely generated and projective as ak-module it fol-
lows easily thatG is an affine finitely presentedk-group scheme.

9.2. Lemma. Let g = Lie(G) be the Lie algebra ofG = Aut(X). The following
conditions are equivalent for an element A ofEnd(X):

(i) A∈ g,
(ii) A(1) = 0 and T(A(x)) = B(x,A(x)) = 0, for all x∈ X,

(iii) A(1) = 0 and∆(x,A(x)) = 0, for all x∈ X.
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Proof. Abelongs tog if and only if Id+ εA∈ G(k(ε)) wherek(ε) is the algebra
of dual numbers. Now the equivalence of (i) and (ii) follows easily from 9.1.1.
Next, we have∆(x,A(x)) = T(x)T(A(x))−B(x,A(x)) which shows (ii) implies
(iii). On the other hand,∆(1,x) = T(x) by 1.1.4, and from∆(x,A(x)) = 0 for all
x we get by linearization that∆(x,A(y)) = −∆(A(x),y). HenceA(1) = 0 implies
thatT(A(x)) = ∆(1,A(x)) =−∆(A(1),x) = 0, so that (iii) implies (ii).

9.3. Theorem. Let X be a separable quadratic trace module of rank r>2.

(a) G = Aut(X) is smooth of fibre-dimension
(r−1

2

)
.

(b) If X = Er is split,g = Lie(G) is the set of alternating r× r matrices with
all row sums equal to zero.

(c) The “unit sphere”U of 8.1.2is a homogeneous space underG in the fol-
lowing sense: IfU(k) 6= /0, choose u∈ U(k) and decomposeX = k ·u⊕X′ as in
Proposition8.2. ThenH := CentG(u) ∼= Aut(X′), and the orbit mapβ : G → U,
g � // g(u), is smooth and surjective, so thatG/H ∼= U asétale sheaves. In gen-
eral, the mapϑ : G×U→ U×U, (g,u) � // (u,g(u)), is smooth and surjective.

Proof. (a), (b) By localization we may assume thatẊ = X/k·1 is free, soX has a
basis of the formx0 = 1,x1, . . . ,xm wherem= r−1. We first show thatg∈GL(X)
belongs toG(k) if and only if

g(1) = 1, (1)

T(g(xi)) = T(xi), for i = 1, . . . ,m, (2)

Q(g(xi)) = Q(xi), for i = 1, . . . ,m, (3)

B(g(xi),g(x j)) = B(xi ,x j), for 16 i < j 6m. (4)

These conditions are obviously necessary. Now suppose that they hold. Then (1)
implies that (2) holds fori = 0 as well so we haveT ◦g= T. Similarly, (3) holds for
i = 0 and we also haveB(g(1),g(x j)) = (r−1)T(g(x j)) = (r−1)T(x j) = B(1,x j),
for j = 1, . . . ,m. This impliesQ◦g = Q, sog is an automorphism.

Clearly, (1) – (3) are polynomial equations in the entries ofg (where we iden-
tify g with its matrix with respect to the basisx0, . . . ,xm). Note that (1) amounts to
r scalar equations for the components ofg(1). Since all this remains valid in any
scalar extension, we see thatG is defined by

r +2(r−1)+
(

r−1
2

)
= r2−

(
r−1

2

)
polynomial equations.

To prove smoothness ofG, it suffices by [6, II,§5, Prop. 2.7] that for every
prime idealp of k, the Lie algebra ofG⊗κ(p) has dimension

(r−1
2

)
. SinceG⊗

κ(p) ∼= Aut(X⊗κ(p)) andX⊗κ(p) splits over the algebraic closure ofκ(p) by
Cor. 8.5, this will follow once we have established the description ofg in (b).
Let, then,X = Er be split and letei be the standard basis ofkr . By 1.2, ∆ is
the standard scalar product onkr . HenceA∈ Matr(k) is alternating if and only if
∆(x,A(x)) = 0 for all x∈ kr , and since 1= 1X is the vector with all components
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equal to 1,A(1) = 0 means that all row sums ofA zero. In view of Lemma 9.2(iii)
this completes the proof of (a) and (b).

(c) Let u∈ U(k). SinceG leaves the discriminant form∆ invariant andX′ is
the orthogonal complement ofu with respect to∆ , we see thatH is the isomorphic
image ofAut(X′) under the mapg′ � // Idk·u⊕ g′, so we identifyAut(X′) and
H. We show thatG/H ∼= U as sheaves in théetale topology, i.e., that for every
R∈ k-alg and everyv∈U(R) there exists ańetale coverSof Randg∈G(S) such
thatg(u) = v. After a base change, we may assumeR= k for easier notation. By
Prop. 8.2,X = k · v⊕X′′ whereX′′ is also separable of rankr −1. Theorem 8.8
shows that there exists anétale coverE of k and an isomorphismh: X′⊗E →
X′′⊗E. Defineg(u) = v andg

∣∣
X′⊗E = h. Theng∈G(E) andg(u) = v.

SinceH ∼= Aut(X′) is smooth by (a), in particular, flat, it follows from [6, III,
§3, Proposition 2.5(a), Corollary 2.6] thatβ is faithfully flat and smooth. Hence
so areβ × IdU: G×U → U×U and IdG ×β : G×G → G×U. One checks that
the diagram

G×G //

IdG×β

��

G×U

ϑ

��

G×U
β×IdU

// U×U

is Cartesian, where the top arrow is given by(g,h) � // (hg−1,g(u)). By faithfully
flat descent,ϑ is faithfully flat and smooth.

In general, there exists a faithfully flatR∈ k-alg such thatU(R) 6= /0 [7, Corol-
lary 17.16.2]. Here we use the fact that the canonical projectionU → Spec(k) is
surjective, hence (by smoothness ofU) faithfully flat, cf. Theorem 8.6. By what
we proved already,ϑ ⊗R is faithfully flat and smooth, and therefore so isϑ by
faithfully flat descent.

9.4. The Dickson homomorphism. Since the discriminant algebra Dis(X) of a
quadratic trace moduleX depends functorially onX (cf. 3.4) and is compatible
with base change, there is a homomorphism

Dick = DickX: Aut(X)→ Aut
(

Dis(X)
)
, g � // Dis(g), (1)

called theDickson homomorphism, because it has properties similar to the classi-
cal Dickson homomorphism for orthogonal groups of even rank.

Suppose thatX is separable, whence alsoD = Dis(X) is a separable quadratic
algebra by 8.1. Then the canonical homomorphismhD: Z2 → Aut(D) of 7.2 is
an isomorphism [11, 5.3]. In fact, it is theuniqueisomorphism betweenZ2 and
Aut(D) because the automorphism group of the group schemeZ2 is trivial. We
then define

dick = dickX := h−1
D ◦Dick: Aut(X)→ Z2. (2)

Let in particularA∈ k-alg be finitely generated and projective as ak-module,
and letX = qt(A) be the associated quadratic trace module as in 1.3. Clearly,
Aut(A)⊂ Aut(X), and we define theDickson homomorphism of Aas the restric-
tion of DickX:

DickA = DickX

∣∣
Aut(A) : Aut(A)→ Aut(Dis(A)). (3)
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If A is étale, we put in analogy to (2),

dickA = h−1
D ◦DickA : Aut(A)→ Z2. (4)

An explicit formula for DickX is as follows. First letX have even rankr = 2n
and letg∈ Aut(X). Since Dis(X) is a shift ofD(Q), the automorphism Dick(g)
of D is the same as the automorphismD(g) ∈ Aut(D(Q)) (cf. 3.1(c)). Therefore,
[12, 2.4.1] shows that it is given by

