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Abstract Based on the construction of the discriminant algebra of an even-ranked
guadratic form and Rost's method of shifting quadratic algebras, we give an ex-
plicit rational construction of the discriminant algebra of finite-rank algebras and,
more generally, of quadratic trace modules, over arbitrary commutative rings. The
discriminant algebra is a tensor functor with values in quadratic algebras, and a
symmetric tensor functor with values in quadratic algebras with parity. The auto-
morphism group of a separable quadratic trace module is a smooth, but in general
not reductive, group scheme admitting a Dickson type homomorphism into the
constant group schenzs,.

Introduction

Consider aretale algebr& over a commutative ring which is projective of rank
r as ak-module. The discriminant d is the bilinear formdz on A" E given by

Se(Xy A A%, Yy A AYr) = det(T (%)),

whereT (x) denotes the trace of left multiplicatidr(x) by x. A finer invariant is

the discriminant algebra dE, a quadratic algebra for which various definitions
have been proposed in the literature. E.g., Revoy [14] uses Galois theory while
Waterhouse [16] gives a cohomological definition. For the case3, Rost [15]
constructs the discriminant algebra Bfas a shift of the discriminant algebra

of a suitable quadratic form. In [5], Deligne sketches an approach which uses
sophisticated algebraic-geometric methods and is quite different from the more
elementary one presented here.

Ottmar Loos

Institut fir Mathematik

University of Innsbruck, A-6020 Innsbruck, Austria
E-mail: ottmar.loos@uibk.ac.at



2 Ottmar Loos

The present paper combines Rost's idea and the theory developed in [12] to
give a new construction of the discriminant algebra offering the following features:

— It is rational over the base ringin the sense that no extensionskoére re-
quired.

— Itis constructive: IfE /k- 1 is free as &-module then the discriminant algebra
is a free quadratic algebkit]/(t?> — bt +c), and we give explicit formulae for
the coefficientd, c as polynomials in the structure constantg&of

— It works in greater generality: The assumption tEabe étale is superfluous;
in fact, E need not even be an algebra. Our construction makes sense in the
following more general situation:

Itis a simple but crucial observation that the discriminariE ¢and, as it turns out,

the discriminant algebra as well) depends only on the unit element, the trace and
the quadratic trace, i.e., the quadratic fa@fx) = trace/\? L(x). Abstracting from

their properties, we definequadratic trace module of rank’t 1 as a quadruple

X = (X,Q,T,1) consisting of a projectiv&-moduleX of rankr, a linear and a
guadratic formil andQ on X and a unimodular vector& X satisfying

TW=r Q= (5). BaX=r-VTE

for all x € X, whereB is the polar form ofQ. The zero module is considered as
a quadratic trace module as well. Not all quadratic trace modules arise from an
algebra, as soon as> 3.
We construct a discriminant algebra DI for suchX as follows. Consider
the bilinear formA, (x,y) = T(x)T(y) — B(x,y) on X. Putd, = A" A, and note
that ¢ = 0, in the algebra case. First assume 2n even. Then DigX) is de-
fined as the shift of the discriminant algeb®dQ) of Q by (—1)"*|n/2] &,
(this choice of shift comes from the requirement that the discriminant dfDis
should beé,.). If r = 2n+ 1 is odd, the discriminant algeb@(Q) is a graded
guadratic algebra of odd type which can only be separable if 2 is a ukit@m
the other hand, quadratic trace modules admit natural direct sums, so we define
Dis(X) = Dis(¢, & X) where¢, = (k,0,1d,, 1, ) is the unique quadratic trace mod-
ule of rank 1. We also give an alternative construction of(Bjsin the odd rank
case as a shift of the discriminant algebra of a suitable quadratic foixylonl,
which generalizes Rost’s definition in the rank three case (Theorem 3.8).
Quadratic trace modules form a symmetric tensor categomny, with the di-
rect sum as the product operation. Likewise, quadratic algebras admit a natural
productd with which they are a symmetric tensor categqay. We show in The-
orem 6.5 that the discriminant algebra functor is multiplicative:

Dis(X, ® X,) = Dis(%,) ODis(X,),

and in Theorem 6.6 that it is in fact a tensor functor. However, Dis is not a sym-
metric tensor functor, i.e., it does not commute with the symmetriggrof and

ga,, as foreseen by Deligne [5]. To remedy this defect, one must keep track of the
parity of the rank of¢ when passing to the discriminant algebra. (For the discrim-
inant algebrad (q) of a quadratic moduléM, g) this is automatic becaug®(q) is

a graded algebra of even or odd type depending on the parity of the raihk bfe
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are thus led to introduce the categopy, of quadratic algebras with parityhose
objects are pairéD, p) consisting of a quadratik-algebraD and an idempotent
p € k. They, too, form a symmetric tensor category, and the extended functor

Dis(X) = (Dis(%), rk(X) (mod 2))

is @ symmetric tensor functor frogtm, to ga, (Theorem 7.7).

A quadratic trace module is callegparablef A, is nonsingular. This is the
case if and only if there exists a faithfully flat agthlek-algebraR such thatt @ R
is isomorphic to the split quadratic trace module of rar(fheorem 8.8). In the
last two sections we study the automorphism gr@pf a separable quadratic
trace module and show first that it is a smooth group scheme of fibre dimension
("3') (Theorem 9.3), which admits a Dickson type homomorphism into the con-
stant group schemé, (Theorem 9.7). As an application, we show in 9.10 that
our construction, when applied to atale algebra, yields a concrete realization of
Waterhouse’s abstract approach. The centi® «f determined in Theorem 10.5;
it is an open subgroup scheme ®f resp.u,, depending on the parity of Fi-
nally, we study the restriction homomorphism fr@no the orthogonal group of
the quadratic form induced b® on the submodule of trace zero elements (The-
orems 10.8 and 10.9) and obtain necessary and sufficient conditioG@sttobe
reductive.

1. Basics

1.1. Definition. We work over an arbitrary commutative rifkgand denote the
category of commutative associative unkallgebras bk-alg. Unadorned tensor
products are taken ovér

A quadratic trace module of rankx 1 overk is a quadruplex = (X,Q,T,1)
consisting of a finitely generated and projectivenoduleX of rankr, a quadratic
form Q with polar formB, a linear formT, called thetrace, and a unimodular
vector 1, =1 € X, theunit elemenbr base pointsatisfying the conditions

Tw=r Q= (3). BL0=r-1T @

for all x € X. The zero module, with the only possible choice®pT and 1, is also
considered as a quadratic trace module. Morphisms between quadratic trace mod-
ules of the same rank akelinear maps preserving quadratic forms, trace forms
and base points. We do not allow morphisms between quadratic trace modules of
different rank.

It is also possible to consider quadratic trace modules of variable rank. Then
r =rk(X): Spe¢k) — Nis alocally constant function, and (1) has to be interpreted
in an obvious way. However, by decomposing the base ring according to the values
of r, itis no great restriction to assumeonstant. The category of quadratic trace
modules ovek is denotedjtm,.

We let

X:=X/k-1 and X — X
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denote the quotient of by k- 1 and the canonical map — X. Forr > 1 there is
a canonical isomorphism

r-1 r
AX — AX, @)

given byxX; A---AX._q = IAX A= AX_q.
Thediscriminant formof X is the symmetric bilinear ford = A,. onX given

by
A(XY) :=TX)T(y) —B(xY). ®)
Note that
AXL) =rT(X)— (r—=1L)T(X) =T(x). 4)

1.2. Special cases(a) Thesplit quadratic trace module of rank r overik e, :=
(K", Qr, T, 1;) wherek” = Bj_; k- g in the standard basis; £ e, +- -+ &, andT,
andQ; are the first and second elementary symmetric polynomialsamiables:

T(ig&q)—igx, Q(Z&q)— S XX

1< <r
HereA(g,e;) = §; soA is the standard scalar product kin

(b) The only quadratic trace modules of rank O resp. 1¢gre- ({0},0,0,0)
and¢, = (k,0,1d,,1).

(c) LetX be a quadratic trace module of rank 2. Then 1.1.1 shows}hat
entirely determined by, Q and 1. Hence the quadratic trace modules of rank 2
are precisely the unital quadratic forms of rank 2 as in [11].

1.3. Algebras. Let A be ak-algebra with multiplicatiorxy = Lx(y), which is
finitely generated and projective of ramkas ak-module, and which has a left
unit element 1. We make no assumptions on associativity or commutativi#y. of
ThenA determines a quadratic trace module

X=qt(A)=(AQT,1,) where T(x)=tr(Ly), Q(x)=qtr(Ly). (1)

Here qt( f) = tr(A? f) is the trace of the second exterior power of an endomor-
phism f of A. This may also be expressed by saying thét) andQ(x) are the
coefficients ot andt? in the polynomial defid + tLy).

If Ais associative and,lis the (two-sided) unit element &f then

A(x,y) = T(xy) )

which follows from associativity and the well-known relatiogftytr(g) = tr(f o
g) +qtr(f,g) for the trace and quadratic trace of endomorphisms. He(é air
denotes the polar form of the quadratic form(dtr

Not every quadratic trace module comes from an associative algebra via (1)
unlessr < 2, see below. Indeed, (2) says that the discriminant form must factor
via T. Using this fact, it is easy to give examples of quadratic trace modules of
rank >3 which are not obtained from an associative algebra. Al4é,) gtoes not
depend functorially o because a homomorphism of algebras (even of the same
rank) in general does not respect the trace and quadratic trace forms.
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1.4. Quadratic algebras. Supposex = (X,Q,T,1) is a quadratic trace module

of rank 2. By the proof of [11, Prop. 1.6], there is a unique algebra strubtuane
X'such that qiD) = X. ThenQ andT are just the usual norm and tracedfThis

yields a functor= from quadratic trace modules of rank 2 to quadratic algebras,
i.e., unital algebras which are finitely generated and projective of rankk2 as
modules. Such algebras are automatically associative and commutative. However,
F is not an isomorphism of categories (contrary to the erroneous statement of [11,
Prop. 1.6]), because algebra homomorphisms between quadratic algebras need not
preserve norms and traces. We therefore introduce the catggomhose objects

are quadratik-algebras and whose morphisms are those algebra homomorphisms
D — D’ which preserve norms and traces; equivalently, which commute with the
standard involutions dd andD’. Then the assignmeit — qt(D) is an isomor-

phism betweema, and the category of quadratic trace modules of rank 2, with
inverseF.

1.5. Direct sums. Thedirect sumof quadratic trace module® andX’ is X" =
XaeX,Q", T, 14 1) where

T'xeX)=TX+T'(X), Q' X&X)=QX)+Q(X)+TXT'(X). (1)

Thus the guadratic forn®@” is not simply the orthogonal sum @ andQ but
nearly so, because the difference betw€¥nand Q L Q' is just the product
of two linear forms. The properties 1.1.1 fQ" are easily verified. It is also
straightforward to check that with the direct sum operatigim, becomes a
symmetric tensor category, with neutral objegtand the interchange of factors
o: XX — X' @ X as symmetry.

Direct sums commute with the assignmént— qt(A) described in 1.3, and
from 1.1.3 one sees that the discriminant form satisfies

the usual orthogonal sum of bilinear forms. The split quadratic trace magude
just the direct sum of copies of¢,.

1.6. Tensor products. Thetensor producbf quadratic trace modules and X’
isX"=(XeX,Q' T 1x1) where

T=TeT, Q=T?2Q+QaT?_-Qaq. @)

HereT @ T’ is the linear formk@ X +— T(x)T'(X) onX @ X', andT @ the bilin-

ear form onX given by T® (xy) = T(x)T(y). Tensor products between bilinear
forms and quadratic forms are defined as usual, see, e.g., [13] or [11, 2.1]. Again,
tensor products are compatible with the assignment> qt(A) of 1.3.

1.7. Remarks. If r € k* thenX decomposeX =k-1®KerT andQ = ((})) L
(Q| KerT). Thus in this case the category of quadratic trace modules ofrrank
equivalent to the category of quadratic modules of rankL. If r — 1 € k* then
T(x) = (r —1)71B(1,x) is determined byQ, and the category of quadratic trace
modules of rank is equivalent to the category of quadratic modules of ranwikh

a unimodular base point 1 which satisfi@$1) = (). — In general, however,
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it does not seem possible to base the theory of quadratic trace modules on the
guadratic fornQ alone.

2. Discriminants

2.1. Definition. Let X = (X,Q,T,1) be a quadratic trace module of rankThe
discriminantof X is the bilinear form

8y = NAx @)

on A" X, whereA, is the discriminant form of 1.1.3. For< 1, we have\" X =k
anddy is just multiplication ink. If X = gt(A) comes from an associative algebra
Aasin 1.3, then itis clear from 1.3.2 thé§ = 6,, the usual discriminant o4,
defined by

SA(Xg A AXe, Y A AYr) = det(T (xy;))- 2
We also note that the discriminant is multiplicative with respect to direct sums:
8%69:{/ == ¥ ® 6 1 (3)

(tensor product of bilinear forms) after identifyigg” X) @ (A" X’) andA\™" (X &
X)byé®n — & An. This follows easily from 1.5.2.

We next express the (signed) discrimindgtof Q in terms ofd,.. The trans-
pose of a matrixA with entries ink is denotedA.

2.2. Lemma. Let X be a quadratic trace module of rank=+ m+ 1 and let
Xps- - Xm € X. We puté = LAX A+ AXm, V= (T(X),...,T(Xm)) € kK™ (row
vector) and D= (B(x;,;)) € Maty(k). Then

r r v
st =de i ) o) =Cmae( o B). @
If r = 2n is even the discriminant of Q is given by
So=(-D)"1(r-1)6, = {1+4-(—1)"‘1Ln/2j}53e 2
while it is
0= (=1)"nd, (3)
ifr =2n+1is odd.

Remark. With the convention that the discriminant of the zero quadratic form
on the zero module is just ordinary multiplication kyrformula (2) holds also for
r=0.

Proof. The first equation of (1) is immediate from the definitions. For the second,
multiply the first row formally byv" and subtract from the second row. This yields

r v _ r Vo am r v
det(VT vTvD>_det<mvT D>_( 1) det(mvT D)'
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If r =2nis even,dq is (—1)" times the 2-th exterior power of the polar forB
of Q. By 1.1.1,B(1,1) = 2(;) =rmandB(1,%) = mT(x). Hence,

SQ(é,é)_(—l)“det(r:]r\]} ’B")_m(—1)“o|et<mrvT é)

Since(—1)™ = (—1)>-! = —1, we have the first formula of (2), and the second
follows from the observation that

(-1 *2n-1)=1+4-(-1)"*n/2]. (4)

Next letr = 2n+ 1 be odd and let) be the upper triangular matrix with entries
u; = Q(x) andy; = B(x,,x;). ThenU +U " =D so by 11.3.5 and (1),

3o(6.6) = (-17hdet( D ) = (-raer( [0 B) = (-1rna )
because now—1)™ = (—1)" = 1.

2.3. Lemma. LetX be of odd rank = 2n+ 1. There is a well-defined quadratic
form Q onX given by

Q(X) = nT(X)* ~ rQ(x) = nAx (x,x) — Q(X), (€N
for all x € X. The polar formB of Q is
B(X,Y) = 2nT()T(y) —rB(x,Y) = 204 (x,y) — B(x,Y). (2)

Define®w(n) by the equation
(-1)"@2n+ 1) 1 =144-(—-1)"@(n). (3)
Then@(n) € N, and the discriminant o is given by
8= (=128 = {1+4-(-1)"@(n)} by, 4)
where we identify\" X and\' !X asin1.1.2

Proof. It follows easily from 1.1.1 tha® is a well-defined quadratic form ox,
and (2) is immediate from 1.1.3. It is elementary to check @at) € N.

For the proof of (4) lek,,...xn € X wherem=r —1=2nand put§ = 1A
Xy A AXmandn =X A--- AXm. Then, withv andD as in Lemma 2.2,

85(n,m) = (=1)"det(— (rD —2nv'v)) (by (2)
= (—1)“*2”rm1det(mrvT B) (by 11.3.3)
= (=) A(=1)"6,(£,8). (by 2.2.1)

This is the asserted formula (4) singel)™ = 1.
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2.4. Restriction to and extension from complements df. LetX = (X,Q,T,1)
be a quadratic trace module of rank 1 and fix a decompositiod = k-1&M
(which always exists because 1 is a unimodular vector). Let

q:=QM, t:=T[M. 1)

ThenQ andT can be reconstructed frognandt by the formulas
Q(Al®Xx) _JLZ(;) +A(r = Dt(x) +q(x), 2)
T(A1DX) = Ar +t(X). 3)

Conversely, it easy to see that, given a quadratic fgramd a linear fornt on

M, these formulas determine a quadratic trace mo@l&, T,1). Thus it must

be possible to express invariants dfby means of(q,t). We do this later for

the discriminants,. (5.2) and the discriminant algebra D& (5.3, 5.4). Note,
however, thatq,t) depend on the choice of complemétPutting this on a more
formal basis amounts to a systematic study of the splittings of the exact sequence
0— k — X 2 X — 0, equivalently, of linear forms; on X with o,(1) = 1

(unital linear forms), as was done in [11] for unital quadratic forms. It is possible
to develop the theory of the discriminant algebra in this way, but the proof of
independence of the choice of splitting becomes rather complicated. Nevertheless,
this approach will lead to effective computations of (3§% in section 5.

The following easily established lemma will be useful to reduce proofs to char-
acteristic zero:

2.5. Lemma. Let X be a quadratic trace module witX free, say with basis
Xy,...,Xm Where m=r — 1. Then also X is free with basis,x,,...,%n. Con-
sider the polynomial ring R= Z[t;, a; : 1<i< j<m| and the quadruplex’ :=
(X',Q,T',1") where X is the free R-module with basis$ xj,...,x,, and @ and

T’ are the quadratic and linear form given by(@) = (5), T'(¥') =r, and

Q/(Xil>:a1'i7 B/(Xilﬁxlj>:a1'j (|<J)7 B/(l/vxi/):(rfl)tiv Tl(xi/)

ThenX’ is a quadratic trace module b®.4, and the ring homomorphism R k
mappingt; — T(X), & > Q(X), &; > B(X,X;) (i < ]) induces an isomor-
phism

¥ gk — X
of quadratic trace modules.

