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Introduction

These notes are based on a series of lectures given
at the University of California at Irvine im the spring of
1977. My main aim was to show how the theory of Jordan
algebras and, more generally, Jordan triple systems and
Jordan pairs, may be applied to study the geometry of
bounded symmetric domains.

The Jordan triple system associated with a bounded
symmetric domain can be described as follows. Let U be
a bounded symmetric domain in V = ¢t , circled with re-
spect '.to the origin. (This is no essential restriction
since every bounded symmetric domain is biholomorphically
equivalent to a circled domain which is unique up to a
linear transformation.) Let k(z,;v) be the Bergman kex-—
nel function and ds> = I hijdzidij the Bergman metric of
b . After a linear coordinate change we may assume that

hi:j (0) = éi . Define structure constants ci;jklc by

J
C,. ., 4 10gk(2,2)
1jkd = SE 080235, ,
i35k z =0

and for u,v,w ¢ V define {uvw}l ¢ V by

fuvw} = Z ¢

- ->
e AV W, €
i,j,k,4 ijke 1 3k 4
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where 31 PR ’gn is the standard basis of ¢ and

u = Z)ui'éi s etc. Clearly the triple product {u¥w} is
C-linear and symmetric in u and w and C~antilinear
in v (indicated by ¥) . It turns out that it satisfies
the algebraic identity '

@) ixyluvwll - {u¥{xywl} = {{xFul¥w} ~ {ulyaviw}

and the positivity condition

(2) {futu} = 2u QLe@® = 2> 0

s

for all 0#FuevV.

A complex vector space V with a composition {uvw}

as abové, satisfying (1) and-(2) is called a positive

hermitian Jordan triple system (= PHJTS for short). We

have associated with each circled boﬁnded symmetric do~

main a PHJTS. What makes this interesting is the result

that this establishes a bijection between circled bounded
synm'xetric domains and PHJTS's.

As a typical example, the reader should keep in mind
the case where V

Mp q(tl:) s P X q matrices, and &5 is
2 .
the set of all z ¢ V £or which 1_ ~ zz*

definite (where z' = *Z and 1p is the p X p wunit

is .positive

matrix), Then the Jordan triple product is given by

- * *
{uvwl=uww+wu.

Let us take another look at the definition of a her-
mitian Jordan triple system. On closer inspection, this

turns out to be a composite object. Namely, let Vv Dbe

vii

the complex conjugate vector space of V ; that is,

V" = V as abelian groups, but scalar multiplication

av (@e€veV) in V is related to scalar multipli-
cation in V by a@+v =& . Then the maps V>V and
V" - V which are the identity om the underlying abelian
groups are C-antilinear isomorphisms-which we shall de-
note by u > 4 . Also, the triple product {uvw} de-
fines C—-trilinear maps V XV XV >V, (u,a,v) - {uav},
and V xV x-V" >V, (a,u,b) » {aub} = [aub} , symme-

tric in the outer variables, which satisfy

(M  {ua{vbw}} - {vb{uaw}} = {{uvavibw] - {v{aublw]

for a1l w,v,w e V , a,b, ¢ ¥V (resp. u,v,w e V ,a,b e ¥).

This leads to the following defimition: A pair wt, v
of vector spaces (where now V¥~ is not necessarily the
complex conjugate of V*') together with trilinear maps
VY x 7% x 7 >3 (c=%) , symmetric in the outer vari-
ables and satisfying (J), is called a Jordan pair. The
point of introducing this coﬁcept is that it makes sense
over arbitrary base fields or even rings (although (€))
has to be supplemented by further identities in charac-
teristic '2 or 3). Every Jordan trii:le system determines
a Jordan pair (V,V") , called the underlying Jordan pair,
but different Jordan triple systems may have the same un-
derlying Jordan pair. Remarkably emough, several objects
associated with a bounded symmetric domain depend only om
the Jordan pair of the corresponding PHJTS; for instance,

the compact dual X of J (considered as an algebraic
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variety) or the complexification of the automorphism
group of & ,

Abstracting now from the properties of the map

V>V , v>9, we define: A hermitian involution of a

Jordan pair (V',v7) is a C~antilinear isomorphism
T:v" > V" such that Tluavy = {Tu,T_la,rv} for all
W,v e V', 2 eV ., Then V=v" becomes a hermitian
Jordan triple system with {uvw] = {u,7v,w} , and wé say
T 1is positive if this Jordan triple system satisfies (2).
Thus

PHJTS = Jordan pair 4 positive hermitian involution.

It turns out that every complex semisimple Jordan: pair
admits positive hermitian iﬁvolutions, and any tﬁo'of

them are conjugate by an inner automorphism. Thus from

the classification of complex semisimple Jordan pairs one
obtains yet another classification of bounded symmetric
domains, '

Here is a short description of the contents, After
recalling some basic facts on bounded domains in 81, the
PHITS (resp. Jordan pair with involution) of a circled

bounded symmetric domain is introduced in §2, Fof techni-~
cal reasons, we define this in terms of the Lie algebra
of Aut(#) rather than by the fourth derivatives of the

kernel iuﬁction.'.we also express the kermel function, the

Bergman metric, and the curvatune tensor in terms of the

Jordan structure. In §3, we develop the algebraic machin~

€ry required to.deal with Jordan triple systens.

ix

Surprisingly little is needed, and the proofs use only
basic linear algebra. Of fundamgntal importance is the
concept of tripotent. We define odd powers in V induc-
tively by «@) - x , x(2041) _ %[xﬁx(zn-l)} . ‘An
element e is called a tripotent if e(3? = e . Thus
tripotents are the analogues of idempotents of an algebra.

Every X ¢ V has a "spectral decomposition®
X = Xlel + e + lnen

i ts and the “eigen~
e. are orthogonal tripoten
e . M the "spectral norm"
! . e positive. oreover,
yvalues” kl are p - o
i . A tripoten e
{x] = max A; is a norm on V p

rise to the Peirce decomposition

(3) v=V2@V1@V0

of V which later leads naturally to unbounded realiza-
tions of 4 as a Siegel domain. In §4, we prove the
correspondence between circled bounded symmetric domains
and PHJTS's. The domain associated with a PHJTS vV is
simply the open unit ball of the spectral norm; in pa:ti—
cular, it is convex, 1t may also be de?cribed as the set
of topologically nilpotent elements of V (relative tq
the powers defined above). We also give a description of
5 by finitely many polynomial ineégualities, and the class—
ification based on that of semisimple Jor@an pairs.

in §§5,6 the previous results are applied to study

the set M of tripotents of V and the boundary of ﬂ_.



We. show that M is fibered over a compact hermitian sym-
metric space and parametrizes the boundary components of

4 . The boundary of 5 is not smooth but composed

of finitely many submanifolds (a "curvilinear polyhedron").
We determine the normal conés of the convex body F ; the
cones occurring here are the selfdual cones associated

with formally real Jordan algebras.

In §7, we show how to imbed the vector space V = vt
of a complex semisimple Jordan pair (V+,V’) into a
projective algebraic variety X .as a dense open
subset, essentially by adding the singularities of the

quasi-inverse. at infinity., X "is the underlying algebraic

variety of the compact dual of & . Next (§8).we show
that the connected.automorphism group G of X is a
semisimple algebraic group acting trangitively on X ,

and by "fractional quadratic transformations" on V (gen-
. eralizing the fractional linear transformations of c) .
The Lie algebra of G comsists of polynomial vector
fields of degree < 2 (when restriétéd to V) . Also,

we give a description of G by generators and relations.
The complex group G has a real form gb whose connect-
ed set of real points is the identity conponent of the
automorphism group of 45 . 1In §9, we show that every tri-
potent e of V defines a one~dimensional 'R—sp}it torus
I, of G, and that the parabolic subgroup of G, de-

fined by T, is essentially the normalizer of the bound-

ary component correspohding.to E .

In §10 we study partial Cayley transformations and
Siegel domain reali%ations. In the Peirce decomposition
3), Vz is a complex Jordan algebra with unit element
e , and moreover, Vﬁ = A ® iA .where A is formally
real. There is a hermitian positive definite form F on
V, with values in v, given by F(u,v) = {uVe] and an
“action” of V, .on V; by 9(z)+¥ = {evz]} . These data
define a Siegel domain of type three, namely, the set Je
of all x5, @ x4 ® x, € Vo &V @V, for which X, e b
and Re(xz-%F(xl,(id-&?(xo))-lil) >0, and J, is iso-
morbhic with . under the partial Cayley transformation
defined by e .

in §11, we consider real bounded symmetric domains.
They are defined as domains of the form T N 5 where
TcV is a real form of.the complex vector space V with
the property that complex conjugation with respect to T
ieaves 4 dinvariant. This leads immediately to real posi-~
tive Jordan triple systems resp. real Jordan pairs with
pééitive involution, and hence to an easy classification
of real bounded symmetric domainhs. Most of the results
on coﬁplex domains remain valid; in fact, some of the con-
cepts introduced for complex domains appear more natural
in the real setting. »

¥ith a few exceptions, the results of these notes are
not new. The existing proofs, though, use Lie theoretic
methods instead of Jordan theory. I h;ve made no effort

to give credit in each case, nor is the bibliography in
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any sense complete,

The Jordan theoretic approach to

boundeé symmetric domains was pioneered by M . Koecher;

in fact, much of this work arose out of the attempt to

understand [K5]. It is a pleasure to acknowledge the

mathematical debt I owe him,

I wish to thank R. A. Kunze and expecially H, L.
Resnikoff without whose support and encouragement these
notes would probably not have been written.
Fo the University of California at Irvine for their hos-
pitality, and to Lynn Addington for her expert typing of

the manuscript,

0. Loos

I am grateful

0.1

§0. Notations

0,1. Let V be a finite-dimensional complex vector space,

and gV the underlying real vector space. The complex

. conjugate of V , denoted by V" , has the same underlying

real vector space as V but scalar multiplication in \A
is fwisted by complex conjugation: if av  (resp. a°v)
denotes scalar multiplication of a ¢ € and v e V in

Vv (resp. V) then
Qv = av .

A more convenient way to describe thig is to introduce
the maps v bV from V to V' and V to V given
by the identity on &Y= g¥ - Then v v is complex
antilinear and v =v . If f£:V-» ¥ is a linear map of
complex vector spaces we demote by I:V ~ W~ the

complex~linear map given by

i) =T .

0.2. A sesquilinear form on V may and will be considered
as a G@~bilinear form <,>:V x V - € , written <u,v>

. cr— -
for u,v ¢ V. It is hermitian if <u,v> = <v,u> and a
(positive definite) scalar product if <u,u> > 0 for

u# 0 . The transpose of an endomorphism f of V is
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then defined by <£(u),% = <u,®£()> , and the adjoint of
£ is

0.3, Let A<V be open, f:0 -+ W a differentiable map,

and df(z) :RV > _RW the differential of f at z ¢ &

Then df(z) decomposes

af(z) = af(z) + 3L (=)

where 93f(z) is GC-linear and 3f(z) is C~antilinear ;

i.e., 9f(z):V > W is C-linear . For directional de—

rivatives, we use the notations
d £(z) = df(z)-v, 3,£(z) = af(z)-v, a'vf(z) = 3L(z)V .
In_ terms of a (@-basis of V B
R _ .
avf(z) =Z 2 v, ,5 5(@) =028
Higher derivatives like
2.,0.%(2), aua".,f(z) PR

are defined in an obvious way. In Particular, if f is
real valued then
b, (u,v) = ausvf(z)

is a hermitian sesquilinear form on V s> for every z e & .
0.4, For S as above, let S denote the domain 4 -

considered as a subset of V , with the complex structure

0.3

induced from V . That is, the holomorphic functions om

5 are the functions
E(W) = T(wy (WweD)

where £ is holomorphic on .S . Then the map zZ & Z

from & to BH  is an antiholomorphic isomorphism.

0.5. A vector field on 4 will be identified with a map
£:5 >V . The Lie bracket of two vector fields § and

11 dis then given by

[£,n]l(2) = de(2)+n(z) - dn(2)*§(2) .
Note that this differs from the usual coﬁvention by sign.

0.6. The Lie algebra of a Lie group G is denoted by g
or Lie(G) . Tor h e G we denote by Int(h) the inner
automorphism g > hgh-l of G and by Ad(h) = Lie(Int(h))
the differential at the unit element; i.e., the a(ijoint
representation of G on g . The adjoint representation

of g on itself is demoted by adx'y = [x,¥] .

0.7. Real algebraic groups and varieties are demoted by
underlined symbols G, X, Aut(V,v") etc. The group of
real points of G is G(R) , its topological identity com-

ponent is often denoted by G = g(R)o .

0.8. We follow the notations and conventious of [L5] re-

garding Jordan algebras, pairs and triple systems. The

reader should be alerted to the fact that there are two
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definitions of the Jordan triple product {xyz} in the
literature, differing by a factor 2, If (say) A is an
associative algebra then we define {xyz} = xyz 4+ =zyx

whereas one often finds % (xyz + zyx) as the Jordan tri-
ple product. In our definition, the Peirce spaces are

indexed by the integers 0, 1, 2 (instead of 0, %, 1) ~
as they should be, since they really are weight spaces of

the multiplicative group.

0.9. The notation a.b.c refers to formula (¢) of

section a.b . The notation JPij refers to the list of

identities of the Appendix,

51, Bounded symmetric domains

1.1. We begin by reviewing some basic facts on the
Bergmann kernel function. Let 5 be a domain in a finite-
dimensional complex vector space V , let y be a Haar
measure on the additive group of V , and let H(5) be
the set of square-integrable (with respect to u ) holo-
morphic functions on 4 . Then H({H) 1is closed in Lz(ﬁ)
and hence is a separable Hilbert space. Since evaluation
at a point w ¢ b 1is a continuous functional on H(5)

there exists kw ¢ H(H) such that

&) Tt = | £@EEdu(z)
B
for all f e H(®) . Choosing an orthonormal basis
Pq,Pys """ of H(S) one sees that
(2) k (z) = nEg@n(Z)wn(w)
The Bergmann kernel function k(z,w) = kw(z) is holo-
def

morphic on B X 5  and clearly satisfies k(z,W) = k(w,Z) ,
k(z,E) >0 . If g is an isomorphism of S onto a domain

£' in V with kernel function k' then



(3 k(z,w) = k' (g(z),8(W))I ()T, (W)

where Jg(z) = det(dg(z)) 1is the complex Jacobian of g .

1.2. Suppose 4 is bounded. Then k(z,z) > 0 , and the
formula
(1> h (u,v) = auaq log k(z,z)

defines a Kaehler metric on & , the Bergmann metric (cf.

Helgason [H]). From 1.1.3 it follows that h is invariant
under the group Aut(H) of biholomorphic automorphisms of
£ . It is a well-known result of Myers and Steenrod that
the group of isometries of a Riemannian manifold is a Lie
group in the compact~open topology. Since Aut(#) is a
closed subgroup of the group of isometries of the Bergmann
metric, we have the result, due to H. Cartan, that Aut (5)
is a Lie transformation group of & with the compact-open

topology.

/
1.3. A bounded domain £ of V is called symmetric if,
for every =z ¢ & , there exists an automorphism sz of
period two of & , having =z as isolated fixed point.
Since s, leaves the Bergmanu metric invariant, it follows
easily that it is the geodesic symmetry around =z , and
thus & is a hermitian symmetric space in the sense of

E. Cartan. The Bergmann metric is then complete since

any geodesic may be extended indefinitely by repeated

1.3

geodesic symmetries. Moreover, 2 1is homogeneous
(Aut (#) acts transitively on B ) as one sees by joining

two given points by a geodesic and reflecting in the

midpoint.

1.4 A domain £ of V is called circled (with respect

to 0 ) if 0 ¢ B , and z-elt . & for all =z ¢ & ,

t ¢ R
By 1.1.3 the Bergmann kernel function of a bounded
= N it it
circled domain satisfies k(z,w) = k(ze ~,we” ") . For
w =0 it follows that k(z,0) is .constant, and applying

1.1.1 for £ = 1 we get

(1) ¥(z,0) = k(0,0) = u(»H "

1.5. Let f Dbe a holomorphic map of a circled domain 5

into a finite-dimensional vector space W . Then the
expansion
©
£ nEg fn

of f into homogeneous polynomials around the origin

converges uniformly on compact subsets of b, and

27

- L
1,2 = 3 5 €

o

—intf(z-elt)dt




For a proof see H. Cartan [Cl]. Now suppose that b/ is
bounded and that f is an isomorphism of £ onto a

bounded circled domain JS4' in W , carrying the origin
into the origin. Then f is linear; more precisely, it
is induced by a linear isomorphism of the ambient vector
spaces. For the proof, due to H. Cartan, let g be the
inverse of f

, and define an automorphism h of £ by

h(z) = e_ltg(eitf(z)) , for any t ¢ R . Then h leaves

the origin fixed and its differential at the origin is the

identity. By H. Cartan's uniqueness theorem (or, using
the Bergmann metric, since it is an isometry which is the
identity on one tangent space) it follows that h is the
identity. This means f(eitz) = eitf(z) and f is

linear.

1.6. THEOREM. Every bounded symmetric domain in V is

isomorphic to a bounded symmetric and circled domain which

is unique up to a linear isomorphism of V .

This theorem was first proved by E. Cartan [C2] by a
case-by~case verification, then by Harish-Chandra (see
Helgason [H]) using Lie group methods. A relatively ele-
mentary proof which even remains valid in infinite dimen-

sions is due to J-P. Vigué [v]. The uniqueness part is

of course immediate from 1.5.

2. The Jordan pair associated

with a circled bounded symmetric domain

2.1. 1In this section, S denotes a circled bounded
symmetric domain in a>finite-dimensiona1 vector space V .
The automorphism group of & is denoted by aut (b)) , its
connected compbnent of the identity by G0 , the isotropy
group of 0 in Go by K . The Lie algebras of G0

and K are 8, and ! respectively, considered as Lie
algebras of holomorphic vector fields on 5 . The
Bergmann kernel function is k(z,w) , the Bergmann metric
hz(u,V) , and V 1is equipped with the hermitian scalar

product
hy (u,V) = auﬁvlog k(z,2)|,_o

The adjoint of f ¢ End(V) with respect to hy is £*
By 1.2, X is a compact subgroup of GL(V) leaving this
scalar product invariant. By 1.3 and standard facts on
Lie transformation groups, the natural map GO/K > B is
an isomorphism of real manifolds. The symmetry around
the origin of & is given by s(z) = - 2z . Since K
contains the one~dimensional circle group of all trans-

i im
formations eltId , we have s = e " -Id ¢ K .




2.2. PROPOSITION. (a) K 1is the centralizer of s in G,

(b) The centre of Go is trivial.

() g, =1®p where p 1is the (-1) -eigenspace
of Ad s on 85 - Zgg'sgaces it and
satisfy
(Ltler, Dplep; Ieplet, adkpcyp .

(d) The evaluation map % - £ (0) is an isomorphism

8 » gV of real vector spaces.

Proof. If gs = sg then g(0) = gs(0) = sg(0) = - g(0)
implies g(0) = @ and hence g ¢ K . The converse is
trivial. The centre of Go is contained in K by (a).
But KX contains novnon—trivial subgroup of G0 since Go
acts effectively on & . This proves (b). By (a), the
(+1)-eigenspace of Ad s on 8o is 1 . This proves the
decomposition 8, = 1 ® p , and since Ad s is an auto-
morphism of period two of 8, Wwe have (c). Finally, (d)

follows from the manifold isomorphism GO/K .

2.3. LEMMA. For every v e V let §, be the unique

vector field in g which takes the value v at the origin.

Then v ~ Ev(z) is a homogeneous quadratic polynomial in

z and is C-antilinear in v .
Proof. Let 7n ¢ 1 be the vector field tangent to the

circle group {el%.14} ; i.e., n(z) = é%lt:oeit'z - iz .
Then [ﬂ,gv] €'p , and since [n,gv](o) = dﬂ(O)-gv(O) -

g _(0)-n(0) = iv , we have

® (n.g,1 =55,
by 2.2. It follows that
(2 [nin,a 1 =8 = - %y

= M 3 an-—
On the other hand, let -Ev(z) = néb in(z) be the exp

sion of gv into homogeneous polynomials. Then by

Fuler's differential equation,
[n,gv](z) = igv(z) - dfn(z)'lz
= iZ(l—n)fn(z) s
and hence by (2) ,

2
- [nin,g ]l =2 a-m%t =25 .

2 = . -— =
1t follows that ((1-m)" - l)fn = n-{n 2)fn 0 and hence

£, =0 for =n # 0,2 . Thus gv(z) =i, + fz’v(z) =

i i d of £

v + fz,v(z) where we have written f2,v instea 2
to indicate the dependence on v . Since §v and hence
fz is R-linear in v it remains to show that

v

’ 3 =
fz iv =~ if2,v . By (1) and (3), giv = iv + fz,iv

,
[n,%v] = iZ)(l—n)fn = iv - 1f2,v .

2.4 Example. Let V Dbe the vector space of complex

p % g-matrices, and let

B=lzev]1- tyz positive definite} ,



wbere 1 denotes the unit matrix of the appropriate size.

Then £ is bounded and circled. Let U{p,q) denote the
unitary group of the hermitian form

e - - - - . - ¥ p+q
ZqWq + + zpwp Zp+lwp+1 zp+qu+q on C

and write the elements of U(p,q) in block form (2 3)

where a is pxXxp, b is p x q , etc. Then U(p,q)

acts tramsitively on & via

(a b)-z = (az + b) (cz + d)_l
c d

The Lie algebra of U(p,q) decomposes inte t' @ p’

0 b
q X q respectively, and

p' consists of all matrices (0 v

where {' consists of all matrices (a 0> with a , b

skew-hermitian of size PXp,

v O
The vector fields induced on & are given by

) where v ¢ V .

Z >az - zb , z > v - thz

respectively. It follows that the latter vector fields

are the gv's , and hence
_ Lt
v -~ gv(z) =2z vz .

2.5. Returning to the general situation, we shall write

v -8, () =q@7

so that Q(z): V- » V is a complex linear map and

Q: V> Hom(V ,V) is a homogeneous quadratic polynomial.

Hence
Qx,z) = Q(x +2) - Qx) - Q=) : V >V

is bilinear and symmetric in x and z . For x,y,z < v

we define
{x¥z} = D(x,¥) -z = Q(x.2)"Y .

Thus {xyz} is complex bilinear and symmetric in x and
z and complex antilinear in y , and D(x,y) 1is the endo-

morphism z - {xyz} of V . In the example above,

— — t=
[xyz] = xtyz + z2yx

Finally, we define @: V_ - Hom(V,V") , D: V x V » End(V)

and {XyzZ} ¢ V for x,y,z e¢ V Dby

2 6. LEMMA. The following formulae hold.

&Y [g,.8,] = D, ¥ - D(v, ) ,

(2 [{e,.8,1:8,] = B(upw} - {vaw}

3) {uv{xyz}} - {xy{uvz}] = {{uvxlyz} - (x{vuylz},
@) [D(u,¥), D(x, 7] = D({uvx},¥) - D(x,{vuyl) ,
) by ({uvw},2) = by (w, {Vuz}) ,

(4 D(u, V¥ = D(T,u) .




Proof. Since £ _(z) = v - Q(z)v and Q(z) is quadratic

in =z , it follows that

(5) dgv(z)'w = - Q(z,w):V =~ D(z,V)w .
Hence [§ ,€ l(z) = - D(z,W)-(v-Q(z)¥) + D(z,V) (u-Q(z)T)
= D(u,v)z - D(v,u)z + terms of degree 3 in =z . By 2.2,

[gu,gv] belongs to 1 and is therefore linear in =z
This proves (1). By 2.2, the left hand side of (2) is in
p and is therefore equal to ga where a is the value

of the vector field at 0 . Now by (1) and (5),

[[E,,5,1 8,0 = 0@, -~ D(v,W)):(w - Q)W)
+ D(z,w) - (D(u,v) - D(v,w)) -z ,

and at =z = 0 this takes the value D(u,V)w - D(v,T)-w

{uvw} - {vaw} , proving (2). Hence we also have

[[8,.8,], 8,1() = {ubw)} - (vaw)

- Q(z) ({uvw} - {vaw}) .
Comparison of the terms which are €-linear in u yields
- D(u,V)Q2)W + D(z,W)D(u,V)z = Q(z)-{Fuw}

Linearize with respect to =z (i.e., replace =z by

Z + x and retain the terms linear in x ) to get
- {uv{xwzl} + {xwiuvz}} + {zwluvx}}

= {x{vuwlz} .

This is (3) (after a change of notation), and (3)' is just
a different way of writing it. Finally, since

D(u,¥v) - D(v,d) is in 1 it is skew-hermitian (cf. 2.1):
— %k — —
D, - v, D" = - D@,V) + D, T .

Comparing the terms C-linear in u we get (4)', and (4)

is equivalent to it.

2.7. LEMMA. If O # v e V and Q(v)v = v for some

A e € then X is positive.

Proof. Q(V)V = 3D(v,Vv)v = Av says that 21 is an eigen-
value of D(v,¥) . By 2.6, this transformation is self-
adjoint and hence A 1is real. The integral curve of Ev

through O 1is given by
1 .
x(t) = 7§ tanh (/X t)v (=tv if A = 0) .

Indeed, %X = cosh—z(/xﬂt) v and

2,0 = v - Q@Y = v - 5 tanh? (T £)QWIV

= (1 - tanhzﬁfx‘t))v .

I A < 0 then x{(t) = 7%f tan(/=r't)v which is un~-

bounded, contradicting boundedness of & .