Dick(g) ·sf (ξ ) = κ f ,g∗( f )(ξ ) ·1+det(g) ·sf (ξ ) (5)

where f is a representative ofQ andξ ∈
∧2n X. If X has odd rank 2n+1 then by

definition, Dis(X) = Dis(E1⊕X), and Dick(g) = Dis(IdE1
⊕g). Hence the above

formula applies with the appropriate modifications. Since
∧r X = Dis(X)/k ·1∼=∧2 Dis(X), (5) implies that

det(g) = det(Dick(g)). (6)

If X is separable, the analogous formula for dick is

det(g) = χ(dick(g)) = 1−2dick(g), (7)

cf. 7.1 and 7.2.3.
We use this to obtain an explicit formula forp = dick(g) in caseX = E2n is

split. Identify bilinear forms with matrices by means of the standard basisei and
put ξ = e1∧·· ·∧e2n. By 3.7, f = U2n is a representative ofQ andD = Dis(X) =
k · 1⊕ k · z wherez = sf (ξ ) satisfiesz2 = z; in particular,TD(z) = 1. Hence (5)
and (7) show Dick(g) ·z= κ f ,g∗( f )(ξ ) ·1+(1−2p)z. On the other hand, by 7.2.2,
Dick(g) · z = hD(p) · z = pTD(z) · 1+ (1− 2p)z. By comparison, we obtain the
formula

dick(g) = κ f ,g∗( f )(e1∧·· ·∧e2n). (8)

9.5. Lemma. LetX1, X2 be quadratic trace modules andX = X1⊕X2 their direct
sum. LetGi = Aut(Xi), G = Aut(X) and put Di := Dis(Xi) and D:= Dis(X). De-
note byθ : Aut(D1�D2)→ Aut(D) the isomorphism induced by the isomorphism
Θ : D1 � D2 → D of 6.5, and letDicki : Gi → Aut(Di) be the Dickson homomor-
phisms. Then the following diagram is commutative:

G1×G2

Dick1×Dick2 //

⊕
��

Aut(D1)×Aut(D2)

�
��

G
Dick

// Aut(D) Aut(D1 �D2)
θ

oo

(1)

where the left vertical arrow is the embedding(g1,g2)
� // g1⊕g2 =

(g1 0
0 g2

)
and

the right vertical arrow is the homomorphism introduced in7.3.1. If the Xi (and
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thereforeX) are separable, the analogous diagram fordick is

G1×G2

dick1×dick2 //

⊕
��

Z2×Z2

u
��

G
dick

// Z2

(2)

Proof. Let gi ∈ Gi(k) andhi = Dicki(gi) ∈ Aut(Di). SinceΘ is functorial, the
following diagram is commutative:

D1 �D2

Θ ∼=
��

h1�h2 // D1 �D2

∼= Θ

��

D
Dick(g1⊕g2)

// D

By definition ofθ we haveθ(h1 �h2) = Θ ◦ (h1 �h2)◦Θ−1. Henceθ(h1 �h2) =
Dick(g1⊕g2), which shows (1) is commutative when the group functors are eval-
uated atR= k. Since everything is compatible with base change, we have (1).

In the separable case, (2) follows from 7.3.3, the definition of dick in 9.4.2
and the fact thatθ ◦hD1�D2

: Z2 → Aut(D) is an isomorphism and therefore agrees
with hD.

9.6. Lemma. Let X be a quadratic trace module of rank two, thusX = qt(D)
where D is a quadratic algebra, cf.1.4. ThenAut(X) = Aut(D), andDick: Aut(D)
→Aut(Dis(D)) is the isomorphism induced by the isomorphismΦD: D→Dis(D)
of 3.5.2. Moreover, the following diagram is commutative:

Aut(D) Dick
∼=

// Aut(Dis(D))

Z2

hD

bbFFFFFFFFF hDis(D)

99tttttttttt

(1)

If X is separable, equivalently, if D iśetale, then

dick = h−1
D : Aut(D)→ Z2; (2)

in particular,
dick(σD) = 1∈ Z2(k), (3)

whereσD is the involution of D, cf.7.2.

Proof. After a base change, it suffices to show that the diagram

D
g

//

Φ

��

D

Φ

��

Dis(X)
Dick(g)

// Dis(X)
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is commutative for allg∈Aut(D) = Aut(X). Let f be a bilinear form representing
Q and letx∈ D. Then by 3.5.3 and sinceg(1) = 1,

Φ(g(x)) = f (g(x),1) ·1+sf (1∧g(x)) = f (g(x),1) ·1+det(g) ·sf (1∧x),

while by 9.4.5,

Dick(g)
(
Φ(x)

)
= κ f ,g∗( f )(1∧x) ·1+ f (x,1) ·1+det(g) ·sf (1∧x)

=
(

f (1,x)− f (1,g(x))+ f (x,1)
)
·1+det(g) ·sf (1∧x).

This proves our assertion because the trace formT(x) = f (1,x)+ f (x,1) is invari-
ant underg. Being an isomorphism of quadratic algebras,Φ respects the involu-
tions. Hence Dick(σD) = σDis(D), from which (1) follows immediately. Finally, (2)
and (3) follow easily from (1) and the definition of dick in 9.4.2.

9.7. Theorem. Let X be a separable quadratic trace module of rank r>2, with
automorphism groupG = Aut(X) and Dickson homomorphismdick: G → Z2,
and letG+ = Ker(dick).

(a) If X splits off a direct summand of rank two; in particular, ifX is split, then
dick has sections in the category of group schemes. In general,dick has sections
locally in theétale topology, so the sequence

1 // G+ inc // G
dick // Z2

// 0

is exact in théetale topology. Moreover,G+ is smooth anddick is smooth and
surjective.

(b) G+ has connected fibres. If r> 3 thenU is a homogeneous space under
G+; i.e., Theorem9.3(c)holds forG+ andH+ = G+∩H instead ofG andH.

Proof. (a) Assume thatX = X1 ⊕X2 whereX1 has rank two, and letGi =
Aut(Xi). By Lemma 9.6, dick1: G1 → Z2 is an isomorphism. Now it follows from
9.5.2 that a sections: Z2 →G of dick is given bys(p) = dick−1

1 (p)⊕ IdX2
, for all

p∈ Z2(R), R∈ k-alg. HenceG is the semidirect product ofG+ andZ2; in partic-
ular,G is isomorphic toG+×Z2 as ak-scheme. SinceG is smooth by Th. 9.3 it
follows thatG+ is smooth as well. Hence dick is smooth and obviously surjective.

In general,X splits over ańetale cover ofk by Theorem 8.8, so the assertions
follow by descent from the split case.

(b) We proceed by induction onr. For r = 2, dick:G → Z2 is an isomor-
phism by Lemma 9.6, whenceG+ is trivial. Now let r > 3. We show thatU is
a homogeneous space underG+. First, assume there exists a sectionu ∈ U(k),
decomposeX = k · u⊕X′ as in 8.2 and letH be the isotropy group ofu in G.
By Th. 9.3(c),G′ := Aut(X′) is isomorphic toH under the mapg′ � // Idk·u⊕g′.
From 9.5.2, specialized to the present situation (where nowG1 = Aut(k · u) is
trivial andG2 = G′) it follows that the restriction of dick toH corresponds to the
Dickson homomorphism dick′ of G′. This implies

H+ = CentG+(u)∼= (G′)+. (1)
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We show thatU∼= G+/H+ asétale sheaves. Letv∈U(R), R∈ k-alg. By Th. 9.3(c),
there exists ańetale coverE of Rand an elementg∈G(E) with g(u) = v. We now
modify g to an elementg+ having the same property.