3. The discriminant algebra

As noted in 1.4, quadratic algebras (with morphisms respecting the involutions)
are the same as quadratic trace modules of rank 2Dlbet a quadrati&-algebra,

with unit 1= 1, traceTp, involution oy (X) = —x+ Ty (X) - 1 and norm (=quadratic
trace)N,. We denote the canonical mgpD — D =D/k-1 by x — x. The
construction in (a) of the following lemma is due to Rost [15].
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3.1. Lemma. (a) Lete be a bilinear form orD. Then the k-module D becomes
a new quadratic algebra with the same unit element, but with multiplication

X*Yy = Xy— 8(X7y)17 (1)
called theshift (“Verschiebung”of D with respect t& and denoted by
D+e.

Obviously,

The involution and the trace and norm forms of-2 are
Opi¢ = Op» TD+£ = TD’ ND+€ (X) = ND(X) + 8()-(7 X) (3)
The discriminant of B- € is

Opie = Op —4e. (4)

(b) Conversely, let D and The quadratic algebras with the same underlying
k-module, unit element and trace. Thehi®a shift of D.

(c) Supposey:D — D' is a morphism of quadratic algebras arsdand ¢’
are bilinear forms orD andD’, respectively. If the induced map D — D’ satis-
fiese'o (Y x y) = ¢, theny: D+ & — D' + ¢’ is again a morphism of quadratic
algebras.

Proof. (a) ltis clear that (1) defines the structure of a quadratic algebom D
with unit 15, = 1. Since

XxX =X —€(X,X) - 1= Ty (X)X — (Np(X) + €(%,X)) - 1 = To, (X)X — Np, (X) - 1,

we have (3). In (4), we identifpA’ D =D = A?D viax — 1Axand thus consider
the discriminant as a bilinear form @ Then

- 2 T
%o00Y) = ’T(y) o

SO
Bore03) = 15y 1) Se(icg)| ~ B0~ 43

(b) Denoting the multiplication irD and D’ by xy and x x y, respectively,
xy— XYy depends only o andy, becaus® andD’ have the same unit element.
ThusB (x,y) := p(xy—xxy) is a bilinear form orD. SinceD andD’ have the same
trace, it follows thaf3 (x,x) = p(x* —x*x) = p((N'(x) — N(x)) - 1) = 0. Hencej
is an alternating form on the rank one modbDland therefore vanishes. It follows
thatxy — xxy = g(x,y) - 1 is a multiple of 1.

(c) This is immediate from the definitions.
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3.2. Free quadratic algebras. Let D be a quadratic algebra whose underlying
k-module is free. Then there exists a basis of the f¢inz} of D [8, p. 14, Ex-
ercise 3], s&@ = bz— c1 whereb,c € k, or D = K[t]/(t?> — bt +c). We write this
as

D=(b:c].

Note that the algebr® does not determinle andc uniquely; rather, we have
(b:c]=(V:d] <= b=ub+24, ¢ =p%c+Aiub+1?

for someA € k, u € k*. This corresponds to changing the basiDofo 1 and
Z=A1+puz

The split quadratic algebrais= ((1: O], often identified withk x k by map-
ping z to the first standard basis vect®r of k. The algebra of dual numbers is
(0:0]. The discriminant of(b: c] is

S (e = b —4c. (N

If D= ((b: c] is a free quadratic algebra, we identiy= D/k- 1 canonically
with kviaA € k — Aze D. Then a bilinear forng on D is just a scalae € k,
and the shift oD by eis

(b:c]+e=((b:c+e]. )

3.3. The discriminant algebra of a quadratic form. We recall from [12] the
construction of the discriminant algeb®x(q) of a quadratic moduléM, q) of
even rank 2.

Let first M be free with basix,,...,x,,, and letA be a 21 x 2n-matrix such
thata; = q(x) anda; +a; = b(X;,x;) whereb is the polar form ofy. Then®(q)
is (isomorphic to) the free quadratic algebra

D(a) = (PA-A"): (-1)""qde(A)]

where Pf denotes the Pfaffian and gdet the quarter-determinant, cf. 11.1. A more
intrinsic construction which works for arbitraiy goes as follows.

Leta,a be alternating bilinear forms dvi. Then-th Pfaffian poweof ais the
linear formm,(a) onL := A2"M defined by

nn(a)(é) = Pf(a(xiaxj))v (l)
whereg = x; A\ --- AX,, € L. Lett be an indeterminate and defif(t,a, &) by
mn(a+tad) = m(a) +tI(t, a &). )

A representativef qis a bilinear formf such thatf (x,x) = q(x) for all x e M,
which we also express ap= [f], thus identifying quadratic forms with equiva-
lence classes of bilinear forms modulo alternating forms. For representétiyes
of g define linear forms ok by

T = En(fffT)z Ktg = I (—-2, f—f7, f—0), ®)
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wheref " (x,y) = f(y,x). Then
21<fg =T; — Tg, Ktg T Kgh = Kin- 4)

There is a unique bilinear forrp on L satisfying

1(£.8) = (~1)"" adet(f(x,))), ®)

where gdet is the quarter-determinant, see 11.1. Now ©(q) is, as sk-module,
generated by 1 and symbas§), linear in& € L, subject to the relations

Si(8) —sy(8) = K¢g(E) -1, (6)
wheref andg run over all representatives gf There is an exact sequence

0— sk——D—sL——>0

wherep(s;(£)) = &. Trace and norm, and hence the algebra structui®, afre
determined by

To(s(8)) =7(S),  Np(s¢(8)) = %(5,8)- @)

3.4. Definition. Let X be a quadratic trace module of rankf r = 2n, the dis-
criminant algebra oX is the shift

Dis(X) :=©(Q) +(-1)"*[n/2] - & (r=2n), @

where|n/2] is the integer part ofi/2. If r = 2n+1 is odd, it would not do to
define DigX) as a shift of the discriminant algebra@f because this would yield

a graded quadratic algebra of odd type which cannot be separable unless 2 is a
unit of k. Therefore, we define

Dis(X) :=Dis(¢, &%) (r=2n+1), )

cf. 1.2(b) and 1.5. — LeA be an associative commutatikealgebra which is
projective of rankr as ak-module. Then we define the discriminant algebr&of
as the discriminant algebra of the associated quadratic trace mogijethus

Dis(A) := Dis(qt(A)). 3)

Clearly, Dig%¥) is compatible with arbitrary base change because this is so for
the discriminant algebra of a quadratic form. It depends functorially omith
respect to morphisms of quadratic trace modules. Indeed, consider first the even
rank case. A morphisnp: X’ — X of quadratic trace modules is in particular a
similitude between the quadratic forr@andQ. By [12, Th. 2.3(b)], we have an
induced homomorphisi®(¢): ©(Q') — D(Q), given by 1+ 1 and

Spe(1)(6) Sf(</\<P>(5§)), (4)

for all representatives of Q and& € A" X'. Here ¢*(f) = f o (¢ x ¢) is the
pullback of f to X’. The discriminant forms\’ andA of X' and X are related
by ¢*(A) = A’, whenced,. o (A" ¢ x \"¢) = 6. By 3.1(c), the module homo-
morphism®(¢) is in fact a morphism Digp) : Dis(X’) — Dis(¥) of quadratic
algebras. The odd rank case is similar.
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3.5. Special casesForr = 0 we have a natural isomorphism

O, :1 =kxk — Dis(¢&,). 1)

Indeed, by 3.4.1, Dig,) =©(0) is the discriminant algebra of the zero quadratic
form on the zero modul¢0}. Since the Pfaffian and the quarter-determinant of
an empty matrix are 1 and 0, respectively, a0} = k, we have®(0) = k-
1@ k- s5(1L,) with the relations,(1,)? = s,(1,), and we obtain (1) by mapping
e = S(l). _

Forr =2, Dis(X) = ©(Q) is clear from 3.4.1. On the other hari= qt(D)
is, by 1.4, the quadratic trace module determined by a quadratic alBebtzere
is a canonical isomorphism

®=d,:D — Dis(D) @)
of quadratic algebras as follows. Specializing 3.3 to the present situali@),
is presented as lemodule by generators 1 arsl(x A'y) where f runs over all
representatives d, with relationss (X A\y) — s5(XAY) = k¢q(XAY) - 1, whereg
is another representative Qf Sincer = 2, we havex,(XAY) = f(x,y) —g(x,y).
Hence there is B-module homomorphisrd: D — ©(Q) given by

®(1)=1 and B(x) = fF(x1) 1+ (1AX). ®)

A straightforward computation shows thétis an isomorphism of algebras.

In particular, letD =1 = k-e, @k-e, be the split quadratic algebra so that
qt(l) = &,. LetN,(Ae, @ ue,) = Au be its norm form and, the bilinear form
with matrix (39) which representls),. Then 1n e, = (e, +&,) A, = —e, Ag, and
fo(e;,1) = 0. Hence®, is given by

@l — Dis(€,),  P(e)=—s (A8, (4)
Finally, forr = 1 we haveX = ¢, and¢, ® X = €&,, so 3.4.2 and (4) yield
Dis(¢&,) =1, (5)

the split quadratic algebra.

We now show that our definitions give the correct discriminants and the ex-
pected result in the split case. Consistency with Rost’s definition inrcaswill
be proved in 3.8, and with Waterhouse’s approach in caétatd algebras in 9.10.

3.6. Lemma. The discriminant oDis(X) is 0.

Proof. By [12, Th. 2.3(d)], the discriminant a®(q), whereq is any quadratic
form on an even-ranked module, is the signed discrimidguof g. If rk(X) = 2n
is even,

Soisx) = S0 —4(=1)" /2|8 = (1) H{2n—1-4[n/2|} §; = &,
by 3.1.4,2.2.2, and 2.2.4. If (k) = 2n+ 1 is odd, we have similarly

Opis(x) = Opis(e,ax) = Oe,0x = O¢, @ Ox = O

by 2.1.3, sinceﬁ@1 is simply the bilinear form{A, 1) +— Ap onk.
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3.7. The split case. Let A be the algebré’ =k-e; & --- ¢ k- e with component-
wise operations, and, = qt(A) the associated split quadratic trace module &ver
asin 1.2 and 1.3, sb andQ are given by

T(Q):l» Q(E\I)ZO, B(Qvej>:1 (I#J)

In view of the definition of the discriminant algebra in the odd rank case and
since€, @ &,,,, = &, ,, it suffices to compute Dig,,). Leté :=e A---Ae,,

and letf be the bilinear form ok®" whose matrix with respect to the standard
basis is the strict upper triangular mattik, with 1 above the diagonal. Then

f represent®, so®(Q) is the freek-algebra with basis 1 and:= s;(&) and

the relationz? = 7;(&)z— ¥ (€,€)1, see 3.3. From 11.2.4 and 11.2.5 it follows
thatz (&) = Pf(Up, —Ugy) = Landy; (£,€) = (—=1)" *ade(Uy,) = (—1)"[n/2].
Hence®(Q) is the free quadratic algebra

2(Q =(1: (=1 "n/2J].

SinceAg (6, €)) = g, we haveé%(é, &)=1,soby3.2.2,

Dis(€) = (1: (~1)"[n/2) + (1" *|n/2|] = (1:0] =kxk
the split quadratic algebra.

3.8. Theorem. LetX be a quadratic trace module of odd rank=r2n+ 1 and let
Q and@(n) be as in2.3 Then there is a natural isomorphism

p:D(Q) +(—1)"@(n)8, — Dis(X)

of quadratic algebras as follows: Identify?" X = A" 1 X = AZ"2(k-e, @ X) via

Ei=X A Ay b E = Ly AX A Ay 5 E 1= @ AL AX A+ AXgy,
For a bilinear form f onX representing, let f be the bilinear form on X given
by

f(X,y) = —f()'(,y)+nA(x,y),
and letf be the bilinear form orX := k-e, & X defined by

f(re ox pey@y) =AT(y) + f(xy).

Thenp is given byl — land §(§) > (—1)"s;(§) —nt¢(S)- 1.

Remark. Forr = 3 we have in particular Di&) = ©(Q) + (—8,). This is
Rost’s definition [15] of the discriminant algebra of a cubtale algebra.

Proof. Letgbe a second representative@;hnd definggandgas above. We first
show that

(&) = 2n+1)(-1)"% (8), 1)
Krg(€) = (2n+1)(—1)"kg (). @
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Indeed, letv = (T(x,),..., T (X)) € k" and letF andG be the square matrices
of size 2h with entriesf (X, X;) andg(;, X;), respectively. Then, with the notations

introduced in 3.3, it follows from the definition dfand from 11.6.1 that

. O r %
7rn+l(f—fT+t(f—Q))(§):Pf< —r 0 0 )
—v' 0 FT—F+t(G—F)

= Pf(_or 6) (=) PF(F —F " +t(F—G))

St (P (- g) ). @)

Now (1) and (2) follow from (3), 3.3.2 and 3.3.3 by comparing coefficients at
powers oft.

From the definition ofQ and f it is immediate thatf is a representative of
Q, and hencd is a representative @, the quadratic form o€, @ X. Let us put

D' :=2(Q) andD :=9(Q). There is a module isomorphism D’ — D sending 1

to 1 ands; (&) to (—1)"s;(§) —nt¢(&) - 1. Indeed, by the defining relations 3.3.6,

the equatiorr; — 7q = 2k, (cf. 3.3.4) and (2)p is well-defined. Sincg induces
the isomorphisné — (—1)"¢ on the quotient®’ = D’/k-1 andD = D/k- 1, it
is a module isomorphism. Furthermopepreserves traces:
To(P(¢(8)) = To (~1)"s:(8) —n7(§) - 1) = (~1)"7(§) — 207, ()
= (2n+1-2n)7,(&) (by (1)) =Tp (s(&)).

By Lemma 3.1(b), this already proves tHatis isomorphic to a shift oD’. To
determine this shift, we must compute the behaviour of the norni3’ ehd D
underp. We claim that

7E.8) = 1(E. &)+t 7 ()7 + (1o - | "5 18,8 @

After localization, it suffices to prove this in caXes free, and by Lemma 2.5, we
may assume thdt has no 2-torsion. We show that four times (4) holds. Indeed,

since the discriminant of the discriminant algebra of a quadratic fpwith rep-
resentativef is 8q = 72— 4y, [12, 1.7] we have, using (1) in the second formula,

3o(&,€) = 7¢(&)° =41 (£.€), 5)
35(6,8) = (2n+1)°71(§)° — 47;:(5. ). (6)
On the other hand, by 2.3.4 and 2.2.2,
36(&,&) = (1+4(—1)"@(n)) 8, (&, 8), (7)
85(8.8) = (1+4-1"| =) 5,8, (®)
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By 2.1.3, we haved (cf E) (é é) Now (4) follows by equating the differ-
enceSQ(é,é) (8 é)computed from (5)-(6) and (7)—(8) and cancelling the
factor 4.

Let D" = D' + (~1)"@(n)8,, and putw := (&) andw := (~1)"s;(€) for

short. Then s
N (W) = 7;(§,8) + (—=1)"®@(n)6x (€, 8),
while, because of (1),

ND(P(W)) =Np(W—n(§)1) =N, (W) —NTp (W) 74 (§) + e (§)?
= 1;(6,8) —n(=1)"z; (&) (&) + 17 (€)% = 1;(§, &) —n(n+ 1)z, ()2,
The image op (W) =Ww—nr,(£)-1inDis (—1)”1,?. Hence

No (p(W)) + (—1)"|(n+1)/28 (€, &)
@é) m+Dﬁ@)+(DLm+DﬁJ(5
% (E.E)+(~1)"@(n)8,(€,&) (by (4)) = Npi(W).

Sincep preserves the traces Bf andD, hence also those of their shiffs’ and
Dis(X), it follows thatp: D” — Dis(X) preserves norms and traces, hence is an
isomorphism of quadratic algebras. It remains to show naturaliyvetich is left

to the reader.

N

Dis(3€)(

3

4. Quadratic-linear modules

4.1. Definition. Itwill be useful to have the following non-unital version of quad-
ratic trace modules. uadratic-linear modulés a tripleft = (M, g,t) consisting
of a finitely generated and projectikemoduleM and a quadratic forng and a
linear formt on M. Morphisms are defined in the obvious way. Just like quadratic
trace modules, quadratic-linear modules form a symmetric tensor category with
the following direct sum operation. L&%; = (M, q;.t;) be quadratic-linear mod-
ules, denote by, ®t, andt;t, the linear resp. quadratic form o, & M, given
by

(L OL) (X OX) =t(X) +10%),  (tity) (X X)) =1 (X))tr(%2),

and byq, L g, the usual orthogonal sum gf andg, onM; & M,. Then
My &M, = (M &My, (0 L)+t 1 BL).

There is an obvious forgetful functor from quadratic trace modules to quadratic-
linear modules sending = (X,Q,T,1) to (X,Q,T). It is compatible with the
direct sum operation. In the opposite direction, there is a functor from quadratic-
linear modules to quadratic trace modules given by the construction of 2.4.

Let (M, q,t) be a quadratic-linear module of ramk We define(M,q,t)* =
(M# ¢f,t*) as the quadratic-linear module of rank 1 where

M =koM,  FADX) =M(X)+q(x), FADX) =L +t(x).
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(The notationy’ is incomplete becaus# depends o andont.) Of course, this

is just the direct sum afk, 0,1d, ) and(M, q,t). This assignment becomes a functor
# from quadratic-linear modules of ramko those of rank + 1 by defining, for a
morphisme: 9t — 90, the morphismp?: MF — M by AUB X — AUD @(X).