2.8. DEFINITION. Let V' and V- be complex vector

— + L - + -
spaces, and let Q+: V’+ > Hom(V ,V") and Q_: V - Hom(V, V)



be quadratic maps. Define trilinear maps {} :V xV o xv’ +v°

and bilinear maps D : V' xV ° - End(V’) by

{xyz] = D (x,¥) 2 = Q,(xt2)y - @ (x)y ~ @, (R)y ,

for x,z ¢ V', ye VY (o= +) . The pair (v',v7)
together with the quadratic maps (Q,,Q.) is called a

Jordan pair if the identity
(3 {uvixyzl} - {xy{ﬁvz}} = {{uvxlyz} - {x{vuylz}

holds for all u,x,z ¢ Vﬂ, v,y € V_c, ¢ = + . This

definition may be extended to an arbitrary base field (or

even base ring) but then the identity (J) turns out to be

too weak to develop a satisfactory theory, and has to be
replaced by more complicated identities (cf. [L5,1.2]).

As long as 2 and 3 are invertible in the base ring,
however, (J) is sufficient (ecf. [L5,2.2]). From 2.5 and

2.6 it is now clear that a circled bounded symmetric domain %
£ in V gives rise to a Jordan pair (V,V" ) with quad- '
ratic maps (Q,Q) .

Abstracting from the properties of the complex anti-
linear map v > v from V +to v » we define: a hermitian
involution of a complex Jordan pair is an invertible complex
antilinear map T: V' - V_ such that T(Q+(x)Ty) = Q_(mx) ,

for all x,y ¢ vt . We say T is positive if Q+(X)Tx==XX

for A ¢ € implies A > 0 for all non-zero x e V' .
Then clearly the map v - Vv of the Jordan pair (V,V—)

associated with 4 1is a hermitian involution and by 2.7 it

is positive. We will prove in §4 that this establishes a
one-to-one correspondence between circled bounded symmetric

domains and Jordan pairs with positive hermitian involution.

2.9. An equivalent way of describing a Jordan pair with
hermitian involution is to introduce the concept of

hermitian Jordan triple system, this being defined as a

complex vector space V with amap <>:VX VXV->V,
(x,v,z) - <xyz> which is €-linear and symmetric in x
and z and GC€-antilinear in y , and satisfies (J) (with'
{} replaced by < >) . Indeed, given a hermitian Jordan
triple system, we obtain a Jordan pair with hermitian
involution by letting vt = V, V© the complex conjugate
vector space of V, T the canonical map v -+ v , and
defining Q+(x)y =% <xyz> , Q_(¥)x = 5:??3% . In these
notes, we have preferred to phrase things in terms of
Jordan pairs with involution because this makes it easier
to quote [L5] and also because Jor§7£ pairs make sense
over arbitrary base fields, thus allowing at least part
of the theory to be generalized.

Returning now to the Jordan pair (V,V~) associated

with 4 , introduce the endomorphisms
B(x,7) = Id - D(x,¥) + Qx)Q(y)

of V, for x,y e V (cf. [L5,2.11]). Their significance

is shown by the following.



2.10. THEOREM. (a) The Bergmann kernel function of S is

(b) Using the chain rule one sees that it suffices to
K(x,7) = p( -det B(x,7)"1 .

prove this for a set of generators of Go . From 2.2 and

i i facts on Lie groups it follows that G is gen-

(b) The Bergmann metric at 0 is standard o ¢ ™
erated by K and exp(p) . For g e K we have g =g

v K - -1
@ hO(u,V) = trace Dlw,v) , and (1) implies by linearization that gD(x,y)g

and at an arbitrary point =z ¢ 8 :

= D(gx.gy) , proving (2) (remember that K consists of

i i = d let
v 3y~ ot | unitary transformations). Now let £ E e p , an
(3) h, (W, %) = n (B, e,v) . , y v

[ be the one-parameter group of holomorphic automorphisms
t

(¢} The triple product {uvw} is given by the fourth of B generated by £ . Let x,,yg ¢ # and x = x(¥)

logarithmic derivative of k(z,z) at O

= ?t(xo) , ¥y = y(t) = mt(yo) the integral curves of ¢&

vwl.v 3.3 3 = through X5 5 Yo - We will show that
(4) hy ({uvw},y) = aua;awai log k(z,2) |, g

—_ *
X(t) = do, (x)B(xy,¥)de, (vy)  and Y(t) = B(x(t),¥y(®)
(d) The curvature tensor of the Bergmann metric at 0 1is

satisfy the same differential equation with the same
o - initial condition X(0) = Y(0) = B(x,,¥,) and are there-
(5) Ry, v)-w = = {uvw} + {vaw} . 0’70

fore identical. We have x = £(x) , and dmt(xo)
The proof rests on

= dE(X(t))‘th(XO) . Hence X(t) satisfies the differ-

ential equation
2.11. LEMMA. (a) K acts by automorphisms of the Jordan

i X = & (x) X + X-dE ()" .
structure: [ .
) 5 — . f Now Y =& (Id - DG + QEAGD) - - DY) - D) +
PR T amE s dar oy eV g + QE,NQYGY + QEIQF,F) = - DV-QE)V,Y) - D(x,7v-Q)IV) +
(b) For x,y e, g G, ¥e have + Q(x,v-Qx)V)Qly) + Q(x)575f335?§7;7 . On the other hand,
- * dg (x) = - D(x,v) (cf. 2.6.5) and hence
(2) B(gx,gy) = dg(x)-B(x,y)-dg(y) ot 4 vy - DB LD .
Proof. (a) By 2.2 (c), Ad g leaves p invariant. Now ‘ By expanding, using D(y,¥)" = D(v,¥) and the identities
(Ad £-2.)(0) = g-¢ (£77(0)) = gv and hence Ad g5, = B - ; JP4, JP9, JP13, we see Y = dg(x)-Y + Y-dg(y)" . This

This proves (a) in view of 2.5. proves the Lemma.



2,12

2.12. Proof of 2.10.

(a) By taking determinants in 2.11.1 it follows that

det B(x,?)_1 transforms like k(x,y) under G, - Since
k(x,0) = p(ﬁ)-l and det B(x,0) = 1', homogeneity of .
under Go implies 2.10.1 for x =y . Since both sides
are holomorphic functions on the & x 5 agreeing on the
diagonal whose complexification is & x . , they agree

on B x &

(b) By definition, hO(u,;) = Bu3§ log k(z,E)lz=o , and
by (a), we may replace k by det B~ L . Since det B(z,w)
is holomorphic in 2z and antibholomorphic in w , ho(u,V)
is the coefficient of €8 in the power series expansion of
log det B(eu,5v)"! where ¢ and 6 are complex para-—

meters. Computiﬁg modulo €2 and 62 » we have

log det B(su,EV)—l 1

m

log det (Id - eoD(u,v))”

]

log det (Id + €8D(u,Vv))
= log (1 + €§ +trace D(u,v))
= €§ trace D(u,Vv) .

Writing now hz(u,V) = hO(A(z)u,?) where A(z) ¢ End(V)

is positive definite and self-adjoint, we have A(0) = Id

and the Go—invariance of h means that dg(z)*.A(g(z))-dg{z)
= A(z) , forz e 8, g ¢ G, - Now A(z) = B(z,E)_l by

homogeneity of & and the Lemma.

2.13

— — _—1 -
(e) By (b), Bwa? log k(z,2) = hy(B(z,2) "w,y) . As
before, we have to compute the coefficient of &6 in

ho(B(eu,EV)—lw,§)

m

— — -1 -
By (B(ew,T9) T, ) = hy((1d - €BDCu,v)) W, )

it

ho ((1d + €8D (u,v))w,y)
= hy(w,y) + e8hg({uvw},y)

(d) The curvature tensor of a symmetric space at a point
¢ is given by Ry(u,v)-w = = [[@,7],%](0) where ¥V is
the unique "infinitesimal transvection" taking the value
v at 0 (cf. [L2, vol. 1]). In our case, these trans-
vections are just the vector fields gv , and hence (d)

follows from 2.6.2.



33. Tripotents and Peirce decomposition

3.1. In this section, (V+,V_) denotes a finite dimen-
sional Jordan pair over € . To simplify notafion, we
shall write V = V+ and often drop subsecripts + on the
quadratic operators Q(x)y = Qxy , and their linearizations
D(x,v)z = Q(x,z)y = {xyz} . The definitions and notations
of [L5] will be adopted; for convenience, we list some of
them. A homomorphism (f£,f_): (V,V ) » (W,W ) of Jordan
pairs is a pair of C-linear maps f£: V> W , f_: VAR
satisfying fQ(x)y = QN (y) and £_Q (y)x

= Q_(_(y)»)f(x) . Automorphisms, subpairs, and direct
products are defined in the obvious way. The automorphism
group of (V,V) is denoted by Aut(V,V") ; it is an
algebraic subgroup of GL(V) X GL(V' ) . The Lie algebra

of Aut(V,V ) is the derivation algebra Der(V,V ) ,

consisting of all (4,4 ) ¢ End(V) X End(V") which satisfy
AQ(X)y = Q(x,4x)y + Q(x)a_y and A_Q_(¥)x = Q_(¥,5_¥y)x

+ Q_(y)ax . By linearization, this is equivalent with

A{xyz} = {ax,y,2} + {x,A_y,2} + {x,y,Az} and the analogous
formula for A_ . Define endomorphisms of V and V' by
B{x,y) = Id ~ D(x,y) + Q(x)Q_(y) , B_(y,x) = Id - D_(y,x)

+ Q_{(y)Q(x) . Then if B(x,y) is invertible so is B_(y,x) ,

and



-1 , i Der (V £ Aut(V) is the
B(x,y) = (B(x,y) , B_(y,x)" ) Aut(V) . The Lie algebra Der(V) o )

set of all A ¢ End(V) with
is an automorphism of (V,V_) . called an inner auto-

- v = y 3y
morphism. The subgroup of Aut(V,V )} generated by the . saG)y Qx,8x)y + QGx)8y
B(x,y) is denoted Inn(V,V ) ; it is a normal connected for all x,y ¢ V . In particular, it follows from the

algebraic subgroup. The Lie algebra of Inn(V,V ) is Jordan identity that

spanned by the inner derivations

1) iD(x,%) ¢ Der(V) and D(x,¥) - D(¥,X) ¢ Der(V)
§(x,y) = (D(x,y), - D_(y,%x)) (xeV,yeV).
for all =x,y e V .
For more details see [L5,L6].

3.3. The odd powers of an element x ¢ V are defined by

3.2. Let now T: x > x be a hermitian involution of

(1) (2n+1)

x =X, X

3) £ @D

= Q(xX)X," " ,x% = Q(x)

(V,V") , as defined in 2.8. Thus V  may be identified

with the qomplex conjugate vector space of V , and for (Zn+1) _

We say x 1is nilpotent if x 0 for n sufficiently

every f € End(V) we have f ¢ End(V") given by large. One shows by induction (cf. [M1]) that

F(x) = £(x) . Then 7T induces a complex conjugation (2n+1)

1 e I CIEST eI DR - TEI I
(i.e., a Galois action of the Galois group of €/R) on @) i ) @ e Q¢
Aut(V,V ) by (£,£) » (f_,T) , whose fixed point set may @) (x(m))(n) - @)
be identified (by projection onto the first factor) with —

3) (x@ @ Py _ 5 (minip)

the group Aut(V) of all f e GL(V) satisfying

Note that these powers depend on the involution T , not

Q)Y = QUEE)E)
only on the underlying Jordan pair. In particular, T

for all x,y € V. In other words, T defines an R- : positive means that x(3) = Ax implies A > 0 for x # O,
structure on the complex algebraic group Aut(V,V ) ! and hence there are no nilpotent elements different from
whose group of real points is Aut(V) . Similar remarks zero (the converse is false).

apply to Inn(V,V_) , and we denote by Inn(V) the group

of real points of Inn(V,V ) , considered as a subgroup of




3.4. PROPOSITION. Let the involution T be positive

(more generally, assume V contains no non-zero nilpotent

elements). Then Aut(V) is compact, and there exists an

Aut(V)-invariant positive definite hermitian scalar product

on V such that the adjoint of D(x,y) is

px, 7" = Dy, %)

Proof (cf. [P3]). Let m(T,x,y) = iib(—l)imi(x,y)Th_i
be the generic minimum polynomial of the Jordan pair
(V,V?) (cf. [L5 §16]). The mi(x,y) are polynomial
functions on V x V ,. homogeneous of bidegree (i,i) y

invariant under Aut(V,V ) , and the roots of m(T,x,y)

and the minimum polynomial y (T) coincide [P2, Prop. 1].

x’y
By [L5,16.5] it is clear that My 7z(T) is a power of T

and hence mi(x,E) =0, i=1,--,s8, if and only if x

is nilpotent. Since there are no nonzero nilpotent
elements by assumption, the R-~homogeneous polynomials
fi(x) = mi(x,E) on RV have no non-trivial common zero,
and they are invariant under Aut(V) . By [P3, Lemma 7]
the subgroup of GL(RV) leaving the fi invariant is
compact, and hence so is Aut(V) . Choose now a positive
definite hermitian scalar product on V which'is Aut(V)-
invariant. Then Der(V) consists of skew~adjoint trans-
formations, and 3.2.1 implies that D(x,X) is self-adjoint.
Now the assertion follows by linearizing and comparing

terms C~linear in x .

—\ ¥ - N -
3.5. Remark. The condition D(x,y) = D(y,x) is equiv-

alent to the "associativity"
izyx}.w = <z.[yxw}>

The proof shows that any Aut (V)-invariant hermitian
scalar product (not necessarily positive definite) is
associative in this sense. Conversely. any associative
scalar product is invariant under Inn(V) but not
necessarily under Aut(V) .

Suppose V admits a non-degenerate Aut (V)-invariant
hermitian scalar product <,> . Then <.,> defines a
non~degenerate bilinear form V X V. > € which is invar-
jant under Aut(Vv,v ) ; i.e., <fx,f_y> = <x,y> for all
(%,¥) € Vx V, (£,£_) e Aut(V,V") . 1Indeed, this is
true for the real subgroup {(f,T) | f ¢ Aut(V)} whose
complexification is Aut(V,V ) , and hence follows by

analytic continuation. As a consequence,

£ =t

(the transpose being defined as in 0.2); in particular, the
projection onto the first factor Aut(V,V ) » GL(V) , is

injective.

3.6. A (linear) Jordan algebra is a vector space A with

a commutative bilinear multiplication xy satisfying

xz(xy) = X(xzy)



where x2 = xx . (Over fields of characteristic 2
3 or over a base ring, this definitiom has to be
modified.)

product
x0y = (x+y)2 - x2 - y2 = 2xy .

We define linear maps

in x by
- 2 _ 1 2
P(x)y = 2x(xy) - x°y = 3(x0 (x0y) - x“oy)

Our standard reference for Jordan algebras is [B—K].
Every Jordan algebra gives rise to a Jordan pair by

setting V' = V7 = A and Q (0¥ = Qx)y = P(x)y .

or

It is often convenient to also use the circle

P(x): A > A which are quadratic

This

is immediate from well-known identities for Jordan alge~

bras. On the other hand, let (V,V )

and let a ¢ V . Then the vector space

Jordan algebra, denoted by V(a> , with

2
xy = ¥{xay}, x° = Qx)a .
Circle product and P~operators are given by

xoy = {xay}, PX)y = Qx)Q_(a)y .

For the proof see [L5,1.9].

3.7. Let A be a real Jordan algebra, and let z*

denote the complex conjugate of =z = x + iy ¢ Am = A

the complexification of A . Then the Jordan pair

(AC’AC) carries a hermitian involution given by

be a Jordan pair,

V becomes a

=x = 1iy

® iA

v,v)

2

*
T(z) = z ; in other words, we have
— *
Q(z)w = P(z)w

for =z,w e V= A This follows easily from the fact that

C

z > z* is an antilinear automorphism of period 2 of the

Jordan algebra A¢ . The Jordan pair with involution obtained
in this way is called the hermitification of A

2,,2.

We say A is formally real if x implies

x =y =0 . In this case, the involution defined above is

— *
pogitive. Indeed, suppose Q(z)z = P(z)z = Az for =z c A

c -
LLet o be the trace form of AC , given by 0(x) = trace

(y > xy) . Then ¢ 1is associative and positive definite on

A in the sense that o((uv)w) = oc(u(vw)) and o(xz) >0

It follows that c((P(z)z*)Z*)

R

for 0 # x € A (cf. [B-K]).

= o((zz*)z) = Xo(zz*) and zz* e A for

z = x + iy . Since A is formally real we get X > 0

for z # O
v, v)

3.8. An idempotent in a Jordan pair is a pair

(a,b) ¢ Vx V' such that Q(a)b =2 and Q(b)a =1b .
Note that this means in particular that a.2 = a in the
Jordan algebra V(b) An idempotent defines a one-

dimensional torus in Inn(V,V') by t - B(a, (1~-t)b)

(t e €) , cf. [1L5,85]. The set I of idempotents is

clearly a subvariety of V x V° and it can be shown to be

smooth. Now let T be a hermitian involution of (V,V ) .

If (a,b) 1is an idempotent then so is (b,a), and thus 7



defines an R~structure on I . The set of real points is
the set of all idempotents of the form (a,E) and thus
may be identified (by projection onto the first factor)

with the set M of tripotents of V
NED)

-, where e ¢ V is
called a tripotent if = e . Clearly Aut(V,V_)
acts on I , the action is compatible with the Galois

action defined by 7 , and Aut(V) acts on M

3.9. LEMMA. TFor tripotents ¢ and e of V the following

conditions are equivalent.

(L D(c,e) = 0 ;
(ii) D(e,c) = 0 ;
(111) (cGel = 0 ;
(iv) {eec) = 0

If they hold then D(e,¢) and D(e,e) commute and e + ¢
is a tripotent.

Proof. Clearly (i) dimplies (iv) and (ii) implies
(iii) . Assume that (iv) holds. Then by JP4 R

2Q(e)c = {ece} = {eEé(S)} = D(e,c)Q(e)e = Q(e){eec} = 0 .
Hence by the Jordan identity, [D(e,¢).D{(e,c)] = D({eee},C)

- D(e,{eec}) = 2D(e,c) = - [D(e,c),D(e,e)] = - D({eCe},?)

1]

+ D{(e,{cee}) = 0 which proves (ii) . By interchanging
the roles of ¢ and e we see that all four conditions
are equivalent. Finally, [D(e,e), p(e,©)] = D({ecc},c)
- D(c,{eec}) = 0 and (e + c)(s) = e(B) + & + Qe)c

+ Q(c)e + {eec} + {cce} = e + ¢

3.10. Two tripotents ¢ and e are called orthogonal

if they satisfy the conditions of 3.9. It is easy to show
that this is equivalent with the orthogonality of the
idempotents (c,¢) and (e,e) of (V,V ) in the sense

of [L5,5.12].

A real subspace W < V is called flat if {WAW} <= W
and {xyz} = {yxz} for all x,y,z ¢ W . Flat subspaces
are totally real in the sense that W N iW = 0 , provided

V contains no nilpotent elements different from zero.

3> _

Indeed, if x and ix are in W then 2ix = {ix,x,x)

3

= {x,ix,x} = - 2ix (The term "flat" is suggested by
2

the relation with the curvature tensor; cf. 2.10). For
s 3) &) .
example, the R-linear span of the powers X,x ,X 5"

of x e V is flat by 3.3.3.

3.11. THEOREM. Let (V,V') be a Jordan pair with a posi-

tive hermitian involution, and let W < V be flat. Then

w = R-e1@~--@R-en

where the e; are pairwise orthogonal non-zero tripotents,

uniquely determined up to sign and order. Conversely, any

subspace of this form is flat.

Procf. Let S < EndR(W) be the R-linear span of all
D(x,X) | W where x ¢ W . Note that D(x,y) | W belong to
S for all x,y ¢ W since 2D(x,y)z = Dx+y,x+7y)z

- D(x,X)z - D(y,y)z by flatness of W . Choose a scalar




product as in 3.4. By taking the real part of it and
restricting to W , we obtain a Euclidean scalar product
on W such that S consists of the selfadjoint trans-
formations. Furthermore, S 1is commutative since
[D(x,%), D(y,M] = {{xxv),¥2} = [x,{xXy},z} = 0 for
Xx,y,2 ¢ W by flatness of W . By a standard result of
linear algebra, S may be simultaneously diagonalized.
Hence there exists a basis €45, of W such that

fei € Rei for all f ¢ S . 1In particular, e§3)

= %D(ei,gi)ei = Xe; and XA > 0 by positivity. Replacing
-1
ey by X\ Eei we may . assume that ey is a tripotent.

For i # j we have {eigiej} = D(ei,gi)ej
= D(ej,zg)ei € R-ei n R-ej = 0 and hence the e; are
mutually orthogonal. If ¢ = Z)kiei is a tripotent in W
then ¢ - ¢® - D%, implies A, - 0,41 . From this
it follows easily that the e; are unique up to sign and

order. The last statement is. immediate from 3.9.

3.12. COROLLARY. Every x € V can be written uniquely

(€Y X = X1e1-+----fknen

where the e; are pairwise orthogonal non-zero tripotents

which are real linear combinations of powers of x

, and

the Xi satisfy

(2) 0< Ay <---% S

3.11

Proof. Apply 3.11 to the real subspace W spanned by

thé powers of x . Then Xx = x1e1-+----+knen with real

A and after permutation and sign change we may assume
i’

. By orthogonality of the e. ,
that 0 < Ay < 005 Pn y & i

the powers of x are

x(2k+1) 2k+1e .2k+le

= g H Ay ey

Since the powers of x span W this implies (2). Now

suppose that

X = pyeq t+ ot Wl

with non-zero orthogonal tripotents c‘j and My < aea< um.
2k+1 2k+1

Then x(2k+1) = My cq SRR ) S (o] and a Vandermonde

argument shows cj ¢ W . Hence the cj from a basis of

W , and by 3.11, the cj agree with the e; up to sign

and order. But now the inequalities on the coefficients

imply c; T ey and Xi =My -

We call (1) the spectral decomposition and the Xi

the eigenvalues of x .

3.13. THEOREM. (Peirce decomposition) Let v,v") be a

Jordan pair with bermitian imvolution T , and let e be

a tripotent of V .
(a) V decomposes
(1) V= V2 @ V1 <] Vb

where V, = V (e) is the a-eigenspace of D(e,e) . The



V& are orthogonal with respect to any associative scalar

product and satisfy the multiplication rules

(2) {Vd’VB’VY} S VgeBay? {vz,vo,v}y= {VgVyVl =0 .

In particular, (V&,V&) is a rT-invariant subpair.

(b) V2 is a complex Jordan algebra with multiplication

xy = #{xey} and unit element e . The map 2z > zF = Qe)z

is a complex antilinear automorphism of period 2 of the

Jordan algebra V2 .

(¢) The fixed point set A4 = A(e) of the map =z ~ z*

is a real Jordan algebra, and Vo, = A® iA 1is the

hermitification of A (cf. 3.7). If 71 is positive then

A is formally real.

Proof. (a) Associated with any idempotent (a,b) of a
Jordan pair (V,V’) we have the Peirce decomposition
V=Vy,®7V, 8V, V =V, 8V, &V, , where the v, (resp.
V; )} are the weight spaces of the w*—action on V (resp.
V') given by t - B(a,(1-t)b) (resp. t - B_(b, (1-t)a)) .
Also, V& is contained in the «-eigenspace of D(a,b) ,
and since the charaéteristic of the base field is not 2
we have equality (see [L5,5.4]). If a=1 =e , it
follows easily that V; = v& . Thus (a) follows from
[1L5,5.4] and 3.5.

(b) For =z,w e V, we have zw = 3{zew] ¢ V, by (2) and
ez = 3{eez} = z . By 3.6, V, 1is a Jordan algebra with

unit element e . Moreover, by JP12,

3.13

2z = {eez] = [e(3)Ez} = D(z,e)Q(e)e

- Q(e){eze} + {{zeelee}l = - 2Q(e)Q(ed)z +

]

— *
+ 2{eez} = - 2(z ) + 4=z

Hence =z - z* is antilinear and of period 2. To show

that it preserves the Jordan product it suffices to verify
2 * 2,% —

that (@) = (@2 . Now (z9)7 = Qe)Q(@)e

—_ - — 2
Q(e)Q@) ale)e - Q(a(e)z) -8 = (e = ("), by Jp3.

Q)A@W

I

*
(¢) Clearly V, = A ® iA , and P(z)w
*

Q(e)Q(e)w and

= Q(z)Q(e)Q(e)w = Q(z)w since w = W
hence w = Q(e)Q(e)w . Therefore (Vz,vz) is the
hermitification of A . Suppose T 1is positive, and
choose a positive definite hermitian scalar product <,>

on V as in 3.4. Then for x,y € A we have

<2 + y2,5> = <(xex},® + ¥<{yeyl, &

1]

<x,{exe}> + 3<y,{eyel> =

o

<x,x >+ <Y,y > = <%, + <y,¥> .

[

This shows that A is formally real.

For orthogonal systems of tripotents, we have

3.14. THEOREM. Let ey,*-*,e, be orthogonal tripotents

of V. Then

@ V=




(direct sum of subspaces) where

Vii = Vz(ei) ,i=1,+-+,n ;
Vig = V51 = Vilepd N vyley) , 1 <i<j<n;
(2)
Vig = Voi = Vilepd N jQi Vo(ej) , i =1,--,n

V00 = Vo(el) NN Vo(en) .

The spaces Vij are orthogonal with respect to any associ-

= I e,

e
I iex 1

-ative scalar product. If I < {1,---,n} and

then the Peirce spaces of e; are given by

@) Vylepd = 2 V.. = -
20 7 fir'1y Viler i?lvij’ Volep = 3 Hriy -
Jgl

¥e have the multiplication rule

(4) ., ¥V
(V50 Vi Viegd © Vi

and all .other types of products are zero.