Sincer−1>2, dick′: G′ → Z2 is anétale epimorphism by (a), so there exists
anétale coverE′ of E andg′ ∈ G′(E′) such that dick′(g′) = dick(g)−1. Putg+ :=
g◦ (Id⊕g′) ∈G(E′). Then stillg+(u) = v and furthermore,

dick(g+) = dick(g)udick(Id⊕g′) = dick(g)udick′(g′) = 0,

so g+ ∈ G+(E′). This proves thatU ∼= G+/H+ asétale sheaves. Now the same
arguments as in the proof of Th. 9.3(c) show that the orbit mapβ : G+ → U is
smooth and surjective, and so is the mapϑ : G+×U → U×U even whenU(k) is
empty.

By induction and (1),H+ ∼= (G′)+ has connected fibres, and by Th. 8.6 so does
U. Sinceβ : G+ → U is faithfully flat and therefore open it follows easily thatG+

has connected fibres.

9.8. The sign homomorphism. The constantk-group scheme defined by the
symmetric groupSr is denotedSr . An element ofSr(R) can be considered as a
locally constant map from the spectrum ofR to Sr or as a complete family of or-
thogonal idempotents(επ)

π∈Sr
of R, with multiplication(επ) · (ε ′π) = (ε ′′π ), where

ε ′′π = ∑στ=π εσ ε ′τ . The sign homomorphism

sgn:Sr → Z/2Z, sgn(π) =
{

0 if π is even
1 if π is odd

}
induces a homomorphism

sgn:Sr → Z2, sgn
(
(επ)

π∈Sr

)
= ∑

π∈Sr\Ar

επ , (1)

whereAr denotes the alternating group.
Let Er = kr be the split́etale algebra of rankr, with standard basise1, . . . ,er ,

and letPπ ∈GLr(k) be defined byPπ(ei) = e
π(i). It is well known that the map

ηr : Sr → Aut(Er), (επ)
π∈Sr

� // ∑
π∈Sr

επPπ (2)

is an isomorphism.

9.9. Lemma. The Dickson homomorphism of Er (cf. 9.4.4) is induced by the sign
homomorphism; i.e., the diagram

Sr

ηr ∼=
��

sgn
// Z2

Aut(Er)

dickErpppp

77ppppp

inc
// Aut(Er)

dickEr

OO

is commutative.
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Proof. We may assumer > 2, otherwise both sgn and dick are trivial. Letτ12 ∈
Sr be the transposition of 1 and 2. DecomposeEr = qt(Er) = X1⊕X2 where
X1 = E2 andX2 = Er−2. Thenη2(τ12) is the switch of factors inE2 = k×k, that
is, η2(τ12) = σE2

is the involution ofE2. Hence dickE2
(η2(τ12)) = 1 ∈ Z2(k) by

9.6.3, and 9.5.2 implies dick(ηr(τ12)) = 1 = sgn(τ12).
An arbitrary transpositionτ is conjugate toτ12 in the symmetric groupSr . As

Z2 is abelian, dick(ηr(τ)) = dick(ηr(τ12)) = 1 = sgn(τ). Since the transpositions
generateSr , it follows that dick(ηr(π)) = sgn(π) for all π ∈ Sr . Finally, Sr is
the sheaf in the Zariski topology associated to the constant functorF(R) = Sr , for
all R∈ k-alg. We have shown that the morphisms sgn and dickEr

◦ηr from Sr

to Z2 agree onF. Hence they are equal becauseZ2 is a Zariski sheaf [6, III,§1,
Prop. 1.7].

9.10. Torsors and cohomology. In 9.4, the Dickson homomorphism was de-
duced from the discriminant algebra functor. This can — to a certain extent —
be reversed. As an application, it will be seen that our definition of the discrimi-
nant algebra of ańetale algebra is compatible with Waterhouse’s [16].

Let T be a Grothendieck topology onk-alg. Fix a quadratic trace moduleX0
with discriminant algebraD0 = Dis(X0). Let qtm(X0) ⊂ qtmk be the subcate-
gory whose objects are quadratic trace modulesT -locally isomorphic toX0 and
whose morphisms are isomorphisms, and defineqa(D0)⊂ qak analogously. As the
functor Dis commutes with base change, it restricts to a functor Dis:qtm(X0)→
qa(D0). Let G0 = Aut(X0) andH0 = Aut(D0), and denote the categories ofG0-
torsors andH0-torsors (with respect toT ) over k by tor(G0) and tor(H0), re-
spectively. Then the Dickson homomorphism Dick:G0 → H0 induces a func-
tor, likewise denoted Dick:tor(G0) → tor(H0), which assigns to aG0-torsorX
the H0-torsor X ∨G0 H0 [6, III, §4, 3.2]. There are equivalences of categories
qtm(X0) → tor(G0) and qa(D0) → tor(H0) given byX

� // Isom(X0,X) and
D � // Isom(D0,D), with quasi-inverses given by twistingX0 resp.D0 with a tor-
sor [6, III, §5, Prop. 1.2]. Then the following diagram is commutative up to a
natural isomorphism of functors:

qtm(X0)
Dis //

Isom(X0,−)
��

qa(D0)

Isom(D0,−)
��

tor(G0) Dick
// tor(H0)

(1)

Indeed, letX ∈ qtm(X0) and putX := Isom(X0,X) ∈ tor(G0) as well asY :=
Isom(D0,Dis(X)) ∈ tor(H0). We must construct an isomorphismϕ = ϕX: X∨G0

H0 → Y of H0-torsors, natural inX. First, there is a morphismψ: X×H0 → Y
as follows: LetR∈ k-alg, f ∈ X(R) andh ∈ H0(R); thus f : X0⊗R→ X⊗R is
an isomorphism andh∈ Aut(D0⊗R). Since Dis commutes with base change, we
have an isomorphism

ψ( f ,h) := Dis( f )◦h : D0⊗R
h // D0⊗R

Dis( f )
// Dis(X⊗R) ∼= Dis(X)⊗R,
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i.e., ψ( f ,h) ∈ Isom(D0⊗R,Dis(X)⊗R) = Isom(D0,Dis(X))(R) = Y(R). Next,
for all g∈G0(R) = Aut(X0⊗R),

ψ( f ◦g,h) = Dis( f ◦g)◦h = Dis( f )◦Dick(g)◦h = ψ( f ,Dick(g)h),

by functoriality of Dis and definition of Dick. It is immediate thatψ( f ,h◦h′) =
ψ( f ,h)◦h′, for all h′ ∈ H0(R). Now X∨G0 H0 is the quotient sheaf ofX×H0 by
the equivalence relation( f ◦g,h) ∼ ( f ,Dick(g)h). Henceψ induces a morphism
ϕ: X∨G0 H0 →Y of H0-torsors which is automatically an isomorphism [6, III,§4,
Prop. 1.4]. Naturality ofϕX is easily checked.

The preceding argument only required that Dis be a functor commuting with
base change. Hence, analogous statements hold whenqtm(X0) is replaced by the
category of finitely generated and projectivek-algebras locally isomorphic to a
fixed algebraA0 andG0 by Aut(A0), with Dis and Dick for algebras defined as in
3.4.3 and 9.4.3.