4.2. Bilinear-linear modules. Replacing the quadratic foraqpabove by a bilin-
ear form, we also consider tripléM, f t) consisting of a finitely generated and
projectivek-moduleM, a bilinear formf and a linear fornt on M, called bilinear-
linear modules or bl-modules. For them as well, we define a direct sum operation
by

(Mg, f1,t) @ (My, fo,t5) 1= (M DMy, fip, t BL),
where

fio=(f; L f) +t, ®1, @)

Here f; L f, is the usual orthogonal sum df and f,, andt; ®t, denotes the
bilinear form onM, & M, given by

(4 @) (X DX, Y1 DY,) = (X))o (Ya)-

With this operation, bl-modules form a tensor category. In particular, after identi-
fying the k-modules(M, & M,) & M; andM, & (M, & M), we have the associa-
tivity law

(fo L f) + (i @t) @ty = (f; L fn) +1, @ (L, ®1t,). (2

However, bl-modules do not form a symmetric nor even braided tensor category.
The reason lies in the asymmetry of the definition,at, above. This definition

is of course not canonical; for instance, it would have been equally possible to put
(t,®6) (X, B X, Y1 BY,) =ty (Y1)t (%)

There is a tensor functor from bl-modules to quadratic-linear modules given by
(M, f,t) — (M,[f],t) (where[f] denotes the quadratic formi— f(x,X)). In
particular, this means that ff is a representative @f thenf,, is a representative
of (g L ) +;t,.

Just as before, we defiri#!, f,t)f = (k@ M, ff, t*) where

fPAox udy) =Aty) +f(xy), tA®OX) =A+t(x).
This is the same as the direct sum of the 1-dimensional bl-magtte (k,0,1d,)
and (M, f,t). Note that then-fold direct sume,; &--- @ e, is (k", Uy, (1,...,1))
where we identify bilinear and linear forms &f with n x n-matrices and row

vectors, respectively, and}, is the strict upper triangular matrix with 1 above the
diagonal.

4.3. Notation. Let91, = (M;,q;,t;) be quadratic-linear modules of rankand put
L= A"M. Forx{,....x) e M;, let§ =xP A~ Ax) e L. LetM = M, &M,
and identify
r
L,®L, — L:i=/AM

viag, @&, = & =& A&, Incased; = (k,0,ld,) andd, = 91, we identify
ANMZANTIMEDY E =x A= A% = EFi=1AE,
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For representative§ of g, we introduce the square matridgs= ( f (xj”,xl(‘)))
of sizer; xr; and the row vectors”) = (T,(x\"),..., Ti(x\")) € K, and putc:=x"

|
andy._x2> Then the matrices of := f, L f, andf := f'+t, ®t, with respect
to thexg ), x?) are

,_(F O (R Xy
F _<O F2> and F_<O m )
4.4. Lemma. Letd; = (M,,q;,t;) be quadratic-linear modules of even rank=
2n, and putdt = M, & M,. Let f,g; be bilinear forms on Mrepresenting g

define f and f as ind.3and put similarly =g, L g, and g=g +t, ®t,. Then,
with 7¢, k¢4 andy; as in3.3, we have

Tf - Tf/ B (l)
ng = Kf’g’ ) (2)
YfZYf/+6j®6j- )

Here (f is defined as int. 1and6 is identified with a bilinear form onLvia the

isomorphism L= A""M; & A" +lMﬁ of 4.3and henc@j ® 5 with a bilinear
form on L.

Proof. Define the matrice§; for g; like theF, for f; in 4.3 and let be an indeter-
minate. Since —g= ' — ¢/, we have, using 11.6.1, and with=n, +n,,

g7 B _ F,—F +t(F,—Gy) x'y
mt- 1Tt -@)@ =R RS XY

_ pf F,—F' +t(F,—G,) 0
0 F,—F +t(F,—G,)

= (' — 1T +t(f' =) (&)

Then (1) and (2) follow by comparing coefficients at powers iof view of 3.3.2
and 3.3.3. By 3.3.5 and Lemma 11.5,

~0"{n(6.8) yflée}__qdet(ﬁ x;2y> qdet<0 2)

- hdet(o Fl) hdet<8 g’z ) 4)

From 4.2 it follows that(g é) is the matrix, with respect to,x<11>,...,x$i>,
1

of a bilinear formf: on M: representing the quadratic forgf. SinceM? has odd
rank 2h, + 1, the discriminant ofj; is given by

n 0
8,(8.8) = (-1 1hdet<o ,fl) ,
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An analogous formula holds fcn?qt , S0 (3) follows.
2

The following result will be crucial for the proof if§6 that the discriminant
algebra is a tensor functor. The quadratic fayes (g, L d,) +t;t, of the direct
sum of two quadratic-linear modules is not quite the orthogonal sup afdg,.
This is reflected in its discriminant algelgsq) which is a shift of©(q, L q,).

4.5. Proposition. Let 9%, be quadratic-linear modules of even rank ami =
(M;®M,, g, t;, ®t,) their direct sum as id.1 Then there is a module isomorphism
v:9(q, L g,) — D(q) which send4 to 1 and

S, (8) — sp,(8) (1)

where fis a representative of,@nd f, is as in4.2.1 Moreover,

V= Vo o, - D0y L 0p) + (50@ ® Sq%) — D(q) &)
is an isomorphism of quadratic algebras which is naturafliy andt,.

Proof. Letus putD’ :=D(q, L q,) andD :=D(q) for short. As &k-module,D is
generated by 1 and &l (§), subject to the relations 3.3.6 whefgg run over all
representatives af, and trace and norm @ are determined by 3.3.7. Analogous
statements hold fdD’, with f,greplaced by representativésg’ of g :=q, L g,.
Now let f;, g, be representatives gf and leth be a representative gf. Then also
f':=f, L f, is a representative af, and f := f,, is a representative af. We
claim that the expression

Si(8) +Kyp(8) 1 3)

does not depend on the choice of thendeed, let alsg; be representatives df,
and defingy’ andg like f’ and f. Then by 3.3.6 and 4.4.2 and the cocycle relation
3.3.4 fork,

S1(E) + Knp (6) - 1—55(8) — Ky (&) - 1= (g (&) + kg () — g (€)) -1
= (Kf’g’(é) — Kep(8) — th(é)) -1=0.

To prove that there exists a well-defined module homomorphyissendings, (&)
to (3), it remains to show thag respects the defining relationsf. Thus let also
j be a representative @f. Thens,(§) —s;(8) = K;,;(§) - 1 while, again by the
cocycle relation for,

S¢(8) + ke (8) - 1—5¢(8) — ki, (8) - 1= K;,;(8) - 1,
as desired. Now we have a well-defined module homomorphis® — D and
it satisfies (1) because, s, = 0. Also, y induces the identity oh = D = D" and
hence is a module isomorphism.

To prove (2), it suffices by Lemma 3.1 to show that the traces and norids of
andD’ are related by

To(y (W) = Tp (W), @
No (W) = Noy (W) + (&, 8, ) (1), ©)
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wherew € D’ andw = p'(w) € D’/k-1 = L. Observe thaD’ is spanned by 1
and alls, (§; A &,) whereg; € L; is arbitrary anch is a fixed representative of.
Moreover, Ty, (1) = 2 andN, (1) = 1. This allows us to assunte= f' = f; & f,

as above, and then (4) and (5) follow from 4.4.1 and 4.4.3. Finally, naturalify of
is easily checked.

5. Explicit computations

In this section, we derive explicit formulas for the discriminant algebra in the
free case, based on the remark made in 2.4. The following result says, roughly
speaking, that shifting a quadratic form bgyanmetriddilinear form is reflected

by a shift of its discriminant algebra.

5.1. Lemma. Let (M, q) be a quadratic module of rankn and let h be a sym-
metric bilinear form on M. Put'@x) := q(x) + h(x,X), i.e., d = q—+ [h].

(a) There is a well-defined isomorphism of k-modues ¢,: ©(q) — D(q)
given by
o) =1, o(s(E)) =st.n(6) (2)

in terms of the generators &) of D:=9(q) and §,,(§) of D' :=D(q), for all

f representing q and af € L := A*"M. Moreoverg, .= ¥;., — ¥ is independent
of the choice of f and thus is a well-defined bilinear form on L, depending only on
h (and of course on q), and

Py D(Q) + & — D(d)

is an isomorphism of quadratic algebras. The discriminants of q aadxyelated
by

(b) Let H be another symmetric bilinear form on M and ptit.g g + [h'] =
q+[h+H]. Then

€y = &t &y, 3)
and the diagram
(D(a) +&,) + & — o) + &y (4)

is commutative.
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Proof. (a) Recall from 3.3 the linear forms andx;, and the bilinear forny;
onL. Sincehis symmetric,

Top=Ta(f+h—(f+h) ") =m(f—f") =1, (5)
Kf+h’g+h:Hn(—Z,erh—(quh)T,f+h—(g+h))
=Ih(-2,f {7, f—g) = Ky (6)

Now it follows immediately from (6) and 3.3.6 that (1) defines a homomorphism
of k-modules. Asp induces the identity oh, it is an isomorphism ok-modules.
Moreover, from (5) and the definition of the trace®fq) and®(q') (cf. 3.3.7)

we see that preserves traces. Hence by Lemma 3.1¢bis an isomorphism of

a shiftD + € ontoD’, and by 3.1.3 and 3.3.%,is given by

€(£,8) =Ny ((s¢(£))) —Np(s¢(£)) = %54n(&.6) — 11 (£,8).
Finally, (2) follows from 3.1.4 and the fact that the discriminan®xfy) is d.

(b) By (a), we hav@thh/ = yf+(h+h/) - ,Yf = Y(f+h)+h/ - yf+h =+ ,Yf+h - Yf =
&, + &,. Now the commutativity of (4) follows immediately from (1).

5.2. Proposition. LetX be a quadratic trace module of rankx1. Fix a decom-
position X=k- 1, &M and let ;= Q|M and t:=T|M as in2.4.1 thus defining a
quadratic-linear modulé)t = (M, g,t). Considet’ = (M*, ¢f,t*) as in4.1and
identify M = ks M with X byl, — 1. Denote the polar forms of g and jy b
and I3, respectively, and identif%" M and \" X vian =x; A---AX_; - &=
1AM. Then

r—1 r
8 =(-1)"Hr- Ab+(r—1)- A\b'}. (1)
Depending on the parity of r, this can be rewritten as follows:
5x:6qt—4-(—1)”{Ln/2j -6qj—n-5q} if r = 2nis even, 2

8y =8 —4- (-)™H{[(n+1)/2)-8+n-8,}if r=2n+1isodd. (3)

Proof. We putm=r — 1 and use the notations introduced in 2.2. By 2.2.1 and
11.3.2,

(33€<z§,§)=(_1)""-<erT ‘[’)>:(_1)m{r.detD+m-det<V9 [‘g)}

= (=1™r-(Ab)(n,m)+m-(AB)(£,8)},
proving (1). Now we distinguish the casesven and odd.

(&) r =2nis even: SinceM has odd rankn = 2n— 1, the discriminant ofj
is 8, = (—1)"* A™q, where the bilinear formf\" g on A™M is given by the half-
determinant and satisfies\?'q= A"b. Furthermore6qj = (-1)"A\?"b*. Substi-
tuting this into (1) yields

8 = (~1)™ H{ (2)(~1)" 128 + (20~ (-1, |
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which together with 2.2.4 gives (2).

(b) r =2n+1is odd: TherM has even ranki®, so by interchanging the roles
of g andg we now have\®"b = (—1)"8q. Furthermoreg’ is a quadratic form

on the odd-ranked modul, so\?"1bf = 2. (—1)”6qj. Substituting this into (1)
yields

5y = (—1)2”{(2n+ 1)(—1)"8q+ (—1)"2- 2n5qj}.

From 2.2.4 (withn replaced byn+ 1) we seg2n+1)(—1)"=1—4.(-1)"1 x
[(n+1)/2]. By substituting this in the above formula we obtain (3).

5.3. Proposition. LetX be a quadratic trace module of even rank2n> 2. We
fix a decomposition X k- 1, &M and use the notations of Prop.2 Then

Dis(X) = D(¢f) + (-1 EJ 8, N8} @

Proof. Let us abbreviate
e = (—1)”{Ln/2j -5q11 -n- Sq}, {=(-1)"n/2 -0y

Also, let a: X — k be the linear form determined hy(1) = 1 and Kex = M.
Consider the following symmetric bilinear form o

r

ey = (1B [T + @) T09] - [(5) - ety

An easy verification shows th& = ¢f + [h]. Hence Lemma 5.1 yields an isomor-
phism®(qf) + & — D(Q) which induces in an obvious way an isomorphism
(D(eF) + &) + & =D(6F) + (& +¢) — D(Q)+{ = Dis(¥),
cf. 3.4.1. Comparing this with (1), we see that it remains to prove
g=g+¢. 2)

By Lemma 2.5 we may assume that the base ring has no 2-torsion, so it suffices to
prove that four times (2) holds. By 2.2.2,5.2.2 and 5.1.2 we have

5Q_6%Z4C’ 6%_6q11:_4'8ﬂ3 6q1_5Q:4'8h.

Adding these equations yields & —&* +¢,) = 0.
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5.4. Proposition. Let X be a quadratic trace module of odd rank=r2n+ 1.
Choose a decomposition=Xk- 1, &M and use the notations of Prop.2 Then

Dis(x) = D(a) + (1" 57|84 n-5, ). )

Proof. LetQ be the quadratic form oK = X/k-1 introduced in 2.3. The canon-
ical mapX — X induces an isomorphisid = X by which we identifyQ with a
quadratic form, again denot€) onM. Define a bilinear fornhh onM by h(x,y) =

Ay (xy) for all x,y € M, so thatQ = —q+ [h]. Let us note thaD(q) = D(—q)
by mappings; (1) to (—1)"s_;(n) for a representativé of g and alln € A*'M
This follows from the easily proved relations; = (—1)"z;, k_; 9 = (—1)"Kk¢q
andy ; = v, cf. 3.3 and [12, Theorem 2.3], appliedde="—q, ¢ =Id, u = —1.

Hence by Lemma 5.5)(q) + &, = D(—q) + &, = D(Q) and

(D(a) + &) +& =D(a) + (&, +¢) — D(Q+¢ = Dis(¥),

where the last isomorphism comes from Th. 3.8 and welpat(—1)"@(n) - 5.
Thus it remains to show that

e:=( n+1{{n+lJ6q+n }ZSh-I-C.

By the same argument as in the proof of Prop. 5.3, it suffices to prove four times
this equation. By 2.3.4, 5.2.3 and 5.1.2, we have

So— By =40,  Oy—Og=—4e  8-8,=45,

As before, the assertion follows by adding these equations.

5.5. Proposition. LetX be a quadratic trace module of rankrm+1> 2, choose

a decomposition %= k- 1, &M and suppose that M is free as a k-module, with
basis %, ...,Xm. Letv=(v;,...,vm) € K" where y=T(x), let f be a bilinear form
representlng Q and puta= f(xi,x ) so that g = Q(x) and g; +a; = B(x,X;)
fori # j. Finally, define

A= (a;) € Maty(k) and A= (8 X)eMat,(k).

ThenDis(X) = ((b: c] is a free quadratic algebra where e k are given as
follows:
(@) Ifr =2nis even,
b=Pf(A-AT), 1)
c=(—1)""*qdetA) + [n/2| det(A+A") + nhde(A) )
= (2n—1)qde(A) + (—1)"[n/2]b?+ nhde(A). (3)
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(b) Ifr =2n+1is odd,

b=Pf(A—A"), (4)
c=(—1)""*qde(A) — [(n+1)/2] det(A+AT) — nhde(A) (5)
= —(2n+1)qde(A) + (—1)" [ (n+1)/2]b? — nhde(A). (6)

Proof. We use the notations of 5.3 and 5.4.
(@) By[12,2.7]1D(¢f) = (b: c,] where
b=PfA-A"), c,=(-1)""qde(A).
By Prop. 5.3 and 3.2.2, Di&) = ((b: ¢, + €] where
e=(-1)"[n/2]8,(£,8) + (~=1)" ndy(n,n),
wheren = x; A--- AXmand& = 1A 1. On the other hand,
8:(8,8) = (—1)"detA+AT),  8y(n,n) = (-1)" *hde(A),

which yields (2). The alternative form (3) follows easily from the relations 11.1.2
and 2.2.4 becaus® = detf A—AT).

(b) r=2n+1: Here®(q) is the free quadratic algebfgb : c,] whereb =
Pf(A—AT)andc,= (—1)"1qde(A). By 5.4, DigX) = (b:c,]] +e=((b:c,+€]

where
e=(—1)"{[(n+1)/2] &(n.n) +n8,(.&)}-
Sinceq andgf are quadratic forms inrRand 2+ 1 variables, we have
(1) = (=1)"detA+A), §,(&,&) = (—1)"hdetA).
It follows that

c=Co+ (=1 [(n+1)/2| &, (n,n) + (~1)""'ng, (&,)
= (-1)™qde(A) - [(n+1)/2| det(A+A") —nhdef.

Again, (6) is an easy consequence of 2.2.4 and 11.1.2.

5.6. The casea = 3. We have qdé®\) = detA) for a 2x 2-matrix. Moreover,
because of 11.4.1,

hde(A) = det(VOT X) = —ay,V5 — AyV5 + (A, + 8y Vi Vy.
By 5.5(b) this yields
b=a;,—ay,

c= —3qdetA) +b? — hdetA)
= —38y,8y, + 89,8y + 855+ 851 + 8y V5 + BypVi — (Byo+ Byp V) Vs
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5.7. The case = 4. Here we use 5.5(a) and obtain

b=PHA—AT) = (ay,— ay Vs + (Bg, — AV, + (Bpg — Agp)Vs,
c = 3qdefA) + b? 4 2hdetA)

0 v

= 3 det< VT A

>+de1(A—AT)+de1(A+AT),

by 11.1.1 and 11.4.2.