Proof. See [15,5.14].

3.15. COROLLARY. lLet x = klel LR knen where

A; € €, and set Ag = 0 . Let vij € Vij . Then
1 - - 2 2

@ DG,®)yyy = ()" + Pyl iy s

(@) QT = Ahyyy

@) Q@A = Dary [Py

(4) B(x,z)yij = (1 - ]xi{Z) a - [kj]2)yij .

3.15

* —_ =
Here yij = Q(e)yij and e = eq Tt ey . This
tollows by straightforward computation from 3.13 and
3.14. The details are left to the reader (distinguish
the 4 cases i=3>0,1<i<j<n,1=0<],

=3 =0).

3.16. COROLLARY. A hermitian involution is positive

if and only if trace D(x,x) > 0 for all O # x ¢ V .
In this case, <x,y> = trace D(x,y) is an associative

Aut (V)~invariant hermitian scalar product.

Proof. Suppose T is positive, and let O # x ¢ V .

Then 3.12 and 3.15 imply x = Z)kiei with positive A

i
and trace D(x,x) > 223X? , since e, € V;; . Conversely,
assume x(s) =Ax , A e € . If M =0 then one shows,

using JP13 and JP4 that D(x,;)3 = 0 . Hence trace D(x,%X)=0
which implies x =0 . If x# 0 then A # O and )
is an idempotent of the Jordan pair (V,V ) . Hence the
eigenvalues of D(X_lx,i) are 0,1,2 . This shows that

the eigenvalues of D(x,x) are 0,A,20 , and thus

trace D(x,x) is a positive integer multiple of A
Therefore X > O . TFor the last assertion, note that
D(£x,Ty) = £0(x, )£~ L for £ € Aut(V) which shows that
trace D(x,y) is Aut(V)-invariant and hence associative

(cf. 3.5).

3.17. THEOREM. Let (V,V ) be a Jordan pair with a positive

hermitian involution. For every x ¢ V let |x| denote the




largest eigenvalue of x (cf. 3.12). Then |.| is an

Aut (V)-invariant morm on V , called the spectral norm,

with the following properties.

(a) (X(B){ = lx[3 and 2{

[ReY[ < [x|%]y]

2
() [x|® = Q@) || = 2lip(x,%) || , where the operator norm

I£f for f e End(,V) is computed relative to some

associative scalar product <,> ocn V by
lell = suofllexll | =l = 13 , and |ixf) = <x,B?

(¢) If (U,U7) is a rT-invariant subpair of V then

the norm of an element

X € U is the same whether com~

puted in U or in V .
(@) If (V,V') is a direct product of Jordan pairs

(Vl’vl) and (V2,V2) then the norm of x = (xl,xz) eVi><V2

is max([xll, [le) .
Proof. ¥From 3.12 it is clear that |[.| is Aut(V)~-invariant

and satisfies all properties of a norm except the triangle

inequality. The latter is equivalent to the convexity of
the closed unit ball B = {x ¢ V | |x] < 1} . Pick an
Aut(V)-invariant inper product <x,y> on V (cf. 3.4).

Let =x = klel + oo hnen be the spectral decomposition

of x so that |[x]| = A, - By 3.15.1, |x| <1 if and

only if 2Id - D(x,x) is positive semidefinite with

respect to the scalar product <,> ; i.e.,
t.(x) = <D(x,X)y,¥> < 2 for all y ¢ V such that

<y,v> =1 By 3.15.1, D(x,x) is positive semidefinite,

and hence I is a positive semidefinite quadratic form

y

on Vv . It follows from the Cauchy-Schwarz inequality

R

that the sets {x ¢ V [ fy(x) < 2} are convex, and hence

so is B , being their intersection. This shows that 1.1
is a norm o V . From 3.15 it is clear that we have (b).
The first formula of (a) follows from x(3) = kiel oo +xie
For the second, use (b) and JP3 and the inequality

lifgll < ii£li-ligll for the operator norm:

lQ(x)?l?‘ = 1RQGEM I = 1eETEIQE) |
< e liZ-leml = [x[*]v]2 .

(Note here that the linear map Q(x) = f: ¥V - V may be

considered as an R-linear map from RV into itself and

therefore [[f|| makes sense. Also, the conjugate map

f: V>V  (cf. 0.1) has the same norm as f ). Finally,

(c) and (d) follow immediately from the definitions.

3.18. As an application, we have a kind of functional

calculus for Jordan pairs with positive involution. Let
£(t) be an odd complex-valued function of the real

variable t , defined for |t| < p . For every x ¢ V

with |x| < ¢ define f£(x) ¢ V by

f(x) = f(kl)e1-+--- + f(hn)en
where x = k1e1-+----+hnen is the spectral decomposition.
If g(t) and h(t) are also odd functions of t then

n



3.18

one checks (under obvious assumptions on the domains and

ranges) that
(1) (E+g)(x) = £(x) + g(x), 2(fgh) (x) = {f(X)gE)hx)} ,
(2) (gof)(x) = g(£(x)) .

Also, [f(t)| < a for |t| < p implies |f(x)]| < a for
|x] < p (x e V) . If £(t) is real analytic and the power

series expansion f£(t) = é}ant2n+1 of f around O con-

verges for it} < p, then o a x(2otD)
1 e

“4%n converges to

f(x) for [x]| < Py 5 in particular, £(x) is real anmalytic
for |x| < p; . This follows easily from ]x(2n+1)]

2
Jx] o+l . Moreover, we have

3.19. PROPOSITION. If £(t) is real analytic for |t < p

then the function x ~ f(x) is real analytic on the domain
{xe V] |x] <op}.

Proof. By considering real and imaginary part, we may assume
that f is real valued. Then f can be extended uniquely
to a holomorphic function in a neighborhood of the open real
interval (~p,p) in € . For 0 < p' < p we can find a
closed rectangle R C C , parallel to the real axis, con-
taining the closed interval [-p',p'] in its interior, and
such that I is holomorphic on a neighborhood of R . Since

f 1is odd, Cauchy's integral formula shows that

1 t
ST S f(Q)EE::ng
oR

£(t) =

for all t e [-p",0'] . If x = Z}ljej e V and

|x] < p' then

f<x>=2—w.5 (Q)2)\2edg.
J

Let V be the complexification of gV and let

B V> End(V) be the complex extension of the real poly-

nomial map x > B(x,%X) from RV into End(RV) . Similarly
3 .

extend the real polynomial map x > x( ) from RV into

itself to a complex polynomial map =z -> z[3] of V. By

a simple computation using orthogonality of the ej , we
have
2 i = Bl (¢ - o B
S ghge; = ¢ x -
go=AL
J
Hence we can extend x = f(x) to a holomorphic function ¥

on a neighborhood of {x e V | |x] < p'} in ¥V by

F=z) = 51— 5 £()B(C 1z)'1(§2z - z[3])-5§ .
4
oR

This completes the proof.



§4. Correspondence between bounded symmetric domains

and Jordan pairs; classification

4.1. THEOREM. Let £ be a circled bounded symmetric

domain. Then J is the open unit ball of the spectral

norm of the associated Jordan pair with involution. Con~

versely, given a Jordan pair with positive hermitian in-

volution, the open unit ball of the spectral norm is a

circled bounded symmetric domain whose associated Jordan

We first establish some Lemmas. Recall that a
Riemannian manifold is called locally symmetric if the
local geodesic symmetry sp around every point p is a
local isometry. If all local symmetries extend (necessarily
uniquely) to global isometries, we speak of a Riemannian

symmetric space. The following Lemma goes back to E. Cartan.

4.2. LEMMA. Let £ be a Killing vector field on a locally

symmetric Riemannian manifold, and assume that

dsp-g-sp = - €& for some point p . Then the integral curve

of £ +through p is a geodesic.
Proof. Let Pt be the local one-parameter group generated
by £ , and let =x(t) = wt(p) be the integral curve of £

through p . Since & 1is Killing, Py consists of local




isometries and therefore s = = -1
x(t) Swt(p) P Spo 9y -

The assumption on € implies that sp(x(t)) = x(-t)

It follows that
Sx(t/2) B = 9y pes x(1-3)) = @y px(Bt-t")

= x(t-t') .

By differentiating with respect to t' at t' = 0 we see

that x(t) satisfies the differential equation

T A8y (er2)Y

where v = x(0) = €(p) . On the other hand, let y(t) be
the geodesic through p with initial vector v . Then
y(t/2) is obtained from v by parallel transport along
(t and si i i . i
y(t) , ince Sy(t/22 is an isometry, dsy(t/2) v is
obtained from dsy(t/z)-y(t/Z) = = y(t/2) by parallel

transport along y(t) . This shows that

y=- dsy(t/z)-v ,

and hence x(t) and y(t) satisfy the same differential
equation with the same initial condition x(0) = y(0) = p .

The Lemma follows.

4.3. LEMMA. Let (V,V ) be a Jordan pair with positive

hermitian involution, and for v ¢ V define the vector

field € on V by

Ev(z) =v - Q(z)'v .

Then the integral curve of & = through 0 is defined for

all t and is given by
x(t) = tanh(tv)

(where tanh: V » V is defined as in 3.18).
Proof. Let v = X1e1-+--- +Xnen be the spectral decom-—
position. Then we have x(0) = 0 and

x = Z}kicosh—z(kit)ei . By orthogonality of the e, ,

E(x(t)) = v - Qx(£))V = Ty (1—tanh2(xit))ei -x .

4.4, LEMMA. With the notations and assumptions of 4.3, let

£ be the open unit ball of the spectral norm, and pick an

Aut (V)-invariant scalar product < ,> on V (cf. 3.4).

Then

e B, (W, V) = <B(z,z) t-u,v>

defines a hermitian metric on 4 with respect to which

the vector fields §v are Killing vector fields. The

geodesic symmetry around 0 is g = - Id ; it is a

global isometry.

Proof. From 3.15 and the definition of the spectral norm
it is clear that B(z,z) is positive and selfadjoint
relative to < ,> . Thus (1) defines a hermitian metric

on &5 . An easy computation shows that a vector field §




is Killing if and only if

(2) 4y ,)B(z,2) = d&(2)"B(z,2) + B(z,2)-d5 ()" ,

where * denotes the adjoint relative to < ,> . TFor
£ = §v we have dg€(z) = - D(z,v) and hence dg(z)*
= - D(v,z) . The left hand side of (2) is - D(E(z),Zz)

- D(2,8(2) + Q2,8 (2)Q@) + @)Q(z,8(2)) . Now (2)
follows by a straight forward computation, by expanding
both sides and using the identities JP4, JP9, and JP13.
From B(z,z) = B(~z,-z) it follows that =z - -~z is an
isometry and since its only fixed point is 0 , it is the

geodesic symmetry.

4.5. Proof of 4.1. Suppose S is a circled bounded sym—
metric domain in V , and let gv be as in 2.3. Then gv
satisfies the hypotheses of 4.2 (with p = 0) . Now
E,(#) = v - Q(z)v by definition of the Jordan structure
associated with 5 and by 4.3, the geodesic through 0
with initial vector v 1is given by Expo(tv) = tanh(tv) .
Since the Bergmann metric is complete, B = Expo(V) .
The function tanh is a feal analytic diffeomorphism of R
onto the open interval (-1,1) ., It follows from 3.18 and
3.19 that x » tanh(x) is a real analytic diffeomorphism
of V onto {x e V| |x| <1}, and hence B is the open
unit ball of the spectral norm.

Conversely, let now S be the open unit ball of the

spectral norm of a Jordan pair with positive involution.

Clearly 2 is bounded and circled. From 4.3 and the pro-
perties of tanb, every point of £ 1lies on an integral
curve of some vector field gv and these integral curves
are defined for all t ¢ R . Since the gv are Killing

by 4.4, it follows that every point of £ has a neighbor-
hood which is isometric to a neighborhood of O . Again

by 4.4, 5 is locally symmetric. By 4.2, the geodesics
through O are precisely the integral curves through O

of the gv and are therefore defined for all t e R .

This shows that S 1is complete as a Riemannian manifold
(cf. [H1, p.58, Remark]). Since Killing vector fields on

a complete Riemannian manifold are complete, the holomorphic
vector fields %v generate global one-parameter groups of
holomorphic automorphisms of S , and therefore 5 1is
homogeneous. Being symmetric around O0 , it is symmetric
around every point by homogeneity. Finally, it is clear
that the vector fields gv are precisely the vector fields
used in §2 to define the Jordan structure associated with
S . Hence the Jordan pair associated with #» is the given

one, and our proof is complete.

4.6. COROLLARY. A circled bounded symmetric domain is

convex.

4.7. COROLLARY. The domain associated with an involution-

invariant subpair (W,W ) of (V,V) is 5 N W where 2

is the domain associated with (V,V') . The domain associ-

ated with a direct product of Jordan pairs is the direct




product of the domains associated with the factors.

This follows immediately from properties of the spectral

norm (3.17(d)).

4.8. COROLLARY. The exponential map Exp0 : V> 25 of the

Bergmann metric at the origin is a real analytic diffeo-

morphism given by Expo(v) = tanh(v) . Its inverse is
x > artanh(x) . The non-zero tripotents of V are pre-

cisely the 1limit points of geodesic rays emanating from

the origin.
Proof. The first assertion was proved in 4.5. The second
follows from 3.18.2. Finally, if v = Z)Xjej is the spectral
decomposition then 1im Exp(tv) = limZ tanh(A.t)e, = Ze.

oo o 3 J J

is a tripotent and obviously every tripotent can be obtained

in this way.

4.9. COROLLARY. With the notations of 2.1 and 3.2, we have:

(a) Aut(V) is the isotropy group of O 3in Aut(H) and K

is the identity component of Aut(V) . In particular,
t = Der (V)
(b) G, 1is real analytically diffeomorphic with RV x K

under the map (v,k) > exp(€ )-k .

Proof. (a) Since Aut(V) preserves the spectral norm, it
is contained in Aut(#) . Conversely, the same argument
as in the proof of 2.11(a) shows that an automorphism of
£ Zfixing the origin (which is linear by 1.5) belongs to

Aut(v) . Now XK = Aut(Y) N G, contains Aut(v)° , and since

L = GO/K is simply connected, K is connected and we have
eguality.
(b) Clearly this map is real analytic. Its real analytic

inverse is g > (v, exp(%v)_lg) where v = artanh(g(0)) ..

4.10. We now wish to classify circled bounded symmetric
domains up to isomorphism. Suppose f : £ > 5’ is an
isomorphism between two such domains. After composing f
with a suitable automorphism of 5' we may assume that

£(0) = 0 . Then f is linear by 1.5. Also, it will

3 P = T
preserve the vector fields gv ; 1.e., fogV g f(v)°f
for all v e V . This shows that f£(Q(x)y) = Q' (F&)TH) ,
and hence (f,%) : (V,V ) » (V',Vv'") is an isomorphism of

the associated Jordan pairs which commutes with the inv8lu~
tions in the sense that Tt'-f = f+7 . Conversely, such an
isomorphism will map S isomorphically ento B' , since it
preserves spectral norms. Thus we are reduced to classify-
ing Jordan pairs with positive involution. The first
observation is that such a Jordan pair is necessarily
semisimple. Semisimplicity is defined by the vanishing of
the radical. There are various kinds of radicals for Jordan
pairs (cf. [L5,84]) but they all agree in the finite -
dimensional case. The one most eagily described in our

situation is the nilradical; that is, the set of all x e V

which are nilpotent in every Jordan algebra V(a) , a € v
(cf. 3.6). If T 1is an involution then one checks easily
that the n-th power of x in v(™) g @+l .



is positive there are no nilpotent elements different from

zero and hence V is semisimple.

4.11. A Jordan pair (V,V ) is called simple if the @ -
operators are non-trivial, and if it contains no proper
ideals. Here an ideal of (V,V ) is a pair (I,I") of
subspaces such that {IV V} + {VI V} € I and {[ITVV}
+ {vV7Iv'} ¢ 1 . By [L5,10.14] a finite-dimensional
semisimple Jordan pair is the direct sum of simple ideals
which are unique up to order. As a consequence, every
ideal of a semisimple Jordan pair has a unique complement.
The corresponding concept for domains is that of

irreducibility. A circled bounded symmetric domain &

is
called irreducible if it is not isomorphic to a direct
product ﬁJ X b of lower-dimensional circled bounded
symmetric domains. If 5 is not irreducible then clearly

the associated Jordan pair (V,V’) is the direct product

of the Jordan pairs associated with .A' and 5" and hence

is not simple. Conversely, let (I,I') be an ideal of
(V,v7) and (J,J7) the complementary ideal. If we can
show that they are stable under the involution T (i.e.

T(I) = I and T(J) = J°) then by 4.7, B is not irre-

ducible . Assume x e I and X = ™x ¢ J . Then
2x(3)

= {x,%,%¥} e INJ =0, and by positivity, x = 0

Similarly, J N t73(I") = 0 . Since the ideal (v 1(1") ,

T(I)) is the sum of its intersections with (I,I") and

(J,37) we have T(I) = I~ . Therefore, we see that 5

is irreducible if and only if (V,V-) is simple, and we now
have to classify simple Jordan pairs with positive_involution.
This amounts to just classifying simple Jordan pairs by the

following

4.12. THEOREM. Every semisimple complex Jordan pair v,v")

admits a positive hermitian involution. If Ty and T4

are two such involutions then there exists an automorphism

(£,2) ¢ Aut(v,v)° such that 7y = £_.7, .

Proof. By the preceding remarks, it suffices to prove this
for (V,V') simple. The existence of a positive involution
will be proved below (4.14) by a case-by-case verification.
(A proof avoiding the classification is also possible by
choosing a suitable Cartan involution of the Koecher-Tits
algebra of (V,V )). ©Now let }1,72 be positive hermitian
involutions, let H = Aut(V,v)? , and let X, (i = 1,2) be
the group of real points of the R-structure defined by Ty
on H (cf. 3.2); i.e.,

-1
K, = {(£,£) e H | £_=1;-£:7,7) .

By 3.4, K. 1is compact, and is therefore a maximal compact
i
subgroup of H . By conjugacy of maximal compact subgroups,

—_ . . -1 -1
there exists (g,g_) ¢ H such that K; = (g,8.) Ky (g8 7 8_

)
i i Let T =g -To-g * Then one

(componentwise operations). e T g Ty .

checks that T is a positive involution, and the maximal

compact subgroup .of H defined by T 1is also Kl .

After replacing To by T we may therefore assume

that Ty and To define the same maximal



compact subgroup K of H . Since a Cartan invblution is

uniquely determined by the maximal compact subgroup it

. -1 _ P | -1 . .
defines, we have 7 'f'Tl = T f-T Ty £_ Ty

1 2’177y and
51 ~"Tg for all (f,f£_) ¢ H ; in other words,

-7
_ -1 . -1 R
(h,h_) = (197-T9:T1°T5") belongs to the centralizer of

H -in GL(V) X GL(V') . By the Lemma below, (h,h_)

= (a-1d,a”t-1d) with « ¢ ¢

, Or T2 = aTl . Choose a
non-zero tripotent e relative to Ty - Then
Q(e)-Tze = Q(e)aTle = &Q(e)'Tle = we , and since Ty is
a positive involution, « =a > 0 Now (f,f_)

i -
= (@*-1d, ¢’ ?*-1d) ¢ H and Tt = E_eTy

4.13. LEMMA. Let (V,V) be a simple Jordan pair over an

algebraically closed field k

Then the centralizer of
Inn(V,V') in GL(V) x GL(V") consists of all
Cartd,atiid) g ek

Proof. Suppose (h,h_) centralizes Inn(V,V ) . Pick a
frame E = ((el,e;),---,(er,e;)) of (V,V7) (cf. [15,
10.12]). Since the Peirce spaces of E

are weight spaces

of the torus of Inn(V,V") defined by E ([L5,85]) and
Vii = k-ei, V;i = k-e; , we have hei = a;e; and
h_e; = azle; - By conjugacy of frames ([L5,17.1]) we can

permute the (ei,e;) by inner automorphisms. Hence

a; = aj =a for all i,j . Thus (h,h_) is of the form

g -1
(¢ld,a ~1d)

(Z)Vii,ZDVEi) » and by [15,15.15] everywhere.

when restricted to the Cartan subpair

4.11

4.14 We now go through the list of simple complex Jordan
pairs ([L5,17.4]), exhibiting in each case 2 positive

hermitian involution.

-matrices.
. V=YV =M (C) , complex p X q
Iype I 4 p.q 5
=V = lternating (= skew-symmetric
Type IIn . v=1Y An(c) . a
complex =n X n-matrices
yp =V = tric complex n X n-
Type IIIn . V=V = Sn(G) , Symme
matrices.

In these 3 cases, the Jordan pair structure is given by

QX)y = x-ty-x (matrix product). A positive involution is

T(x) = % (complex conjugate matrix). Indeed, suppose

: t—.2
Q(x)-T(x) = %x-Y%.x = Ax where A ¢ € . Then (x:'x)
= A (x t;) and since x-%%  is positive semidefinite
- . ,

bermitian, it follows (for instance by taking traces) that
A»>0 for x# 0

Type IV, . V= v =¢, with QXx)y = a(x,y)x - a(x)-y
where q 1is a non-degenerate quadratic form on ¢ and
q(x,y) = q(xty) - q(x) - q(y) . After a change of basis,
we may assume that q(x) = <x,x> = Zx? , and then

qx,y) = &<x,y> . A positive involution is given by

T(x) = ¥ (complex conjugation in each variable). Indeed,
assume that x # 0 and Q(x)¥ = 2< x,X>x -~ <X,X>K = AX ,
AN ¢ € . Then if <x,x> =0, we have X = 2<x,:§> >0
and if <x,x> # 0 , it follows by taking the scalar product
with x that 2<x,Xo<x,x> - <x,x>%,2 = <x, %> <x,%>

= A\<x,x> , hence A = <x,> > 0 .




Type V. V=1V = M1,2(®¢) , 1 x 2 -matrices with entries
from the complex 8-dimensional Cayley algebra OC , with
Q(x)y==x7(t§'x) . There ~ denotes the (€-linear)
canonical involution of mc

Type VI. V=V = HS(OC) , 3 x 3 ~matrices with entries
from 0c , which are hermitian with respect to the canonical
involution; i.e., they satisfy ti = x , The Jordan struc-
ture is the one induced from the Jordan algebra H3(®®) ;

thus Q(x)y = 3(xo (x0y) - xzoy) where Xoy = X'y + V.X .

Note that type V may be imbedded into type VI by

9 Xy Xg
(xl,xz) _— Xy 0 0 .
Xq 0 0

A positive involution for these two cases is given by

T(x) = ¥ , complex conjugation relative to the real Cayley‘
division algebra ® . Since the above imbedding commutes
with T , it suffices to prove this for type VI. Here

the fixed point set of T is the real Jordan algebra

A= H3(0) which is known to be formally real (cf. [B-K]);
and hence H3(®C) is the hermitification of A 1in the sense

of 3.7. Therefore T 1is positive.

4.15. We now describe the domains associated with (V,V )
and T din more detail. This will be done in terms of the
generic minimun polynomial of (V,V ) for which we refer to
[L5,316]. Suffice it to say here that the generic minimum

polynomial

r . i
m(T,x,¥) = .Zo(—l)lmi(x,y)Tr *
i<

of a semisimple Jordan pair is a monic polynomial in the
indeterminate T with coefficients mi(x;y) which are
polynomial functions on V x V™ . homogeneous of bidegree
(i,i) . The degree r is the rank of (V.V") . If

(V,V") is simple then the polynomial function det B(x.,¥)
on V x V  is a power of a unique irreducible polynomial
function N(x,y) , normalized such that N(0,0) =1

called the generic norm of (V,V ) . It is related to the
generic minimum polynomial by N(x,y) = m(l,x,y) , and hence
we can recover m(T,x,y) from N(x,y) by mn(T,x,y)

- Nk, )

4.16. PROPOSITION. Let (V,V ) be a Jordan pair with

positive involution T :x > X . Define polynomial functions

£5G = 1,-+-,r) on VxV by

3 . or-i
= - 1
£5(x,y) = EO( 1) (r_j> my (x,¥)

where the m;, are the coefficients of the generic minimum

polynomial, and r is the rank of (V,V) . Then fx]z
is the largest root of m(T,x,xX) , and the domain associ~

ated with (V,¥ ) and T is

b={x eV | fj(x,E) >0, j=1,",r}



Proof. Let x € V . By decomposing the tripotents occurring
in the spectral decomposition of x into primitive omnes,

)

we may assume that x = A1e1-+--- + A where (el,"',e

e
rr r

is a maximal orthogonal system of primitive tripotents
(cf. §5). Then ((el,gl),'--,(er,EQ)) is a frame of

(V,v) and (C,C7) = (ZVyy,
([L5,15.9]). The restriction of m(T,x,y) to (C,C7) is

ZDVEi) is a Cartan subpair

given by

n(T,x,y) (T - Auy)

iHi

=4
oy

where x = Z}xiei, y = Epiéi (cf. [1L5,16.15,16.16]).

In particular, the real polynomial

2
l(T L )

£(T) = m(T,x,%) =

=

i

nas roots |rg|%,---,[h %, and x| = max{|ang]," ", A [} <1
if and only if all roots of £(T) are less than one. Let
g(T) = £(T + 1) . Then all roots of f are less than one

if and only if all roots of g are negative. But a real
polynomial all of whose roots are real will have only nega-
tive roots if and only if all its coefficients are positive.
Since £(T) = g(T-1) , the coefficients of g are the
coefficients of the expansion

I
f(T) = Z

a.(T—l)r—j
j=0 Y

of f£(T) in powers of T - 1

4.15

R S P B
J =37 | 3753 |r0y
r-j r : s
= T“ijT Jl“:* (-1)1mi(x,x)Tr 1] =
SECEAE I} Gl S0 T>1

M

i, r-iy, =y - 5 =
5 (D) Um0 = e® .