Let us specialize to the case whereT is theétale topology andX0 = Er is the
split quadratic trace module of rankr. By Theorem 8.8,qtm(X0) is the category of
separable quadratic trace modules of rankr. Furthermore,D0 = Dis(Er) = k×k by
3.7 andhD0

: Z2 → H0 = Aut(D0) is an isomorphism. Denote as usual the pointed

set of isomorphism classes ofG-torsors by H1(k,G). Then (1) says that the as-
signmentX � // Dis(X) gives, in the separable case, a concrete realization of the
map H1(dick): H1(k,G0) → H1(k,Z2) between the cohomology sets. Similarly,
by Lemma 9.9, the assignmentE � // Dis(E) (whereE is anétale algebra of rank
r) realizes the map

H1(sgn): H1(k,Sr)→ H1(k,Z2).

This proves that our definition of the discriminant algebra of anétale algebra is
compatible with Waterhouse’s cohomological definition [16].

10. The automorphism group II: Centre and restriction map

10.1. Lemma. Let a,b,c∈ k be relatively prime. Consider the polynomials P(t)
= at2−bt +c andP̃(t) = t2−bt +ac and the k-algebras C:= k[t]/(P) and D:=
k[t]/(P̃) = k ·1⊕k ·z. LetC := Spec(C) andD := Spec(D) be the affine schemes
determined by C and D.

(a) Defineι : C → D by ι(x) = ax, for all x∈ C(R), R∈ k-alg. Thenι is an
open immersion whose image is the open subscheme ofD defined by the ideal
I = Da+D(b−z) of D.

(b) C is a flat, finitely presented and quasi-finite k-scheme. The image ofC
in S = Spec(k) is the open subscheme defined by the ideal ka+ kb. HenceC is
faithfully flat over k if and only if a and b are relatively prime.

(c) If b2−4ac∈ k× thenC is étale over k. The converse holds if ka+kb= k.

Proof. (a) We havex∈ C(R) if and only if x∈ R andP(x) = 0. HenceP̃(ax) =
aP(x) = 0, soax∈ D(R) and thusι mapsC to D. Next, ι is a monomorphism:
Let x1,x2 ∈ C(R) andax1 = ax2. Then 0= P(x1)−P(x2) = a(x1−x2)(x1 +x2)−
b(x1−x2) = −b(x1−x2), and 0= P(x1)(x1−x2) = c(x1−x2) imply x1−x2 = 0
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becausea,b,c are relatively prime. The open subschemeV of D defined byI is
the functor

V(R) = {y∈ D(R) : Ra+R(b−y) = R},

cf. [6, I, §1, 3.5]. The values ofι lie in V: Let x∈C(R) and letJ = Ra+R(b−ax).
Thena,b∈ J, hence alsoc = x(b−ax) ∈ J, soJ = R becausea,b,c are relatively
prime. Conversely, lety ∈ V(R), thusy(b− y) = ac andR= Ra+ R(b− y). We
must show thaty = ax for somex∈ C(R). Chooseu,v∈ Rsuch that

1 = ua+v(b−y). (1)

Multiplying this equation withy yields

y = yua+yv(b−y) = auy+(ac)v = a(uy+cv).

Put x = uy+ cv. Thenax = y, and it remains to show thatx ∈ C(R), i.e., that
x(b−ax) = c. Now

x(b−ax) = x(b−y) = (uy+cv)(b−y) = uy(b−y)+cv(b−y)
= u(ac)+v(b−y)c = (ua+v(b−y))c = c,

because of (1).

(b) Clearly,D is a flat and finite (of rank 2)k-scheme. Sinceι is an open
immersion,C is flat and quasi-finite overk, and it is obviously finitely presented.
The fibre ofC over a prime idealp of k is Spec(C⊗κ(p)) which is empty if and
only if a,b∈ p. This proves the remaining statements.

(c) D is étale if and only if the discriminantb2−4ac of P̃ is a unit ofk. Now
the assertions follow readily from (a) and (b).

10.2. Definition. We define a family of groupsCr (r ∈ N) which are open sub-
groups ofZ2 resp.µ2, depending on the parity ofr. Let

d(r) :=
r

gcd(2, r)
=
{

n if r = 2n is even
r if r = 2n+1 is odd

}
(1)

and consider the polynomials

Pr(t) = d(r)t2−gcd(2, r−1)t =
{

nt2− t if r = 2n
rt2−2t if r = 2n+1

}
. (2)

The coefficients ofPr are relatively prime so Lemma 10.1 is applicable. LetCr :=
k[t]/(Pr) and letCr = Spec(Cr) be the affine scheme defined byCr , i.e., the set-
valued functor onk-alg given by

Cr(R) = {λ ∈ R : Pr(λ ) = 0} (R∈ k-alg). (3)

Note thatC0 = Spec(k), that C2 = Z2 and thatC1
∼= µ2, the group scheme of

second roots of unity, under the mapλ
� // 1−λ .
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10.3. Lemma. (a) Cr is an affine faithfully flat finitely presented quasi-finite
abelian k-group scheme with the group law

λ uλ
′ = λ +λ

′− rλλ
′,

for all λ ,λ ′ ∈ Cr(R), R∈ k-alg. Moreover,C2n is étale whileC2n+1 is étale if and
only if 2∈ k×.

(b) The maps

ωn: C2n → Z2, ωn(λ ) = nλ ,

ψn: C2n+1 → µ2, ψn(λ ) = 1− (2n+1)λ

are open immersions and homomorphisms of group schemes. They are isomor-
phisms if and only if d(r) ∈ k×, and are constant if and only if d(r) = 0 in k.

(c) The homomorphism

χr : Cr → µ2, χr =
{

χ ◦ωn if r = 2n
ψn if r = 2n+1

}
(whereχ: Z2 → µ2 is as in7.1) is a monomorphism if r≡ 1 (mod 2) or r ≡ 0
(mod 4) while the kernel ofχ4l+2 is K(R) = {λ ∈ R : λ 2 = λ , 2λ = 0}. It is an
isomorphism if and only if r∈ k×.

Proof. (a) The scheme-theoretic properties ofCr follow from Lemma 10.1 and
the rest is a straightforward computation.

(b) If r = 2n thenωn is the open immersionι of Lemma 10.1. Ifr = 2n+1 then
ψn is the composition ofι and the isomorphismC1 → µ2 given byµ

� // 1−µ.
Henceωn and ψn are open immersions. The homomorphism property is easily
checked. The last statement is obvious.

(c) If r is odd thenχr is a monomorphism by (b). Now letr = 2n and assume
that χ(ωn(λ )) = 1− 2nλ = 1. Then 2nλ = 0 and therefore 2nλ 2 = 2λ = 0. If
n = 2l then λ = nλ 2 = 2lλ 2 = 0. If n = 2l + 1 thenλ = (2l + 1)λ 2 = λ 2, so
λ ∈ K(R). Conversely,K ⊂ Ker(χ4l+2) is clear from the definitions. Finally, if
r ∈ k× then µ

� // r−1(1− µ) is the inverse ofχr . Conversely, assume thatχr

is an isomorphism but thatr /∈ k×. After dividing by a suitable maximal ideal,
we may assumer = 0 in k. Thenχr is constant, butµ2 is not the trivial group,
contradiction.