6. Multiplicativity of the discriminant algebra

6.1. The product of quadratic algebras. Recall from [11, 2.4, 2.6] that there

is a natural produdd, 0D, of quadratic algebras with which the categoy, is

a symmetric tensor category. The product is constructed using the machinery of
unital linear forms (although there is a simpler description if the algebrastale

see [10, I, (2.3.4)]). We recall this quickly. A unital linear form on a quadratic
algebraD is a linear forma with a(1y) = 1. ThenD, 0D, is generated as k&
module by 1 and symbolg Dml_’%) X, wherex, € D;, x, = can(x) € D, =D, /k-1,

andg; is a unital linear form orD;. These symbols are bilinear iq andx, and
satisfy relations for which we refer to [11, 2.1, 2.4]. There is an exact sequence

0——+k——D,0D,—5D,®D, ——0 1)

wherei(1) = 1 andp(x, Oa, o) X,) = X; ® %,. The product of free quadratic alge-
bras is given by the formula

(by ¢ ] O((by: ¢yl = (byby : ¢y (05— 2¢,) +cy(bF — 2¢,) ], 2

see [8, p. 30, p. 42, Exercise 14] and [11, Th. 2.4]. The split algebra e, ©k-e,
(cf. 3.2) acts as a neutral element for the proddcfThere are natural isomor-
phisms

t:DOl — D, [p:10D — D, ©)

given by
XD(aﬁ)é1 — X=X, élm(ﬁ,a)x = X—a(X)1, 4)
wheref3 is the unital linear form ont with B(e;) =0 andfB(e,) = 1, anda is

any unital linear form oD, see [11, 2.6.11]. We will also need the associativity
constraints

a=appp, : (D;0D,)0D; — D, 0(D,0D,)

which are as follows. Lety, be unital linear forms ol;. Then there are unique
unital linear formsa;; on D; 1 D; which vanish on alk'0, ,  X;. Since(D; O
(K|
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D;)/k-1=D;®D; by (1), (D, 0D,) OD; is generated by 1 and the elements
(X ®%5) Oaypa) X, and theru is given by

(X, @%,) D(%,%) X3 = X D(al_%) (X ®@X%3). 5)
(Note that formula (7) of [11, 2.6] is incorrect and should read
n (ul Do‘l(za) (UZ ® u3)> = (ul ® UZ) D%z)s Us.

Line —3 of [11, p. 59] has to be modified similarly.)

The product] is a bifunctor: Ifg,: D] — D; are homomorphisms, them O ¢,
is given by 1+— 1 and

((pl D (p].) (Xg. D(aj’f(xé) X’Z) = (p:L(Xgl) D((Xl,az) (p(xl2)7 (6)

whereoy = ¢; o ¢, andx € D]. — We show next that the product of shifted quad-
ratic algebras is a suitable shift of their product:

6.2. Lemma. Let D (i = 1,2) be quadratic algebras, lef; = , be their dis-
criminants, and leg; be bilinear forms oD,. Then

(D,+&)0(D,+¢) = (D,0D,) + (£, 6, + 8, ®e, —4e, ®e,). (1)

Proof. It follows from [11, 2.1, 2.11(b)] that the underlying module, the unit ele-
ment and the trace @, (1D, depend only on the modulé, their unit elements
and the trace%;, , but not on their norms. By 3.1, the shifted algeliPas- D; + ¢

have the same underlying modules, unit elements and trades hsnce so do

D} 0D, andD, OD,. Thus the equality sign in the statement of (1) makes sense.
For the proof, we may by localization assume thatdhe- (b; : ¢; ]| are free. Then,
after identifyingD; =~ k as in 3.2, theg, and g, are identified with scalars, and we
haveD! = (b : ¢, + ). By 3.2.1, the discriminants @; are§, = b? — 4c;. Now

(1) follows from 6.1.2 by a straightforward computation.

6.3. We will need the producb, 00D, in particular when thé; are the dis-
criminant algebras of quadratic forms of even rank or shifts of such algebras. Let
(M;,q) (i = 1,2) be quadratic modules of even rank= 2n,. Choose representa-
tives f;,g; of g, and letf’ = f, L f, andg’ =g, L g, be their orthogonal sums,
which are then representatives@f= g, L g,. By 3.3, D; has generators 1 and

s; (&) whereg; € L; = A\""M;. By [12, 2.2], thef; determine unital linear forms;

onD; satisfyingp; oSy = —k 4. Also,D; = L; vias; (§) > &. We put
& UOn & =6 D(pfl,pfz)‘gz- @)

ThenD” := D, 0D, is generated by 1 and the symbdlsl;, &,, bilinear in&;
andg&,, subject to the relations

& 0n & -8 Uy &= Kf’g’(€1®§2)'l' 2
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By [12, Th. 2.11],© is a symmetric tensor functor from even-ranked quadratic
modules (with L) to quadratic algebras (withl), i.e., there are natural isomor-
phisms
¥ :D(0y) OD(qp) — D(q; L), ©))
By:1 — D(0). )
They are given by 1— 1 and
B(&, 04 &) =su (518, V(&) = SH(Ly)- (%)

6.4. Lemma. Let (M,q) be a quadratic module of even rank r. Lef e the

bilinear form with matrix(gg) on K, let f be a representative of q and Iétc
A"M. Then the composite isomorphism

Dis(¢,) 0D (q) 2229, 10D (q) — 2 D(q) 1)

(whered® = @, is as in3.5.9 is given explicitly by

_(elAez)DfOJ_fg = 5¢(8). (2

Proof. Let B be the linear form orl given by (e;) = 0 andf(e,) = 1. By
3.5.4 we haveb(e,) = —s; (e, A &,) and henceb(é,) = —e; Ae,. We claim that
ps,© P = B. This follows fromp; ((e,)) = —p; (s; (e, &,)) =0=P(e) and
P, (@(1)) =p; (1) =1=B(e,) = B(e, +&,). Now 6.1.6 and 6.3.1 imply

((I)D Id)(el D(ﬁ:Pf) é) - 7(61/\ eZ) D(Pfoapf> é - 7(e1/\%) Df0Lf é
On the other hand, putting= s; (), we havex= § andp;(x) = 0 so by 6.1.4,
lo@€10p,,) &) =5:(6)
This implies (2).

6.5. Theorem. LetX; = (X;,Q;,T;,1;) be quadratic trace modules of rankand
X=X%,9%,=(X,Q,T,1) their direct sum. Then there are isomorphisms

© = Oy x, : Dis(X;)ODis(X,) — Dis(X,®X,) 1)

of quadratic algebras, natural itt, and X,, defined as follows: Choose represen-
tatives fof @ and let
flo=(fi Lf)+T,®T,

be the representative of Q as #2.1 Also, leté € L, = A" X;, and recall the
notations f and&’ of 4.2and4.3
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(a) Ifr, and r, are evenDis(X) is by the definition ir8.4.1a shift of ©(Q)
and Dis(X,) O Dis(%,) is, by Lemmd.2, a shift of ©(Q,) 0D (Q,). Then® is,
as a module homomorphism, the composition

D(Q)UD(Q) ——D(Q L Q) ——D(Q)
of 6.3.3and4.5. Explicitly, it is given by

G011, 8 s, (E1AE). (2)

(b) Ifr, is odd and i is even, we havBis(X,) = Dis(&, ® X,) andDis(X) =
Dis(¢, & X) by definition in3.4.2 Then® is the isomorphism

Dis(¢, @ X,) ODis(X,) — Dis(¢, ®X)
of (1), where we canonically identify¢, ® X,) ® X, = ¢, ® (X, ® X,). Explicitly,
it is given by )
éfmquz & Sffz((glAQ)')' ®)

(c) Ifr,isevenandyis odd, let j X, & ¢, & X, — &, & X be the switch
X BADX, = A DX DX, Then® is the composition

Dis(j)

Dis(%,) O Dis(€, ® X,) — Dis(X, & ¢, & X,)—> Dis(&, & X) = Dis(%¥),
(4)
where the first isomorphism is as(h). Explicitly,
élljfllfg §§ = sfiz((él/\€2)ﬁ)' )

(d) Ifry andr, are odd, we hav®is(X,;) = Dis(¢, @ X;) by definition. Let
¢, = ¢, ® ¢, be the split quadratic trace module of ra@kand let [ &, & X, &
¢, 3 X, — ¢, BX bethe switchl, X, A, X%, = A, B A, X, B X%,. Then®
is the composition

. . o . Dis(j) .
Dis(¢, @ X,) ODis(¢, ® X,) —— Dis(¢;®&X,® ¢, & X,) —> Dis(€,® X)

— Dis(¢,) O Dis(X) — Dis(X) (6)

where the first and third maps are as(b) and the last map is the isomorphism
6.4.1 Explicitly, ® is given by the formula

08— s, (&N, @

Proof. (a) Letr; =2n; andr =r,+r, =2n. PutD; :=9(Q,), D" := D, 0D,,
D' :=9(Q, L Q,), andD := D(Q) for short. Recall from 3.4.1 that Oi&;) =
D, + & and DigX) = D+ ¢ where

&= (D" /218y, &= (-1)""(n/2|8,.
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We apply Prop. 4.5 in casg = Q,, and thus have to computbQu. This follows
immediately from 2.2.3 and 2.1.3: '

sQit(giﬂaéiu) = (_l)ni niaggij(giﬁ7€it) = <_1>nini63€i(€ia§i)'

By 6.1.1,D"/k-1=L, ®L, which is identified with. = A" X. Thus it makes sense
to shift both sides of the compositiono ¥: D” — D’ — D by € which yields an
algebra isomorphism

D"+ ((-1)"nyn, &, +€) — D+e=Dis(%),

and from 6.3.5 and 4.5.1 it is clear that (2) holds. On the other hand, by 6.2.1,
Dis(%,) ODis(X,) = (D, + &) O (D, +&,)
=D"+(6,®8,+ 6,08 46,08,

whereg, = &, = &, S0 it remains to show that

(-1)"yn, 6, +e=£,00,+ 6,0, — 4, Ve, (8)
By 2.2.2and 2.1.3,

8= (1", —1)é,, 6y =0y @0y .

Then (8) comes down to the formula

5% - 0| 3] 9|3 -a[ 33

for all natural numbers,, n,. The elementary proof is left to the reader.

(b) From what was proved in (a), it is clear tieais an algebra isomorphism.
By specializing 4.2.2 to the case where the first factor is the bilinear-linear module
¢, of rank one, we have

fl,=(f! Lf)+T/®T,

Hence (3) follows from (2) after replacinig by f? andé, by &! becauséA¢&, =
(ANE)NE, =1N(E NE,) = (N E,)" in the exterior algebra.

(c) Again, itis clear from (a) tha® is an algebra isomorphism, so it remains
to show (5). Pugy:= (f; L fg) + T, ®T; andh:= ffz. A calculation shows that

(X BADX, Y1 DU DY,) = F1 (%, Y1) + Fo(Xps ¥a) + Ti (X)) To(Y2)
+uT (%) +ATo(Y,),

(N (X ®A DX, YO UDY,) = F1(X, Y1) + Fo(Xo, ¥o) + T (X)) To(Ys)
+AT(Yy) +ATo(Y5),

for A, u €k, x,y; € X.. We claim that
Sj*(h)(él/\ég) =55(, 1)) )
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By the defining relations 3.3.6 @ (Q, @Qg), this is equivalent tOfg,,Nh)(@l/\

ég) = 0. Lett be an indeterminate and pait=g—g' anda = g— j*(h). We use
the notations introduced in 3.3 and 4.3 and pu&2r, +r,+1. Then by 11.6.1,

F-F @+tx"  xTy
min(a+ta) (& A E) _pf(—<1+t)x 0 y )
—-y'x -y' K-F

_ T 0 y
_Pf(Fl_Fl )Pf(yT F2F2T>

is independent of, Whencng,jx(h) =0, as asserted. Now we apply the definition
of ® in (4) and the formula for Dig) in 3.4.4 which yields

élDflszi (52:) — Sg(él/\%):sj*(h)(él/\ézu)
r+r+1
= s A\ DEAE) = s (GA&)),
because, is even.

(d) Itis clear thai® is an algebra isomorphism so let us prove (7). Egt=
(k2,Qy, Ty, 1) be the split quadratic trace module of rank 2,GiAe, + ue,) =
A, To(Ae, +ue,) = A +u and 1=e, +e,, cf. 1.2(a). Letf, be the bilinear form
onk? with matrix ($9), a representative @, and put

g=(FLf) +T/eT),, h=(filf,) +The(MaeT,).

These are bilinear forms cmji ea)(éi andk® k® X, @ X,, respectively. A compu-
tation shows that

IA DX DAy DX, g DYy D Ly DY,) = F1(Xg, Y1) + F2(Xs,Y2)
+ Ty (%) To(Yo) + Aty + A (Ty (Y1) + To(Y2)) + Mo Ty (X)) +2A,T,(Ys),

JF (N (A &X © A DX, 1y DY DU, DY) = F1(X3, Y1) + F2(X5,Y5)
+ T (%) To(Ya) + Aoty + (A + A5) (Ty(yy) + To(¥2))-

We claim that
S (611 83) = 84(Ef 1 &) (10)

Similarly as in the proof of (c), leh =g—g' anda = g— j*(h), and put 2 =
r,+r,+2. Using the notations of 4.3, let

= (0 X = (0 y
R= (‘XT Fl_FlT)’ S= <—yT ':2_':2T>7
%= (1,X) € kntlandy'= (1+t,y) € k[t]"*". Then

mo(a+ta)(Ef N EJ) = Pf(gi Ng) = Pi(R) - Pi($)
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(by 11.6.1) is independent anencng ) = 0 which proves (10).

Now we can establish (7). Let us identiéy with 1, 0@ 0 0 ande, with
041, ®040in€&,® X. Then since, is odd and; € A"t X,

(/\J)(gf/\%) = (/\j)(el/\él/\%/\§2) =—eA§AEAE,
and henc® maps

G0 8 o SEAED = 5.0(EAE
= — (8 A NAGAG,) € Dis(€, 6 X)
= — (e Aey) Oy 11, (5 AE,) € Dis(&,) ODis(X),

= s, (8 A ),

where we used (2) in reverse in the last but one and 6.4.2 in the last step.

We finally show that the isomorphismisare natural irk,; andX,. In case (a),
this follows from naturality of andy (Prop. 4.5). The cases (b) and (c) follow
easily from this, and in case (d) one uses the naturality of the isomorpgi@{n
which implies that also the isomorphism D&,) O Dis(¥) = Dis(X) of 6.4.1 is
natural inX.

6.6. Theorem. The functorDis is a tensor functor from the categogtm, of
quadratic trace modules (witlp) to the categorya, of quadratic algebras (with
0).

Proof. This means [9] that, in addition to the natural isomorphignsf Th. 6.5,
we have a natural isomorphis@): | = Dis(0) such that the following diagrams
commute for allX, X;, where we puD, := Dis(X;) for short:

Dis(X) 01 —> Dis(X) | ODis(X) — > Dis(X)

e Tl T

Dis(%) 1 Dis(0) —~ Dis(X®0)  Dis(0) ODis(¥) — Dis(0& X)

(D,00D,) 0D, —*— D, 0(D,00D;) —429, D, ODis(%,® X5)

@Dldl @J (2
Dis(X, & X5) 1D3 — Dis (X, ® Xp) & X5) — Dis (X, ® (X, @ X;))

The commutativity of (1) is easy (use 3.5.1 and 6.1.3) so we only do the commu-
tativity of (2). The unnamed arrow on the lower right is treated as the identity. The
mapa on the upper left is as in 6.1.5. According to the parities of the ranks of

the X;, there are eight cases in which commutativity of (2) needs to be checked,
becaus® is defined differently in each case. We do the case wher; dlhve

even rank. The others follow the same pattern and are left to the reader.
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SinceD; is a shift ofD(Q,) we haveD; = L; = A" X.. Let f; be representatives
of Q;. Specializing formula 6.1.5 to the present situation and using 6.3.1, one sees
thata is given by

(E1®6) Or 11)ir,88 = S0 (1,01, (G2 83)-

Let(fy,Tj) == (f, T)@(f;,Tj)) asin4.2. Thug; =TT, f; = (f L ) +T®
T, andjfJ |sarepresentat|ve of the quadratic fo@p = Q, gl QJ +TiT, of3€ G X;.

Formula 6.5.2 yields
o(& Df.if. &)= Sy, (&GNE)),

and therefore the map: D;0D; — Dis(X; & X,) is given by@(.ﬁ,@é ) =& N
Now we can compute the effect of going across and down in (2):

(6 ®8)0 (f,L15,) L1, & —— &0 fL(f,L 1) (E,®&)

== &0 11, (52 &3)

— St 6,9+ T,0Th, (LN (&N E)). 3)

Going down and across is easier and results in

(E10&) O 118 o (GAE)T; ¢ &

B St L f5)+ T, ((6in&)NEs). 4)

By 4.2.2 we have the associative law
(floLf3) + Tp@Ty=(f; Lfy) + TeTy, )

so the commutativity of (2) follows.

7. The discriminant algebra as a symmetric tensor functor

7.1. Notations. Let F, be the functor fronk-alg to the category of commutative
rings which assigns tR the sef~,(R) of all continuous maps from SpgR) to I,

the ring with two elements, with the obvious ring structure. We usually identify an
elementf € F,(R) with the idempotenp € R such thatf ~1(1) = Spe¢Rp). Then

the addition inF,(R) is given by

p+p =p(d-p)+pA-p)=p+p—2pp,

while multiplication is the usual product of idempotentsRnWe denote by,
thek-group functor assigning tR € k-alg the additive group oF,(R). There is a
homomaorphism

XLy — My, p i 1-2p=(-1)F,

wherep, is thek-group functor of second roots of unity.
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7.2. Involutions of quadratic algebras. A quadratic algebr® has a natural in-
volution o = o, given byx+ o (x) = Tp(X) - 1. By [11, 5.3] there is a homomor-
phism

bp: Z, — Aut(D), bp(p) :=0":=(1-p)-ld+p-o. 1)
HereAut (D) is thek-group functoiR +— Aut(D ® R). Explicitly, this means
bp(P) - x=0"(X) = pTp(X)- 1+ (1-2p)x, )

for all p € Z,(R), x€ D®R, R € k-alg. Hence the map induced hly? on D is
given by
x(p) 1 X = (1-2p)x=(-1)Px. €©)

SinceD = /\2D under the map +— 1AX, it follows that

dethp(p) = x(p) = (=1)".