[

i

This completes the proof.

4.17. Let us now work out the domains associated with the

Jordan pairs listed in 4.14.

Type 1 . The transpose x = 1:x is an isomorphism: I =
b, q p: q
so we assume p < q . Then the rank is p , and the generic

minimum polynomial is
m(T,x,y) = det(T-1 - x-Ty) .

Hence [x]2 is the largest eigenvalue of x-'% , and &

consists of all x e Mp q((13) for which 1 - x-%% is
2
positive definite.
Type IIn - The generic minimum polynomial is the square

root of det(T.1 - x-ty)

n

det(T-1 - x-ty) =T -2r-m(T,x,Y)2

[adioie ]
where r = L%j is the rank. Again ]x[2 is the largest
eigenvalue of x-tE = ~ XX , and b 1is the set of all

X ¢ Ap(€) such that 1 + xx is positive definite.



4.17

4.16
: the generic norm given in [L5,17.9] is wrong; the correct
Iype III, . The generic minimum polynomial is
cne is obtained by imbedding V into VI and restricting
* = o=
n(T,x,y) = det(T-1 - x-%y) = det(T-1 - x-y) , the gemeric norm of VI). For a ¢ O, let a =73 =1
where - is conjugation with respect to O . Then by 4.16,

2 . -
[x] is the largest eigenvalue of -x-'% = x-X
. z B consists of all (a,b) ¢ Ml 2(0c) which satisfy
is the set of all x ¢ sn(m) such that 1 - x.x is ’

positive definite. 2 - t(aa® + bb*) > 0

Type IV_ . Th ic mini ial i 3 *5
e n € generilc minimum polynomial is and 1 - t(aa* + bb*) + [n(a)[z + ]n(b)lz + t((ab)(b a))>0.

. 2 . .
m(T,x,y) = T° - q(x,y) T + qa(x)qy) Type VI . The generic minimum polynomial is

2
= T% - 2<x,y> T +<x,x><y,y> m(T,x,y) = T° = t(x,y) -T2 + t(x",y) T - n@n) ,

2

with the conventions introduced in 4.14. By 4.17, where n is the generic norm of the Jordan algebra

f.&y) =2 - q(x,y) = 2.(1 - <x,y>) and t,(x,y) Hy(0g) , t(x,y) = - axay log n(z) ‘z=e (e the unit element),

. *
= N(x,y) = 1-2<x,y> +<x,x><y,y> . Hence 5 is the and x  is the "adjoint" definmed by t(x",y) = ayn(x)

set of all x ¢ C° for which (cf. [L5,17.10] and [Mc]). Denote conjugation with respect

—_ to HS((D) by ~ . Then by 4.16, £ is the set of all
<x,X>< 1 and 1-2<x%> + [<x,x>[%> 0.

X € HB(OC) for which

Type V . Thé generic minimum polynomial is — - =
p 3 - t(x,%) >0, 3 - 2t(x5 +t&x,%¥)>0,

2
mn(T,x, = T° - ,¥)-T , —_ —
X,¥) my (x,¥) T + m, (x,y) 1~ t&%) + t&",x7) - ID(X)lz >0 .

where

=~ - 4.18. Tinally, we remark that the only isomorphisms among
my (Y0 = (T, + x5,
the types listed are the following ([L5, 17.11]).

my(x,¥) = nlxyn(yy) + nlxgydnlyy) + t((Eyxp) (Foy4))

1) 11,1 = II1 ES III1 2= IV1 B
for x (xl,xz) and y = (yl,yz) in M1 2 (®¢) .  Here
o . 3 (2) IV, = IV X IV1 s
n(a) = ai and t(a) = a + 3 are norm and trace of 0¢ 5

and ~ is the camnonical involution (Note: the formula for




(3) 11,3 = 113 y
(4) II, = 1V, ,
5) Ig.2 = IV »
(8) I1, = 1v, ,

¢p I, q= Iq’p .

(The isomorphism (5) was overlooked in [L5]).

§5. The manifold of tripotents

5.1. 1In this section, (V,V ) denotes a finite-dimensional
complex Jordan pair, and 7: x -+ X a positive hermitian
involution. Let K = Aut(V)0 and let < ,> be a K-
invariant hermitian scalar product on V . We denote by M
the set of tripotents of V , and define an ordering on M

by

c<e & e—-c e M and ¢ L e - ¢

In other words, c¢ < e means that e = c¢c + ¢’ where c!

is a non-zero tripotent orthogonal to ¢ . One checks easily
that this is indeed an ordering. A tripotent e is maximal
with respect to this ordering if and only if the Peirce space
Vo(e) = 0 . This follows from the fact that the tripotents
orthogonal to e are precisely the tripotents contained in
Vo(e) (cf. 3.9, 3.13). A tripoten; is called primitive if
it is minimal among non-zero tripotents, i.e., if it cannot
be written as a sum of orthogonal tripotents in a non-trivial
way. Since an orthogonal set of non-zero orthogonal tripotents
is linearly independent, it follows by finite-dimensionality
that every tripotent can be written as a sum of primitive
orthogonal tripotents. Finally, we define a frame to be a

maximal orthogonal system of primitive tripotents.



5.2

5.2. PROPOSITION. (a) A tripotent e is primitive if

and only if A(e) = R.e (where A(e) © iA(e) = Vz(e) R
cf. 3.13).

(b) Let <(ey,...,e.) Dbe an orthogonal system of tripotents.
= 1 r

The following conditions are equivalent.

(i) (el,...,er) is a frame;

(ii) the e; are primitive and e1-+...+er is maximal.
(iii) R.e1-+-...-+R.er is a maximal flat subspace of V .
Proof. (a) Let e be primitive. If ¢ 1is an idempotent

of A(e) then c2 = ¢ implies c(3) = c3 = ¢ , and hence
¢ and e - ¢ are orthogonal tripotents whose sum is e

It follows that ¢ = 0 or ¢ = e . Thus the only non-zero
idempotent of A(e) is e . By standard facts on formally
real Jordan algebras ([B-K, Chapter XI]), A(e) = R.e .
Conversely, if e = ¢ + d is not primitive we have QeE

= QCE = ¢ and Qea = QdE =d . Hence c,d ¢ A(e) and thus
A(e) is not one dimensional.

(6) This follows easily from 3.11.

5.3. THEOREM. (a) Any two maximal flat subspaces of V

are conjugate by an element of X .

(b) Any two maximal tripotents are conjugate by an element

I8
]

Proof. (a) The proof uses an idea due to Hunt. Let W be

a maximal flat subspace, and write W = R.e1-+...-+R.er as

in 3.11. Choose x ¢ W such that the powers of x span

W . For instance, let x = x1e1-+... +Xrer with
0 < xl < ... < xr (use a Vandermonde type argument).
Similarly, choose x' for the maximal flat subspace W'

The function
e(g) = <g(x'),x>

on the compact group K attains its maximum, say for

g =k . We claim that k(x') =y € W . This will imply

kK(W') € W and hence k(W') = W by maximality of W'

Now by the choice of k , we have, for any derivation

Aet = Lie(X) , that 0 = & lemo <exp(td).y,x> = <4.y,X> .
In particular, for 4 = D(u,v) - D(v,u) (cf. 3.2) we get

< {uvy},x> = <{vuy}.x> which implies < u,{_v§_x-} >=<v,{uyx} >
= < {uyx},v> = <u,{yxvl> = <u,[_y§E—V} > . Since this holds
for all u it follows that {xyv} = {yxv} for all v . Let

vV = Z)Vij be the Peirce decomposition of V with respect to

(el,...,er) . Since (el,...,er) is a frame, we have Vy,=0
and Vg = C.e; , by 5.2, Let y=2Z i3 be the corresponding
decomposition of y . Then by 3.15,
{xyx} = 2 MALyEL = {xxy} = Z)(xf-+x?)yi3
1<i<j<r TN i<, J

This implies ¥;j =
yi; = v

k ¢ A(e;) = R.e. . Hence y = Zyisoe W
ii i

ii
(b) Let e and e' be maximal tripotents. By 5.2,
‘e = e +...+e, and e' = ei-+...-+e£ where (el,...,er)

and (ei,...,e}) are frames, spanning maximal flat sub-



spaces W and W' . By (a) and 3.11, there exists g ¢ K f 5.5. PROPOSITION. Let A be a formally real Jordan

such that g(ej) =+ ew(j) where = is a permutation of algebra. Then the set of maximal tripotents of the hermi-
1,...,r . Hence g(e') = €je;+...+¢€ e  where €5 = & 1. fication V = Ag (cf. 3.7) is the "unit circle”
Now iD(e.,e.) € ! = Der(V) by 3.2, and hence : « -1

- 0 ' 1 c=1{zeaplz’ =27} =exp@a) ,
exp (3 iD(ej,ej)) =g € K with tye property that gj(ej)
= ey and gj(ek) = ey for k # j , by orthogonality of | where exp denotes the exponential function in the Jordan
the ej . Thus we obtain an automorphism in X carrying algebra AE

e' into e by following g with a suitable product of
Proof. Clearly the unit element e of A is a maximal

J : tripotent of A¢ . Since K is transitive on the set of

maximal tripotents by 5.3, and K is contained in the

5.4. We define the rank of V +to th i i
€ 1248 be e common dimension structure group Str(Ac) of the complex Jordan algebra

of the maximal flat subsystems of V , and the rank of a

AC , every maximal tripotent is invertible. (In fact, K
tripotent e to be the rank of Vy(e) . If e = ej+...+eg is the set of all g ¢ Str(AC)O which satisfy (gz)*
is a decomposition of e as a sum of orthogonal primitive = g#_l(z*) , where # denotes the canomical involution of
tripotents then s is the rank of e . Indeed, ej € Vo (e) Str(AC) , and is therefore a compact real form of
and e 1is a maximal tripotent of V2(e) . Hence Str(AC)o) . Now 2z e AC is a maximal tripotent if and
(el,...,es) is a frame of V,(e) which means s is the : only if z = 23 - Q(z)z = P(z)z* ; i.e., z* = P(z)‘lz
rank of Vz(e) . In particular, the primitive tripotents 3 = z_l , by standard properties of the inverse in a Jordan
are those of rapnk one, and the maximal ones those of rank algebra.
equal to rank(V) . _ Now let a ¢ A . Then (ia)* = - ia , and hence
If (el,---er) is a frame of V then I [exp(ia) ]* = exp(~ia) = [exp(ia,)]-1 , by elementary facts
((61,3}),---,(er,5¥)) is a frame of the Jordan‘pair about the exponential function in a Jordan algebra. Con+-
(V,¥) (ef [L5, 10.12]). Hence the rank of V defined versely, let z* = z"1 , and let B be the subalgebra of
bere agrees with the rank of the Jordan pair (V,V ) as . Ac generated by =z and e . Then z* ¢ B and hence B
defined in [L5, 15.18]. We will show lateéer that rank(V) 3 is invariant under * . It follows that B = B0 @ iB0
is also the real rank of the group G, . i where By = BN A, and By 1is an associative formally

real subalgebra of A . Hence B = R.cl-+... +R.cs where




the cj are orthogonal idempotents of A whose sum is e .
Thus 2z = @€y +... +0C, With . = ot

<Cq 5 or «., = exp(lxj),

3 ’ J
kj ¢ R. Thus 2z = exp i(k1c1-+... +Ascs) ¢ exp(il) .

(Chis proof is due to U. Hirzebruch [Hi]).

5.6. THEOREM. (a) The set M of tripotents of V is a

compact submanifold of V , and K acts transitively on

every connected component of M The tangent space of M.

at e (identified with a subspace of V) is

T, (M) = iA(e) & Vy(e) .

(b) Define an equivalence relation R on M Dby

d ~e® d and e have the same Peirce spaces.

Then the set S = M/R of equivalence classes has a unigue

manifold structure such that the canonical map p:M - S

is a K-equivariant fibration. The fibre through e (i.e.,

the equivalence classes of e ) is the unit circle C(e)

of A(e)w . Moreover, S is a compact (not connected)

hermitian symmetric space with symmetry arocund p(e)

induced by the "Peirce reflection”

Sg = B(e,28) = exp 7iD(e,8) (= (-1)*.1d on v, (e)) .

Proof. (a) M is compact since x(3) = x 1mplies
[xls = |x| hemce |x| <1 Let N be the orbit of
e e M under K . Then N is a compact submanifold of

M , and we claim that the tangent space of N at e is

(1) T (M) = iA(e) ® Vy(e) .

Indeed, by differentiating the equation -x(3) = x at

X = e 1in direction v we get
() v = {eev} + QeV s

and if v = Vo -+ v1 + Vo is the Peirce decomposition with
respect to e ‘then (2) implies v = 2v, + v; + v; or
v; == Vg, Vg = 0 . This proves the inclusion < in (1).
Conversely let vy + vy € iA(e) ® Vl(e) and let
A = D(u,e) - D(e,u) et where u = ivy + vy - Then
exp(td).e 1is a curve through e in N whose tangent
vector at t = 0 is 4.e = {uee} - {eue} = v, + v; - %v;
= v . This establishes (1).

To complete the proof of (a) it suffices to show that
N is a neighborhood of e in M (where M has the top-
ology induced from V). Assume this is not the case. Then

there exists a sequence zZ, € M - N converging to e

Every =z in a neighborhood of e in V can be written
uniquely in the form =z = x + ¥y where x ¢ N and vy
belongs to the normal space Te(N)~L of N at e . Writing
Zy, < Xt Y, in this way, we have x, € N converging to e
and ¥, € Te(N)l converging .to zero. After passing to a
subsequence, we may assume that the sequence yn/[yn] con—
verges to a unit vector u ¢ Te(N)l . By expanding the

; 3) _ = -3 - -
equation z, z, we get y =y "7 + Q(xn)yn + Q(yn)xn

+ {x Xy b+ {x vy}

oEn¥n If we divide by [y | and let

n »c it follows that u = {eeu} + Qeﬁ which implies, in

view of (2), that u ¢ Te(N) . Contradiction.



(b) We show first that d ~ e if and only if d e C(e) .

Let d ~ e Then d € Vz(d) = V2(e) , and the map

z > Q(d)z (z ¢ Vz(e)) is invertible since it is conjugation
relative to A(d) Now Q(d)z = P(d)z* where P denotes
the quadratic operators of A(e)c and * conjugation rela-
tive to A(e) . It follows that d is invertible in the
Jordan algebra A(e)C s andrrd = d(3) = P(d)d* implies

-1

at = g% ; ie., de C(e) Now let d e C(e) . For

z ¢ Vy(e) we have {daz} = P(d,z).d* = P(d,z).d_l

= 2d(d'1z) + 2d_1(dz) - 2(dd_1)z = 2z (where ab denotes
the product in the Jordan algebra A(e)C), and for z ¢ Vo(e)
we have {ddz} = 0 by the Peirce rules since d ¢ Vy(e) .
Thus Va(e) < Vd(d) for a =0,2 . Since C(e) 1is con-
nected by 5.5 and dim Va(e) depends continuously on d ,

we have equality. Now Vl(d) = Vl(e) since it is the

orthogonal complement of Vz(e) @ VO(e) with respect to

<,> , and therefore we have shown that d ~e . As a
consequence, d ~ e if and only if C(d) = C(e) , and
thus C(e) is the equivalence class of e . Clearly

k.C(e) = C(k.e) for k € K since X consists of auto-
morphisms of V . Let M(e) be the connected component
of M containing e , K' the isotropy group of e in
K , and X" the normalizer of C(e) in K . Then

M(e) = K/K' , and the canonical map p: M(e) >+ S is
equivalent with the map K/K' - K/K" which is a K-
equivariant fibration. The tangent space of C(e) at e

is iA(e) . This follows from (a) applied to Vz(e) in

place of V. Hence the canonical map p: M - S induces

a vector space isomorphism Vl(e) = Tp(e

only on w(e) . By transferring the complex structure

)(S) , which depends

structure and the scalar product from Vl(e) to Tp(e)(s)
we see that S has an almost complex structure and hermi-
tian metric which are X=-invariant. The Peirce reflection
se ¢ K defines a diffeomorphism of S having p(e) as

isolated fixed point since s_ |Vy(e) = - Id

Se It follows

that S 1is a hermitian symmetric space.

7. ple. = () ith < q, and
5.7 Example Let V Mp’q( ) w p<aq an
QZW = zw*z , w* = Y. Let

~. O
. - YO

O 8\9_

N ———— ——
p

Then the connected component M' of M containing e

consists of all matrices d ¢ V of rank r which satisfy

dd®d = & . The Peirce spaces of e are
V2 v1 .
E
Vl Vb

i.e., Vz(e) E Mr(C) , A(e) = Hr(c) (hermitian r X r

matrices), Vl(e) = M (C) x M

T, q-r p—r,r(C) > Vg(e)

=M (C) . The unit circle C(e) is isomorphic with
p-T, Q=T
the group of unitary r X r matrices. Every d e M' may

be considered as a linear map d: ¢q > CP of rank r .



e

The quotient S' = M'/~ may be identified with
Grassq_r(mq) x Grass (C®) , with p being given by

p(d) = (Ker(d), Im(d)) . The group K comnsists of all
transformations =z - uzv with u,v unitary matrices of
size px p and q X g respectively.

5.8. Recall that M = I(R) , the set of real points of the
variety of idempotents of the Jordan pair (V,V ) , with

the R-structure given by the Galois action (a,b) = (b,a)
(cf. 3.8). Similarly, let F < (Vx V¥ (where

r = rank(V,V )) be the variety of frames of (V,V ) . Then
T defines an R-structure on F and F(R) may be iden-
tified with the set of frames of tripotents of V . By

[L5, 17.1] we have: if (V,V ) is simple, then any two
frames of (V,V ) are conjugate under an inner automorphism;
in other words, the group H = Aut(V,V—)O is transitive on

F. The analogous statement for frames of tripotents is

5.9. THEOREM. If (V,V ) is simple then any two frames

of tripotents of V are conjugate under K .

Since K = H(R) , the set of real points of the
R-structure defined by T (cf. 3.2), and the action of H
on F 1is compatible with the Galois actions (i.e., it is

defined over R), this will follow from

5.10. LEMMA. Let G be a complex affine algebraic group

acting transitively on a complex variety X . Suppose

5.11

G,X , and the action are all defined over R , and that

G(R) is compact. Then G(R) acts transitively on X(R)

For later applications, we prove the following more
general "real version" of 5.10. (To see that 5.10 is =a
special case, imbed G into GLm(C) in such a way that
G(R) is the intersection of G with the unitary group
U(n) , then restrict scalars to R . The maps ¢ and B8

are just the Galois actions).

5.11. LEMMA. Let G C GLn(R) be an open subgroup of the

set of real points of a real algebraic group, and suppose
-1
tg

G is self-adjoint; i.e., g € G implies 08(g) = eG.

Assume G acts transitively on a real manifold X . Let

o be a diffeomorphism of period 2 of X compatible with

8 (o(gx) = 8(g)o(x)) . Then the fixed point set Ge of

8 in G acts transitively on the fixed point set

X of o in X .

o € X° (i X° = ¢ there is pothing to

Proof. Let x
prove) and let H be the isotropy group of Xq in G .
Then H is selfadjoinf and hence the restriction of the
trace form (A,B) = trace(AB) (A,B € gln(R)) to

b = Lie(H) is non-degenerate. Thus g = Lie(G) = 3 & m
where m = gl is both 6 - and Ad H -invariant. Let

K = 6°

with Lie algebra ! and let p,8,t be the (=1)-
eigenspace of © on g,h,m . Then p =3¢ & 1! and s 1is
a Lie triple system. By [H, p. 218, Th.1.4], G

decomposes topologically (in fact, diffeomorphically)



5.12 i 6.1

G = K.exp(t).exp(s) (the proof in [H] is for the case G
semisimple but applies equally well to the present case t

where G is reductive). Let L = H N K and consider the
§6. The boundary of &

vector bundle E = K X t associated with the principal

L ]
bundle X - K/L , with typical fibre 1t , where L acts 'F
on ! wvia Ad . Then one shows that the map E -» G/H = X

X 6.1. We keep the notation introduced in the previous section,
induced from the map (k,x) > k.exp(x).H (k ¢ K, x ¢ t)

. & and denote by /& the circled bounded symmetric domain assoc-
is a K-equivariant diffeomorphism, and that the action of ﬁ

iated with (V,V—) and T . By a holomorpbic arc we mean

g on X corresponds to the map v - - v (fibrewise) on

o the image of a holomorphic map from the open unit disc of C
E . Hence X = zero-section of E = K/L .

: into V . A segment is a subset of V of the form
As a consequence of 5.9, we have § 2

fu+tv]|[0< t< 1} where u,ve V (v=0 is possible).

Let X be a subset of V . The holomorphic arc components

5.12. COROLLARY. Let (V,V ) be simple. Then two tri-

of X are the equivalence classes of X under the equiv-
potents of V are conjugate under K if and only if they

alence relation
have the same rank.

Thus if r = rank(V) then M has r 4+ 1 connected X ~y® x and Yy can be connected by

components: M = M0 [§) M1 Uu ... U Mr , where Mi is the : a chain of holomorphic arcs in X .

set of tripotents of rank i
Analogously, one defines affine arc components by replacing

holomorphic arcs with segments. The holomorphic (resp.

affine) boundary components of £ are by definition the

holomorphic (resp. affine) arc components of the boundary
of of 5 in V .

Recall that a real hyperplane % supports X if &
;; meets % (the closure of % ), and X is contained in

- one of the half-spaces defined by & .
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6.2. LEMMA. For a non-zero tripotent e of V let &

be the real hyperplane

% ={x e V|Re<x,e> = <e,e>}

and @ the complex hyperplane

f = {x e V|<x,e> =<e,e>} .
Then & supports £ and
(1) @NFE=8NnNTF=¢e+ (FN Vo(e))
Moreover,
(2) <x,e>| < <e,e>

for all x e &5 .

Proof. Clearly R NFc O NP . Let e+x¢e K NF (hence

Re<x,€> = 0) and let x = X9 + x1 + Xg be the Peirce decom-
position of x with respect to e . Then |e + x| < 1

(cf. 4.1), and by 3.17(b),

D(e+x,e+x) < 2Id . It follows

that 2<e,e> > <D(e+x,e+X)e,e> = <{eee} + {exe} + {eex]}

+ {xxe},e> = 2<e(325> + 2<e(3),§> + 2<x,e(3)> + <x,{xee}>

= 2<e,e> + 4Re<x,e> + <x,2§2+51> = XKe,e> + 2<x2,§2>‘ +<x1,§2> s
using the orthogonality of the Peirce spaces Vi(e)

is positive definite,

with
respect to <,> . Since <,>
Xy = %5 = 0 ; i.e., x = Xg € Vo(e) By the composition
Vy(e)

Vz(e) & Vb(e)

rules for the Peirce spaces (3.13), and Vo(e)

annihilate each other, and hence

= Vy(e) x Vole) . By 3.17(c),(d), [e + x| = max([e],[x}) < 1

| 3

if and only if |x| < 1 (since J|e| = 1) which means

x5 50 Vy(e) . Thus 9N Fce+ B0 Vo(e) , and

e +7FnN VO(e) c® NF is clear since Vo(e) is perpen-

dicular to e with respect to < ,> This proves (1).

To see that © supports &S note that $ N F is contained

in the boundary of & (since [e+x| =1 for x ¢

Fn Vo(e)) , and use convexity of £ (4.6). Consider now

the complex linear form a(x) = <x,e>/<e,e> on V . Then

a(B) € € is a circled domain and 1 ¢ a(f) by (1). Hence

a(8) is contained in the open unit disc. This proves (2).

6.3. THEOREM. (a) BHolomorphic and affine boundary com-

ponents of b5 coincide. They are precisely the sets

Jé = e + ﬁe

where e

is a non-zero tripotent of V , and ﬁe = ﬁf\Vo(e)

in the bounded symmetric domain associated with Vo(e) .

The map e - Je is a bijection between the set of non-zero

tripotents of V and the set of boundary components of £ .

{(b) An element x ¢ V belongs to Je if and only if

e = 1lim x(2n+1)
n>o

(c) The boundary components of Je are precisely the 3&

with d > e In particular, a boundary component of a

boundary component of b 1is itself a boundary component

of 5.