10.4. The quadratic form Q0 and the restriction map. Let X be a separable
quadratic trace module of rankr >2, letX0 = Ker(T) and define

Q0 :=−Q
∣∣
X0. (1)

By 8.3,X0 is a direct summand ofX of rankr−1 andQ0 is primitive. The minus
sign is introduced so that the polar formB0 of Q0 becomes the restriction of∆ to
X0:

B0(x,y) = ∆(x,y) (x,y∈ X0), (2)
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as is immediate from 1.1.3. SupposeX = EZ
r split over Z, with standard basis

e1, . . . ,er . Thenvi = ei −ei−1 (i = 2, . . . , r) is a basis ofX0, and

Q0(vi) = 1, B0(vi ,v j) =

{
2 if i = j

−1 if |i− j|= 1
0 otherwise

}
, (3)

soQ0 is the quadratic form of the root system Ar−1.
An automorphismg of X leavesX0 invariant and induces an orthogonal trans-

formation of the quadratic formQ0. We thus have a restriction homomorphism

res:G = Aut(X)→O(Q0), g � // g
∣∣X0. (4)

Note that

det(res(g)) = χ(dick(g)) = det(g) (g∈G(R), R∈ k-alg). (5)

Indeed, pick an elementu∈ X with T(u) = 1, writeX = k ·u⊕X0 and thus iden-
tify g with a formal 2× 2-matrix. Theng(u) ≡ u (modX0), so g =

(1 0
∗ h

)
where

h = res(g), which implies det(res(g)) = det(g) = χ(dick(g)) by 9.4.7. Hence res
induces a homomorphism

res+: G+ = Ker(dick)→ SO(Q0). (6)

10.5. Theorem. Let X be a separable quadratic trace module of rank r>2 over
k with automorphism groupG = Aut(X), and letCent(G) be the centre ofG in
the sense of group schemes [6, II,§1, 3.9].

(a) There is an isomorphismcen:Cr
∼= // Cent(G) given by

cen(λ )(x) = χr(λ )x+λT(x)1X, (1)

for all λ ∈ Cr(R), x∈ X⊗R, R∈ k-alg.

(b) Let resbe the restriction homomorphism of10.4.4and letcen0: µ2 →
O(Q0) be the monomorphismλ � // λ · IdX0. Then the diagram

Cr

χr

��

cen // G

res
��

µ2
cen0

// O(Q0)

(2)

is commutative and in fact Cartesian, i.e.,res−1(µ2 · IdX0) = Cent(G). Hence the
kernel of res is central inG and the restrictioncen:Ker(χr) → Ker(res) is an
isomorphism.

(c) The restriction of the determinant and the Dickson homomorphism to the
centre ofG are as follows:

det(cen(λ )) =
{

χr(λ ) if r = 2n
1 if r = 2n+1

}
, (3)

dick(cen(λ )) =
{

ωn(λ ) if r = 2n
0 if r = 2n+1

}
, (4)
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for all λ ∈ Cr(R), R∈ k-alg.

Proof. (a) A straightforward computation shows that cen:Cr →GL(X) is a group
homomorphism. It is a monomorphism: If cen(λ ) = Id then cen(λ )

∣∣X0 = χr(λ ) ·
IdX0 which impliesχr(λ ) = 1 because rkX0 = r −1> 1. For an elementu with
T(u) = 1 (which exists by Lemma 8.3) it then follows thatu = cen(λ ) ·u = u+
λ ·1X and henceλ = 0, because 1X is unimodular.

We show next that the centralizer ofG in End(X) consists of all endomorphism
of the form

h
λ ,µ(x) = µx+λT(x)1X (5)

whereλ ,µ ∈ k. Since 1X andT are invariant under automorphisms, it is evident
that h

λ ,µ commutes with all automorphisms ofX in all base ring extensions. In
particular, cen(λ ) = h

λ ,1−rλ
centralizesG. Conversely, leth∈ End(X) have this

property. After passing to a faithfully flat base extension we may assume thatX is
split. Thenh commutes with all permutations of the standard basis vectorsei (cf.
9.8), so the matrix(ai j ) of h satisfiesai j = a

π(i),π( j) for all π ∈ Sr . This means
aii = a11 and ai j = a12 for all i and all j 6= i. Henceh = h

λ ,µ for λ = a12 and
µ = a11−a12.

To complete the proof of (a), it remains to show, after a base change, that

h = h
λ ,µ ∈ Aut(X) ⇐⇒ µ = 1− rλ andλ ∈ Cr(k). (6)

SinceT(1X) = r, we haveh(1X) = (µ + rλ )1X andT(h(x)) = (µ + rλ )T(x), for
all x∈ X. Hence

h(1X) = 1X and T ◦h = T ⇐⇒ µ = 1− rλ .

Assume that this is the case. Then a simple computation using 1.1.1 shows

Q(h(x))−Q(x) = (µ
2−1)Q(x)+

[
(r−1)λ µ +

(
r
2

)
λ

2
]
T(x)2

= (r2
λ

2−2rλ )Q(x)+
[
(r−1)λ −

(
r
2

)
λ

2
]
T(x)2

= F(λ )Q(x)−G(λ )T(x)2 (7)

for all x∈ X, where

F(t) = (1− rt)2−1 = r2t2−2rt and G(t) =
(

r
2

)
t2− (r−1)t.

This proves the implication from right to left of

Q◦h
λ ,µ = Q ⇐⇒ F(λ ) = G(λ ) = 0.

For the implication from left to right, let firstx∈ X0. Then (7) saysF(λ ) ·Q0 = 0
and thereforeF(λ ) = 0, becauseQ0 is primitive (8.3). Now choosing anx with
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T(x) = 1 in (7) yieldsG(λ ) = 0. — It is an elementary exercise to show that the
ideal ofk[t] generated byF andG is precisely the one generated byPr . Hence

F(λ ) = G(λ ) = 0 ⇐⇒ P(λ ) = 0 ⇐⇒ λ ∈ Cr(k).

This completes the proof of (6) and hence of (a).

(b) Commutativity of (2) is evident from (1). Now letg∈G(k) with res(g) =
µ · IdX0 whereµ ∈ µ2(k). Chooseu∈ X with T(u) = 1 and putw := g(u)− µu.
Theng is given by

g(x) = µx+T(x)w (8)

for all x∈X. Indeed, forx∈X0 this is clear, whileµu+T(u)w= µu+g(u)−µu=
g(u), so the assertion follows fromX = k ·u⊕X0. We claim that∆(w,X0) = 0.
Indeed, for allx∈ X0,

∆(w,x) = ∆(g(u)−µu,x) = ∆(u,g−1(x))−∆(u,µx) = 0,

since∆ is invariant underg andg(x) = µx = g−1(x). It follows thatw∈ (X0)⊥ =
k ·1X, because∆ is nondegenerate andX0 = 1⊥X by 1.1.4. Thusw = λ1X, and then
(8) says thatg = h

λ ,µ . By what we proved in (a),g = cen(λ ) is central.

(c) Let u∈ X with T(u) = 1. Then cen(λ ) ·u≡ u (modX0) because cen(λ )
preservesT, and cen(λ ) inducesχr(λ ) · Id onX0 by (2). AsX = k·u⊕X0 we have
det(cen(λ )) = χr(λ )r−1. This proves (3) becauseχr(λ ) is a second root of unity.

Let us compute the Dickson invariant. By faithfully flat descent and Theo-
rem 8.8 we may assumeX = Er split. Consider the split quadratic trace moduleEZ

r
over the integers, letA= Z[t]/(Pr) be the coordinate ring ofCZ

r , let t = can(t) ∈ A
andg := cen(t) ∈ Aut(EZ

r ⊗A). Then by (3), Lemma 10.3(c) and 9.4.7,

detg =
{

1−2ωn(t) if r = 2n
1 if r = 2n+1

}
= 1−2dick(g). (9)

By Lemma 10.3,A is flat overZ, in particular, it it a torsion-free abelian group.
Hence (9) shows that (4) holds in the special caseλ = t ∈ A. Returning toX = Er

over the ringk, let λ ∈Cr(R). Then there is a ring homomorphismA→Rsending
t to λ , and since(EZ

r ⊗Z A)⊗ϕ R= EZ
r ⊗Z R= X⊗R, we have (4) in general.

