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Proof. We first check N and c are admissible. For y = (b, b,, b,) we have
N |, = t(af, bo)tut(af, b)) +u=t(a¥, by)— t(boa,a,)— t{agh,ay) — t{aga,by)
since dyn|,=1t(a¥#, b) where a# also denotes the adjoint in 2. Then
T(x, y) = {0xN|H0yN|c} =2, 2,N|.

{t(ao)Ht(bo)} — 1(1 x ag, bo)—t(by, az)—t(ay, by)
1(ag, bo)+1(ay, ba)+ (s, by)

I

where ax b=(a+b)¥ —a*—b¥#, ax1=t(a)l —a in A as usual. Clearly T is non-
degenerate since ¢ is. Also @,N|,.=T(x¥#, y) for

x# = mm%lmpnmu r~laf —aoay, .Ea%lnmacu.
If we let x=(aq, a;, a,), x#=(by, by, by), X*#=(c,, c;, ¢,) then
co = b —b,by = {af —aya}f —{u'af —ava}{pa¥ — asay)

a%.ﬁ = nm, % ayag + (a,a,)% — a%a% —ag(ayaz)a, +tmoﬁnpa%u e L a@wamvnc

]

il

{n(ao) + pn(a) + 1~ *n(az)yao—{alf x aya,+ao(a,az)ao}

since a#*# =n(a)a, a*a=n(a)l =aa*, (ab)# =b#a# in A. Now since U is of degree 3
it is easily verified that the analogue of (9) holds in %: aba=t(a, b)a—a# x b.
Hence the above becomes

= {n(ao) + pnlay) + p~'n(az) — t(ao, a1a5)}a, = N(x)a,.

Similar arguments show ¢;= N(x)g; for i=1, 2, so x##= N(x)x. This holds for any
extension of @, so N and ¢ are admissible, and J(%, p) is a Jordan algebra.

Suppose J(X, ) is a Jordan division algebra; by Theorem 2 this is equivalent
to N(x)#0 for x#0. Clearly n(a)#0 for a0 or else N(x)=0 for x= (g, 0, 0)0.
Thus 2 is an associative division algebra. If p=n(a) then x=(—1, 0, a) has N(x)
=n(—1)+p"'n(a)=0, so 1 can not be a generic norm.

Now suppose 2 is a division algebra and u is not a generic norm. If N(x)=0 for
x#0 then x## = N(x)x=0; either x# =0 for x#0 orelse y=x##0 has y#¥=0, In any
case there exists x=(a,, a;, @;)#0 with x#¥=0. Then af=a,a,, p 'af =aqa,,
paf =aa,. Since aat=ata=n(a)l in A, nlay)l =aoa,as=p" n(a,)l =asa.a,
=pn(a,)1. Not all @;=0, so not all n(a;)=0 (since U is a division algebra), so none
are, and p=n(aya; ') is a norm, contrary to hypothesis.

This completes the proof.

For Tit’s second construction, let 2 be a separable associative algebra with 1 of
degree 3 over a field Q, * an involution of second kind on U with fixed field ®.
Then the space Mo=H(A, *) of symmetric elements contains an element v whose
generic norm is of the form n(u)=pp* for some nonzero p e Q. Weset £=A, @ A
as a vector space over @, let ¢=(1, 0), and for x=(a,, a) define

_ N(x) = n(ao)+ pn(a) + p*n(a*) — t(asaua®).
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Note that the values of N actually lie in @. Indeed, if 2 is any generically algebraic
algebra over () and S a semilinear automorphism or antiautomorphism of 2 with
associated automorphism o of € then the generic trace and norm satisfy £(Sx)
=1(x)""and n(Sx)=n(x)". Taking S=o="* in our case we see that (a*) = t{a)* and
n(a*)=n(a)*. Since a, and aua* lie in H(A, *) we see n(ay) and 1(a,, qua*) lie in
H(Q, ¥)=d, as does pn(a)+p*n(a*), so N(x) € . We denote (N, ¢) by

S, w, gy *).

THeOREM 7 (Trts’ SECOND CONSTRUCTION). If U is a separable associative
algebra with invelution * of the second kind, and u a symmelric element with norm
n(u)=pu* for nonzero p in Q, then J(U, u, p, *) is a Jordan algebra. It is a Jordan
division algebra if and only if U is an associative division algebra and p is not the
generic norm of an element of L.

Proof. The fact that N and ¢ are admissible can be proved as in Theorem 6,
using the formulas

T(x, y)
x#

t(ag, bo)+ t(ua*, b)+ t(au, b*),

(af — aua*, p*(a*)#u~'—a,a)

I

for x=(a,, @) and y=(by, b) with ag, b in A, and a, b in A. The computations are
much the same as in Theorem 6, though at one point we need the relation up*y~?
=n(u)u~' =u#, which follows from our choice of # and p. We will shortly given an
alternate, and more illuminating, proof that J(2, u, u, *) is a Jordan algebra.

If 3 is a division algebra then so is ¥, since n(a) =0 for a#0 would imply N(x)=0
for x=(0, a)#0. Also, = cannot be a generic norm, since p=n{a) would imply
x=(a*u"'a, a~*)#0 has

N(x) = n(@)*n(u) " *n(a) + pna) =1 +p*n(a)* - — t(a*u~'a, a 'ua~'%)

= p*(up®) b pp T ot —1(1) = 3-3 = 0,

Conversely, if % is a division algebra and p is not a generic norm then 3 is a
division algebra, for if N(x)=0 for some x#0 then as before x# =0 for some x 0.
For x=(ag, a) this means af =aua*, p*(a*)¥u—*=aya. Then

n(ao)l = agafl = acaua* = {p*(@*)#u~Yua* = p*(a*)*a* = p*n(a®),

or pn(a)=n(as)* =n(a,). If n(a)=0 then n(a,)=0 too, so a=a,=0 since A is a
division algebra, which contradicts x#0. Thus u=n(a,a~') is a generic norm,
which is again a contradiction.

Another way to show that J(, u, u, *) is a Jordan algebra is to show it is
imbedded in J(, p) as the subalgebra of fixed points relative to an automorphism.
We claim the involution * on 2 extends to an involution (=automorphism of
period 2)

x = (ao, a, ua,) — x* = (ak. a¥. ua¥®