Proof. We first show that 038 is the disjoint union of

the sets Je . Let x = X1e1-+...-+xnen be the spectral
decomposition of an element x ¢ 38 . Then |[x| = Ap =1,
and hence x = e +y where ¥y =.k1e1-+...-+kn_1en_1e Vo ley)
with |y| = App $1 5 dce., xe ]en .” Now assume
x=e+y=d+2zc¢ Je n Jd . Then by the Peirce rules
(3.13),

x(2n+1) =6 4 y(2n+1) =d + Z(2n+1) ,
and |y(2n+1)] = ]y|2n+1 >0 as n -« since |y| <1

In the same way z(2n+1) >0 as n > = , and therefore
e = d . This also shows that the map e -»> Je is bijective.
Next we show that the boundary of Je in the affine sub~

space e + Vo(e)) is the union of all J d> e

d ’
Indeed, since everything we proved applies to ﬁe in place
of B , the boundary of ﬁe in’ Vb(e) is the union of all
Jc , ¢ a non-zero tripotent of Vo(e) . But Jc =c+b
since the Peirce zero-space of ¢ in Vo(e) is Vo(e+c) .
Hence a:e = e + aﬁé is the union of all e + ¢ + ﬁe+c

= 3e+c , and the e +c with 0 # ¢ L e are precisely
the tripotents d > e . Since each Jé is a star-shaped
circled domain with respect to e it follows that every
point of Je can be connected to e within Je by a
holomorphic arc. Thus Ze is contained in the holomorphic
arc component of e . For the converse, we have to show:

every holomorphic arc vy: 4 > 38 (A © C the open unit

disc) which meets Jé is entirely contained in Je . If

etc ’

6.5

not then +v(4) would meet the boundary of Je ; say  y(a)
meets Jd , d>e . Let a be the linear form a(z)

= <z,®/<d,& on V . By 6.2, aoy: &4 > € is bounded in
absolute value by 1, and the maximum is attained since
v(4) meets J, < {x ¢ Vla(z) = 1} . By the maximum
principle, ocy is constant equal to one, which means,

in view of 6.2, that v(8) ¢ d + (B n Vo(d)) = .?_d < a7, ,
a contradiction. This completes the proof that the Je
are precisely the holomorphic boundary components of & .
The proof that they are also the affine boundary components
is similar, replacing holomorphic arcs by segments and the

complex linear form a by the real linear form Re (&) .

6.4. LEMMA. Let f be a holomorphic function on &

which extends continuously to 5 . Then the restriction

of £ to every boundary component Jé is holomorphic.

Proof. If e +z e J, (z ¢ 8,) then (1 - %)e +z¢ed,
for n=1,2,3,... . Define f_(etz) = £((1 - D)e + 2) .
Since f is continuous on B and J5 is compact, the
restriction of £ to Jé is the uniform limit of the

holomorphic functions fn and is therefore holomorphic.

6.5. THEOREM. The Bergmann-Shilov boundary iy of &

coincides with each of the following sets:

(1) The set of maximal tripotents of V ;

(ii) the set of extremal points of 5 ;
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(iidi) the set of points of maximal Euclidean distance

from the origin in 5.

In particular, |}} is a compact connected submanifold of V

on which K acts transitively.

Proof. Recall that [ is the minimal closed subset of &
where every continuous function on J# which is holomorphic

on J attains maximum absolute value. Let e be a maxi-

mal tripotent, and consider the function £(x)
= 31 + <x,e>/<e,e>) om V. By 6.2, [f(x)| <1 for all
x e, and [f(x)] = 1 if and only if £(x) = 1 if and
only if x c e + 5 N Vgle) = {e}] since Vo(e) = 0 . Hence
llf contains all maximal tripotents. Conversely, let f be
holomorphic on J# and continuous on JF . By the maximum
principle and 6.4 and 6.3, f takes its maximum at a point
of a8 which is not an interior point of any boundary
component, and such a point is a maximal tripotent. Hence
i is the set of maximal tripotents and also the set of
extremal points, since an extremal point is just a one-
point affine boundary component. By 5.3, {{f is am orbit

of K , in particular, all e ¢ ||| have a common Euclidean
distance 6 = <e,€>% from 0 . Every x ¢ 5 is contained
in some maximal flat subspace and thus can be written

x = Z)Xiei where 0 < A; <1 and (eq,...,e.) is a
frame, hence e = ey +...+te, a maximal tripotent (5.1,
5.2). It follows that <x,©> =2Z A?l<ei,'€i> <Z <ei,Ei>

= <e,® = 52

6.6. Let M be the manifold of tripotents of V and let
E={(,v) e VxV]|eeM and v ¢ Vo(e)}

Then E is a submanifold of V x V ; in fact, it is a
vector bundle over M with projection =: E - M given by
7(e,v) = e . The spectral norm defines a norm on each fibre

of E , and we set
B=1{(e,z) ¢ E|]z| <1},

the open unit disc bundle of E . Clearly B 1is an open

submanifold of E .

6.7. LEMMA. For (e,z) ¢ B, the R-linear endomorphism

v > {evz] of Vl(e) has all eigenvalues less than 1 in

absolute value. In particular, v = {evz} for v e Vl(e)

implies v = O

Proof. Note first that v -» {e?z] is self-adjoint relative
to the real scalar product (u,v) = Re<u,v> on vy (e)

This follows from <[evz},w> = <e,{vzu}> = <e,{uzv}>

= <{eﬁz},?> . Hence all eigenvalues are real. Furthermore,
{evz} = Q(e+z).Vv by the Peirce rules. Suppose now that
Q(e+z)V = Av, v # 0 . Then by 3.3, Q((e+z)(2n+1)).7

2n+1v )(2n+1) z(2n+1)

= A But (et+z

z(2n+1) >0

= e + by the Peirce

8

rules; and as n - since |z| <1 . It

follows that Llim A2%*1
>

which shows || < 1.

v = Q(e)v = 0 by the Peirce rules,
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—_ = ' i i i t = -
6.8. PROPOSITION. The map £: B > F given by £(e,z) Jq N £(B") = ¢ which implies 37 N £(B') = ¢ , a contra

. R o
= e + 2z is a bijective immersion. The restriction of f diction. Now £ "f£(B)) = B, is clearly compact im B' and

p
hence 'f—l(C) . which is closed in Bé', is compact.

to each connected component of B is an imbedding.

Proof. In view of 6.3 it is clear that £ 1is bijective. 6.9. Remark. By the Proposition, the boundary of 5 is

We compute the tangent space of E at a point (e,z) the disjoint union of the finitely many imbedded submanifolds

Since E is defined by the equations e o e, {eez}l =0 ,

a tangent vector (u,v) € T(e z)(E) C V x V satisfies
E

ue T (D is(e) ® Vv (e) (by 5.6) and {euz}l + {uez}

where Mi ranges over the connected components of the set
+ {eev} = 0 . This implies {eev} = 2v, + vy . . ]
of non-zerc tripotents. If V is simple of rank r there

- {euz} ¢ V,(e) since {uez} = 0 by the Peirce rules.
t } i ) t ! are precisely r of them (cf. 5.12). Each Xi is fibered
Hence v, = 0 and vy = - {euz} . Comparing dimensions, . )
over Mi by its boundary components. Thus we may describe

we see that these conditions are also sufficient for (u,v) L.
9.p as a '""convex curvilinear polyhedron" whose ''faces" are
to be in T E) . Now assume df(e,z).(u,v) =u+ v =20".
(e,z)( ) »2) - (@, v) the X; . We shall see later that the X; are precisely

Then u, + v, =u, =0 , U, + v, = u, - {euz} = u, -~ {euyz
2 2 2 S 1 1o } 1~ lewyzl the orbits of G, on ab .

=0 , and Uy + Vg = Vg = 0 . By Lemma 6.7, we also have

b 0 and hence f 1s an immersion. To show that the 6.10. We recall some facts on cones defined by formally real
restriction of f +to a connected component B' of B is Jordan algebras (cf. [B—K, Chapter XI]). Let A be a form-
an imbedding it suffices toshow that f: B' > f(B') is a ally real Jordan algebra with unit element e , and let Y
proper map. We have B' = W—I(M') where M' is a connected be the connected component of e of the set of invertible
component of M . Let C < f£(B') be compact. We claim elements of A . Then Y is an open convex cone in A and
that there exists a p < 1 such that Cc f(Bﬁ) where Y is the set of squares of A . Let (X,y) be an associ-
Bé = {(e,2) ¢ B | |z] <p} . If this were not the case, ative scalar product on A (i.e., (xy,z) = (x,yz)) . Then

we could find a convergent sequence e_ + zn e C such that

n Y is self-dual in the sense that x ¢ 4 belongs to Y if

lim |z =1 ., Then 1lim(e_+ z ) = e+ z ¢ 3F_ N £(B')
o I n[ e B n e
and e ¢ M' . By 6.3, the boundary of Je is the union of

and only if (x,y) > 0 for all y ¢ Y. Every x ¢ A has

a unique spectral decomposition x = klcl-+...-+xncn where

all J& > d>e . Since rank(d) > rank(e) and rapk(e) Cqys--.,C, are orthogonal idempotents of A whose sum is

is constant on M' we have d ¢ M' and therefore
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e . Then x ¢ Y 1if and only if all A, >2 0 and x e ¥

if and only if all xi >0 . For x,y € A define
x<y8y-xe¥; xLy®y-x¢ Y .

These order relations are compafible with the vector space
structure of A . Note, however, that x <y and x ¥ y

does not imply x< vy .

6.11. LEMMA. Let e be a tripotent of V and let Y(e)

be the cone of the Jordan algebra A(e) < Vz(e) . Then
b0 ACe) = {x e Ae) |-e<x<e},
FNnoae) = {x e Ae) |-e<x<e}.

Proof. Let x = Z)xici be the spectral decomposition of

x in A . Then the c; are orthogonal tripotents of V
and hence |x| = max[h;| . Since the eigenvalues of
e+ x are 1+ X; we have [x]| <1 if and only if

e+x>0 and [x] <1 if and only if e + x> O

6.12. THEOREM. Let b be a boundary point of 4 ,

belonging to the boundary component Je -

(a) The normal cone of the convex body F (i.e., the

closed cone generated by all outward normal vectors of

supporting hyperplanes through b ) is Y(e) .

(b) There exists a real analytic diffeomorphism ¢ of a

neighborhood N of b in V onto a neighborhood N' of

0 in V such that (NN F) =
T = iA(e) © V (e) & Vy(e))

Proof. (a) Since Je is the r
intersection of F with a suppo

the normal cones at b and at

6.11
N' N (Y(e) © T) (where
elative interior of the

rting hyperplane (6.2),

e are the same. Thus we

may assume that b = e . Let M' be the connected com-
ponent of M containing e and let X' = (J 7 . By
eeM’ ©

6.8, 6.9, X' is an imbedded su
tangent space of X' at e is

supporting hyperplane of 5 at

bmanifold of V and the
T . Let e + % be a

e with outward normal

vector n . Setting (x,y) = Re<x,§> , we have therefore

1) % =1{(he V],

and (e,n) > 0. Then $ O T a

n) = 0}

nd hence n e T’L = A(e) .

Since e + £ supports F we have (x,n) < (e,n) for all

%x € F . In particular, let x ¢
By 6.11, (y,n) > 0 for all y
Every element of Y(e) is a pos
y with 0 < y £ 2e and hence

v € Y(e) . By self-duality, =n

0# ne Y(e) and define £ by
set of squares of A(e) we have

Hence (e,n) = (e,y2) = (ey,y) =

FNA(e) and set y=e-x.
€ A(e) with 0<y< 2 .
itive multiple of an element
(y,n) > 0 holds for all
€ Y . Conversely, let
(1). Since Y(e) is the
n=y2,yeae) .
(y,¥) >0 . Any x e V

can be written uniquely in the form x = Ae + h where

he® and M= (x,n)/(e,n) . W
implies A <1 . Now |[x] <1

D(x,x) < 2Id by 3.17, and hence

e have to show that x ¢ F
is equivalent with

2(y,y) > ({xxy},y)
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"

z2({eayl,y) + r({eby),y) + r({ney),y) + ((nBy},y)
2(x2y,y) + 2x(h,{eyy}) + ({nhy},y) > zxz(y,y) since
(feny},y) = ({neyl,y) = (h,{eyy}) = 2(h,y%) = 2(h,n) = 0

and ({hhy},y) = (O(h,B)y,y) > 0 by 3.15. This completes

the proof.

(b) Let b ==¢e + z, where Zy € 5N Vo(e) . Consider
the map f: V> V defined by f(x+utz) = exp(D(u,e)

- D(e,ﬁ)).(e-x+z—zo) where x ¢ A(e) , u ¢ iA(e)

+ Vl(e) , Z € Vo(e) . Then exp(D(u,e) - D(e,u)) € K

and therefore f(x+u+z) € F if and only if f(x+0+2)

(e=x) + (z+z() € $ . Since e - x ¢ Vy(e) and

N

+ 25 € Vo(e) , this means |e - x + z + zg]

max(le - x|, |z + z,|) <1 ; i.e., e~ x e F N Ae) and

i

zZ + 2z € Fn Vo(e) . By 6.11, e - x ¢ 5N A(e) if and
only if 0 < x < 2 . Clearly £(0) = b , and a simple
computation, using 6.7, shows that df(0) is invertible.

Now (b) follows from the implicit function theorem.

6.13. COROLLARY. The boundary of S5 is smooth at a point

b if and only if b ¢ Je where e is a primitive tri-~-

potent. In particular, the following conditions are

equivalent.
(i) 3p is smooth,
(ii) (V,V) has rapnk one;

(iii) £ is the open unit ball of a finite-dimensional

Hilbert space.

Indeed,

cone of b

35 1is smooth at b

is just a2 half line.

6.13

if and only if the normal



§7. The compactification of V

7.1. Let (V,V) be a semisimple finite-dimensional
Jordan pair over € . In this section we show how to imbed
V in a natural way into a compact manifold X (actually,
a projective variety) as a dense open subset. As an
example, consider the Jordan pair of p X g-matrices:
V=V = Mﬁ,q(c) . with Qy = x.ty.x . Then V imbeds
into the Grassmann manifold X = Grassp(¢p+q) of p-
dimensional subspaces of Cp+q by associating with every
x ¢ V the subspace Of, €p+q spanned by the row vectors

of the p x (p+q) matrix (llx) (where 1 denotes the

p X p unit matrix). X itself may be identified with the
quotient of the set of matrices of rank p in Mp,p+q(c)
by the action of GLP(C) given by left multiplication.
Unfortunately, this construction does not generalize immed-
iately to an arbitrary Jordan pair, but the following one
does. It is an exercise in linear aigebra to show that, if
x,7 € My (€) then the p X (ptq) matrix (1-x.%y|x) has
rank p , and that every such matrix is of the form
g.(l-x.ty]x) with g ¢ GLp(C) . Thus we have a surjective
map VXV »X . When do (x,y) and (x',y') in Vx V

determine the same point in X ? - If and only if there

exists an invertible p X p matrix g such that
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g.(l-x.ty]x) = (l—x'.ty'lx') . A simple computation shows
that this is equivalent with g.(1-x.t(y—y')) = 1 and

x' = g.x ; in other words, 1 - x.t(y—y') is invertible
and x' = (l—x.t(y—y'))—l.x . It turns out that these
conditions may be phrased in terms of the'quasi—inverse

in the Jordan algebra v(y—y') (cf. 3.6), and we there-
fore consider first inverses and quasi-inverses in Jordan

algebras.

7.2. Let A be a Jordan algebra over € with unit element
1. An element a ¢ A is called invertible if there exists
b ¢ A such that P(a)b = a and P(a)b2 = 1 (where

P(x) = 2L(x)2 - L(xz) are the quadratic operators and

L(x)y = xy the left multiplication of A ). This is the
case if and only if P(a) is invertible, and the inverse

of a 1is by definition b = a_l = P(a)-la . Note that

this implies ab = 1 but this condition is not sufficient
for a Dbeing invertible, as one sees, e.g., for A the
matrix algebra with ab = $(a.b+b.a) , a.b being the
matrix product. In fact, the definition of invertibility

is chosen so as to coincide with invertibility in the
associative sense if A 1is a Jordan subalgebra of an

associative algebra.

We say x ¢ A 1is quasi~invertible if 1 - x is

invertible. Writing (l—x)_1 =1+ z , the above conditions

become
1) Z = 2xz + P(x)z = x - x2

)

(2) 22 - 2xz2 + P(x)z2 = x2 .

These conditions make sense even if A has no unit element,
and they hold if and only if Id - 2L(x) + P(x) is inver-
tible. By definition, the quasi-inverse of x is
z = (Ia~2LGO+P @)D L. (x-xD) .

Now let (V,V ) be a Jordan pair, and let

(x,¥) ¢ Vx V . We say (x,y) 1is quasi-invertible if x

is quasi-invertible in the Jordan algebra V(Y) (cf. 3.6).
Then x2 = Q.. 2xz = {xyz} = D(x,y)z, P(x)z = Qnyz s

hence Id - 2L(x) + P(x) = B(x,y) and (1) and (2)

become
3) B(x,y)z = x - Qv ,
(4) B(x,7)Q,y = Q¥

The quasi-inverse of (x,y) is
y _ -1
(5) z = x° = B(x,y) ~(x~Q.¥)

For example, if (V,V ) is the Jordan pair of p x g-
matrices then (x%,y) 1is quasi-invertible if and only if

1 - x.ty is invertible, and the quasi-inverse is

(6) x7 = (l-x.ty)—l.x .

7.3. We now list the main properties of the quasi-inverse
in a Jordan pair. For proofs, see [L5, §3].

(1) For all t e €, (tx,y) 1is quasi-invertible if and



only if (x,ty) is quasi-invertible, and then
y ty
(1) (tx)” = t.(x7) .

(ii) (x,y) 1is quasi-invertible if and only if (y,x) is

quasi~invertible (in the "opposite'” Jordan pair (V ,V)) ,

and then
(2) = x4+ Qv .
(iii) Let (x,y) be quasi-invertible and z € V . Then

(x,y+z) is quasi-invertible if and only if (xy,z) is

quasi-invertible, and then
(3) T = NHZ .

(iv) Let (x,y) be quasi-invertible and z ¢ V . Then
(x+z,y) 1is quasi-invertible if and only if (z,v%) is

quasi~invertible, and then

4) (x+z)y = x¥ 4 B(x,y)_l.z(yx) .
(v) The B=-operators satisfy the identities
(5) B(x,y)B(x',z) = B(x,y+z) ,

(6) B(z,y)B(x,y) = B(x+z,y) .

(vi) If (£,£): (V,V ) » (W, ) is a homomorphism of
Jordan pairs then (x,y) quasi-invertible implies that

(fx,f_y) is quasi-invertible, and

() 1Y) = etV

Suppose that (V,V—) is a semisimple Jordan pair over
€ . Let T be a positive involution and |[x| the spectral

norm; For y € V. define ]y[=]7—1y| . Also denote by

x(n’Y) the n—-th power of =x in the Jordan algebra V(y)

Then we have:

(vii) If |[x]]|y] <1 then (x,y) is quasi-invertible and
y

X is given by the geometric series
(®) = T x®Y)
n=1

Indeed one shows easily by induction that X(n+2,y)

= Qnyx(n’Y) and hence, using 3.17(a), that

|x(n,Y)| < lxlnIY,n_l .

Therefore the series converges, and computing in the associ-

ative subalgebra of V(y) generated by x one checks that

(8) holds.

7.4. Let (V,V’) be a finite-dimensional Jordan pair over
€ . Clearly the map (X,¥y) + x7 is a rational map from
Vx V into V . A polynomial function 6&: VX V - € y

normalized such that 6(0,0) = 1 , is called a denominator

of the quasi-inverse if

(i) 8(x,y) # 0 if and only if (x,y) is quasi-

invertible,

(ii) §(x,y).x’ is a polynomial function.



Thus x5 = %%%f%% where v: VX ¥V - V is a polynomial
function, called the numerator of x7 (with respect to

8). For example, we can take &(x,y) = det B(x,y) and
then v(x,y) = B(x,y)#(x-Qxy) where # denotes the ad-
joint matrix., There is a unigue minimal denomiator obtained
by cancelling all common factors of & and v , and this
is just the generic nmorm N(x,y) of (V,V') (cf. [L5,
16.9]). If (V,V ) is simple then det B(x,y) is a

power of N(x,y) and N(x,y) is an irreducible polynomial
function ([L5, 17.3]). Note that 8(x,0) = 8(0,y) = 1
since (x,0) and (0,y) are quasi-invertible, for all

XxeV, vy ¢ '

7.5. LEMMA. Let 6,v be a denominator and numerator for

the quasi~inverse. Then

(€D 6 (tx,y) = 8(x,ty) ,
(2) 5(x,y)8(xY,2) = 8(x,y+z) ,
(3) v(tx,y) = t.v(x,ty) ,
(4) 5 (x,YIvx,z) = v(x,y+2) ,

for all xe V, y,zeV , tetC

Proof. By property (i) of a denominator, 8(x,y) and
det B(x,y) have the same irreducible factors. Since
det B(x,y) obviously satisfies (1) and by 7.3.5 satisfies

(2), it suffices to show that so does each of its irreducible

factors. Thus let fl(x,y),...,fn(x,y) be the different
irreducible factors of det B(x,y) , normalized by
£,(6,0) =1 . For each fixed t ¢ C , fl(tx,Y) is an

m,
irreducible polynomial in (x,y) , and T fi(tx,y) *

=T fi(x,ty)mi Hence there exists an i = i(t) such
that £, (tx,y) = £3(x,ty) , for all (x,y) . It follows
that there exists one index, say J , such that fl(tx,y)
= fj(x,ty) for all (x,y) and for an infinite number of
t's . Since an infinite subset of € 1is Zariski-dense,

this equation holds for all t , and for t= 1 we see

that j =1 . This proves (1). Next, let F be the

field of rational functions on V x V . Then x¥ ¢ V 8 F,
and we may consider fi(x,y+z) and fi(xy,z) (as functions
of 2z ) as polynomial functions on v ®c F . By Gauss'

Lemma, they are irreducible. Since T fi(x,y+z)mi

=g.m fi(xy,z)mi (with g =T £, (x,y) ¢ F) , there exists
an index j such that fl(x,y+z) = h.fj(xy,z) with
h=nh(x,y) ¢ ¥F. For z =0 we get h(x,y) = fl(x,y)
since det B(x,0) = 1 and hence fj(x,o) =1 . Now for
y = 0 it follows that j = 1 . This proves (2). Now (3)
and (4) follow immediately from (1) and (2) and 7.3.1 and

7.3.3.

7.6. Let (V,V ) be a finite-~dimensional Jordan pair over
C . Motivated by 7.1 and 7.2, we define an equivalence
relation on V x V. by (x,¥) ~ (x',¥') & (x,y-y') quasi-

e
invertible and x' = x7 Y . Using 7.3.3 one checks easily



7.8

that this is indeed an equivalence relation. We denote the is a morphism. Next we show that finitely many of the

: . V' let f£ = 5(x,-a
equivalence class of (x,y) by (:y) and the set of equiv- U, cover X For.every a € e 2 X) (x,-2) ,

. i i . h th £ of bounded
alence classes by X . It is easily seen that the map a polynomial function on V Then e a are O e

x - (x:0) is injective, and we shall thus identify v Vdegree and hence span a finite-dimensional vector space.

Let £

with a subset of X . Note that X depends functorially fan be a basis of this vector space. We

alﬁ""
on (V,V7): if (£,£_) : (v,¥v") » (V',v'7) is a homomorphism claim that the Uai’ i=1,...,n , cover X . PFor every
of Jordan pairs then we have 2 map X = X' by aeV there exist xi ¢ C such that b&(x,-a)

(x:y) » (£x:f_y) . = Z)Xié(x,—ai) , for all x ¢ V . This implies &(x,b~a)

Z A;8(x,b-a;) for all x eV, be V" . Indeed, since

7.7. PROPOSITION. TFor ever a2 e Vo let Ua=={(x:a)[xe‘v} this is a polynomial relation, it suffices to check it on

C X . Then the ma @, Ua >V, (x:a) > x , is bijective, the open dense subset of all quasi-invertible pairs

and the Ua form a covering of X . There exists a unique (x,b) € Vx V . Then we have by 7.5.2, &(x,b-2)

I

- b _.y = b _ -
structure of a smooth algebraic variety on X such that = 6(x,b)6(x",-a) 22 6(x’b)}‘ié(X ’ ai) z lié(x’b ai) -

each Ua is an open affine subvariety, isomorphic with V Now let (x:a) € X . Then 1 = 5(x,0) = &8(x,a-2)

under P, - In particular, V = U0 is open and dense in = Z))‘ib(x’a—a’i) and hence é(x,a-aj) # 0 for some j .

X . Every finite subset of X 1is contained in one of the

This means that (x,a—aj) is quasi-invertible and there-
a—

a.
fore (x:a) = (x J:a..) e Uy, . So far, we have shown

a
that X is a prevariety, and it remains to check that X
Proof. If (x:a) = (x':a) then by definition of the

. . a-a 0
equivalence relation, x' = x =X = X

is separated. By [Mu, p. 71, Prop. 5] it suffices to show

- This shows that any two points of X are contained in an open affine

that g 1S 2 bijection. We show that ¢a(Ua n'Ub) 18 subset. More generally, we show that any finite subset of
Zariski open and denselln V and that the transition X is contained in some Ua . Let (Xi:ai) c X,
functions qp, = 909, 1 9, (U, N Up) > ¢ (U, N U are i=1,...,n . Then the polynomial functions £, (a)
morphisms. Indeed, ¢, (U, N U.) = {x ¢ V|(x,a-b) quasi-

invertible}, and Ppa (K) = x®P | Denoting by & and v

= é(xi,ai-—a) on V are not zero since fi(ai) =1 .

Hence there exists 2 € V° such that £;(a) # 0 for all
a denomi i-3i h . . _ .
enominator and numerator for the quasi-inverse, we have i which means (xi’ai-a) quasi-invertible and therefore
9, (U, NU) =[x e V]6(x,a~b) # 0} which is Zariski open

a-b

(xi:ai) €U, .
and dense (since 6(0,a-b) = 1) and x = v(x,a-b)/8(x,a-b)
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7.8. Let ©& be the sheaf of germs of regular functions

on X and OF the subsheaf of invertible functions. Also
let 6§ be a denominator for the quasi-inverse. We define
a 1-cocycle (fab) with values in o* on‘ X (relative to

the covering (U,) ) by

acV

fab(P) = 6(x,a-b) y

for p = (x:a) € Uy N U . Indeed, if p = (x:a) = (y:b)

e U, NUy NU, wehave y = x®7P  and hence by 7.5,

~b
£ ()2, (P) = 8(x,a-b)6(y,b=c) = 5(x,2-D)6(x" ", b=c)

I

5 (x,a=b+b~c) = &6(x,a-c) = £__ (@) .