10.6. Corollary. We keep the assumptions and notations of10.5.

(a) If r = 2n is even then the multiplication mapmult: G+×Cent(G)→G is
an open immersion. Its image is the inverse image underdick of the image ofωn

in Z2, cf.10.3(b). In particular,G+∩Cent(G) = {1}.
(b) If r = 2n+1 is odd thenCent(G)⊂G+.

Proof. One checks, using the first formula of 10.5.4, that the diagram

G+×C2n

ϕ

��

pr2 // C2n

ωn

��

G
dick

// Z2
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is Cartesian, whereϕ(g+,λ ) = g+ ·cen(λ ). Henceϕ is an open immersion, being
the base change via dick of the open immersionωn (Lemma 10.3(b)). Since cen
is an isomorphism,ϕ is isomorphic to mult:G+×Cent(G)→G. This proves (a)
while (b) is immediate from the second formula of 10.5.4.

10.7. Lemma. LetX be a separable quadratic trace module of rank r>2 and let
u ∈ X with T(u) = 1. Then the mapη � // u∧η is an isomorphism

∧r−1 X0 →∧r X, independent of the choice of u. Treating this as an identification, the (signed)
discriminant of Q0 is

δQ0 = (−1)(
r−1

2 ) ·d(r) ·δX (1)

where d(r) is defined in10.2.1. Hence Q0 is separable if and only if d(r) ∈ k×.

Here we call a quadratic formq on a finitely generated and projective module
M separableif its discriminant is nonsingular. This means that its polar formb is
nonsingular ifM has even rank, and thatq is semiregular [10, IV,§3] if M has odd
rank.

Proof. Independence ofu is easily seen. By Theorem 8.8, it suffices to consider
the split quadratic trace moduleEZ

r over Z. Chooseu = e1. With respect to the
basisvi = ei −ei−1 (i = 2, . . . , r) of X0, the matrixA =

(
B0(vi ,v j)

)
is the Cartan

matrix of type Ar−1 (cf. 10.4), so detA = r [4]. Put η = v2∧ ·· · ∧ vr and ξ =
e1∧η = e1∧·· ·∧er . Then forr = 2n even,

2δQ0(η ,η) = (−1)n−1 detA = (−1)n−12nδX(ξ ,ξ ),

while for r = 2n+1 odd,

δQ0(η ,η) = (−1)n det(A) = (−1)nrδX(ξ ,ξ ).

10.8. Theorem. Let X be a separable quadratic trace module of rank r>2 with
automorphism groupG = Aut(X). Suppose that d(r) ∈ k×; equivalently, by10.7,
that Q0 is separable.

(a) Let r = 2n be even. Then Q0 is a semiregular quadratic form of rank2n−1
and the maps

mult: G+×Cent(G)
∼= // G, (1)

dick: Cent(G)
∼= // Z2, (2)

res+: G+ ∼= // SO(Q0) (3)

are isomorphisms.

(b) Let r = 2n+1 be odd. Then Q0 is a nonsingular quadratic form of rank2n.
The centre ofG is isomorphic toµ2 and is contained inG+. The restriction map
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res:G→O(Q0) is an isomorphism compatible with the Dickson homomorphisms,
i.e., the diagram

G

dick
��

>>
>>

>>
>>

res
∼=

// O(Q0)

dick
||yyyyyyyy

Z2

(4)

is commutative.

Here dick:O(Q0) → Z2 is the usual Dickson homomorphism of the even or-
thogonal group.

Proof. (a) The first statement is clear from Lemma 10.7. Asd(r) = n∈ k×, ωn

is an isomorphism by Lemma 10.3(b). Now (1) follows from Cor. 10.6(a). Also,
Theorem 10.5 shows that dick:Cent(G) → Z2 is an isomorphism with inverse
cen◦ω−1

n , which proves (2).
It remains to prove (3). Let us putH := SO(Q0) andπ := res+ for simpler

notation. First,π is a monomorphism becauseKer(res) ⊂ Cent(G) by Theo-
rem 10.5(b) andG+ ∩Cent(G) = {1} by Cor. 10.6(a). Next, supposek = K is
a field. It is known thatH, which is a form ofSO2n−1, is a connected smooth alge-
braicK-group of dimension

(2n−1
2

)
. By Theorems 9.3 and 9.7,G+ is also smooth

of the same dimension, and Lie(π): Lie(G+) = Lie(G)→ Lie(H) is injective be-
causeπ is a monomorphism. Since the dimension of a smoothK-group equals the
dimension of its Lie algebra, Lie(π) is an isomorphism. It follows thatπ is an open
immersion [6, II,§5, Cor. 5.5(b)], and therefore even an isomorphism becauseH
is connected.

Finally, return to the case of an arbitrary base ringk and letG+ act onH via
g+ ·h = π(g+)h. Thenπ is the orbit mapg � // g ·e wheree∈ H(k) is the unit
element, and the centralizer ofe in G+ is trivial becauseπ is a monomorphism.
Now [6, III, §3, Prop. 2.1] shows thatπ is an isomorphism.

(b) By Lemma 10.7,Q0 is nonsingular ifr is odd. The structure ofCent(G)
is clear form Cor. 10.6(b) and the fact thatχr : Cr → µ2 is an isomorphism, by
Lemma 10.3(c), becauser = d(r)∈ k×. Since alsoT(1X) = r ∈ k×, we haveX = k·
1X⊕X0 ask-modules. Moreover,Q= 〈

(r
2

)
〉⊥ (−Q0) (orthogonal sum of quadratic

forms) by 1.7. It follows easily that res is an isomorphism, with inverseh � //
(1 0

0 h

)
with respect to the above decomposition.

It remains to prove (4). Letg ∈ Aut(X) and h = res(g) ∈ O(Q0). Consider
the quadratic formQ̇ on Ẋ as in 2.3.1. Then thek-module isomorphismϕ: X0 →
Ẋ, ϕ(x) = ẋ (the canonical image ofx in Ẋ = X/k · 1X) satisfiesQ̇(ϕ(x)) = r ·
Q0(x), and hence is an invertible similitude. By [12, Theorem 2.3(b)], it induces
an isomorphismD(ϕ): D(Q0)→D(Q̇) of discriminant algebras. Observe that the
isomorphismḣ of Ẋ induced byh is the same as the transformation ˙g induced by
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g. Hence by functoriality ofD, the diagram of isomorphisms

D(Q0)

D(h)
��

D(ϕ)
// D(Q̇)

D(ġ)
��

D(Q0)
D(ϕ)

// D(Q̇)

(5)

is commutative. By Theorem 3.8, there is a natural isomorphismρ: D(Q̇)+ ε →
Dis(X) (whereε = (−1)nϖ(n)δX) and hence a commutative diagram

D(Q̇)+ ε

D(ġ)
��

ρ
// Dis(X)

Dick(g)
��

D(Q̇)+ ε
ρ

// Dis(X)

(6)

Now observe that for a separable quadratic algebraD, and for a shiftD + ε of
D which is also separable, we haveAut(D) = Aut(D + ε). This follows from
the isomorphismshD andhD+ε

from Z2 to Aut(D) (cf. 7.2 and 9.4) and the fact
that D andD + ε have the same standard involution, cf. 3.1.3. Applying this to
D = D(Q0), we obtain from (5) and (6) the commutative diagram of isomorphisms

D(Q0)+ ε ′

D(h)
��

ψ
// Dis(X)

Dick(g)
��

D(Q0)+ ε ′
ψ

// Dis(X)

(7)

whereε ′ corresponds toε underD(ϕ) andψ = ρ ◦D(ϕ).
By definition, Dick(g) = hDis(X)(dick(g)) andD(h) = h

D(Q0)(dick(h)). Now
dick(g) = dick(h) follows from (7) and the fact that the isomorphismhD: Z2 →
Aut(D) is unique, for a separable quadratic algebraD, as remarked in 9.4.