Suppose in particular th&@ = (b: c]] = k- 1@ k- zis free, and identifyGL (D)
with GL, by means of the basis4 Then it is easily seen th&ut(D) C GL, is
the subgroup of all matrices

1 A
"= (0 u) @
wherep is a unit and
24 =b(1-p), A(b—A)=c(l—p?). (5)
Also, (2) applied toc = z shows that
1 b
hD(p) = (0 182p> : (6)

7.3. Proposition. Let D; and D, be quadratic algebras with product 8 D, O
D,. For automorphisms;tof D; let h, O h, be the automorphism of D as é11.6

(a) The map(hy,h,) — h, Oh, induces a homomorphism of group functors
O: Aut(D,) x Aut(D,) — Aut(D). 1)

(b) LetD = (b, : ¢ =k-1&k-z be free and B= ((b: c]] as in6.1.2 Writing

(1 A .
h = <0 H:) asin7.2.4 we have

<1 /11>D<1 )LZ)_<1 )le2+kzb1—2/11/12>' @
0w 0 0 Hitz

(c) The following diagram is commutative:

hDIXhD2

Z,xZ, ————— Aut(D,) x Aut(D,)

] :

Z,— 5 Aut(D,0D,)
DIDD2
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In particular, for pe Z,(k),

G[F)’l Oldp, =1dp O ng =op. (4)

Proof. (a) This is clear because the prodicof quadratic algebras is a bifunctor
commuting with base change.

(b) Leta;: D; — k be the linear form given bg; (1) = 1 ande;(z) = 0. Then
D=k-1@k-zwherez=20,, , 2. Now putf; = o oh. Sinceh(z) = iz,
6.1.6 shows _ _ _ _

(Do) (% D ) 2) = Mba(4 Hg, 0 22)-

Definet,, € D; byty, (X) = Tp, (X—(x) - 1). Then
Bi(z) = a4(A - 1+ wz) = A, te, () =Tp, (7 — 04(z)) = by
By the defining relations db, 0D, (cf. [11, 2.1]),
4000y % =4, p,) %2+ Cap(a©2) 1,

wherec,; =C, g Ota, +1o, ®C, g —2C, 5 ©C, g, S€€ [11, 2.1.4]. Substituting
the above data, we obta®) ;(2 ®2,) = 4,0, + A,b, — 24, 4,, and therefore, by
an easy computation,

(h,Ohy)(2) = (A4b, + A0y — 244 45) - 14 py iy - 2.
In matrix notation, this is (2).

(c) Since everything is compatible with base change, it suffices to prove the
commutativity of (3) when the group functors are evaluatdd-atk. By localiza-
tion, we may assumB; and henceD free. Then the assertion follows by direct
computation from 7.2.6 and (2).

7.4. Quadratic algebras with parity. The categoriegitm, of quadratic trace
modules andja, of quadratic algebras are symmetric tensor categories. It is thus
natural to ask whether the tensor functor @j8n, — ga, respects the symme-
tries. This is not the case, but becomes true after replagégwith a bigger
category which we now define. Lgg, be the direct product aja, and the dis-
crete category, (k). Thus the objects ofa, are pairsD = (D, p) consisting of

a quadratic algebr® and an elemenp € F,(k), called theparity of D, and the
morphisms are

Mor ((D, p), (D', p)) = {g)/lor(D,D/) ,I]; E; E:}-

An objectD ¢ ga, will be called even or odd if its parity is 0 or 1, respectively.
ForR € k-alg, the base change 8fisD@R= (D®R, p 1g). We leave it to the
reader to show thaja, becomes a tensor category with product

(D,p)d (D, p) = (DOD', p+p),
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unit i = (1,0) and the associativity, left and right unit constraifitd, ¥ derived
in the obvious way from the corresponding ones in 6.1. The symriietirga, is
defined as follows. Firstja, is a symmetric tensor category with the symmetry

¢=tpp, 010D, — D,0D;, X0, o % — %04, % @)

see [11, Th. 2.6]. Now defirie D, 0D, — D,0D, for D, = (D;, p,) € &, by
5,5, = ‘0,0, ° bp, 0o, (P1P2) = bp,op, (P1P2) © o p,- 2

7.5. Lemma. With the symmetriésdefined as aboveja, is a symmetric tensor
category.

Proof. Since the automorphisnes® have period two, it is clear th#; 5 )y l=
12

5 « It remains to show the commutativity of the diagram

(6,0D,) 0B, 2% (B,006,) 0D, —— B,0(D,05,)

al lmms )

D,0(D,00;) —— (B,0D;3) 0D, —— D,0(D,0D,)

By 7.3.4 and because the automorphigifys) = o commute with morphisms of
ga,, we can collect the powers @f in going around the diagram. This yields for
the upper leg

(1dO%)cdo (¢0Id) = oPP20PPso (Id0c) oao (cOId),

while the lower leg results in

Gotoda=ocPPtP)ogocoa.

Now GPiP2 0 GP1Ps = P12 TPiPs — GPi(P2+Ps) hecause +— P is a group homo-
morphism, andldO¢) cao (¢O1d) = aocoa becausela, is a symmetric tensor
category.

7.6. Definition. Let X be a quadratic trace module. ThHescriminant algebra
with parity of X is defined as
Dis(X) = (Dis(X), rk(X) (mod 2).
For example, the discriminant algebras with parity of the split quadratic trace mod-
ules¢, and¢, are now different, namely
Dis(¢,) = (Dis(€,),1) 2 (1,1),  Dis(&,) = (Dis(€,),0) = (1,0) =T,

while their ordinary discriminant algebras are the sam#&.H&s nonconstant rank,
rk(X): Speck) — Z is locally constant, so (&) (mod 2) € F,(k). Since by defi-
nition there are no morphisms between quadratic trace modules of different rank,
itis clear thaDis is a functor frongtm, to qa,.
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7.7. Theorem. Dis: gtm, — ga, is a symmetric tensor functor.

Proof. LetX; = (X, Q,,T;,1;) be quadratic trace modules with paritigs=rk(X;)
(mod 2. Then rKX, & X,) (mod 2) = p, + p,, and hence the isomorphiséh=
Oy x, of Theorem 6.5 induces an isomorphism

©: Dis(%,) ODis(X,) — Dis(X, & X,).

It is easy to check, using Th. 6.6, that with these isomorphiérins's a tensor
functor fromqtm, to ga,. The symmetry imtm, is the switchow: X, & X, —

X, X, X BX = X ®X;. Thus forDis to be a symmetric tensor functor, it
remains to check that the diagrams

Dis(x,) ODis(X,) —— Dis(X, @ X,)

El llﬁs(w) ()

Dis(%,) Dis(%,) —— Dis(¥, & X,)

commute. After decomposing the base ring, we may assume;thatk(X%;) is
constant on Spgk). Then there are four cases, depending on the pgriof r;.

We do the case wherg andr, are odd and leave the other cases, which follow a
similar pattern but are easier, to the reader.

Let f; be bilinear forms onX; representingQ; and letQ;; be the quadratic
form of X; @ X;. Thenf;; := (f; L f;) + T, ® T, is a bilinear form onX & X;
representing;;, cf. 4.2. PutD; = Dis(X;) andD;; = Dis(X; @ X;) for short, and
let z= & Dflufzj &i € D, 0D,, where we use the notations of Th. 6.5(d). Since
@ is just® as a map o, (1D,, we have by 6.5.7 tha#(z) = s;_(§, A &,). We
claim that the effect of going across and down in (1) is

Dis(®)(6(2)) = op,_ (s1, (&1 &) )

Indeed, let us note first that\"* "2 @) (§; A E,) = (—1)12E, A& = —&, A&, since
& € A\'' X and bothr, andr, are odd. Hence, by 3.4.4,

Dis(0) (8(&: N &) = —s¢ (&1 &), (3)
where the pullback := o*(f,;) to X; & X, is

9(Xy DX, Y1 DYo) = F1(Xp, Y1) + F2(%a, Vo) + Ty (Y1) To (%)

Let f := f,, for short. By the defining relations 3.3.6 Df,,, we haves; —s; =
Ktq' 1, SO We compute next;,. Let 2n=r,; +r,, and use the notations introduced
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in 4.3. Then by 11.6.2 and 3.3.3,

T (f— 17 +1(f =) (E,NE) = Pf(-&ltF)l;Tx (le—t);gy>

_ 0 (1+1t)x 0 y
= Pf(—(l—irt)xT F,— FJ) 'Pf<—yT F,— F2T>
. 0 X 0 y
e 0 % )R 0 %)
_ F-F' x'y
= (1+t)Pf< VX F—Ff
= (1+)m(f =) (§AE) = (1+)7(5 N Ey).

On the other hand, by 3.3.2,

T(f—fT+t(f—g)) =m(f— 1)+t (t,f— 7, f—q).
By comparing coefficients atve see thafl,(t, f — f 7, f —g) = 7; is independent

of t. Thereforex, = ITh(—2,f — ", f —g) = 7y ands; — sy = 7 - 1. Since the
trace ofs; (§; A &,) is 7; (&, A &,), it follows that

0p, (51611 &) = T(§ N &) 1-51(§A &) = —5(6, 1 &y),
so (3) implies
Dis(w) (GDlz(Sf (E.NEy)) = szl(éz NEy).
But Dis(@w) commutes with the standard involutions®f, andD,,, whence

Dis(®)(s;(§ /&) = 0p, (sr,, (&N E0))-

This proves (2). On the other hand, going down and across in (1) yields,®ince
commutes with the involutions,

z : GDZDDl(C(Z)) = GDZDDl(ézu Dgztu_q 511)

2 05, (O Dy, &) = 00, (51, (521 E)).

This completes the proof.
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8. Separable quadratic trace modules

8.1. Definition. A quadratic trace modul® is calledseparabléf its discriminant

form A = A, is nonsingular; equivalently, if the discriminady is nonsingular or

if the discriminant algebra D{&) is a separable quadratic algebra (Lemma 3.6).
Separability is preserved under arbitrary base changes and descends from faith-
fully flat base changes.

Since the discriminant form of the split quadratic trace modijlés the stan-
dard scalar product dd, it is clear that, is separable. The goal of this section is
to show that, conversely, a separable quadratic trace module is, locallyérathe
topology, isomorphic te,.

In the sequel, &functor means a set-valued covariant functor on the category
k-alg. Following [6], schemes are considered as spdefanctors. The affind-
scheme defined bylaalgebraAis Spe¢A)(R) = Hom, (A, R). For ak-module

X let X, denote thek-functorR +— X ®, R. If X is finitely generated and projec-
tive thenX; is an affine finitely presentekischeme whose affine algebra is the
symmetric algebra over the dual modiXé

For an arbitrary quadratic trace mod@dedefinek-functorsY andU by

Y(R)={xe X®@R:T(x)=1, Q(X) =0}, Q)
U(R) = {ue Y(R): 1—uunimodulas, 2

for all R € k-alg. SinceX, is finitely presented and affine so¥s Leta,, ..., o, be

a set of generators of the dual modeand letg;(x) = & (1—x). ThenU C Y

is the union of the open affine subschenYe®sf Y whereg, does not vanish, i.e.,
ue UR) < uecY(R) andy;Rg(u) =R, see [6, 1,§1, 3.6]. Hencel is a
quasi-affine finitely presentddscheme. We will see that it plays the role of the
unit sphere in Euclidean geometry. Note that Sped¢{0}) is empty ¥ (R) =0

for all R # {0}) if r =rk(X) = 0, andY = Speck) is the one-point functor for

r =1, whileU is empty forr =0, 1.

8.2. Proposition. LetX = (X,Q,T,1) be a quadratic trace module of rank r and
letue U(k) (hence £=2). Let X := u* with respecttad = A, putl’ :=1—uand
denote by Qand T the restrictions of Q and T to’XThenx’ := (X',Q,T",1') is

a quadratic trace module of rank-+ 1 and

X=kuoX' x2¢oXx, (@)

the direct sum of quadratic trace modules adlib. Moreover,X is separable if
and only ifX’ is separable.

Proof. We haveA (u,u) = T (u)? —2Q(u) = 1, so the direct sum of modules in (1)
is clear. NextA(u,1—u) = A(u,1)—1=T(u) — 1 (by 1.1.4)= 0, which proves
1eX.

Clearly X' is finitely generated and projective of rank 1, and 1is unimodu-
lar by definition ofU. Furthermore, by 1.1.T/(1) =T(1—-u)=T(1)-1=r—-1
and

Q) =Q-u = - 8L +aw = () ~-v+o=("; 7).
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Finally, letx' € X'. ThenB'(1',X) =B(1—-u,X) =T(1-u)T(X)—A(1—u,X) =
r—=1)T(X)—A(1X)+0=(r—2)T(X), by 1.1.4. Hencé&” is a quadratic trace
module of rank — 1.

We show thatX = ¢, ¢ X’ as quadratic trace modules. Clearly=1u & 1’
andT (AudX) =AT(u)+T(X) =41 +T/(X). MoreoverQ(Audx) = 12Q(u) +
AB(U,X) +Q(X) =0+ A(T(WT(X) —A(u,X)) + Q(X) = AT'(X) + Q' (X) be-
causeu | X' with respect toA. The statement concerning separability follows
from 1.5.2.

8.3. Lemma. LetX = (X,Q,T,1) be separable of rank r. Ifp1then T: X — k
is surjective. If r>2, the restriction of Q to X := KerT is primitive.

Proof. By separabilityA induces an isomorphism betweXrand its duaX*, and
1.1.4 shows thal € X* is the image of }. Since 1 is unimodular so i . Hence
there existal € X** = X with T(u) = 1.

For the second statement, we may assumektisedn algebraically closed field
and then have to show thQI‘XO #0.1fr =2, X =qt(D) is the quadratic trace
module determined by a separable quadratic algeba~s&> = k-e, ©k-e,, and
D°=k-(e,—&,), withQ(e, —e,) = Q(e,) —B(e,, &) +Q(e,) = —1. If r >3, pick
an element € X with T (u) = 1 so thatiX = k- u® X°. Assume tha® vanishes on
AoV
vi 0
A = A(u,u) € kandv is a row vector of lengtin — 1> 2. Such a matrix must be
singular, contradiction.

X9, After choosing a basis iX°, the matrix ofA has the form where

8.4. Lemma. If X is separable of rank i 2 over an algebraically closed field K
thenU(K) # 0.

Proof. By Lemma 8.3 there existy € X with T(y) = 1, T(x) = 0 andQ(x) # O.
Putu=y+ Axand determine the scalare K by the requiremer®(u) = 0. This
yields the quadratic equation

A2Q(x) +AB(xy) +Q(y) =0

which has a solution sindé is algebraically closed. Ifi =2 1 we are done. Oth-
erwise, (5) = Q(1) = Q(u) = 0 in K which impliesr >3. Also,T(1) =T(u) =1
soX = K-1@ X°. SinceQ does not vanish oX° and dimX° > 2, there exists a
non-zero isotropic vectare X°. Putu'=1+z Thenu'# 1, T({) = T(1) = 1 and
Q(0) =Q(1) +B(1,2) +Q(2) =0+ (r—1)T(2) + 0= 0, as required.

8.5. Corollary. A separable quadratic trace modubé over an algebraically
closed field is split.

Proof. If X has rank<1 this is evident, so we assume=rk(X) > 2. Then the
assertion follows by induction from Prop. 8.2 and Lemma 8.4.



Discriminant algebras 39

8.6. Theorem. Let X be a separable quadratic trace module of rank 2. Then

U is a smooth quasi-affine finitely presented k-scheme. The geometric filides of
have dimension + 2. They consist of two points if+ 2 and are connected and
non-empty for g 3.

Proof. As noted in 8.1,U is quasi-affine and finitely presented. By [6,54,
Cor. 4.6],U is smooth if and only if, for everR € k-alg and every ideat of square
zero inR, the canonical map)(R) — U(R/n) is surjective. After a base change
fromk to Rwe may assumB = k to simplify notation. Denote the canonical maps
k— k:=k/nandX — X :=X/nX=X®Kk/n by abar, and let € U(k/n). Decom-
poseX = k-vd X’ with X’ separable of rank— 1 as in Prop. 8.2. Choosec X
with x=v. ThenT (x) = 1+ é andQ(x) = € whered, € € n. Sincen has square
zero, 1+ 6 € k* with (1+ )~ = 1— §. After replacingx by (1— §)x, we may
assumd (x) = 1. ThenA (x,x) = T(x)2 — B(x,X) = 1— 2¢ € k¥, soX decomposes
X =k-x®M whereM = x* with respect tet, andM = X'. By Lemma 8.3, there
existsw € X’ with T (w) = 1. Choose/ € M withy=w. ThenT(y) =1+y€1+n

is invertible, so after replacingby (1+y)~ly, we have found an elemept M
with T(y) = 1. Since alsd (x) = 1, it follows that

0=A(xYy) =T(XT(y) - B(x,y) = 1-B(x,y).

Now putu:=x+¢&(X—y). Thenu=X=v, T(u)=1+¢(1-1)=1, and
Q(u) = Q(x) + eB(x,x—Yy) = Q(X) + £(2Q(x) — B(x,y)) = e+ ¢&(2e — 1) =0.

It remains to show that & u is unimodular. Sinc& — v is unimodular inX, there
exists a linear formB € X* with B(1—v) = 1. Now X* = X* @Kk sinceX is
finitely generated and projective, so there exists X* with @ = . This implies
0(1—u) =1 and thereforer(1—u) € 1+n C k*, as required.