Let £(8) be the line bundle on X defined by (fab) .
We remark that if 6&(x,y) = det B(x,y) then £(3) is the
dual of the canonical bundle % of X . Indeed, the trans-

ition functions for the tangent bundle of X are given by

-1
eab(p) - dq’ab(‘pb(p)) where ., = 9,°0, - Now @ba(x)
xa—b

(cf. the proof of 7.7) and we have to compute the

y

derivative of =x with respect to x . By 7.3.4, we have

x
(x+ez) = x¥ + B(x,y)—l(ez)(y )

v
Now z¥ = z(mod €) since zo =z , and by 7.3.1, (ez)

= e.(zev) = ez (mod 62) .  Hence

- 2
(x-+ez)y = % + eB(x,y) %z(mod ey,

1

Y with respect to x is B(x,y) .

and the derivative of x

It follows that dwba(x) = B(x,a—b)_l and therefore

7.11

o,y (9, (P)) = [d¢ba(¢a(p))]-1 = B(x,a-b) , where p = (x:a).
Hence the transitioq functions for the canonical bundle are
det Gab(p)_l = det B(x,a-b)"} . If (V,V") is simple then
by 7.4, det B(x,y) = N(x,y)g is a power of the gemneric
norm, and hence £(N)& = X’l . It can be shown that in

this case £(N) generates the Picard group of X (see

(r7D).

7.9. Recall the connection between line bundles and maps
from X into projective spaces: if £ 1is a line bundle
on X and s(o),...,s(n) are sections of £ without
common zeroes then we have a morphism X > Pn(C) given
locally by p - [séo)(p),...,sén)(p)] where the brackets
indicate the point in P,n(d:) defined by a vector in
Cn+1—{0} . Here séi) denotes the function on U
defined by s(i) , assuming that the covering (Ua)
trivializes £ . The bundle £ is called very ample if
there exist sections of £ which define an imbedding of

X into some PP?(€) . It will be more convenient for us

to describe this situation as follows: Let E be a finite
dimensional vector space, and consider the vector bundle

E ® £ on X (which is isomorphic with the sum of dim E
copies of £ ) . Then a nowhere vanishing section s of

E ® # defines a morphism o: X > F(E) (the projective

space of E ) by p ~> [sa(p)] locally.

7.10. THEOREM. The line bundles £(8) are very ample.

If (V,V') is semisimple then the imbedding defined by




£(d) is closed and hence X 1is a projective variety.

Proof. Let Vv be the numerator of the quasi-inverse
belonging to & . From (1) and (3) of Lemma 7.5 it follows
that the expansions of & and v into bihomogeneous com-—

ponents are of the form

m .

(1) 5(x,y) = I (-8, (x,y) ,
i=0
4 i

(2) V(X,y) = 20("1) Vi(x:Y) I}
iz

where 6i(x,y) is homogeneous of bidegree (i,i) and

vi(x,y) is homogeneous of bidegree (i + 1,i) in (x,y) .
Moreover, 60 =1 and vo(x,y) = x since xo =x . Let

E be the finite-dimensional vector space of all polynomial
functions (¢,f) on V  with values in € X V (i.e.,

®: V> ¢ is a scalar polynomial and £: V - V a vector
valued polynomial) such that ¢ is of degree < m and £
of degree < n . Define a section s of E ® £(8) locally

on Ua by
s, (x:2)(y) = (8(x,2-y), v(x,a~y)) ,

for all y € V . We check that s, fabsb

s, define indeed a section: by 7.5, we have for

and hence the

p = (x:a) = (xa_b:b) €U, n U, and all y € Vv~ that

gb@mbmxw==umwmna@”bmﬂo,v@*hbwn

= (8 (x,a~-b+b~y), v(x,a-b+b-y))

= s, (@ .

7.13

The section s vanishes nowhere since sa(x:a)(a)
= (8(x,0), v(x,0)) = (1,x) . Hence s defines a morphism
g: X » P(E) .

Every a ¢ V. defines a linear form on E by

(p,£) > @(a) . Thus

P(E), = {[9,f] € P(B) | g(a) # O}

is the complement of a hyperplane of P(E) , and we have

a morphism Myt P(E)a > Ua by sending [W’f] into
f(a) \

\5757 ia) . Clearly o maps Ua into P(E)a , and
n,00 is the identity on Ua . Since by 7.7 any two points

of X are contained in some Ua it follows that o is
injective.

For (¢,f) ¢ E consider the conditions

3) 5, (£(2),) = 9@ lp(zty),, i=1,...,n

(4 vi(E(@),7) = 9@ E(zty);, i=1,...,n,

for all y,z ¢ V .

Here tp(z—f-y)i and f(z+y)i denotes the component
homogeneous of degree i in y of the polynomial functions
p{z+y) and £(z+y) on V x V . Then (3) and (4) is an
(infinite) set of homogeneous polynomial equations for
(9,f) (indexed by i and . (y,z) ¢ V x V) , and hence
defines a closed subvariety Z of P(E) . Also let

w= UP®E,_,
acV a



an open sSubvariety of P(E) . We claim that ¢ maps X
isomorphically onto Z N W .

By what we proved above, 0 maps X into W . To
show that o(X) € 2 1let [g,f] ¢ a(X) ; say, [@,f]
= 0(x:a) which means (after multiplication by a non~zero
scalar) o¢(y) = 8(x,a~y) and f(y) = v(x,a-y) for all
Yy € V7 . Then for all z e V- for which (x,a~z) is
quasi-~invertible (these =z form a dense open subset), we

have by 7.5,

I

o (z+y) §(x,a~z-y) = 6(x,a~z)6(xa—z,y)

1

T o) D% NHE , -v) = Toe@ e, (r@),y) .

Comparing homogeneous components of degree i in y on
both sides and multiplying by ¢(z)n—1 we get (3) for all

Z 1in a dense open subset and hence everywhere. Similarly,
£(z+y) = v(x,a=z-y) = 8 (x,a~-z)v(>"2,y)

= Z7W(Z)(~1)ivi\§%§% s -Y) = Z3¢(Z)"ivi(f(z),y)

implies (4).

Next we show that ven,, is the identity on Z N P(E)a.

Let [g,f] € Z N P-(E)a . We may assume that o¢(a) = 1 .
Then n,([¢,£]) = (£(a):a) e U, . From (3) and (4) we get

for z = a by summing up: Z}(—l)iéi(f(a),—y) =2; Q(a+y)i
i

it
i

9(aty) = 8(f(a),~y) and B (-1)7v;(£(a),~y) = T £(aty),

1
i

f(aty) v(f(a),-y) . Replacing y by y - a we have

o(y) = 3(£(),a-y) , £(y) = v(f(a),a~-y)

7.15

which says that [o¢,f] = o(f(a):a2) . Thus 0 induces
isomorphisms between Ua and Z N P(E)a . Since ¢ is
injective it is now clear that X = Z N W under o .
Finally, we show that Z < W if (V,V ) is semisimple.
Suppose to the contrary that [¢,f] ¢ Z but ¢ = 0 .

Then by (3), 6i(f(z),y) =0 for all y,z and i=1,...,m
which implies 6&6(f(z),y) = 1 . Hence (£(2),y) is quasi-
invertible for all y ¢ V ; i.e., £(z) is strictly
quasi-invertible and hence belongs to Rad V (cf. [L5,
§4]). By semisimplicity, £(z) = 0 for all =z , which

means f = 0 , a contradiction.

7.11. As an example, consider the Jordan pair of p x gq-
matrices. Here the generic norm is given by N(x,y)

= det(l—x.ty) , and det B(x,y) = N(x,y)p+q .  The pro-
jective imbedding of X = Grassp(¢p+q) given by the line
bundle 2£(N) is precisely the Pliicker imbedding. The

proof 1s left as an exercise.



§8. The automorphism group of X

8.1. 1In this section, (V,V—) is a semisimple complex
Jordan pair, and X is the projective algebraic variety
constructed in the previous section. We denote by Aut(X)
the group of automorphisms of X (as an algebraic variety).
Since V is open and dense in X , every automorphism of

X induces a biratiomnal transformation of V , and thus

we may consider Aut(X) as a subgroup of the group of

birational transformations of V .

8.2. PROPOSITION. There exists a unique structure of an

affine algebraic group on Aut(X) with the following pro-

perty: if A is an algebraic group and A X X > X a

morphic action of A on X then the natural map A > Aut(X)

is a homomorphism of algebraic groups.

Proof. Let &(x,y) = det B(x,y) so that £(§) = x’l is

the inverse of the canonical bundle (c¢f. 7.8). Then Aut(X)
acts naturally on K_l -and hence on the space of sections
T(X,K’l) . Since X is projective, this space is finite-
dimensional, and picking a basis s;,...,s  of F(X,X—l) ,
we obtain by 7.10 an imbedding o: X - PR(Q) , and a mono~

morphism : Aut(X) > PGL_,,(€) = Aut(P®(C)) which are



compatible. The image of ¢ is the normalizer of o(X)

in PGLn+1(¢) . Since 0(X) is a closed subvariety of
Pn(¢) , this is a Zariski closed subgroup of the affine
algebraic group PGLn+1(C) and hence ifself an affine
algebraic group. By transport of structure, so is AutX) .
An action of A on X induces an action of A on

F(X,K—l) and hence a homomorphism (of algebraic groups)

A > p(Aut X) . This completes the proof.

8.3. Since X isva smooth projective variety, we may
consider it also as a compact complex manifold Xan . By
Chow's Lemma, every holomorphic automorphism of X is
algebraic, and hence Aut(X) = Aut(Xan) (as abstract groups).
It is known that Aut(Xan) is a complex Lie transformation
group of Xan in the compact-open topology. On the other
hand, the algebraic group Aut(¥X) may be regarded as a
complex Lie group Aut(X)an and from the definition of the
algebraic group structure on Aut(X) it follows that
Aut(Xan) = Aut(X)an . The Lie algebra of Aut(Xan) and
therefore of Aut(X) is the set of all holomorphic vector
fields on X (which, by GAGA , is the same as the set of
algebraic vector fields).

We denote by G the connected of the identity of
Aut(X) in the Zariski topology, this is also the connected
component in the compact-open topology. The Lie algebra of
G is g . By restriction to V , we may consider g as

a Lie algebra of vector fields on V .

8.3

8.4. PROPOSITION. (a) There is a monomorphism . vV > ¢

of the additive group of V  into G given by

t,(x1a) = (x:atv) , (v e v, (x:a) € X) .

If we identify the Lie algebra of V with V  then the

vector field ¥ = Lie(t)(v) corresponding to v ¢ V is

V(x) = Qv xeW .

(b) There is a monomorphism Aut(V,V ) > Aut(X) given by

(h,h_)-(x:a) = (hx:h_a) , ((h,h_ ) e Aut(V,V") , (x:a) ¢ X)

(c) There is a monomorphism t: V > G of the additive

group of V into G extending the action of V on itself

by translations:

tu(x) =u+ x ,
for ue V, x= (x:0) e VEx.

Proof. (a) Onme checks immediately that % is well
defined, and from 7.7 it is clear that the map V x X - X,
(v,p) ~> %v(p) , is a morphism. By 8.2, we have a homo-
morphism £ vV - Aut(X) of algebraic groups, and

T(V") € G since YV~  is connected. Assume T - Id
v

Then for zll x ¢ V we have (x:0) = (x:v) , i.e.,

v .
x = x . In particular, v is strictly quasi-invertible,
and hence v € Rad V. = 0 . The birational map of V

induced by %v is given by %V(x) =x' , for (x,v)
quasi-invertible, since %v(x) = (x:v) = (xV:0) . The

vector field ¥ on X induced by the one-parameter group.
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%ev is given by Eev(x) = x + eV (x) (mod ez) . By 7.3.2
and the computation in 7.8, %ev(x) = %%V - x4 Qx(ev)X

= X + eva (mod sz) .

(b) By 7.6, we have a homomorphism Aut (V,V" ) - Aut(X)

which is clearly a homomorphism of algebraic groups. Since

(V,V") admits a non-degenerate

Aut (V,V )-invariant bi-

linear form < ,> : Y x V - € (for instance, <x,y>

= trace D(x,y)) , we have h_ = t

1

h™ (cf. 3.5), and there~

fore the homomorphism is injective.

(¢) Let U' be the set of all g ¢ G such that the

derivative of g <(considered as a birational transforma-

tion of V) is the identity. This is clearly an algebraic

subgroup of G , and g € uT  if and only if g restricted

to V is a translation tu , for

some U ¢ V . Thus U+

may be identified with an algebraic subgroup of V . The

Lie algebra vt of ©Y consists

g which, when restricted to V ,
show that U" = Vv it suffices to
every constant vector field on V
u e V define a vector field ga

ga(x:a) = B(x,a)u (since Ua =V
on Ua as a map Ua -+ V) . Then
vector field & on X since for

a-b

we have y = x and therefore

of all vector fields in

are constant. Hence to
show that u¥ =V ; l.e.,
extends to X . For

on Ua (cf. 7.7) by

we regard a vector field
the ga define a global
P~ (x:a) = (y:b) eU_NT

8, @)L (0)

b

= B(x,2-b)BG*"",b) -u = B(x,a-b+b) ‘u = B(x,a)u = &_(p) ,

by 7.3.5 and 7.8. Now EO(X:O)

= B(x,0)-u = u is the

constant vector field wu , and hence & extends u .

This completes the proof.

8.5. COROLLARY. G acts transitively on X .

Indeed, (x:a) = ta(x:O) = tatx(O:O) .

8.6. We denote by U~ the subgroup {Evlv e V1 of G,

and identify Aut(V,V ) with a subgroup of Aut(X) . Let
H=aut(v,v)%c G, and U" = (t Jue vV} ©G . The Lie
algebras of U ,H,UT are denoted by u_,g,u+ .  Thus

u” o= {¥]v e V7}

consists of vector fields which, when restricted to V , are

homogeneous polynomial functions of degree 2,
p = {A](4,8_) € Der(V,V )}

is isomorphic with the derivation algebra of (V,V )

(cf. 3.1) and consists of linear vector fields, and ut =y
consists of all constant vector fields. The subgroups U+,U—
are unipotent, being isomorphic (as algebraic groups) with
the vector groups V,V . The exponential map exp: o vt

is given by

exp(u) = t, exp(Vv) = tv
for ue V= u+ and v e V . Note that H normalizes
vt and U ; more precisely, we have
-1 _ T
1) h.tu.h = thu B h.tv.h = th v’




for (h,h ) € Aut(V,v) , ue V, v e V . Indeed, for all % ¢ g which are homogeneous of degree n + 1 , we have

x ¢ V we have h.tu.h—l(x) = h(u+h—1(x)) = hu + x , and g = ngglgn and [gn,gm] S 8pem ¢ i.e., g is a Z-graded

~ - -1 v . . - . .
if (x,v) is quasi-invertible, h.t .h 1(x) = h((h "x)") Lie algebra. This implies that 8, 1is orthogonal to
= xh~v , by 7.3.7. By a density argument, we have (1). 8, with respect to the Killing form of g except when
On the Lie algebra level, (1) implies m+n=0 . Since .g is semisimple, the Killing form is
— non~degenerate, and thus 8, is isomorphic with the dual
(2) [a,u} = du, [2,¥] =2a_v, +
of 8. - Hence 8y = 0 for n> 1. Clearly u' = 8.1 -
for (8,0 ) e Dex(V,V ), uec V. veV . Also, we have y € gy, and u < gy . Since dim u = dim V = dim V
= dim ut = dim 84 » we have = g3 - From the composition
3) . [u,¥] = = D(u,v) , + + - -
rules for the 8 it follows that ¢' =u" & [u",u" ] & u
and thus [u+,u—] c p . Indeed, for x e V, [u,v](x) is an ideal of g . By semisimplicity, g = g’ @ g" (direct
= du(x).¥(x) - dV(x).ux) = - d¥(x).u = - {xvu} =-D(u,v).x. sum of ideals) where g" 1is the orthogonal complement of

Finally, let S = €* be the one-dimensional torus in g' with respect to the Killing form. Since the orthogonal

the centre of H consisting of all transformations complement of u+ & u~  is 30 it follows that g" < gO .

(x:a) - (sx;s"la), s e €* , and let ( € § be the vector Since the vector fields in 8o vanish at O , the normal
field tangent to S , given on V by ¢((&x) =x . Clearly, subgroup of G generated by g" fixes the origin .and is
+1

Ads.t = sZ".€ and [(,8] =+ & for £ € ut . therefore trivial (by the same argument as used for R).

Hence g = u' @ [ut,u"] ® v~ , and p = [uT,u”] . It follows
8.7. THEOREM. G is a semisimple group, generated by U+

that G is generated by U+ and U .
and U™ . The Lie algebra of G is g=uT @ p® u™ .

8.8. COROLLARY. (a) H is the centralizer of S in G

Proof. Let R be the radical of G ; i.e., the largest
— it is a reductive group.

connected solvable normal subgroup of G . Then R has a

fixed point on the complete variety X . Since R is (b) The centre of G is trivial.

normal in G and G is transitive on X by 8.5, R acts

Proof. By 8.6 and 8.7, the centralizer of § in g is
trivially on X and therefore R = {1} . For € ¢ g ,

§ . Since the centralizer of a torus in a connected reductive

let £ = ng%gn be the expansion of & into homogeneous

1 group is connected and reductive, we have (a). Let g belong
polynomials. Then for all s ¢ S, Ads.E = 3. s —n.gne 8,
n>0

> to the centre of G . Then g ¢ H, and by 8.6,
and therefore gn € g . Denoting by gn the set of




-1
gtug =1

gu tu implies gu = u for all u e V . Since

we may identify H with a subgroup of GL(V) , g = Id .

8.9. COROLLARY. Every derivation of the Jordan pair

(V,V) is inner. The group Aut(V,vV ) is reductive and

its identity component is Inn(V,V ) .

Proof. By 8.6.3, the relation [ut,u”] = § implies that
every derivation of (V,V ) is inner (cf. 3.1). Now the

assertion follows from 8.8.

8.10. PROPOSITION. (a) The isotropy group of 0 in G

is H U~ , isomorphic with the semidirect product H X U .

(b) Let 0 ={g e G|g(0) ¢ V)] . Then 0= U".H-U" , iso-

morphic with U7 x H x U” under multiplication.

(¢) G =10 -0=00U"

Proof. (a) The isotropy group P of O in G is para-
bolic and therefore connected, since G/P = X is a complete
variety. The Lie algebra of P is the set of all vector
fields in ¢ vanishing at O . By 8.6, this is § & u~ .
Hence P = H-U . We show that H N U = {1} . By the
computation in 7.8, the derivative of %v at x e V is
dEV(x) = B(x,v)'1 . In particular, d%v(o) = B(o,v)”1==1d.
Thus if h = %v ¢ HN U” then, since h induces a linear

map of V , h = dh(0) = Id .

(b) Q 1is the inverse image of V © X wunder the orbit map

g > g(0) and therefore Zariski-open. Since vt acts
simply transitively on V , we have Q = U+-P =yt x P

=0 x B x U .

(¢) Since G 1is connected, O and ol - yv.gut are

open and dense in G . Hence G = O Y- = v mUTUTHU™

= v"u™HU” = UTn , using that H normalizes U Similarly,
G =00t~ out. '

Next, we give a description of G by generators and

relations.

8.11, THEOREM. (a) For (u,v) € Vx V , we have

tv~tu € Q 3if and only if (u,v) 1is quasi-invertible, and

then

> _ -1 -
1) toety =t Bw,v) T
u v

(b) Let T be a group, and let fu: H>T , f,: @
be homomorphisms. Then fo,f+,f_ extend to a ?ﬁnique)

homomorphism f: G » T if and only if
-1 -
(2) £, (0ebn™) = £0(0) -2, (8) 2o () 1
) >

u

@) 2 (E )1, (1) = f+<tuv)-f(,aa(u,v)‘l)-f_(%V

for all heH, be U5, (u,v) ¢ Vx V° quasi-invertible.

Proof. (a) We have T .t (0) = (u:0) = (u:v) ¢ v if
and only if (u:v) = (x:0) , which means (u,v) quasi-
invertible (and x = uv) , by 7.6. Now (1) needs to be
checked only for the demse open subset of all =z ¢ V for

which (ut+z,v) is quasi-invertible, and then by 7.3.4, we have
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u -~
Ev.tu(z) = uiz)¥ = u¥ 4 B(u,v)"lz(v ) oy v.B(u,v)'l.t a

u v

(z) .

(b) Clearly (2) and (3) are necessary for f to exist.

Conversely, let g ¢ G , and write
(4 g=7% -t _-h-I

which is possible by 8.10. If f exists then £(g)
= f_(tv)f+(tu)f0(h)f_(tw) . We check that this is well

defined. If

v u w v' Tuf w'
then by 8.6.1,
¥ = . A _1-~
tyyrtty = BB th_-(w'—w) ’
v - -
and by (1) we have u' = u’ * , h'h 1. B(u,v~v') 1 ,
(v=v )Y = h_-(w'=w) . Hence by (2) and (3),

f_(%v_v,)f+(tu) = f+(tu,)-f0(h'h'1)-f_(?h_,(w'_w))

]

. ty. T -1
SNCHDRE NCLDE SXCHRIIDRE A ¢}

which implies f_(tv)-f+(tu)-fo(h)'f_(tw) =
= f_(tv,)'f+(tu,)-f0(h')-f_(%w,) . Now we show that

f: G»> T is a homomorphism. If b ¢ U and g ¢ G then
(5) f(bg) = £(b)E(g), £(gb) = £(g)Ef(b) .

Indeed, writing g as in (4) this is immediate since

£]UT = £_ is a homomorphism. If h e H then

(6) f(hg) = £(h)E(g), £(gh) = £(g)L(h) .

This follows similarly, using (2). Finally, we show that
1) f(abc) = f(a)f(b)f(ec)

for a,c € U+, beU . Write a=1t b=1 c =t

u’ v’ w’

and pick an element y ¢ V  such that (~u,y) and
(w,y+v) are quasi-invertible. This is possible since the
Zariski-open subsets {y ¢ V |det B(-u,y) # 0} and

{y ¢ V']|det B(w,y+v) # 0} of V not empty and therefore
have non-empty intersection. Setting d = %y it follows
by (1) that da™l ¢ 0 and dbc e O . Let ad * = zhx ,
dbe = x'h'z' where x,x' ¢ UT , h,h' e H, z,z' ¢ U™ .

Then we have by (5) and (6),

f (abe) f(ad—l.dbc) = f(zhx.x'h'z')

F(2)TMEE)E(")E(h')E(z') = f(zhx)f(x'h'z")

£(ad 1)z (dbe) = £(a)£(a) " L£(d) £ (be)

fa)f(b)f(c) .

Now it follows easily from (5) - (7) that £ is a homo-

morphism.

8.12. Example. Let (V,V ) be the Jordan pair of p x q
matrices, thus X = Grassp(mn) where n =p + q . Then
G = PGLn(m) and the natural action of GLn(C) on X
induces a surjective homomorphism K: GLn(w) - G whose
kernel consists of all multiples of the identity. If

XxXe V=M

p’q(OI:) and
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1 g= 2 5) ecoa @,

divided into 4 blocks of sizes p X p, P X g, X Db,
q X q, then the action of k(g) on V as a birational

transformation is given by

(@ k(g) (x) = (ax+b) (cx+d) ™+
For ueV, veV = Mp,q(G) we have

- 1 u -~ 1 0\
3) ty = o 1) ooty =y, 4o

and K_l(Q) is the set of all g of the form (1) for

which d 1is invertible.
In general, G will not consist of fractional linear
transformations as in (2) but of fractional quadratic

transformations in the following sense.

8.13. PROPOSITION. For every g ¢ G there exist uniquely

determined polynomial functions vg: v->v, Ag: V~>End V

of degree < 2 such that g(x) e V (for x ¢ V) if and

only if Ag(x) is invertible, and then

1

(1) g&)=Agwf'wg@),

(2) dg(x) = Ag<x>‘1 .

The maps g > vg and g > Ag are morphisms of algebraic

varieties. The "denomingtors" Ag satisfy

3) boopn(®) = By (x)on (h(x)) ,

8.13

for all g,h ¢ G and all x ¢ V such that h(x) € V .

Proof. Ler § e g , considered as a polynomial vector
field on V . Then the adjoint representation of g ¢ G

is given by
(adg™t.g) (x) = dg(x)"L.g (g (x))

In particular, for § = u ¢ ut (constant vector field) we
have (Adg'l.u)(x) = dg(x)’l.u , and since Adg—l.u € g
and hence is a polynomial of degree < 2 in x we see
that Ag(x) = dg(x)"1 is a polynomial of degree <2 with
values in End V. Now let ([ € g be the vector field
C(x) = x (cf. 8.6). Then (Adg_l-C)(x) = dg(x)_l.g(x)
= vg(x) is a polynomial of degree < 2 , and therefore we
have (1) and (2). Since the adjoint representation of G

on ¢ 1is a morphism so are the maps g ~> vg and g > A

.

g
Finally (3) follows from the chain rule.

8.14. COROLLARY. et ¥: G > € be the polynomial function

x(g) = det Ag(O) . Then Q= {g ¢ G|x(g) # 0} .

This is immediate from 8.13 and 8.10.

8.15. For elements of the subgroup U+,H,U_ the numerators

and denominators are easily determined. Indeed,

(L Vi (x) = x +u, Ay (x)=1Id (ue V),
u u

x, Ah(x) -nl (h ¢ H) ,

i

(2) vy, ()
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3) V%v(x) =x-Qyv, A%v(x) = B(x,v) (veV).

