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THE FREUDENTHAL-SPRINGER-TITS CONSTRUCTIONS
OF EXCEPTIONAL JORDAN ALGEBRAS

BY
KEVIN McCRIMMON

Constructions of 27-dimensional exceptional simple Jordan algebras have been
given by H. Freudenthal [2], [3], T. A. Springer [8], and J. Tits [9]. In the first two
approaches the cubic generic norm form plays a central role, with applications
to projective geometry and algebraic groups; the third approach gives a simple
method for constructing all exceptional simple algebras. The constructions are
limited to fields of characteristic #2 as usual for Jordan algebras defined in terms
of a bilinear multiplication, and in order to polarize the cubic norm form the
characteristic must be #3.

Recently a definition of Jordan algebras has been proposed [5] which is based
on a cubic composition involving U-operators. A unital Jordan algebra over a
commutative associative ring ® is a triple F=(%, U, 1) where X is a ®-module,
U a quadratic mapping x — U, of X into Hom, (%, X), and 1 an element of X
satisfying the axioms

(1) U,=1,

(2) Uy =U.U,U,,

(3) Udyxz}={U,pyzx}.

({xyz}=U, .y for U, .=U,,.— U,—U,), and such that these hold under all scalar
extensions (equivalently, the axioms can be linearized). For fields of characteristic
#2 this is equivalent to the usual definition of Jordan algebras (with U, =2L2 — L =),

In this paper the consiructions of Freudenthal, Springer, and Tits will be de-
rived as special cases of one general construction valid for all characteristics. The
basic axioms used go back to [2]. It was Professor Springer who first pointed out
that this approach could be carried out for arbitrary characteristics, and the
author is indebted to him for suggesting the explicit formula for the Jordan
m:,coEno. .

1. The general construction. Let X be a module over a commutative associative
ring ®. We assume we are given (i) a cubic form N on X with values in @ (so N is
homogeneous of degree 3 and N(x+Ay)=N(x)+Ao,N|.+ A2 e .N|,+AN(y)
where the differential o,/ |, of N at x in the direction y is linear in y and quadratic
in x), (ii) a quadratic mapping x — x# in X, and (iii) a basepoint ¢ € ¥ related by

(4) x##=N(x)x (*adjoint identity ™),

(5) N(c)=1 (*basepoint identity’),
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