To determine the geometric fibres dfwe may, after a base change, assume
thatk = K is an algebraically closed field. By Lemma 8.4 and Cor. B ) # 0
andXx = &, is split. Putm=r — 1 and identifyX with K" by means of the standard
basise,, ..., en. Let Greek indices run from O tm and Latin indices from 1 ton.
ThenY (K) c K™ is described by the equations

;x/1 =1 Z X, Xy =0, @

A<u

and x € U(K) if in addition x # 1, = (1,...,1). Forr =2, Y(K) = U(K) =
{(1,0), (0,1)} consists of two points. Assume= 3 and use the first equation of
(1), Xy = 1— Y %, to eliminatex, from the second equation. Th&f{K) becomes
identified with the affine quadric iK™ with equation

f(xl,...,xm):in—_inxj:O. 2
T i<]

Sincem> 2, it is easily seen that the polynomié{x,,...,Xm) € K[X{,...,Xn] is
irreducible, sor (K) is an irreducible algebraic variety. HendéK) is connected
[2, 1, §4.1, Prop. 1].
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8.7. Remark. In the situation of Th. 8.6, define
S(R) =Y(R)N {1y }
for all R € k-alg. ThenSis a closed subscheme ¥f isomorphic taSpeck/kd,)

where
. _[2n—1 ifr=2niseven
dy=d(r) = {; i 1 ot i odd) 1)

Moreover,Y is geometrically the union dfl andS, andU is precisely the set of
points of Y where the canonical projectiofh — Speck) is smooth. The proof is
left to the reader. As a consequence, we note:

U=Y < d(r)-1 k"
Clearlyd,(r) = 1ifand only ifr =2 orr = 3. Hencel =Y is affine forr = 2,3.

8.8. Theorem. LetX be a quadratic trace module of rank r. Th&ris separable
if and only if there exists aitale cover R of k (i.e., agtale and faithfully flat
R € k-alg) such thatk R~ ¢, @ R.

Proof. The condition is necessary because separability descends from faithfully
flat base extensions. The proof of the converse is by induction dine cases =

0,1 being trivial, we assume> 2. By Th. 8.6 and [7, Cor. 17.16.3(ii)], there exists

an étale covek’ € k-alg such thatJ(k') # 0. Chooseu € U(K'). Then Prop. 8.2
shows thatt ® k' = (&, @ k') & X’ whereX' is separable of rank— 1 overk'. By
induction, X’ ®, R= ¢_; ®, RwhereR is anétale cover ok’ and hence ok. It
follows thatX ®, R= (¢, ®R) & (X' ®, R) = & ®R.

9. The automorphism group |

9.1. Definition. Let X = (X,Q,T,1) be a quadratic trace module of rankAn
automorphism of is an elemeng of GL(X) such that

g(1)=1 and T(g(x))=T(x), Q(g(x))=Q(x), forallxeX. (1)

We denote by Autx) the set of all automorphisms &f and letG = Aut (X) be the
k-group functoiG(R) = Aut (X ® R), for all R € k-alg. Note that the automorphism
group is trivial ifr <1.

From the fact thaX is finitely generated and projective ag-anodule it fol-
lows easily that is an affine finitely presentddgroup scheme.

9.2. Lemma. Letg = Lie(G) be the Lie algebra of5 = Aut(X). The following
conditions are equivalent for an element Atrfid(X):

(i) Acg,

(i) A(1)=0and T(A(x)) = B(x,A(x)) =0, for all x € X,
(i) A(l)=0andA(x,A(x)) =0, for all x € X.
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Proof. Abelongs tog if and only if Id+ €A € G(k(g)) wherek(e) is the algebra

of dual numbers. Now the equivalence of (i) and (i) follows easily from 9.1.1.
Next, we haveA (X, A(X)) = T(X)T(A(X)) — B(x,A(x)) which shows (ii) implies
(iii). On the other handA (1,x) = T(x) by 1.1.4, and from (x, A(x)) = O for all

X we get by linearization that (x,A(y)) = —A(A(X),y). HenceA(1) = 0 implies
thatT (A(x)) = A(1,A(X)) = —A(A(1),x) = 0, so that (jii) implies (ii).

9.3. Theorem. LetX be a separable quadratic trace module of rank 2.
() G = Aut(X) is smooth of fibre-dimensidff,").

(b) If X = ¢ is split,g = Lie(G) is the set of alternating x r matrices with
all row sums equal to zero.

(c) The “unit sphere”U of 8.1.2is a homogeneous space und&in the fol-
lowing sense: IfU(k) # 0, choose & U(k) and decompos& = k-u® X’ as in
Proposition8.2 ThenH := Centg(u) = Aut(X’), and the orbit mags: G — U,

g — g(u), is smooth and surjective, so th@y/H = U asétale sheaves. In gen-
eral, the mapd: G x U — U x U, (g,u) — (u,g(u)), is smooth and surjective.

Proof. (a), (b) By localization we may assume tbéat= X /k- 1 is free, soX has a
basis of the formx, = 1,x,, ..., Xm Wherem=r — 1. We first show thag € GL(X)
belongs taG (k) if and only if

9(1) =1, 1)
TOX%))=T(x), fori=1,....m, 2
Qg(x)) =Q(%), fori=1,....m, 3)

B(9(%),9(x;)) =B(x,x;), forl<i<j<m 4

These conditions are obviously necessary. Now suppose that they hold. Then (1)
implies that (2) holds for= 0 as well so we hav€ og = T. Similarly, (3) holds for
i =0and we also havB(g(1),9(X;)) = (r—1)T(g(x;)) = (r —1)T(x;) = B(1,x;),
for j=1,...,m. This impliesQog = Q, sog is an automorphism.
Clearly, (1) — (3) are polynomial equations in the entrieg 6frhere we iden-
tify g with its matrix with respect to the basig, . . . , xm). Note that (1) amounts to
r scalar equations for the componentgy(f). Since all this remains valid in any
scalar extension, we see ti@ats defined by

r+2(r—1)+<r;l> :r2—<r;1>

polynomial equations.

To prove smoothness @, it suffices by [6, 11,585, Prop. 2.7] that for every
prime idealp of k, the Lie algebra ot @ x(p) has dimensior{","). SinceG ®
k(p) 2 Aut(X® k(p)) andX ® k(p) splits over the algebraic closure efp) by
Cor. 8.5, this will follow once we have established the descriptiog of (b).
Let, then,X = &, be split and letg be the standard basis &f. By 1.2, A is
the standard scalar product kh HenceA € Mat; (k) is alternating if and only if
A(x,A(x)) = 0 for all x € K', and since %= 1, is the vector with all components
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equal to 1A(1) = 0 means that all row sums éfzero. In view of Lemma 9.2(iii)
this completes the proof of (a) and (b).

(c) Letue U(k). SinceG leaves the discriminant form invariant andx’ is
the orthogonal complement ofwith respect tai, we see thall is the isomorphic
image ofAut(X’) under the mag/ — Id, , & d, so we identifyAut (X’) and
H. We show thalG/H = U as sheaves in thetale topology, i.e., that for every
R € k-alg and every € U(R) there exists aBtale coveSof Randg € G(S) such
thatg(u) = v. After a base change, we may assurte k for easier notation. By
Prop. 8.2, X = k-v® X" whereX” is also separable of rank— 1. Theorem 8.8
shows that there exists dtale covelE of k and an isomorphisrh: ¥’ @ E —
X" ®@E. Defineg(u) = vandg|,, . = h. Theng € G(E) andg(u) = V.

SinceH = Aut (X’) is smooth by (a), in particular, flat, it follows from [6, 111,
§3, Proposition 2.5(a), Corollary 2.6] thAtis faithfully flat and smooth. Hence
so aref x1d;: GxU —=UxUand Id; x B: G x G — G x U. One checks that
the diagram

GxG——GxU

lwl Jﬁ

GxU——UxU
Bxldy
is Cartesian, where the top arrow is given(gyh) — (hg=2,g(u)). By faithfully
flat descentp is faithfully flat and smooth.

In general, there exists a faithfully flIRte k-alg such thatJ(R) # 0 [7, Corol-
lary 17.16.2]. Here we use the fact that the canonical projetfien Speck) is
surjective, hence (by smoothnesslf faithfully flat, cf. Theorem 8.6. By what
we proved alreadyy ® R is faithfully flat and smooth, and therefore sodsby
faithfully flat descent.

9.4. The Dickson homomorphism. Since the discriminant algebra D) of a
quadratic trace modul& depends functorially oX (cf. 3.4) and is compatible
with base change, there is a homomorphism

Dick = Dick,: Aut(X) — Aut (Dis(X)), g + Dis(g), 1)

called theDickson homomorphisnbecause it has properties similar to the classi-
cal Dickson homomorphism for orthogonal groups of even rank.
Suppose that is separable, whence alBo= Dis(¥) is a separable quadratic

algebra by 8.1. Then the canonical homomorphiginZ, — Aut(D) of 7.2 is
an isomorphism [11, 5.3]. In fact, it is theniqueisomorphism betwee#, and
Aut (D) because the automorphism group of the group schésris trivial. We
then define

dick = dick, := hp* o Dick: Aut(X) — Z,. )

Let in particularA € k-alg be finitely generated and projective ak-module,
and letX = qt(A) be the associated quadratic trace module as in 1.3. Clearly,
Aut(A) C Aut(X), and we define thBickson homomorphism of @s the restric-
tion of Dick,:

Dick, = Dicky |, ()  AUL(A) — Aut (Dis(A)). (3)
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If Ais étale, we put in analogy to (2),
dick, = hp* o Dick, : Aut(A) — Z,. (4)

An explicit formula for Dick, is as follows. First lef have even rank = 2n
and letg € Aut(X). Since DigX) is a shift of ©(Q), the automorphism Didky)
of D is the same as the automorphigig) € Aut(D(Q)) (cf. 3.1(c)). Therefore,
[12, 2.4.1] shows that it is given by

Dick(g) -8 (&) = ; g.(p) (&) - 1+ dex@) - (&) (5)

wheref is a representative @ and¢ € A?"X. If X has odd rank 2+ 1 then by
definition, DigX) = Dis(¢, @ X), and Dickg) = Dis(ld, ©g). Hence the above
formula applies with the appropriate modifications. Sip¢& = Dis(X)/k- 12
A?Dis(X%), (5) implies that

det(g) = det(Dick(g)). (6)
If X is separable, the analogous formula for dick is
det(g) = x(dick(g)) = 1—2dick(g), @)

cf. 7.1and 7.2.3.

We use this to obtain an explicit formula fpr= dick(g) in caseX = €&, is
split. Identify bilinear forms with matrices by means of the standard l&siad
puté =e A---Ae,. By 3.7, f =U,, is a representative @ andD = Dis(X) =
k-1@k-zwherez= s, (&) satisfiesz2 = z in particular,T(z) = 1. Hence (5)
and (7) show Dickg) - z= K’tg,(f)(&) -1+ (1-2p)z On the other hand, by 7.2.2,
Dick(g) - z= hp(p) - z= pTy(2) - 1+ (1 — 2p)z. By comparison, we obtain the
formula

dick(g) = Kf’g*(”(elw-w%n). 8

9.5. Lemma. LetX,, X, be quadratic trace modules aiti= X, ¢ X, their direct
sum. LeG; = Aut (%;), G = Aut(X) and put 3 := Dis(X;) and D:= Dis(X). De-
note byd: Aut(D, 0D,) — Aut (D) the isomorphism induced by the isomorphism
©:D,0D, — D of 6.5 and letDick;: G; — Aut(D;) be the Dickson homomor-
phisms. Then the following diagram is commutative:

ick ick.
G,xG, — P% Aut(D,) x Aut(D,)

SJ lu (1)

G ———— Aut(D) «—— Aut(D,0ID,)

where the left vertical arrow is the embedditgy,g,) — g, &g, = (%182) and
the right vertical arrow is the homomorphism introduced7id.1 If the X; (and
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thereforeX) are separable, the analogous diagram ftick is

G, %G, dick, x dick, 2,52,
e{ b @
G dick 23

Proof. Let g, € G;(k) andh, = Dick;(g;) € Aut(D;). Since® is functorial, the
following diagram is commutatwe

O
D,0D, — ™ ,p,0OD,
| *Js
D Dick(9,©0,) D

By definition of & we haved (h,0h,) = ® o (h, 0h,) c®~1. Henced (h,Oh,) =
Dick(g, ©9,), which shows (1) is commutative when the group functors are eval-
uated aR = k. Since everything is compatible with base change, we have (1).

In the separable case, (2) follows from 7.3.3, the definition of dick in 9.4.2
and the fact thal o bp,0p, Z2 — Aut (D) is an isomorphism and therefore agrees

with .

9.6. Lemma. Let X be a quadratic trace module of rank two, thiis= qt(D)
where D is a quadratic algebra, cf.4 ThenAut (¥) = Aut (D), andDick: Aut (D)
— Aut(Dis(D)) is the isomorphism induced by the isomorphigg D — Dis(D)
of 3.5.2 Moreover, the following diagram is commutative:

Aut(D DI—°k>Aut Dis(D))

\ / @

If X is separable, equivalently, if D istale, then
dick = b’ : Aut(D) — Z,; 2

in particular,
dick(op) = 1€ Z,(k), (3)
whereoy, is the involution of D, cf7.2

Proof. After a base change, it suffices to show that the diagram

D
‘|
Dis(

o

% D
X) —— Dis(%)
Dick(g)
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is commutative for alf € Aut(D) = Aut(X). Let f be a bilinear form representing
Qand letx € D. Then by 3.5.3 and sinagg1) =1,

D(9(x) = f(9(x),1) - 1+5;(1Ag(x)) = f(9(x),1) - 1+det(g) - 5;(1AX),
while by 9.4.5,
Dick(9) (P (X)) = & g:(1)(1AX) - 1+ (%, 1) - 1+ det(g) - s;(1AX)
= (f(L,x)— f(1,9(x)) + f(x,1)) - 1+ det(g) - s; (L AX).

This proves our assertion because the trace fofr) = f(1,x) + f(x,1) is invari-
ant underg. Being an isomorphism of quadratic algebrdsrespects the involu-
tions. Hence Dickop) = Obis(D)? from which (1) follows immediately. Finally, (2)

and (3) follow easily from (1) and the definition of dick in 9.4.2.

9.7. Theorem. Let X be a separable quadratic trace module of rank 2, with
automorphism groufs = Aut(X) and Dickson homomorphisilick: G — Z,,
and letG* = Ker (dick).

(a) If X splits off a direct summand of rank two; in particularfis split, then
dick has sections in the category of group schemes. In gerdicid has sections
locally in theétale topology, so the sequence

inc dick
Z2

1 G* G 0

is exact in thettale topology. Moreovefz* is smooth andlick is smooth and
surjective.

(b) GT has connected fibres. If¥ 3 thenU is a homogeneous space under
G™;i.e., Theoren®.3(c)holds forG™ andH"™ = G* NH instead ofG andH.

Proof. (a) Assume thatt = X, ® X, where X, has rank two, and leG; =
Aut (%;). By Lemma 9.6, dick G, — Z, is an isomorphism. Now it follows from

9.5.2 that a sectios Z, — G of dick is given bys(p) = dick;*(p) @ d, , for all

p € Z,(R), Re k-alg. HenceG is the semidirect product @&* andZ,; in partic-
ular, G is isomorphic taG™ x Z, as ak-scheme. Sinc& is smooth by Th. 9.3 it
follows thatG™ is smooth as well. Hence dick is smooth and obviously surjective.

In general X splits over aretale cover ok by Theorem 8.8, so the assertions
follow by descent from the split case.

(b) We proceed by induction on Forr = 2, dick:G — Z, is an isomor-
phism by Lemma 9.6, whend8" is trivial. Now letr > 3. We show thatJ is
a homogeneous space undgt. First, assume there exists a sectioa U(k),
decomposet = k-u@ X’ as in 8.2 and leH be the isotropy group ofi in G.
By Th. 9.3(c),G’ := Aut(X’) is isomorphic toH under the mag/ — Id, &'
From 9.5.2, specialized to the present situation (where Ggw= Aut (k- u) is
trivial andG, = G') it follows that the restriction of dick tél corresponds to the
Dickson homomorphism di¢lof G’. This implies

H* = Centy, (u) = (G)". 1)
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We show that) =~ G* /H™ asétale sheaves. Lete U(R), Re k-alg. By Th. 9.3(c),
there exists aitale coveE of Rand an elemerg € G(E) with g(u) = v. We now
modify g to an elemengt having the same property.

Sincer —1>2, dicK: G’ — Z, is anétale epimorphism by (a), so there exists
anétale coveE’ of E andg’ € G'(E’) such that dicKg') = dick(g) 1. Putg® :=
go(ld@d') € G(E'). Then stillg* (u) = v and furthermore,

dick(g*) = dick(g) + dick(ld & ¢') = dick(g) + dick' (¢') = 0,

sog™ € G*(E'). This proves thall = G*/H* asétale sheaves. Now the same
arguments as in the proof of Th. 9.3(c) show that the orbit ia@™ — U is
smooth and surjective, and so is the magG+ x U — U x U even wherl (k) is
empty.

By induction and (1)H* = (G’)* has connected fibres, and by Th. 8.6 so does
U. Sincef: G — U is faithfully flat and therefore open it follows easily thHat
has connected fibres.

9.8. The sign homomorphism. The constank-group scheme defined by the
symmetric groups, is denoteds,. An element of&, (R) can be considered as a
locally constant map from the spectrumP®fo &, or as a complete family of or-
thogonal idempotent,) .. Of R, with multiplication(e;) - (€7) = (&7), where
€ =3 51—n E6€r. The sign homomorphism

sovs —2/22, - sam) = {7 7o}

induces a homomorphism

sgn:S; —Z,,  SYN(€x)pes,) = Z\ &x, (1)
eSS\ A

where2l, denotes the alternating group.
Let E; =K' be the splitttale algebra of rank, with standard basis,, ..., &,
and letP, € GL, (k) be defined by, (e) = &,)- Itis well known that the map

Nr: & — Aut(E;), (&n)ges, &P, 2

ey

is an isomorphism.

9.9. Lemma. The Dickson homomorphism of €f. 9.4.4 is induced by the sign
homomorphism; i.e., the diagram

n,JVN dicke; TdickGr
/
Aut(E;) — Aut (&)

is commutative.
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Proof. We may assume> 2, otherwise both sgn and dick are trivial. Lgt €
S, be the transposition of 1 and 2. Decompage= qt(E;) = X, ® X, where
X, = ¢, andX, = ¢, _,. Thenn,(t,,) is the switch of factors i, = k x k, that
is, M,(7;,) = O, is the involution ofE,. Hence dick (n,(7,,)) =1 € Z,(k) by
9.6.3, and 9.5.2 implies di€k, (1,,)) = 1 =sgn(t;,).