10.9. Theorem. Let X be separable of rank r> 2 with automorphism group
G = Aut(X). Suppose that d(r) = 0 in k, equivalently, by10.7, that Q0 has zero
discriminant.

(a) Then r= 0 in k and therefore1X ∈ X0. The quadratic form Q0 induces a
nonsingular quadratic form̄Q of rank r−2 on X̄ := X0/k ·1X.

(b) G has trivial centre. Denote byO1(Q
0) the isotropy group of1X in O(Q0).

Then the restriction map

res:G
∼= // O1(Q

0) (1)

is an isomorphism, and there is a split exact sequence

0 // X̄∗
a

i // O1(Q
0)

p
// O(Q̄) // 1 (2)
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described as follows: Denote the canonical map X0 → X̄ by x � // x̄. Then for a
linear form f onX̄, i( f ) ∈O1(Q

0) is given by

i( f )(x) = x+ f (x̄) ·1X (x∈ X0),

while p(h) = h̄ is the map on̄X induced by h∈O1(Q
0).

Proof. (a) By 10.2.1,d(r) = 0 in k implies r = 0 in k. HenceT(1X) = r = 0,
so 1X ∈ X0. By 1.1.4,X0 = 1⊥X with respect to∆ , and since∆ is nonsingular,
k ·1X = (X0)⊥. As B0 is the restriction of∆ to X0 by 10.4.2, the kernel ofB0 is
k ·1X. Now 1X is unimodular, sōX = X0/k ·1X is finitely generated and projective
of rank r −2. Moreover,

(r
2

)
= d(r)d(r −1) shows thatQ0(1X) = −

(r
2

)
= 0 in k,

henceQ0 induces a quadratic form̄Q on X̄ whose polar formB̄ is the nonsingular
symmetric bilinear form induced byB0 on X̄.

(b) From 10.2.2, 10.2.3 andd(r) = 0 it is clear thatCr is the trivial group and
hence so isCent(G) by Theorem 10.5(a). Since automorphisms fix 1X, res mapsG
to O1(Q

0). The kernel of res, being central (Theorem 10.5(b)), is trivial, so res is a
monomorphism. To determine its image, chooseu∈ X with T(u) = 1, decompose
X = k ·u⊕X0 and identify elements of GL(X) with formal 2×2-matrices. Then
an easy computation shows thatg∈ G(k) if and only if g =

(1 0
w h

)
wherew∈ X0,

h∈O1(Q
0) and

Q(w)+B(u,w) = 0, (3)

B(w,h(x))+B(u,h(x)−x) = 0 (x∈ X0). (4)

After replacingx by h−1(x), (4) is equivalent to

B0(w,x) = B(u,x−h−1(x)) (x∈ X0). (5)

Now let h ∈ O1(Q
0) be given. Then finding an elementg ∈ G(k) with res(g) =

h amounts to finding a solutionw ∈ X0 of (3) and (5). As a function ofx, the
right hand side of (5) is a linear form onX0 which vanishes forx = 1X. Hence
it induces a linear form on̄X which is uniquely representable bȳB. Lifting this
back toX0, there existsw′ ∈ X0, unique modulok ·1X, such that (5) holds for all
w = λ ·1X +w′. Then condition (3) becomes:

0 = Q(λ ·1+w′)+B(u,λ ·1+w′)

=
(

r
2

)
λ

2 +(r−1)T(w′)+Q(w′)+(r−1)λT(u)+B(u,w′)

= Q(w′)−λ +B(u,w′),

becauser =
(r

2

)
= 0 in k andT(w′) = 0. This proves the existence ofw, as desired.

Since these arguments remain valid in all base extensions, we have (1).
It remains to show (2). Choose a decompositionX0 = k ·1⊕M and letQ′ =

Q0
∣∣M. ThenQ0 = 〈0〉 ⊥Q′, and the canonical projection induces an isomorphism

(M,Q′) ∼= (X̄,Q̄). Writing the elements of GL(X0) again as 2×2-matrices with
respect to this decomposition, it is easy to see thath ∈ O1(Q

0) if and only if
h =

(1 α

0 h′
)

whereh′ ∈ O(Q′) andα ∈ M∗ are arbitrary. From this, the remaining
assertions follow readily.
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10.10. Corollary. LetX be a separable quadratic trace module of rank r>2 and
G = Aut(X). Then

G is reductive ⇐⇒ d(r) ∈ k× ⇐⇒ Q0 is separable.

Proof. The equivalence of the second and third condition follows from Lem-
ma 10.7. Supposed(r) ∈ k×. If r = 2n then by Theorem 10.8(a),G ∼= SO(Q0)×
Z2. After a faithfully flat base change,Q0 becomes isomorphic to the standard
quadratic form of rank 2n−1 and thereforeSO(Q0) isomorphic toSO2n−1 which
is known to be reductive. Hence so isG. The proof in caser odd is similar, using
Theorem 10.8(b) and reductivity ofO2n. On the other hand, supposed(r) /∈ k×.
Then there exists a prime idealp of k such thatd(r) = 0 in κ(p). As d(2) = 1, we
haver >3. Then the fibreG⊗κ(p) has a unipotent radical of dimensionr−2 by
Theorem 10.9.

11. Appendix: Some determinant formulas

11.1. The half- and the quarter-determinant Then×nunit matrix is denotedIn
and the transpose of a matrixA is A>. If A is a matrix of odd order with indetermi-
nate entries, the determinant ofA+A> is divisible by 2, so there is a well-defined
integral polynomial hdet(A) in the entries ofA such that

2hdet(A) = det(A+A>), (1)

called thehalf-determinantof A. Similarly, if A is of even order 2n, thequarter-
determinantof A is the integral polynomial qdet(A) in the entries ofA satisfying

4 qdet(A) = det(A+A>)− (−1)n det(A−A>), (2)

see [12, 1.1] for details. The Pfaffian of an alternating matrix of even order is
denoted Pf(A).

11.2. Lemma. Denote by Un the n×n-matrix which has zeros in and below the
diagonal and all entries above the diagonal equal to1. Then

det(Un +U>
n ) = (−1)n−1(n−1), (1)

det(nIn−Un−U>
n ) = (n+1)n−1, (2)

hdet(U2n+1) = n, (3)

Pf(U2n−U>
2n) = 1, (4)

qdet(U2n) =−bn/2c, (5)

qdet(U2n−nI2n) = ϖ(n). (6)

Proof. (1) and (2) are special cases of the formula

det
(
aIn +b(Un +U>

n )
)

= (a−b)n−1[a+(n−1)b] (7)
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which is easily proved by using the basise1,e2−e1, . . . ,en−e1 of kn. For the re-
maining formulas, we may assumek = Z. Then (3) is clear from (1) and 11.1.1
since we can cancel a factor 2. Formula (4) follows by induction from the expan-
sion formula for the Pfaffian given in [1, Exercise 5 for§5, p. 86]. Formula (5) is a
consequence of 2.2.4, (1) and (4) and 11.1.2. Finally, by 11.1.2, (2), (4) and 2.3.3,

4qdet(U2n−nI2n) = det(U2n +U>
2n−2nI2n)− (−1)n det(U2n−U>

2n)

= (2n+1)2n−1− (−1)n = 4ϖ(n),

cf. 2.3.3.