The first two formulas are obvious (remember that H may §9 G as a real algebraic group

be considered as a subgroup of GL(V)) . For (3), use
"Ev(x) =x" = B(x,v)_l.(x—va) and d%v(x) - B(x,v) %

(cf. 7.2.5 and 7.8). From these formulas, 8.13.3, and 8.10 9.1. Let (V,¥") be a semisimple Jordan pair over C,X,

it follows that Ag(x) belongs to the submonoid of End V G, Ui ,H,etc. as in §§7,8. Recall that

generated by all B(u,v) , ue V, v eV . Since
H = Inn(V,V ) is generated by all B(u,v) , f(u,v) gquasi~ ’ exp(u) = tu (translation by u)
invertible, we have Ag(x) € H whenever it is invertible. exp(v) = tv (quasi-inverse with respect to v)
for ueV-= u+ (identified with the constant vector fields
4 ~ -
on V) , and that Vv ¢ u is the vector field on X whose

restriction to V is the quadratic vector field
Vx) = ex)v ,

for veV . Also let 17:V >V , u~>1Uu, be a positive
hermitian involution of (V,V—) , & © V the associated

i bounded symmetric domain, Go the connected component of

k Aut(D) , K the isotropy group of 0 in G0 2 8o T 1@y
the Lie algebra of G, (cf. §8§2,4). We fix a positive
definite K-invariant hermitian scalar product <,> on V,
and denote the adjoint with respect to <,> by #* . Then
H(= Aut(V,V-)O) is invariant under * and XK= {he H| h*=h_1}

is a compact real form of the complex algebraic group H

(cf. 3.2, 3.5, 4.9).
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9.2. PROPOSITION. There exists a unique complex conjugation

(antiholomorphic automorphism of period 2) o on G such that

*-1

@) o) = h (he®) ,
2) c(expu) =exp(-T) (ue ut =,
(3) o(expv) =exp(-V) (veV ) .

The fixed point set of o on ¢ 1is g, -
E
Proof. Define f,:H >G by h~>h 1 , £,:0" > G by

exp(u) - exp(-W) , and f_:U - G by exp (¥) »> exp(-7V) .

Then one checks that (2) and (3) of 8.11 hold, and hence
we have a homomorphism o :G - G satisfying (1) - (3).
Clearly o is of period 2 and antiholomorphic. Note that
s leaves H invariant and interchanges UT and U™ .
The fixed point set on § = Lie(H) is 1 = Lie(K) and on
wf@u” itis p={u-Tluent =V} since u - T is just

the vector field gu (cf. 2.3, 2.5).

9.3. The automorphism o  defines a Galois action of the

Galois group of C€/R on G , and hence a real algebraic

group structure, denoted by 9'0 . If A is an R-algebra
we denote by QO(A) the group of A-valued points of (_}o .
(According to his persuasion, the reader may think of go

as of G with the R - 'structure defined by ¢ , or as the
functor A -~ go(A) on the categdry of R-algebras) . 1In
particular, (_}o(R) is just the fixed point set of o in
G = (_}o (€¢) . The Lie algebra of the real algebraic group
G, is g, -

group G R) .

This is also the Lie algebra of the real Lie

9.4. PROPOSITION. Every automorphism of 4 extends

uniquely to an automorphism of X . Considering thus G0

as a subgroup of G , we have

G, = 6, ®°% = (geale®) =5} .

Proof, By 4.9, Aut(d) = exp(p)-Aut(V) and Go=exp(p)-l{.
Since Aut(V) ¢ Aut(V,V ) < Aut(X) (cf. 8.4(b)) and

P S 8, < g , we have the first assertion. Clearly

G, = gO(R)O < {geGlg@ = £} . Conversely, let g(#) =4
for g € G . Composing g with an element of Go we may
assume g(0) = 0 . Then g ¢ Aut(V) by 4.9, and we have
to show that Aut(V) NG =K . But Aut(V) N G is con-
tained in the centralizer of S8 in G which is H (8.8),
and Aut(V) N H 4is the fixed point set of ¢ in H which

is X .

9.5. Let s be the symmetry around the origin (s(x)==~x) .
Then s ¢ K , and Int(s) is an automorphism of period 2

of G and of G0 whose fixed point set in Go is X ;
in fact, it is a Cartan involution of G, - One checks
easily that Int(s) commutes with o . Hence =go Int(s)
is also a complex conjugation of G . The real algebraic

group structure on G defined by © is denoted by (_}c , its

Lie algebra by 8o - Explicitly, 6 is given by

o) =1t - om) , (hem ,

8(expu) = exp(@) = o(exp(~-u)) (eV) .

The fixed point set of & on § is 1 , and on uT@u~




it is {u+UjueV} = ip . Thus the fixed point set of 8

on g , i.e., the Lie algebra of G, 6 , is g, = t @ ip .

9.6. Example. Let (V,V ) be the Jordan pair of rec-
tangular matrices (cf. 8.12). Working in the covering group
SL_(€) of G = PGL (€) , & is the automorphism g - tz-1

of SLn(m) , and ¢ = Int(s)°e where

4]
it

In particular, if n = 2 (thus V = €) we have the ex-

plicit formulae

@ a b d ¢
U = — - 3
c d b a
2) a b d -¢
o o
c d -B a
for (2 2) € SL,(€) . The fixed point set of ¢ in
SL,(¢) is SU(1,1) and that of @ is SU(2) . Note,

however, that the fixed point set of o in G = PGL2(®) 5

i.e., the group gO(IR) , has two connected components.

95.7. LEMMA., Let e be a tripotent. Then there exists

a unique homomorphism £ :SLZ(C) -+ G such that

(¢ D] f(é %) = the exp(awe) (el ,

(2) f(_i g) T s = exp@® (@eq) ,

@ [ 2_1) = B(e, (1-n)8) (weC) .

The homomorphism f commutes with the automorphisms o

and © of SLy(€) and G .

Proof., Define a homomorphism on the Lie algebra level by
( 8 %) >ecul (constant vector field),
0 0 = - .
-1 o) 7€ e (guadratic vector field),

(é _g) > D(e,E) € § (linear vector field).

One checks that this is indeed a Lie algebra homomorphism.
Since SL2(¢) is simply connected, it induces a group
homomorphism £ which clearly satisfies (1) and (2). To
prove (3), note that, by the rules for the Peirce decom—
position (3.13), D(e,e)x = nx and Bfe,d-p)e)x = p’x
for x e Vn(e) , n=20,1,2 . Finally, the compatibility
of £ with o and 6 1is easily verified. We remark
that £ is injective if and only if the Peirce space
Vi(e) # 0 , and has kernel I otherwise.

We can now give explicit formulae for the one~
parameter groups generated by the vector fields
v-V=¢,eyp and v+ Ve ip(veV) . Recall (3.18,
3.19) that any odd real analytic function ¢(t) gives
rise to amap X - 9X) (XeV) . 1In particular, this is

so for the functions tanh and tan.




9.8, PROPOSITION. For v ¢ V let u = tanh(v) and

w = tan(v) , the latter provided |v| < w/2 . Then we have
o -3
) exp(v~v) = exp(gv) = tuoB(u,u) ot_ti 5
by
(2) exp (V+¥) = t“ﬁB(w,-w)§°tW .
Proof. Let %\ ¢ R . An elementary matrix computation
shows that
0 cosh A sinh X
exp =
A O sinh A\ cosh )
1 tanh 1\ [(cosh 2)7F 0 1 ]
Y] 1 4] cosh A/ \tanh A 1

Applying the homomorphism £ of 9.7, we get

exp(A(e-8)) = tanB(e,(1-(coshk)_1)5)°f;a

(]
where o« = tanh A . Now tanhzx =31 - (cosh)\)_2 and hence
B(oe,qe) = B(e,azé) = B(e,(l-(coshx)_l)é)2 . Since
tanh(le) = tanh(x);e , this proves (1) in case v = Ae .

For the general case, let v = Ap€qy v+ Xvev be the
spectral decomposition. By orthogonality, the homomorphisms
fi :SLZ(Q) - G defined by the ey commute and thus we are
reduced to the previous case. Note that there is a well-
defined positive definite square root of B(u,ﬁ) since

ue S (cf. 4.8) and hence B(u,ﬁ) is positive definite
(4.4 or 3.15). The proof of (2) follows the same lines.
Note that tan is a diffeomorphism of % £ onto V , and

B(w,~%) is positive definite for all w e V by 3.15.

9.7

9.9. PROPOSITION. 6 is a Cartan involution of G . Its

fixed point set G, = G, (R) = exp(ip)-K is a compact con-

nected subgroup of G , acting transitively on X . The

isotropy group of 0 in Gc is X

Proof. 1Let g ¢ Gc with g(0) =0 . By 8,10, g = h-T

v
Since & interchanges vt and U , We have v = 0 and
*e
g =h with h = nh 1 € K . Hence the isotropy group of
0 in Gc is K . Next, we show that Gc acts transi~

tively on X . Let W be a maximal flat subspace of V
and Y its closure in X . Then KW =YV (5.3) and hence
KY=X. Now W=R" and Y is isomorphic with the pro-
duct of n copies of the real projective line. By (2) of
9.8, V belongs to the orbit of O under Gc . Thus it
suffices to show that the "point at infinity" (e:e)eX~-V
of the line R-e belongs to the orbit of 0 under Gc 5
for any tripotent e . Now (e :e) is the image of 0

under g = t§°te°t§ and g = €(g) since

_ef0 1
e-2(3 %)

where £ 1is the homomorphism SL2(¢) + G defined by e .
Therefore Gc acts transitively omn X . Since X and X
are compact and connected so is Gc . By standard proper-
ties of compact Lie groups, Gc = exp(ip)-K .

9.10. Metric boundary components. As a further applica~

tion of 9.8, we show that the boundary components of 5

may be characterized in terms of the Bergman metric on 5
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For X,y ¢ & let d(x,y) denote the Riemannian distance.
of x and y . Call two points a,b of the boundary of
L equivalent (a~b) 1if there exist sequences xn,yn(zﬁ
with 1lim X, =2, lim ¥, = b, and d(xn, yn) bounded. It is
easily verified that this is an equivalence relation. The

equivalence classes are called the metric boundary com-—

ponents of 5 .

9.11., THEOREM. The metric boundary components agree with

the holomorphic resp. affine boundary components of 5

(cf. 6.1).
Proocf. Let Je be a holomorphic boundary component, e
a tripotent, and let e + x ¢ J_, x ¢ Vy(e) , |x] <1

(cf. 6.3). We show that e + x ~ e . Let g, =

exp(n(e~8)) = exp(ng,) € G, ,and set x =g (x)ed, Yy =

o’

tanh(n) . Since

[

gn(o) = tanh(ne) = o e where o

oy > 1 as n > = .we have 1hnyn=:e and
. . b, T%n®
limx =lim(a e+B(a e,qe)®-x )
-+ e
= e + B(e,e)®ex = e + X ,
_ang _

since x = X by the Peirce rules, and B(e,e) is the
projection onto Vb(e) . Also, d(xn,yn) = d{(x,0) is

bounded.

Now let b be a boundary point of 5 and b ~ e .
We sho% that b ¢ Je . Let 1im1xn= b, limyn = e , and
d(xn,yn)‘ bounded. We can write Yo = tanh(vn) with

unique v, ¢ vV . Let g, = exp(vn—vn) € GO . Then

¥, = gn(O) . Also let x, = gn(zn) with Z, € 5

write z, = tanh(wn) s W€ V . Then d(xn,yn) = d(zn,O) .

Since the exponential map tanh = Exp:V > 5 1is a diffeo-
morphism (4.8), d(zn,O) = HwnH (Euclidean length in the

Bergman metric at 0) . After passing to a subsequence,

we may therefore assume that the w, converge to weV,

and hence the z, to =z = tanh(w) ¢ & . Now

b = 1lim X, = lim gn(zn) _

Yn)

kS
2.

= llm(yn +B(yn,yn) z,

- i .8
= e+ B(e,®)?(z %) = e + x

with x ¢ Vo(e) since B(e,e) is the projection onto
Vy(e) . Moreover, |[b| = |e+x[ = max(|e{,[x{) =1 shows
|x] <1 . Thus b belongs to the closure of Je . If b
were not in Jé then b e Jd where d > e (cf. 6.3).
Hence d ~ b ~ e and therefore e belongs to the closure
of 3& which implies e > d , a contradiction. This com-

pletes the proof.

9.12. Let E be a tripotent and £ : SLZ(C) -+ G the
associated homomorphism (9.7). 1In SLZ(G) , considered as
a real algebraic group via o  (cf. 9.6.1) (so its group of
real points is SU(1,1) , not SLZ(R)) we have the one-

dimensional R-gplit torus T consisting of all matrices

a b
(b a) B a2 - b2 =1,
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Denote by ’_1_‘e o (_io the one-dimensional R-split torus
which is the image of T under f . The Lie algebra of
T has the canonical generator (g é) and hence the Lie

. . o 1 o
algebra of ’Ee is spanned by Lie(f) (1 O) =e-—e=§e ep .

Let g = Z‘Zgn(e) be the decomposition of g, into the
weight spaﬁis with respect to Ie ; i.e., gn(e) is the
n-eigenspace of adge on g - By standard facts on
semisimple algebraic groups, there is a unique parabolic
subgroup lje of (_io whose Lie algebra is Igogn (e) .

9.13. LEMMA. Let V = V2 @ V1 @ V0 be the Peirce decom-

position with respect to e , and *: V2 hd V2 as in 3,13.

Then
D(a,&) = D(e,a*) for a e V, .

Proof. We have to show {aex} = {€a*x} for all x e V.
For X ¢ V0 this is true since both sides vanish by the
Peirce rules. For x ¢ Vy Wwe have, by JP9, {aex} =
{ee{aex}] = {a,Q(&)x,e} + D(e,q(e)a)x = {e2*x] since
QE)x ¢ V3 = 0 and a¥ = Q(e)a for a eV, . For x eV,
we have {aex} = acx and {ea*x} = P(e,x)a** = P(e,x)a =

acx .

9.14. LEMMA. Let 1% = {pe¢ t]a(e) =0} . Then the spaces

gn(e) are given by
!
@) %@ =% e g lvenravl,

() O {6, ¥ @w,8) -De, w0 |vevsl,

3 a2 (e

I

{6, ¥D(v,e)|veial ,

4 g™ e)

If

0 for |m| > 2.

Here V, - A® 1A as in 3.13.
Proof. 8o consists of all A+§V,Ae‘t,vev. We
have A(e) = b + u where b e 1A, u ¢ V1 , since Al(e)
is tangent to the manifold of tripotents at e (cf. 5.6).
Let A' = A - % D(b,e) - (D(u,e) - D(e,u)) . Note that
2D(b,e) =D(b,e) =D(e,b) e 1 by 9.13 and 3.2.1, Then
AT(e) = 0 so A' ¢ te. Let v=c+d+v1+v

0 be the

components of Vv in the Peirce spaces (ce¢ A,dec iA,v.eV.).
J J

Then
Btby =l b v E, 4 by ~ (D(wy,e) =D(e,wy))
+ é‘w_l + (D(w_g,e) ~ Dle,w_q))
+ sz = D(WZ,E) + &y o+ D(w_z,é)
-2
where w,, =5 (v,Fu)eV, and w,, = $dFib ¢ iA
+1 1 1 +2 F 3 . Hence

8o is the sum of the subspaces indicated on the right hand
sides of (1) - (3). A straightforward computation, using

the fact that [£ ,&, ] = D(u,v) -~ D(v,u) , [A,gu] = Epy
and the Peirce rules, shows that these subspaces are the

0,*1, +2-~eigenspaces of ad & -

9.15. THEOREM. The normalizer of the boundary component

Je in Go is N(éfe) = ge(R) n G0 (hence an open subgroup

of the group of real points lje(R)) . Moreover,




NF = Ke-exp(go(e) ﬂp)‘exp(gl(e))-exp(gz(e))

where K° = {keK|k(e) —e}

Proof. Let N = N(Je) and let n be its Lie algebra.

(Since G0 acts on X and stabilizes '.# it stabilizes

the boundary of 5 and clearly permutes the boundary com-
ponents). We first show that n=Lie (Ije) = go(e) @ gl (e)® 32 (e).
Clearly n consists of all vector fields £ e g, which

are tangent to Je ; i.e., satisfy £(e+2) ¢ V0 for all

z e Vg Ns. Por b c 1 we have A(e) = 0 and A leaves
the Peirce spaces invariant. Hence A e n . If a e A

*
a-a =a-a=0.

[

then £ (e+2z) = a - Qle+z)a = a - Q(e)a

If veV, then £ (e+z) =v ~ Qe +z)v = v - Q(&)V ¢ Vg -
This shows go(e) Cn. For v ¢ V1 and € = £ 1 we have,

by the Peirce rules,

g, (e+z) - e(D(v,e) - D(e,V)) (e +z)

v - Qle+2z)V ~ e({v,e,e+2z} - {e,V,e+z])

(1-¢)(v-{eval}l) .

]

Note that O # v - {evz]} ¢ v; for v #0 by 6.7. For

b € 1A we have

g le+z) - eD(b,e) (e +2) = b -~ Qe +2z)b - e{bee}
=b - Q(e)b - 2¢b = 2(1 -e)b ,
since zQ(e)E = b* = - b . From these relations it follows

that n = Lie(§e) . Since a parabolic subgroup equals the

normalizer of its Lie algebra, we have

9.13

ge(R) n GO = NormGo(n) ON.

Let U be the unipoﬁent radical of ge and L the centra-
lizer of ze in He , a Levi subgroup. Then Ee(R) n G0 =
(E(R)IWGO)-H(R) since gfﬁ) is connected. Also U(R) =
exp(gl(e))-exp(gz(e)) . The group L(R) n Go is stable
under © and hence has the Cartan decomposition

L®) 0 G, = (LK) NK)-exp(g’(e) Np) . Thus it remains to
show that L(R) N K< N . But clearly L(R) N K=K SN .

This completes the proof.

9.16. COROLLARY. The normalizer (in Go) of a boundary

component of B is transitive on 5 .

Proof, I1f we evaluate all the vector fields in n at O
we get all of V . Hence the orbit of 0 wunder N is open.

It is also closed in [/ since Go acts properly on 5 .

9,17, COROLLARY. The orbit of a tripotent e under G

equals the orbit of Jé under X . The oxrbits of Go on

the boundary of S are just the submanifolds Xi de-~

scribed in 6.9.

Proof. By the proof of 9.15, the vector fields gv(ve Vo)
satisfy gv(e-+z) = gv(z) for e + 2 ¢ Jé and hence
exp(g,)(e) = e + exp(§,)(0) = e + tanhv . It follows that
the orbit of e under N is Jé . By 9.1s, Go = N+K =

KN . Hence Go-e = K-Nee = K-Je -



9.18. (The following results are not needed for §10). Let

S < Eo be a maximal R-split torus of Eo . Then

S
8, = 8= ® I g”
aed !

where & , the real root system of 90 , is the set of
weights of S in 8 (with respect to the adjoint repre-
sentation), ga is the weight space for the weight o« ,
and g§ is the centralizer of § in 8o - By associating
with « ¢ & its differential we may identify & with a
subset of the dual of g = Lie(S) . Then ¢ consists of
all linear forms. @ on & for which ¢%¥={x €8y | [h,x]=a(h)x
for all h e g} is not zero.

Now let g = 1 ® p be the Cartan decomposition of

§, and assume g < p (such tori always exist). Then

p =80 Zp%
where
= (x-0x) | x e g™}
= {yep | [[y,0],0] = a(m)?y, for all hes} .
Since 8(g® = g™® we have y¥ = p”® . This shows that we

can compute & once we know the Lie triple system p with
triple product [xyz] = [{x,¥],z] . (A1l this holds for any
reductive real algebraic group in place of go ) .

Note now that the real vector space RV is a real Lie

triple system with

[uvw] = {uvw} - {vuw}

and that RV = p under the map v > gv . This is an
immediate consequence of 2.6.2. Now we can compute the

1
real root system of go

9.19. PROPOSITION. Let (el,---,er) be a frame of tri-~

otents of V and T the one-dimensional R-split
potents oi s 2ua i SpLit

torus of go associated with ey (cf. 9.12). Then

(a) 8 = Iél"'zér is a maximal R-split torus of G,

(and hence the real rank of go equals the rank of the

Jordan pair v,v)) .

b i i = Ld
(b) Defipne linear forms w; on 8 Lie(8) by

wj(gei) = 6ij . Let V= Z)Vij be the Peirce decomposition
of V with respect to (el,---,er) . Also let

Vij = Aij @ Bij (1<i<j<r) be the decomposition into

real and imaginary part relative to the real form A(e)

of Vz(e) (where e = e+ - e, and hence
Vg(e) = i’§?>0vij ; cf. 3.14). Then §C{iwi,i2wi,iwiiwj}
and

W 2w, W=, +

i i i WjTw4
= V.., 2= B, . J = 170

p i0°? Bji»® Aj5. 0 =B,

under the isomorphigm p = RV of 9.18.

(e) If (V,V) is simple then either & = {+ P P
* Tuwgtwg

is of type C_. or & = {iwi,izwi,imiiwj} is of type BC,

Remark. The first case in (c) occurs if and only if w,v)

contains invertible elements, or equivalently, the domain 5
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is equivalent to a tube domain (cf. 10.9). The multi- 9.20. Recall the relation between parabolic subgroups of
plicities of the roots (i.e., the dimensions of the § go and subsets of % : If 2 C & is a simple root system
spaces ga E pa) can be looked up, for each and ¥ ¢ Z a subset then N(¥) is the parabolic subgroup
simple type, in [L5, §17]. ©Note that . 20; always whose Lie algebra is g-s— ® Zg¥ where the sum is over all
has multiplicity 1, and that wg + ‘”j . and wg = wj ; ® € ¥ which, when written as linear combinations of simple
have the same multiplicity, since By = /I Rei roots, involve the elements of & ~ Y with non~negative
and Bij = /=T Aij . coefficients. This establishes a one-to-one correspondence

Proof. Clearly & = W = ER.ei under the isomorphism of between subsets of 2 and conjugacy classes of parabolic

_ . subgroups of G (cf. [B=T]).
9.18. Let x x1e1+ +krer € W and yij € Vij . Then 0
we have by 3.15,
.21, PROPOSITION. Let (V,V ) be simple. Then the map
_ — - _ 2 2 _ *
[yijxx] B {yiJXX} {xyi;jX} ()‘i+)‘j)yij 2)\i}“jyi;j ° e > _I\Ie is a bijection from the set of non-zero tripotents
This implies of V onto the set of proper maximal parabolic subgroups
: ] . of G, . If (eq,'--,e.) is a frame and z = {al,.--,ar}
a..xx] = (A, =x,)%a.., for a.. ¢ A.. , R . . _ _
13 1 J 13 13 13 is the simple root system with Oy = Wy =g, "B g T g W,
_ 2 a. = 2w in case ¢ = C and o, = w in case & = BC
[bijxx] = (xi+xj) bj_‘j , for bij € Bij 5 T r —— r — T r ——— T
then _Iiel b ey is the parabolic subgroup associated with

_ .2
[y50¥x] = Ai¥j0 » 2or ¥jo € Vi - the subset I - {o} of I .

From these formulae, it follows in particular that ¢ =W ' Proof. Let e be a tripotent and write e = e;+ - ey
is a maximal abelian subspace of p which implies that § i where the e; are primitive orthogonal tripotents. Complete
is a maximal R~split torus of go . Also, wi(gx) = }‘i ‘ (el,---,ek) to a frame (el,---,er) . Then we have
and hence we have (a) and (b). For (c), note that for a ai(ge) =0 for 1<i<k-1 or k+1<i<r,
simple Jordan pair, the spaces Vij (1 <i< j<r) have and ak(P;e) >0 (=1 or = 2). 1In view of the definition
the same dimension, and so do the spaces ViO . Moreover, : of I_\Ie , this shows that He = g(Z} - {ak}) ; in particular,
Vij #0 for 1< i< j<r (ef. [15, 17.2]). every maximal parabolic subgroup of 9’0 is conjugate to
one of the N, . By [B-T, 14.2], the conjugacy class of

Ee is isomorphic with (_(jo/ge) (R) = -G—o(]R)/Ee(R) = GO/N(Je)
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(recall G, = go(R)O and N(Z_) = N,(R) 0 G) . By 9.15,
KN NT) = K® , and hence by 9.16, G /N(Z) =
K.N(Je)/N(Je) ~ X/K® = the component containing e of the

manifold of tripotents. This completes’ the proof.

9.22. More generally, one can show easily that there is a
bijection between the set of all parabolic subgroups of

go and the set of flags of tripotents, where a flag of

tripotents is a k-tuple (fy,-+-,f;) of tripotents such

that 0 < f1 < 00 < fk . The bijection is given by

(fg,°00,8) >N, N---N N

--f1 -—fk .

10.1

§10. Cayley transformations and

Siegel domain realizations

10.0. We keep the notations of §9. Throughout this section,

e 1s a tripotent and V = Vz@VI@VO the Peirce decomposi-

tion with respect to e . The vector space V is a Jordan

algebra with product Xy = % %0y = ¥ {xey} and quadratic

operators P(x)y = Q(x)Q(e)y (cf. 3.8). We denote by J

the ‘subalgebra whose underlying vector space is v2 . Thus

d has unit element e , and J = A @® iA where
A=

* - .
{zeV2=J)z =Q(e)z =2} is formally real, and * is

complex conjugation with respect to A in J (cf. 3.13).

The positive cone of A is denoted by Y , and a >0

(resp. a > 0) stands for a e Y (resp. ae¥) (cf. 6.10).