An arbitrary transpositiom is conjugate tc;, in the symmetric grou®, . As
Z, is abelian, dickn, (7)) = dick(ny (7,,)) = 1 =sgn(t). Since the transpositions
generateS;, it follows that dicKn, (7)) = sgn(x) for all # € &,. Finally, &, is
the sheaf in the Zariski topology associated to the constant fuRGRr= &, for
all R € k-alg. We have shown that the morphisms sgn and gick), from &;
to Z, agree orf. Hence they are equal becauggis a Zariski sheaf [6, 151,
Prop. 1.7].

9.10. Torsors and cohomology.In 9.4, the Dickson homomorphism was de-
duced from the discriminant algebra functor. This can — to a certain extent —
be reversed. As an application, it will be seen that our definition of the discrimi-
nant algebra of agtale algebra is compatible with Waterhouse’s [16].

Let 7 be a Grothendieck topology dnalg. Fix a quadratic trace modubg,
with discriminant algebrd, = Dis(X,;). Let qtm(X,) C gqtm, be the subcate-
gory whose objects are quadratic trace modulesocally isomorphic taX, and
whose morphisms are isomorphisms, and defa(®,) C qa, analogously. As the
functor Dis commutes with base change, it restricts to a functordis(X,) —
ga(Dy). Let G, = Aut(X,) andH, = Aut(D,), and denote the categories®f-
torsors andH,-torsors (with respect ta7) over k by tor (G,) andtor(H,), re-
spectively. Then the Dickson homomorphism DiGg — H, induces a func-
tor, likewise denoted Dickor (G,) — tor (H,), which assigns to &-torsor X
the H-torsor X VG H, [6, Ill, §4, 3.2]. There are equivalences of categories
gtm(X,) — tor(G,) andga(D,) — tor(H,) given by X — Isom(X,,X) and
D — Isom(D,, D), with quasi-inverses given by twistiri, resp.D, with a tor-
sor [6, lll, §5, Prop. 1.2]. Then the following diagram is commutative up to a
natural isomorphism of functors:

qtm (o) —2>— ga(D,)
Isom(xo,)l l'som(Doﬁ) 1)

Indeed, letx € gqtm(X,) and putX := Isom(X,, X) € tor(G,) as well asY :=
Isom(Dy, Dis(X)) € tor (H,). We must construct an isomorphispn= @,: X V&

Ho — Y of Hy-torsors, natural ir. First, there is a morphisny: X x Hy — Y

as follows: LetR € k-alg, f € X(R) andh € Hy(R); thusf: ;@ R— X®Ris

an isomorphism ant € Aut(D, ® R). Since Dis commutes with base change, we
have an isomorphism

w(f,h):=Dis(f)oh:D,@R — Dy®R —="% Dis(x®R) = Dis(X)® R
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i.e., y(f,h) e IsomD,® R,Dis(X) ® R) = Isom(D,, Dis(X))(R) = Y (R). Next,
forall g € Gy(R) = Aut(X,®R),

y(fog,h) = Dis(f og)oh=Dis(f)oDick(g)oh= y(f,Dick(g)h),

by functoriality of Dis and definition of Dick. It is immediate that(f ,hoh') =
w(f,h)oh, forallh' € Hy(R). Now X v® Hy is the quotient sheaf of x H, by
the equivalence relatiofff o g,h) ~ (f, Dick(g)h). Hencey induces a morphism
@: X \Co H, — Y of H,y-torsors which is automatically an isomorphism [6, §4,
Prop. 1.4]. Naturality ofp,. is easily checked.

The preceding argument only required that Dis be a functor commuting with
base change. Hence, analogous statements hold giivg(x ) is replaced by the
category of finitely generated and projectika@lgebras locally isomorphic to a
fixed algebrad, andG, by Aut (A,), with Dis and Dick for algebras defined as in
3.4.3and 9.4.3.

Let us specialize to the case whefeis theétale topology an&, = &, is the
split quadratic trace module of rankBy Theorem 8.8gtm (X)) is the category of
separable quadratic trace modules of rarfkurthermoreD, = Dis(&;) =k x kby
3.7 andhp, : Z, — Hy = Aut(D,) is an isomorphism. Denote as usual the pointed

set of isomorphism classes Gttorsors by H(k,G). Then (1) says that the as-
signmentX +— Dis(X) gives, in the separable case, a concrete realization of the
map H(dick): H'(k,G,) — H(k,Z,) between the cohomology sets. Similarly,
by Lemma 9.9, the assignmet— Dis(E) (whereE is anétale algebra of rank
r) realizes the map

HY(sgn): HY(k, &) — HY(k,Z,).

This proves that our definition of the discriminant algebra oftale algebra is
compatible with Waterhouse’s cohomological definition [16].

10. The automorphism group Il: Centre and restriction map

10.1. Lemma. Let ab,c < k be relatively prime. Consider the polynomial@ P
= at? — bt + c andP(t) =t — bt + ac and the k-algebras &= kt]/(P) and D:=
Kt]/(P) =k-1&k-z. LetC := SpecC) andD := SpedD) be the affine schemes
determined by C and D.

(a) Definet: C — D by 1(x) = ax, for all xe C(R), Re k-alg. Thent is an
open immersion whose image is the open subschenie d#fined by the ideal
| =Da+D(b—2z) of D.

(b) Cis a flat, finitely presented and quasi-finite k-scheme. The image of
in S= Speck) is the open subscheme defined by the idea} kb. HenceC is
faithfully flat over k if and only if a and b are relatively prime.

(c) If b? —4ace k* thenC is étale over k. The converse holds ifk&b = k.

Proof. (a) We havex € C(R) if and only if x € RandP(x) = 0. HenceP(ax) =
aP(x) = 0, soax e D(R) and thust mapsC to D. Next, 1 is a monomorphism:
Letx;,%, € C(R) andax; = ax,. Then 0= P(x;) —P(X,) = a(X; — X,) (X; +X,) —
b(X, — %) = =b(X; —X%;), and 0= P(x,) (X, = X;) = C(X; —X;) Imply X; —X, =0
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because, b, c are relatively prime. The open subschexhef D defined byl is
the functor

V(R) = {yeD(R):Ra+R(b—y) =R},

cf. [6, 1,81, 3.5]. The values of lie in V: Letx € C(R) and let = Ra+ R(b—ax).

Thena,b € J, hence alse = x(b— ax) € J, soJ = Rbecause, b, c are relatively
prime. Conversely, ley € V(R), thusy(b—y) = acandR= Ra+ R(b—y). We

must show thay = ax for somex € C(R). Chooseu,v € R such that

l=va+v(b—y). Q)
Multiplying this equation withy yields
y = yua+yv(b—y) = auy+ (ac)v = a(uy+cv).

Putx = uy+cv. Thenax=y, and it remains to show thate C(R), i.e., that
x(b—ax) =c. Now
X(b—ax) =x(b—y) = (uy+cv)(b—y) =uy(b—y) +cv(b—y)
=u(ac)+v(b—y)c= (ua+v(b—y))c=c,

because of (1).

(b) Clearly,D is a flat and finite (of rank 2k-scheme. Since is an open
immersion,C is flat and quasi-finite oveg, and it is obviously finitely presented.
The fibre ofC over a prime ideap of k is SpedC ® (p)) which is empty if and
only if a,b € p. This proves the remaining statements.

(c) Dis étale if and only if the discriminar# — 4ac of P is a unit ofk. Now
the assertions follow readily from (a) and (b).

10.2. Definition. We define a family of group€; (r € N) which are open sub-
groups ofZ, resp.u,, depending on the parity of Let

o r _(n ifr=2niseven
d(r) = ged2,r) {r if r=2n+1is odd} @

and consider the polynomials

_ 2 Ly nt?—t  ifr=2n
R (1) =d(nt—ged2r 1)t{rt2—2t ifr:2n+1}' @

The coefficients oP, are relatively prime so Lemma 10.1 is applicable. Cet=
kit]/(R) and letC, = SpecC;) be the affine scheme defined By, i.e., the set-
valued functor ork-alg given by

C(R={AeR:R(A)=0} (Rek-alg). 3

Note thatC, = Speck), thatC, = Z, and thatC, = u,, the group scheme of
second roots of unity, under the map— 1—A.
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10.3. Lemma. (a) C; is an affine faithfully flat finitely presented quasi-finite
abelian k-group scheme with the group law

AFA =A+A —rad,

forall 2,1’ € C;(R), Rc k-alg. Moreover,C,, is étale whileC,, , is étale if and
only if 2 € k*.

(b) The maps

on: Cyp, — Z,, wn(A) =nA,
¥n: Conyg — Mo, ¥n(A) =1—(2n+1)4

are open immersions and homomorphisms of group schemes. They are isomor-
phisms if and only if @) € k*, and are constant if and only if(d) = 0 in k.

(c) The homomorphism

_ _Jxowy ifr=2n
Xr: Cr — pho, %r—{% if r :2n+1}

(Wherey:Z, — p, is as in7.1) is a monomorphism if =1 (mod2 orr =0
(mod 4 while the kernel of, ., is K(R) = {4 € Rt 12 =1, 2A = 0}. Itis an
isomorphism if and only if £ k*.

Proof. (a) The scheme-theoretic properties@ffollow from Lemma 10.1 and
the rest is a straightforward computation.

(b) If r =2nthenawy, is the open immersionof Lemma 10.1. If =2n+1 then
v, is the composition of and the isomorphisi®, — i, given byu — 1—p.
Hencew, and y;, are open immersions. The homomorphism property is easily
checked. The last statement is obvious.

(c) If ris odd themny; is a monomorphism by (b). Now let= 2n and assume
that y(on(A)) = 1—2nA = 1. Then 24 = 0 and therefore A2 = 24 = 0. If
n=2 thenl =nA2 =222 =0. If n=2 +1 theni = (2l + 1)A% = A2, so
A € K(R). ConverselyK C Ker(x,,,) is clear from the definitions. Finally, if
r € k< thenu — r=1(1—pu) is the inverse ofy,. Conversely, assume that
is an isomorphism but that¢ k*. After dividing by a suitable maximal ideal,
we may assume = 0 in k. Theny; is constant, buj, is not the trivial group,
contradiction.

10.4. The quadratic form Q° and the restriction map. Let X be a separable
quadratic trace module of ramk= 2, letX°® = Ker(T) and define

QO = _leo' (1)

By 8.3,X%is a direct summand of of rankr — 1 andQ® is primitive. The minus
sign is introduced so that the polar foBf of Q° becomes the restriction df to
X0:

BO(xy) =4(xy)  (xyeXP), @)
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as is immediate from 1.1.3. Suppo¥e= ¢Z split overZ, with standard basis
e,....&. Thenv,=¢ —g_; (i=2,...,r) is a basis oX°, and

2 ifi=]
QO(Vi>:1a BO(Vij)_{—l ifi—j|=1}7 (3)
0 otherwise

soQV is the quadratic form of the root system_ A.

An automorphisng of X leavesX? invariant and induces an orthogonal trans-
formation of the quadratic forr@°. We thus have a restriction homomorphism

res:G = Aut(X) —» 0(Q%, g g|X° 4)
Note that
def(req(g)) = x(dick(g)) =defg) (g€ G(R), Re k-alg). (5)

Indeed, pick an elemente X with T (u) = 1, write X = k- u® X° and thus iden-
tify g with a formal 2x 2-matrix. Theng(u) = u (modX°), sog = (} ) where

h = redqg), which implies defreqg)) = det(g) = x(dick(g)) by 9.4.7. Hence res
induces a homomorphism

res: G* = Ker (dick) — SO(Q"). (6)
10.5. Theorem. Let X be a separable quadratic trace module of rark 2 over
k with automorphism grou@ = Aut (%), and letCent(G) be the centre of5 in
the sense of group schemes [68l, 3.9].
(a) There is an isomorphisicen:C; = Cent(G) given by
cenA)(X) = xr (A)x+AT (x) 1y, Y
forall A € C,(R), xe X®R, Re k-alg.

(b) Let resbe the restriction homomorphism d0.4.4and letcerf: p, —
0O(Q°) be the monomorphist +— A - Idy,. Then the diagram

Cr cen G

xrl lres (2)

H, ——— 0(Q°)

is commutative and in fact Cartesian, i.ees*(p, - Id,,) = Cent(G). Hence the
kernel of resis central inG and the restrictioncen:Ker (x;) — Ker(reg is an
isomorphism.

(c) The restriction of the determinant and the Dickson homomorphism to the
centre of G are as follows:

detcertz)) = { ¥4 =50} ®

dick(cer(1)) = {g’"(“ fr= EEH} , @)
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forall A € C,(R), Re k-alg.

Proof. (a) A straightforward computation shows that c€p:— GL (X) is a group
homomorphism. It is a monomorphism: If ¢@r) = Id then cerl) ]XO =x)-
Id,, which impliesy, (1) = 1 because rK® =r — 1> 1. For an element with
T(u) =1 (which exists by Lemma 8.3) it then follows that= cen1)-u=u+
A -1, and hencél = 0, because,lis unimodular.

We show next that the centralizer@fin End(X) consists of all endomorphism
of the form

hw(x) = ux+AT(X)1 (5)

whereA,u € k. Since L, andT are invariant under automorphisms, it is evident
thath, , commutes with all automorphisms #&fin all base ring extensions. In

part|cular ced) =h, , ,, centralizesG. Conversely, leh € EndX) have this

property. After passing to a faithfully flat base extension we may assumg ikat
split. Thenh commutes with all permutations of the standard basis veetdcs.
9.8), so the matriXg;) of h satisfiesa;; = a j) for all = € &,. This means

(i),
a; = a;y anda; = ay, for all i and all j # i. Henceh =h,, for A =a;; and

H =289 —a, _ _
To complete the proof of (a), it remains to show, after a base change, that
h=h;, ,€Au(X) <= p=1-rdanddeC (k). 6)

SinceT(1y) =r, we haveh(1y) = (u+ri)1, andT (h(x)) = (L +rA)T(x), for
all x e X. Hence

h(ly)=1x andToh=T <« pu=1-rAi.

Assume that this is the case. Then a simple computation using 1.1.1 shows
2 M,z 2
Q) - Q09 = (W~ Q) + [(r - Du+ (5)42] T

= (r?A2—-2r2)Q(x) + [(r 1A - (;) 12] T(x)?
=F(A)Q(X) — G(A)T(x)? @)

for all x € X, where
Fi)=(1—rt)2—1=r?2—2rt and G(t) = (;) t2— (r—1t.
This proves the implication from right to left of
Qoh, ,=Q <+ F()=G(1)=0.

For the implication from left to right, let first € X°. Then (7) say&(1)-Q° =0
and thereforé- (1) = 0, becaus&® is primitive (8.3). Now choosing ar with



Discriminant algebras 53

T(x) =1in (7) yieldsG(1) = 0. — It is an elementary exercise to show that the
ideal ofk[t] generated by andG is precisely the one generated By Hence

F(A)=G(A)=0 «— PA)=0 <= 21eC(k.
This completes the proof of (6) and hence of (a).

(b) Commutativity of (2) is evident from (1). Now lgte G(k) with reqg) =
u-1dy, whereu € p,(k). Chooseu € X with T(u) = 1 and putw := g(u) — uu.
Theng is given by

g(x) = ux+T(x)w ®)

forall x e X. Indeed, fox € X this is clear, whilewu+T (u)w= pu+g(u) — pu=
g(u), so the assertion follows fromd = k- u@ X°. We claim thatA (w, X°) = 0.
Indeed, for allx € X°,

A(w,x) = A(g(u) — pu,x) = A(u, gil(x)) —A(u,ux) =0,

sinceA is invariant undeg andg(x) = ux = g~(x). It follows thatw € (X°%)* =
k-1, because is nondegenerate antf = 1y by 1.1.4. Thusv = A1, and then
(8) says thag = hw. By what we proved in (a)g = cen1) is central.

(c) Letue X with T(u) = 1. Then cefl) - u = u (modX°) because cdil)
preserved, and ceid) inducesy; (A)-1d onX° by (2). AsX = k-u® X° we have
detcenA)) = x(1)"~L. This proves (3) becaugg(1) is a second root of unity.

Let us compute the Dickson invariant. By faithfully flat descent and Theo-
rem 8.8 we may assunie= ¢, split. Consider the split quadratic trace modéfe
over the integers, let = Z[t]/(P.) be the coordinate ring &7, lett = cant) € A
andg:= cent) € Aut(¢Z @ A). Then by (3), Lemma 10.3(c) and 9.4.7,

_J1-2awmy(t) ifr=2n 1o
detg={ 1oy 1) = 1-2dickg). ©)
By Lemma 10.3A is flat overZ, in particular, it it a torsion-free abelian group.
Hence (9) shows that (4) holds in the special caset € A. Returning taX = &
over the ring, letA € C;(R). Then there is a ring homomorphisin— R sending
tto A, and since¢Z ®, A) ®, R= ¢”®,R= X ®R, we have (4) in general.

10.6. Corollary. We keep the assumptions and notation$ @&

(@) Ifr =2nis even then the multiplication mapult: Gt x Cent(G) — G is
an open immersion. Its image is the inverse image udd of the image oty
in Z,, cf. 10.3(b) In particular, G NCent(G) = {1}.

(b) Ifr =2n+1is odd therCent(G) C G*.

Proof. One checks, using the first formula of 10.5.4, that the diagram

pry
+
Gt xC,, —— Cy,

q{ lwn

G dick 23
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is Cartesian, where(g*,1) =g -cen1). Henceg is an open immersion, being
the base change via dick of the open immersignLemma 10.3(b)). Since cen
is an isomorphismg is isomorphic to multG™ x Cent(G) — G. This proves (a)
while (b) is immediate from the second formula of 10.5.4.

10.7. Lemma. Let X be a separable quadratic trace module of rark 2 and let
u e X with T(u) = 1. Then the map — uAn is an isomorphism\' X% —
A" X, independent of the choice of u. Treating this as an identification, the (signed)
discriminant of Q is
r—1

8o = (—1)(2) -d(r) - 5, €

where dr) is defined inl0.2.1 Hence @ is separable if and only if @) € k*.