11.3. Lemma. Let A and D be matrices of size l× l and m×m with coefficients
in k, let x,u∈ kl and y,v∈ km be row vectors and letα ∈ k. Then

det

(
α v
y> D

)
= α det(D)−vD†y> (1)

= α det(D)+det

(
0 v
y> D

)
, (2)

α
m−1 det

(
α v
y> D

)
= det(αD−y>v) , (3)

det

(
A x>v

y>u D

)
= det(A)det(D)− (uA†x>)(vD†y>). (4)

If m = 2n and U is an m×m-matrix, then

hdet

(
α 2v
0 U

)
= det

(
α v

2v> U +U>

)
. (5)

Here A† denotes the adjoint matrix, so AA† = det(A)Il ; in particular, A† = 1 if
l = 1.

Proof. Formula (1) follows by expanding with respect to the first row and column,
see also [3, p. 640, Exercise 13]. For (2), use (1) in the special caseα = 0. To prove
the remaining formulae, we may by a standard density argument (or by working
in the rational function field in the indeterminate entries ofA,D,x,u,y,v overQ)
assume thatA is invertible. Then, for rectangular matricesB,C of the appropriate
size, a calculation shows(

A B
C D

)
=
(

Il 0
CA−1 Im

)(
A 0
0 D−CA−1B

)(
Il A−1B
0 Im

)
(6)

which implies

det

(
A B
C D

)
= det(A)det(D−CA−1B). (7)

Let here in particularl = 1 andA = α ∈ k×, soB = v andC> = y are inkm. Then
multiplying (7) byαm−1 yields

α
m−1 det

(
α v
y> D

)
= α

mdet(D−α
−1y>v) = det(αD−y>v),
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which is (3).
Now let B = x>v andC = y>u. ThenCA−1B = y>(uA−1x>)v. On the other

hand, forλ ∈ k, by (3) and (1),

det(D−λy>v) = det

(
1 λv
y> D

)
= det(D)−λvD†y>. (8)

Substituting (8) into (7) whereλ = uA−1x> = det(A)−1(uA†x>) yields (4).
Finally, to prove (5), we may assume thatα and the entries ofv andU are

indeterminates and work in the polynomial ringZ[α,v,U ]. Then

2hdet

(
α 2v
0 U

)
= det

(
2α 2v
2v> U +U>

)
= 2det

(
α v

2v> U +U>

)
,

so the assertion follows by cancelling the factor 2.

11.4. Lemma. Let α ∈ k, y,v∈ km and D∈Matm(k). Then if m= 2,

hdet

(
α v
y> D

)
= α det(D+D>)+det

(
0 v+y

v>+y> D

)
, (1)

while for m= 3,

qdet

(
α v
y> D

)
= αhdet(D)+det

(
0 v
v> D

)
+det

(
0 y
y> D

)
−v(D×D>)y>.

(2)
Here A×B = (A+B)†−A†−B† is the bilinear map determined by the quadratic
map A � // A†.

Proof. We may assume thatα and the entries ofv, y andD are indeterminates
and work in the ringZ[vi ,yi ,di j ]. Let first m = 2. ThenD � // D† is linear and
commutes with transposition. Hence by 11.1.1 and 11.3.1,

2hdet

(
α v
y> D

)
= det

(
2α v+y

v>+y> D+D>

)
= 2α det(D+D>)− (v+y)(D+D>)†(v+y)>

= 2α det(D+D>)−2(v+y)D†(v+y)>

= 2α det(D+D>)+2det

(
0 v+y

v>+y> D

)
.

For m= 3, we use 11.1.2 and again 11.3.1:

4qdet

(
α v
y> D

)
= det

(
2α v+y

v>+y> D+D>

)
−det

(
0 v−y

y>−v> D−D>

)
= 2α det(D+D>)− (v+y)(D+D>)†(v+y)>

+(v−y)(D−D>)†(y−v)>

= 4αhdet(D)−4vD†v>−4yD†y>−4v(D×D>)y>.
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11.5. Lemma. Let F1 and F2 be square matrices of size2l and 2m, respectively,
and let x∈ k2l and y∈ k2m be row vectors. Then

qdet

(
F1 x>y
0 F2

)
= qdet

(
F1 0
0 F2

)
−hdet

(
0 x
0 F1

)
hdet

(
0 y
0 F2

)
. (1)

Proof. Since the asserted formula is a polynomial identity with integer coefficients
in the entries ofF1,F2,x,y, we may assume these entries to be indeterminates and
work over the ringZ[F1,F2,x,y]. Put A = F1 + F>

1 , D = F2 + F>
2 , R = F1−F>

1
and S= F2− F>

2 . By Lemma 11.6, and since the square of the Pfaffian is the
determinant, we have

det

(
R x>y

−y>x S

)
= det

(
R 0
0 S

)
.

Now 11.1.2 and 11.3.4 imply

4qdet

(
F1 x>y
0 F2

)
−4qdet

(
F1 0
0 F2

)
= det

(
A x>y

y>x D

)
−det

(
A 0
0 D

)
=−(xA†x>)(yD†y>). (2)

On the other hand, by 11.1.1 and 11.3.1,

2hdet

(
0 x
0 F1

)
= det

(
0 x
x> A

)
=−xA†x> (3)

and similarly for the second factor. Now the assertion follows from (2) and (3) by
cancelling the factor 4.

11.6. Lemma. (a) Let R and S be alternating matrices with entries from k of
even order2l and 2m, respectively, and let x∈ k2l and y∈ k2m be row vectors.
Then

Pf

(
R x>y

−y>x S

)
= Pf

(
R 0
0 S

)
= Pf(R) ·Pf(S). (1)

(b) Let R and S be alternating matrices of odd order2l +1 and2m+1, and
let x∈ k2l+1 and y∈ k2m+1 be row vectors. Then

Pf

(
R x>y

−y>x S

)
= Pf

(
0 x

−x> R

)
·Pf

(
0 y

−y> S

)
. (2)

Proof. (a) By a standard density argument it suffices to prove this in caseR is
invertible. A calculation shows that(

I2l 0
y>x I2m

)(
R 0
0 S

)(
I2l x>y
0 I2m

)
=
(

R Rx>y
y>xR S+y>xRx>y

)
.
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SinceR is alternating, we havexRx> = 0. Now the lemma follows from

Pf(P>XP) = det(P)Pf(X), Pf

(
R 0
0 S

)
= Pf(R)Pf(S) (3)

(see [1,§5.2, Prop. 1]), and the fact that asx runs overk2l so doesxR, becauseR
is invertible.

(b) Let

A =
(

0 1
−1 0

)
, B =

(
−x 0
0 y

)
, C =−B>, D =

(
R 0
0 S

)
.

We compute the Pfaffian ofX :=
(

A B
C D

)
in two ways. SinceA is invertible and

(A−1B)> = CA−1, we have by 11.3.6 and (3) that

Pf

(
A B
C D

)
= Pf

(
A 0
0 D−CA−1B

)
= Pf(D−CA−1B),

and a computation showsCA−1B =
(

0 −x>y
y>x 0

)
. Hence Pf(X) equals the left

hand side of (2). On the other hand, let

J =

1 0 0 0
0 0 1 0
0 −I2l+1 0 0
0 0 0 I2m+1

 .

Then det(J) = 1 and

J>XJ =

 0 x 1 0
−x> R 0 0
−1 0 0 y
0 0 −y> S

 .

Hence, by (3) and (1),

Pf(X) = Pf

 0 x 1 0
−x> R 0 0
−1 0 0 y
0 0 −y> S

= Pf

(
0 x

−x> R

)
·Pf

(
0 y

−y> S

)
.
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