Here we call a quadratic forpon a finitely generated and projective module
M separabldf its discriminant is nonsingular. This means that its polar farm
nonsingular ifM has even rank, and thgis semiregular [10, \43] if M has odd
rank.

Proof. Independence af is easily seen. By Theorem 8.8, it suffices to consider
the split quadratic trace modul&” over Z. Chooseu = e,. With respect to the
basisv, =€ —g_; (i =2,...,r) of X°, the matrixA = (B°(v,v,)) is the Cartan
matrix of type A_, (cf. 10.4), so deA=r [4]. Putn =V, A--- AV, and§ =

e AN =¢eA---Ae&. Thenforr =2neven,

26p(n,m) = (~1)"'detA = (-1)"2n5x (&, ),
while forr =2n+1 odd,
S(n,1) = (—1)"det(A) = (=1)"r6:(&,8).
10.8. Theorem. Let X be a separable quadratic trace module of rank 2 with

automorphism grous = Aut (X). Suppose that(@) € k*; equivalently, by10.7,
that @ is separable.

(@) Letr=2n be even. Then®Qs a semiregular quadratic form of rara— 1
and the maps

mult: G* x Cent(G) — G, (1)
dick: Cent(G) — Z,, )
res: Gt — SO(Q°) (3)

are isomorphisms.

(b) Letr=2n+1be odd. Then &is a nonsingular quadratic form of rar2n.
The centre ofG is isomorphic tou, and is contained ifG*. The restriction map
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res:G — O(Q") is an isomorphism compatible with the Dickson homomorphisms,
i.e., the diagram

——= 0@

dick A (4)

N

is commutative.

Here dick:0(Q%) — Z, is the usual Dickson homomorphism of the even or-
thogonal group.

Proof. (a) The first statement is clear from Lemma 10.7.d&s) = n € kK*, o,

is an isomorphism by Lemma 10.3(b). Now (1) follows from Cor. 10.6(a). Also,
Theorem 10.5 shows that dicRent(G) — Z, is an isomorphism with inverse
ceno w; %, which proves (2).

It remains to prove (3). Let us pit := SO(QP) and x := res" for simpler
notation. First,x is a monomorphism becauser (res) ¢ Cent(G) by Theo-
rem 10.5(b) and5* N Cent(G) = {1} by Cor. 10.6(a). Next, suppose= K is
afield. It is known thatl, which is a form ofSO,,,_;, is a connected smooth alge-

braicK-group of dimensior(*; ). By Theorems 9.3 and 9.G" is also smooth
of the same dimension, and I(ie): Lie(G') = Lie(G) — Lie(H) is injective be-
causer is a monomorphism. Since the dimension of a sméotiroup equals the
dimension of its Lie algebra, Li&) is an isomorphism. It follows that is an open
immersion [6, 11,85, Cor. 5.5(b)], and therefore even an isomorphism becHuse
is connected.

Finally, return to the case of an arbitrary base irand letG™ act onH via
gt -h=z(g")h. Thenx is the orbit mapy +— g-ewheree € H(Kk) is the unit
element, and the centralizer efin G is trivial becauser is a monomorphism.
Now [6, IlI, §3, Prop. 2.1] shows that is an isomorphism.

(b) By Lemma 10.7Q° is nonsingular ifr is odd. The structure c€ent(G)
is clear form Cor. 10.6(b) and the fact thgt C; — u, is an isomorphism, by
Lemma 10.3(c), because=d(r) € k*. Since alsd (1) =r € k*, we haveX =k-
1, & X ask-modules. MoreoveQ = ((3)) L (—Q°) (orthogonal sum of quadratic
forms) by 1.7. It follows easily that res is an isomorphism, with invérse; (7 )
with respect to the above decomposition.

It remains to prove (4). Leg € Aut(X) andh = regg) € O(QP). Consider
the quadratlc forn@Q on X as in 2.3.1. Then thk-module isomorphisnyp: X° —
X, @(x) = X (the canonical image of in X = X /k- 1,) satisfiesQ(¢(x)) =r -
Qo(x), and hence is an invertible similitude. By [12, Theorem 2.3(b)], it induces
an isomorphisn®(¢): ®(Q°) — D(Q) of discriminant algebras. Observe that the
isomorphisih of X induced byh is the same as the transformatiginduced by
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g. Hence by functoriality o, the diagram of isomorphisms

Q) — ()

D(h)l lD@ )

2(Q°) a0 2(Q)

is commutative. By Theorem 3.8, there is a natural isomorphis®(Q) + & —
Dis(X) (wheree = (—1)"®(n)d,) and hence a commutative diagram

D(0) +& —L-— Dis(%)

@(g{ loick@ (6)

2Q+e—F— Dis(%)
Now observe that for a separable quadratic algéhrand for a shiftD + € of
D which is also separable, we hawet(D) = Aut(D + ¢). This follows from
the isomorphismg, andb,, from Z, to Aut(D) (cf. 7.2 and 9.4) and the fact
thatD andD + € have the same standard involution, cf. 3.1.3. Applying this to
D =9(Q°), we obtain from (5) and (6) the commutative diagram of isomorphisms

D(Q0) + ¢ —— Dis(X)

Q(h)l lDick(g) (7)

D(Q) +¢& ————Dis(X)

wheree’ corresponds tg@ under®(¢) andy = p o D(@).

By definition, Dickg) = by (dick(g)) andD(h) = b5(q0) (dick(h)). Now
dick(g) = dick(h) follows from (7) and the fact that the isomorphidyy: Z, —
Aut (D) is unique, for a separable quadratic algebras remarked in 9.4.

10.9. Theorem. Let X be separable of rank » 2 with automorphism group
G = Aut(X). Suppose that (@) = 0 in k, equivalently, byL0.7, that @ has zero
discriminant.

(@) Then r=0in k and thereforel, € X°. The quadratic form induces a
nonsingular quadratic forn@ of rank r—2 on X := X°/k- 1.

(b) G has trivial centre. Denote b®, (Q°) the isotropy group ofL, in O(QP).
Then the restriction map

res:G — 0,(Q°) (1)
is an isomorphism, and there is a split exact sequence

p —

0(Q) 1 )

0—— X ——0,(QY)
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described as follows: Denote the canonical mab-X X by x — X. Then for a
linear form f onX, i(f) € O,(Q°) is given by

i(F)() =x+f(X)- 1 (xeXP),
while p(h) = h is the map orX induced by ke O,(QP).

Proof. (a) By 10.2.1,d(r) =0 in k impliesr = 0 in k. HenceT(1,) =r =0,
so 1, € X% By 1.1.4,X% = 1 with respect toA, and sinceA is nonsingular,
k-1, = (X9)*. As B is the restriction ofA to X° by 10.4.2, the kernel dB? is
k-1,. Now 1, is unimodular, s&X = X°/k- 1 is finitely generated and projective
of rankr — 2. Moreover,(;) = d(r)d(r — 1) shows thaQ’(1,) = —(}) =0ink,
henceQ’ induces a quadratic fori® on X whose polar fornB is the nonsingular
symmetric bilinear form induced 08° on X.

(b) From 10.2.2, 10.2.3 ard{r) = 0 it is clear thalC, is the trivial group and
hence so i€ent(G) by Theorem 10.5(a). Since automorphisms fjxres map&
to O,(QP). The kernel of res, being central (Theorem 10.5(b)), is trivial, so res is a
monomorphism. To determine its image, choogeX with T (u) = 1, decompose
X = k-u@ X° and identify elements of GIX) with formal 2x 2-matrices. Then
an easy computation shows tligt G(k) if and only if g = (Vlv‘;) wherew € X°,

he 0,(Q°% and

Q(W) + B(U,W) = 07 (3)
Bw,h(x)) +B(u,h(x) —x) =0  (xe X°). (4)

After replacingx by h=1(x), (4) is equivalent to
B(w,x) =B(u,x—h(x))  (xeX%. (5)

Now leth € O,(Q°) be given. Then finding an elemegte G(k) with regg) =
h amounts to finding a solutiow € X° of (3) and (5). As a function o, the
right hand side of (5) is a linear form ox° which vanishes fox = 1,. Hence
it induces a linear form oX which is uniquely representable B Lifting this
back toX?, there existsv' € X%, unique moduld- 1., such that (5) holds for all
w= A -1, +W. Then condition (3) becomes:

0=Q(A-1+W)+B(uU,A -1+W)
= (;>12+ (r—=1)TW)+QW)+(r—1)AT(u) +B(u,w)
= Q(W) — A +B(u,w),

because = () =0inkandT (W) = 0. This proves the existencewf as desired.
Since these arguments remain valid in all base extensions, we have (1).

It remains to show (2). Choose a decompositidh=k-1® M and letQ =
Q°|M. ThenQ® = (0) 1 Q, and the canonical projection induces an isomorphism
(M, Q) = (X,Q). Writing the elements of G(X°) again as 2 2-matrices with
respect to this decomposition, it is easy to see thatO,(QP) if and only if

h= (é o) whereh’ € O(Q) anda € M* are arbitrary. From this, the remaining

assertions follow readily.
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10.10. Corollary. LetX be a separable quadratic trace module of rank2 and
G = Aut(X). Then

Gisreductive <= d(r)ek* <= Qisseparable

Proof. The equivalence of the second and third condition follows from Lem-
ma 10.7. Suppose(r) € k*. If r = 2n then by Theorem 10.8(af5 = SO(Q°) x

Z,. After a faithfully flat base chang&® becomes isomorphic to the standard
quadratic form of rank 2— 1 and therefor&O(QP) isomorphic toSO,,, ; which

is known to be reductive. Hence soGs The proof in case odd is similar, using
Theorem 10.8(b) and reductivity @,,,. On the other hand, suppodér) ¢ k*.
Then there exists a prime idgabf k such thad(r) =0 in k(p). Asd(2) = 1, we
haver > 3. Then the fibrés ® x(p) has a unipotent radical of dimensior- 2 by
Theorem 10.9.

11. Appendix: Some determinant formulas

11.1. The half- and the quarter-determinant Then x n unit matrix is denotet},
and the transpose of a matdds A'". If Ais a matrix of odd order with indetermi-
nate entries, the determinant®f- A" is divisible by 2, so there is a well-defined
integral polynomial hd€A) in the entries ofA such that

2hdetA) = defA+A"), 1)

called thehalf-determinanbf A. Similarly, if A is of even order 8, the quarter-
determinanbf A is the integral polynomial qd@d) in the entries ofA satisfying

4 qdetA) = detfA+A") — (—1)"detfA—A"), 2)

see [12, 1.1] for details. The Pfaffian of an alternating matrix of even order is
denoted RfA).

11.2. Lemma. Denote by |J the nx n-matrix which has zeros in and below the
diagonal and all entries above the diagonal equaltd@hen

detUs +Uy ) = (-1)"*(n—1), @)
detnl,—U,—U,) = (n+1)" 2, 2)
hde(Uy,,4) =n, 3
Pf(Uyy —Ugn) = 1, (4)
qdetU,,) = —[n/2], (5)
qdetU,, —nl,,) = @(n). (6)

Proof. (1) and (2) are special cases of the formula

det(al, +b(U,+U,)) = (a—b)" a+ (n—1)b] 7
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which is easily proved by using the basise, —e,,...,&,—¢, of k". For the re-
maining formulas, we may assurke= Z. Then (3) is clear from (1) and 11.1.1
since we can cancel a factor 2. Formula (4) follows by induction from the expan-
sion formula for the Pfaffian given in [1, Exercise 5 f&, p. 86]. Formula (5) is a
consequence of 2.2.4, (1) and (4) and 11.1.2. Finally, by 11.1.2, (2), (4) and 2.3.3,

4qde(U2n - nIZn) = det(UZn + U2Tn - 2n|2n) - (_1)n det(UZn - U2—rr1>
= (2n+1)2 1 (—1)"=4@(n),
cf. 2.3.3.

11.3. Lemma. Let A and D be matrices of sizexll and mx m with coefficients
ink, let xu e K and yv e k™ be row vectors and let € k. Then

det<$ [\;) = adefD) —vD'y" (1)
0 v
- ocdet(D)—i—det(yT D) , @)
amldet<$ I\D/> =det(aD—-y'v), (3)
det(yTAu X;") — det(A)detD) — (uA'x)(vD'y"). 4)

If m= 2n and U is an nx m-matrix, then

oa 2v\ o %
hdet(0 U>_det<2vT U+UT>' (5)

Here Al denotes the adjoint matrix, so AA= det(A)l,; in particular, A" = 1 if
| =1.

Proof. Formula (1) follows by expanding with respect to the first row and column,
see also [3, p. 640, Exercise 13]. For (2), use (1) in the speciabcasg To prove

the remaining formulae, we may by a standard density argument (or by working
in the rational function field in the indeterminate entriesAob, X, u,y, v over Q)
assume thaA is invertible. Then, for rectangular matricBsC of the appropriate
size, a calculation shows

A B\ /I O0\/[A 0 | AB 6
c p)=\cat 1) o p—ca)lo I, ©)

which implies

det(é g) _ detA)de(D—CA 'B). 7)

Let here in particular = 1 andA = « € k*, soB=vandC' =y are ink™. Then
multiplying (7) by o™ yields

amldet<;$ [‘;) = a™det(D - a 'y'v) = detaD - y'v),
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which is (3).
Now let B = x"v andC = y"u. ThenCA1B = y" (UA~x")v. On the other
hand, forA € k, by (3) and (1),

1 Av

defD—Ay'v) = det(yT b ) =deiD)—AvD'y'. (8)

Substituting (8) into (7) wherg = uA~'x" = det(A)~*(uA'x") yields (4).
Finally, to prove (5), we may assume thatand the entries of andU are
indeterminates and work in the polynomial rii¢er, v,U]. Then

a 2v\ 200 2v - o v
2hdet<o U>_det(2\/T U+UT)_2det(2vT U+UT)’

so the assertion follows by cancelling the factor 2.

11.4. Lemma. Leta € k, y,v € kK™ and D& Maty (k). Then if m= 2,
a Vv 0 V+

while for m= 3,

a v 0 v 0
qdet(yT D> = ahde(D) +det(VT D) +det<yT Ig) —v(DxD"y'.
(2
Here Ax B = (A+B)" — A" — BT is the bilinear map determined by the quadratic
map A— AT

Proof. We may assume that and the entries o¥, y andD are indeterminates
and work in the ringZ[v;,y;,d;]. Let firstm = 2. ThenD — D' is linear and
commutes with transposition. Hence by 11.1.1 and 11.3.1,

a v\ 200 V+y
e ) e, 2 )
—=20detfD+D") - (v+y)(D+D") (v4+y)"

—=2adetD+D") —2(v+y)DT (v+y)"

_ T 0 vV+y
=2o0detfD+D )+2det<VT+yT D >

Form= 3, we use 11.1.2 and again 11.3.1:
a Vv 20 V+y 0 V—y
4qdet(y7 D> det(VTerT D+DT> det(yT_VT D—DT>
=2ade(D+D")— (v+y)(D+D"N)'(v+y)"

+(v=y)(O-D)'(y-v)"
= 4ohde(D) — 4vD'v' —4yD'y" —4v(DxD")y'.
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11.5. Lemma. Let F;, and F, be square matrices of siz and 2m, respectively,
and let xc k? and ye k?™ be row vectors. Then

Fox'y\ F 0 0 x 0 vy
qdet<O FZ)_qdet(o F, hdet 0 R hdet 0 F) (2)

Proof. Since the asserted formula is a polynomial identity with integer coefficients
in the entries of, F,,x,y, we may assume these entries to be indeterminates and

work over the ringZ[F,,F,,x,y]. PutA=F +F',D=F,+F',R=F —F/'
andS=F,—F,. By Lemma 11.6, and since the square of the Pfaffian is the
determinant, we have

R xy) R O
det<_yTX S > = det(0 S) .
Now 11.1.2 and 11.3.4 imply
F X'y F 0 A Xy A 0
4qdet( 0 K ) —4qdet< 0 F)~ det y'x D —det 0 D
= —(xAx")(yD'y"). @
On the other hand, by 11.1.1 and 11.3.1,

0 x\ _ 0 x\ _ tT
2hdet<O F1>_det(xT A)——XAX 3)

and similarly for the second factor. Now the assertion follows from (2) and (3) by
cancelling the factor 4.

11.6. Lemma. (a) Let R and S be alternating matrices with entries from k of
even order2l and 2m, respectively, and let ® k? and ye k™ be row vectors.

Then
Pf(_)F;TX XTSV> = Pf(E2 g) = Pf(R) - P(9). 1)

(b) Let R and S be alternating matrices of odd or@e# 1 and2m+ 1, and
let x € k¥ +1 and ye k™ be row vectors. Then

R xy\ 0 x 0 vy
ST I R A R

Proof. (a) By a standard density argument it suffices to prove this in Rase
invertible. A calculation shows that

l, O R 0\[ly, x'y\_( R RXy
y'x L, /\0 S)\0 I,/ \y'xR St+ty'xRx'y)"
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SinceRis alternating, we haveRx" = 0. Now the lemma follows from

Pf(P"XP) = det P) Pf(X), Pf(lg g) = Pf(R) Pf(S) (3)

(see [1,85.2, Prop. 1]), and the fact that asuns overk? so doexR becaus®
is invertible.

(b) Let

(0 1 _[(=x 0 o o (RO
A_(_l 0), B_<0 y), c— B, D_<0 S).

We compute the Pfaffian of .= (A in two ways. Sincé\ is invertible and

B
C D
(A1B)"T =CA™1, we have by 11.3.6 and (3) that

A B\ . (A 0 N 1
Pf(C D>_Pf<0 D_CA_lB>_Pf(D—CA B),

0 —x'y
y'x 0
hand side of (2). On the other hand, let

and a computation shov@A 1B = > Hence PfX) equals the left

0

oo OoOR
L

oN OO

OO r o
o

2m+1

Then detJ) =1 and

0
v
-1

0

JTXJ=

oo A»OX
< oO0or
n< oo

Hence, by (3) and (1),

0
v
-1

0

o O

Pf(X) = Pf

. 0 x 0 vy
e % 1) e Sy
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