10.1, The partial Cayley transformation defined by e

is

Y =exp%(e-@-"é‘) .

e

’

< T s
Thus Yo € Gc . By 9.8 and since tan(ze) tan(z-)e =e ,

we have the explicit formula
-t HE. ¢
@) Yo te B(e, - e) té .

One checks easily that

a
2y B(e, ~8)%ex = (/D™ for x e vV, ,»n=20,1,2,




10.2 10.3

. 2 .
Also, We call Jg = Ye = f(_g %) the partial inverse de~
o 1 1/1 1 fined by e . This is motivated by the explicit formula
T —
= — = f
3 Ye f(eXP‘4(—1 0)) (J§<‘1 1)) derived below. First we prove

where f 1is as inm 9.7. 1In SLZ(C) we have the. relations
10.2. LEMMA. For a e J 1let Ra € End(Vl) be defined

1 1\\2 1 1y 1 oy/1 1)\ _ by R (x) = acx = {aex h
) - - . Then the map -
C R G E R B R0 - wx e G men themp s 8, ia s b
morphism of unital Jordan algebras (V1 is a "special
1 oy\/1 1 1 0\ _ 0o 1 ]
<_1 1)(0 1)(_1 1) = (_1 0) 3 J-module”); i.e.,
AY
0 1\2 -1 0 -1 0\2 i1 o0
1 0) = ( o _1) , (0 _1) = (0 1) . (¢D) (acb)ex = ac (boX) + bo (acx) , eox = x ,
By applying £ , this yields for a,be J, x ¢ V1 . Moreover,
v * -
2 7 - T g 2 =
(4) Ye = 'teo LEO te = téo teo té H & a (b 1X) {abx} ’
‘ 3) Ra =R .,
4 -— . a
(5). Yé = B(e,2e) ,
(4) Ra positive definite for a > 0 .

i tion; cf. 5.6 *
(the Peirce reflection; ¢ )5 Here Ra denotes the adjoint with respect to the scalar

(6) vo = Id . product <,> .

Proof, By JP13,
Also, we see that Yi = Id if and only if V1 = 0 . Note

ac (a0 x) = D(a,a)zx = D(Q(a)E,E)x + 2 Q(a)Q(E)x==a2°x
further that v, = Id ,

-1 since a2 = Q(a)E and Q(e)x e V3 = 0 . Linearization
(7 Y =Yoo ? -

€ € yields (1) (clearly eox = {eex} = x by definition of

* - * -
(8) 1~:Yek—1 =y, for kek, Vi) . For (2) we useJP9: a0 (boX) = D(a,e)D(b ,e)x =
, * - - % -
{p,Qe)x,a} + D(a,Q(e)b )x = {abx]} . Next,

(9) Yo¥a = Yerd <aex,¥> = <{aex},y> = <x,{€ay}> = x,{eqy > ~ <x,aky>

(by (2)) which proves (3). Finally, a > 0 means
i d . * . . .
for orthogonal tripotents ¢ and a=b%,b=0b" ¢ A invertible. Hence R, = Rf) is the
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square of an invertible self-adjoint endomorphism and

therefore positive definite.

10.3. PROPOSITION. Let x = X, @ Xy @ %y be the com-

ponents of x ¢ V 1in the Peirce spaces. . Then Ye(x) eV

_if and only if e - X, is invertible in J , and then

1 Ye(x) =

2) @ /2 (e-x,) Tox, @ (xy + P(xy) (e —x,) D)
%, €~ *g 1 B RS .

Also, je(x) ¢ V if and only if g is invertible in J ,

and then

@ 3,00 = (Gh © (aplexp) © (g -PGpRG)

e+x2

Here a_l denotes the inverse in J , and o=
2

(e-—xz)—lﬂ(eq-xz) (which can be computed in the commuta-
tive associative subalgebra generated by e and x2) .
Proof. By 10.1.1, ye(x) , which a priori belongs to X ,
lies in V if and only if (x,e) is quasi-invertible.

By 7.3.4,
-~ _ e — =1 w
té(x2-+x1-+x0) = Xp + B(xz,e) ~(x14-x0)

where W = ?# (8) ¢ V° . By the Peirce rules, the pair
2
(x1-+x0,w) is nilpotent in the sense of [L5,3.8], and

moreover,
2
g +xg) BT = Qg +xW = QW € Vg

(x1-+x0)(n’w) =0 for n>2 .

10.5

Furth T - 7t
er, by [L5, 3.13], tiz(e) = (er-xz) and therefore

_ * =1, % -

Qle)w = ((e-x,) 7) = (e ~x5) 1 which implies Q(xq)w =
x e = - -1 e

Q(xy)Qle)Qle)w P(xy) (e - x,) . Next, B(x,,e) leaves

the Peirce spaces invariant, acts like the identity on

Vy » and for y; e V; satisfies B(xz,é)y1 =

yl"{xzve7y1} + Q(XZ)Q(E)yl = yl = x20y1 = (e-—x2)0y1 5

since Q(E)y1 = 0 . Hence we get

ol

T - -1
(3) Tux) = %, @ (e-x,) Toxy @ (% +P(x4) (e_xz)-l) .

Now by (1) and (2) of 10.1,

e -1
Yo (X (e +2x5) © J2: (e - xp) °oX) @ (x5 +P(xy) (e~ xz)—l)

. - x
and this proves (1) since e + 2xg =e + 2 2 _ Sifg
e-x,, e-X,

Next, by (3) and 10.1.4 (replace Xy by e + Xg 1),

Jg®x) = e + [(e+xy) +x1+x0]-é =

-1 -
- %, @ (—x2 oxl) 3] (xOA-P(xl)le)

a e+x2

since e + (e..l_xz)e = -1

e = -
+ e—ie+x2) Xy -

10.4. BSiegel domains. Define F: V1 X V; »> J by
F(u,v) = {uve] ,vevy) .

Then F is hermitian and positive definite in the sense

that

6% Fu,»* = Fev, i)
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(2) F(u,i) >0 , and F(u,u) =0 only for u=20.
Indeed, by JP1Z,

{viel = {v,T,q(e)e} = ~ Q(e){uve}l + {{vuelee} =

- {u?e}* + 2 {vuel} .

For (2), let a e ¥ Then <{ule}, > = <{ueal, > =

<R_(u),u> > 0 since R, is positive semidefinite by 10.2.
a b

Now Y is a self-dual cone and hence we have F(u,u) > 0 .

If F(u,u) = 0 then 0 = <{ule},e> = <u,{lee}> = <u,w>

implies u =0 .
For 2z ¢ V0 define the C-antilinear endomorphism

¢(z) of V1 by
@)V = {evz]} .

Then «(z) is self-adjoint with respect to F in the

sense that

3 F(p(2)W,v) = F(e(2)v,u) ,

and satisfies

4 0 # F(v,V) - Flo@)V , 9@V) € ¥

for 0# v eV, and ze b, = 50 vy . Indeed, by JP13,

Flo(@)4,7) = {{euzlvel = D(e,V)D(e, W)z =

D(Q(e)V,a)z + Qe)(vzu} = Q(e){vzu}

(since Q(e)Vv ¢ V3 = 0) which is symmetric in u and Vv

Now let =z ¢ ﬁe , and set f = ¢(z) . Then

-

10.7

F(£%,T¥) = F(£2v,7) = F(v,£2v) and £ is also self-

adjoint with respect to the hermitian scalar product

<,> on V1 . The eigenspaces of fz are orthogonal both
with respect to F and to <,> . Let 2y = Z)vaj
where the XA, are distinct eigenvalues of fz

. Then

J
F(v,v) - F{EV,T0) = 3 (1—xj)F(vj,§j) > 0 since by 6.7,
0 <h; <1, and F(v,v) - F(£V,I¥) = 0 implies
F(vi,aj) =0 (since Y is a convex cone containing no

straight line) and hence v = 0 .,

Now the data (A,Y,F,ﬁe,Q) define a Siegel domain of

type three in V = vy @ vy @ Vo with base ﬁe which is

(5) #, = {x,®x,@x,eV| |x7] <1,Re(xy-3% Fxo(xl,}_:l) > 0}.

Here we set
O) F,(u,7) = F(u, (Id+¢(2) %)

for =z ¢ ﬂe , U,V € V1 , and Re denotes the real part
with respect to the real form A4 of J (cf. [Wl]; actu-
ally, (5) is a generalized right half plane rather than
upper half plane as in [WL], see also 10.10). We call Ze

the Siegel domain defined by the tripotent e . We will

show that Je = Ye(ﬁ) . To do so, we shall use the fact
the normalizer N of the boundary component Jé in G0
is transitive on 5 (9.16) and hence N' = YeNY;I is

transitive on Ye(ﬁ) . It turns out that N' consists

essentially of affine transformations of the vector space

V , except for a subgroup corresponding to the automorphism
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group of ,Be which is trivial if e is maximal and hence

’Be is a point. Our first goal is to describe the Lie

algebra of N' .

+

10.5. LEMMA, Let v e V=1u (constant vector field),

Vo= Ve + v1 + v0 the Peirce components, and vz = a + b

where a € A, be iA . Then
(1) AdY  vy= Vg 5

1 -
(2) Adye-v1= Vﬁ—(v1+D(v1’e)) R
(3) Adyra= L(a+3+D(a,e)) ,
(4) Ady b= 3(b-B+D(b,e)) .

proof. For any g € G (considered as a birational trans-—
formation of V) and £ € g (considered as a vector field

on V) we have
-1 -1
(adg &) (x) = dg(x) -E(gx)) .

Since Y;I = y_, this implies

-1

(Adygr£) () = dY_g @ T E(y_ ) .

-1

-t - .
Now dy_e(x) = B(e, -e)*B(x, - ¢) by 10.1.1, since

d?:'y(x) = B(x,y)-1 (see the computation in 7.8). Hence
‘ - -l
(ad Ye-v) (x) = B(x, —e)*B(e, —e) Z-v
- 1
= B(x, - e) (%v2 +EVy +v0)

= 3(vy + {xevyl + Q) QeI vy) +7},_- (vq +{xevy}) + vy

and this implies (1) - (4) since {xévj} = D(vj,é)x and

10.9

QX QE)V, = QE)V, = Q) E-F) = T(x) - Bx) .

10.6. PROPOSITION. Let n = g°(e) ® gl(e) ® g2(e) be the

Lie algebra of "N = N(Je) (cf. 9.14, 9.15). The following

formulae describe the Lie algebra n' = Ady (n) .
e

@) AdyA=b, for A e 1%,

(2) Ad Ye'€v=€v’ for Vv ¢ V0 5

(3 Ady g, = D(a,e) , for a e A,

(4)  Ady_* (,-(D(v,e) - D(e,V)) =2+ (v +D(e,V)) ,
for v eV,

(5) Advy - (gv—D(b,E)) =2b , for b e iA .

Proof. (1) follows from 10.1.8. (2) follows from 10.5.1
and Ad Ye-%‘=3‘, obtained by applying the automorphism 6
to it and recalling that Ye is fixed under 6 since it

belongs to Gc . Apply & to 10.5.3 and obtain
AdYe°i=%(3+a—D(a,§))

X - — % - -
since 6(D(a,e)) = - D(a,e) = - D(e,a) = - D(a,e) by
9.13. If we subtract this from 10.5.3 we get (3), Next,

replace e by =-e in 10.5,2:
1 -
Ady_év=T§(v—D(v,e)) .

Applying Ad Ye to this equation it follows, since

-1
Yo = Y_o » that

2

1 -
v = '—Adye(v—D(v,e))
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and combining this with 10.5.2, one gets
- 1 -
. (6) Ad Ye-D(v,e) =ﬁ (D(v,e) -v) .

Now apply €& to 10.5.2 and to (6) and add all four equa~
tions (with appropriate signs) to get (4). Finally, re-

place e by =~e in 10.5.4:
Ady_e-b=%—(b-ﬁ—n(b,é)) s
and apply Ad Ye to obtain

b = %Adye. (b—ﬁ—D(b,E))

which is (§).

10.7. LEMMA. Every element of N' = YeNy;1 can be writ-

ten uniquely

@ g-= tb-tv+%F(V"_,)-exp(D(e,$))‘B(e-y,é)-exp(gw)-k

(=]

where beiA,veVl,er,weVO,keK , and this

establishes a diffeomorphism N' ~ iA X V1 XY X V0 x K% .

Explicitly, B(e—y,(—a) and exp D(e,x—r) are given by
2) B(e~y,8)x = P(y)x, ® yox; @ x, ,

(3) exp®(e,v))x =

(xy + F(x1,9) +3 F( X))V, V) @ (x5 +9 (V) S x, ,

for x=x2®x1®x0eV2®V1®V0.

Proof. 1In view of 9.15 and 10.6, this essentially amounts

to computing expD(a,e) for a e A and exp(v+D(e,w7))

10.11

for v e V; . For x, ¢ J=AO®iA we have D(a,e)x, =
2La(x2) where La is left multiplication by a in the
Jordan algebra J . By [B-K, Satz 2.2, p. 317], exp2L, =
P(exp a) where exp a=Zan/n! is the expomnential map of
J . Also, exp: A >Y is a diffeomorphism ([B-K, p. 333]).
For x; e V; we have exp(D(a,E))-x1 = (eXpR_)-x; =
Rexp a %1 o by 10.2., For x5 € VO clearly D(a,-e-)xO =0 .,
On the other hand, one checks easily that (2) holds. Hence
B(e - exp a,e) = expD(a,e) .

For u ¢ V (considered as a constant vector field)
and f ¢ EndV (considered as a linear vector field) we

have [f,u] = £(u) . Hence the Campbell-Hausdorff formula

is
exp(u)exp(f) = exp(u+f -3 £(u) +11—2 fz(u)+...) .

In particular, let u = v + $F(v,v) and £ = D(e,v) . By

the Peirce rules,

(4) D(e,¥)+V; < Vi

and hence

exp(v +3 F(v,v))exp(D(e,V))
= exp(v +3 {vvel +D(e,v) +% [v+3% {vvel,D(e,¥) )

= exp(v+% {vvel + D(e,v) ~$ D(e,V)V) =exp(v +D(e,¥)) .
-3
By (4), D(e,v)" = 0 and therefore

exp D(e,V) = Id +D(e,V) +3 D(e,x_r)2 .
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From this, (3) follows easily by a straightforward compu-

tation.

10.8. THEOREM. The image of 5 under the Cayley trans-

formation vy, is the Siegel domain of type three

e

Proof. We have B/ = N-0 (9.16) and Ye(O) = e . Hence
Ye(ﬁ) = N'»e . PFor we V0 we have exp(gw)-e =
e + tanh w=e +2 , Z ¢ ﬁe . Thus by 10.7, the typical

element of Ye(.t}) is

t, °t

b v+%F(v,‘7).exP @ (e,¥))"Ble -y,8): (e +2)

GZrEFT +9 @)V, +D) @ (v+9(2)7) @z

=x2@x1®x0,

where er,veVl,beiA,Ze.Be. Therefore
Re(x, -2 F. (X{,%,)) =Re(y2+b) =y2>0
2 = Xg 1°71 4

which proves Ye(_ﬁ) [l Je . Conversely, let

x=x2®x1®x0<—:p’e,
and let y be the unique positive square root of

1 -
Re(x, -~ % Fxo(xl,xl))

(cf. [B-K, Kap. XI, §6]), let

- . -1
= 1 —1 ==
b=1i Im(x2 ngo(xl,xl)) eiA , v (Id+<p(x0)) Xy € V1 5

o ={x2(+)x1®xoeV2®V1®Vol ]XO] <1,Re(x2-——§— Fxo(xl,xl))>0} .
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and w = ar tanh(xo) . Then x = g(e) ¢ ye(ﬁ) where

g ¢ N' is as in 10.7.1 (with k = Id) .

10.9. COROLLARY. Let e be a maximal tripotent (hence

V0 = 0) . Then ye(.&) is the Siegel domain of type two

_ . * -
o {x2®x1eV2&)V1|x2+x2 F(xl,x1)>0} .

(By 5.3, o is independent of the choice of e , up to a

transformation of K) . 1In the special case where Vl =0

as well (hence V=V2=A® iA),Ye (#) is the tube domain

J =Y @ 14

over the cone Y € A .,

This is immediate from 10.8. Note that V = V2 with
respect to a maximal tripotent if and only if the Jordan
pair (V,V ) contains invertible elements in the sense of
[L5, 1.10]. For the simple Jordan pairs listed in 4.14,

this happens precisely for the types

1 i, , LI, IV, VI .

P,P ? n

10.10. Remark. The reader will have noticed that it is
generalized right half planes rather than the more familiar
upper half planes which occur naturally as Cayley trans~
forms of bounded symmetric domains. This is confirmed by
the fact that right half planes generalize to the case of

real Jordan pairs and are, in fact, the Cayley transforms
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of real bounded symmetric domains, whereas upper half
planes don't make sense in the real case. In the complex
case, the upper half plane picture is obtained by replac-~

ing e by ie but keeping the decomposition V2 = A ® iA

with respect to e . (Note that the Peirce spaces of e

and ie are the same but A(ie) = 1A(e)) . One-checks

easily that
- -1 =
1) v;,@) = {x2@x1®x0 | |x0| <1,Im(x,)~ % Re Fixo(xl,xl) >0}

where Re and Im are understood with respect to the real form
A = A(e) of Vz(e) = Vz(ie) , and Fz(u,;) is defined as

in 10.4.6. If e 1is maximal we get
oy _a -
(2) Vi@ = {x,0x) | In(xy) -3 F(x5,%) > 0]

and in case V = V2 , the upper half plane A @ 1iY .
We finally prove a number of formulae (see also [D],

[s1], [s2], [T3]).

10.11. PROPOSITION. (a) For a e Vy , u,ve Vy we

have
1) asF(u,v) = F(acu,v) + F(u,a*v) ,
(2) P(a)F(u,v) = F(acu,a*v) .

(b) The actions of V2 and VO on V]L given by a - Ra.

and 2z - ¢(z) commute in the sense that

(3 Ra‘P(Z) = ‘P(Z)Ra* P
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for aeVz,zeVO.,

(¢} If e 1is maximal (VO=0) then

(4) Q)V = F(u,v)ou ,

(5) F(u,v)o (acu) = F(u,a%v)ou ,
for u,v ¢ V1 ., a € V2 .

proof. (1): By the Jordan identity and 10.2.2,

a° F(u,v)

{ae{uvel} = {{aeulvel} ~ {u{eaV]e]} + {uF{ase}}

[

F(acu,¥v) - F(u,a%v) + 2 {uva}

Now by JP10, {uval}l = {u,v,Q(e)a*} = D(u,v)q(e)a* =
- {Qe)v,a%,u} + {u,3%v,e} = F(u,a%Vv) since
Qe)v ¢ V; =0 . (Note that u ¢ V can be arbitrary in
this computation).

(2): By exponentiating (1) and observing epoLJ.I =
P(expx) (cf. the proof of 10.7) we get (2) for a of the
form expx, xe V2 - Since these elements are open in V2

and (2) is a polynomial identity, the assertion follows.

(3): B9 (=) (¥) = ac{evz} = {acl{evzl}}

]

{{acelvz]} - {e{cav]z]l 4+ {ev{acz]}]

]

2 {zval~ {e,a%ov,z}={e,aPv,z}

f

tp(z)Ra*v by 10.2.2, since {aez} = 0 by the
Peirce rules, and {zva} = {z,2%V,e} by the remark in the

proof of (1).

(4): ByJdP1li, QMu)V = Qu){eev}

[

D(u:e)Q(u:e); - {Q(U)E,‘_r,e}

[

{ue{uvel} = F(u,¥)ou since Qu)e ¢ Vo =0 .
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(5): By JP12, F(u,a%v)eu = Qu) (@TFV)

i

Qu)D(V,e)ar = {ua*{evul}} - {e,v,Qu)a*}

{F(u,v),a*,u} = F(u,v)o (acu) , using 10.2.2 and
Qu)a* e V=0 .

Remark. If V0 = 0 then (Vl,V;) is an‘:alternative pair
in the sense of [L5] with composition <xyz> = {{xyelez} ,
and (4) and (5) of 10.11 correspond to 8.2.2 and 8.3.3 of

[L5].

10.12. DPROPOSITION. The geodesic symmetry around e of

Je is given by

1 x, ®x, ©x »xt

-1 -1
2 1 o 2 €] (-x2 oxl) @® (P(xl)x2 -X

0) -

The geodesic symmetry of Jie (in the form 10.10.1)

around ie is given by

_ = -1
@) x, @ x; © x> -x;te (- 1x21°x1) ® (P(x)x, -X,) .

(Here x;l is the inverse in the Jordan algebra J =V

2
with unit element e)

Proof. Since Ye(O) = ¢ , the geodesic symmetry around e
is s = Ye'(—Id)°Y;1 . Now y_(-Id) = - Id-y__ = - Id-Y;
and hence s = Yﬁ'(‘ld) = je-(—Id) , and (1) follows from
10.3.2. Formula (2) follows similarly, by observing that
the inverse in the Jordan algebra J' = V2 with unit ele-
ment ie (an isotope of J) is given by the negative in-

verse in J .

1

11.1

§11. Real bounded symmetric domains

11.1. PROPOSITION. Let (V,V—) be a complex Jordan pair

with positive involution 7 and let £ © V be the associ-

ated bounded symmetric domain. Let T C V be a real form

of the complex vector space V , and let 1 be complex

conjugation with respect to T . Then n(8) =248 if and

only if T 4is a sub-triple system; i.e., {TTTlc T .

Proof. Assume S is invariant under 7 . Let k(z,w)

be the Bergman kernel function of S . Then
kM(z),nw)) = k(w,z) .

This implies that 1 is an isometry of the Bergman metric
and hence the fixed point set of 1 , which is £ N T , is
a totally geodesic submanifold of 5 ., By 4.8,

£ 0T = tanh(T) . In particular, if v ¢ T then

tanh(tv) = tv + (t3/3)v(3) ++°* ¢ T for all t ¢ R which
implies V(B) € T . By linearization, we have

{fuuv) + Q)Y ¢ T for all u,v ¢ T . By standard facts
on symmetric spaces, T , which may be identified with the
tangent space of TN S at 0 , is a éub—Lie triple sys-
tem of the Lie triple system V . Hence {uvw}-{vaw}eT
for all u,v,w ¢ T {(cf. 9.18). .Therefore, 3Q(u)v =
Qv + {u¥u} = (Q(WV +{uuv}) + ({uvu} - {vau}) ¢ T, and T

is a sub~triple system.
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Conversely, let T be a sub-triple system. Then a
computation shows that n({xyz}) = {nx),n{y),n(z)} and

(n))

hence n(z)(n) = n(=z Since z ¢ S if and only if

z(n) + 0 as n >« it follows that n(5) = ¥y

11.2. Suppose that T < V satisfies the conditions of
11.1. Clearly the pair (T,T ) (where T =TcC V) is

a real Jordan pair whose complexification is (V,V") .
Also, the restriction To: T - T is an involution of
(T,T ) which is positive in the sense that Q(V)TO(V) = AV
(A e R) implies A > O , and the hermitian involution

T: V>V is obtained by C~antilinear extension from

Ty - Conversely, let (T,T ) be a real Jordan pair with
positive involution To - We shall see below that this is
equivalent with the trace form trace (z > {x,TOy,z}) being
positive definite. Let (V,V ) = (TC’TE) be the complexi~
fication and extend To to a (@-antilinear involution T
of (V,V) . Then by 3.16, 1 is a positive hermitian
involution of (V,V") .

We shall call real bounded symmetric domain a domain

S N T as in 11.1. Thus real bounded symmetric domains are
in one-to-omne correspondence with real Jordan pairs with
positive involution (or, in analogy to 2.9, real Jordan
triple systems with positive definite trace form). It
would be nice to have an intrinsic characterization of such

domains in analogy to the complex case.

11.3.

11.3

The theory developed in §3 can be carried over

almost word for word to the case of a real Jordan pair

with positive involution.

In particular, 3.4, 3.9-3.12,

3.14~3.19 21X remain valid (with some obvious changes in

formulation).

The details are left to the reader. Let

us point out some of the differences to the complex case.

Changing slightly the notation used in 11.1 and 11.2, let

v,v)

Aut(V,¥ )

be a real Jordan pair.

The automorphism group

is the set of real points of a real algebraic

group Aut(V,V" ) , and a positive involution 7T of (V,V")

induces a Cartan involution of

point set, denoted Aut(V)

the Jordan triple system on V defined by

Aut(V,V ) whose fixed

, is the automorphism group of

. The

idempotents of a real Jordan pair are the real points of a

real algebraic variety, and T defines an involution of

that manifold whose fixed points may be identified with

the tripotents of V .

The important Peirce decomposition

3.13 differs from the complex case as follows. If e is

a tripotent of a real Jordan pair with involution then

V= V2 57 V1 eV

of D(e,e) .

0

as before where

Vd is the a=-eigenspace

But the vector space V2 is now a real

semisimple Jordan algebra J with unit element e and

product xy = %i{xey} .

automorphism of period 2

B the

(+1) - and

of J..

The map =z > zF = Q(e)z is an

Denoting by A and

(-1) -eigenspace of * , respectively,

J

AS® B
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is a Cartan decomposition of J in the sense that A4 is

formally real, and the trace form of J 1is negative definite
on B . (We say that * is a Cartan involution of J ) .
The Jordan triple structure of V2 is given in terms of J

and * by
(1) Q(x)Y = Py

(where PM&)y = 2x{xy) - xzy ) . Indeed, one proves A
formally real and formula (1) as in 3.13., From (1) it
follows that trace D(x,y¥) = 2 trace L(xy*) where
L(x)y = xy . Since the former is positive definife, we
have trace L(x2) <0 for x ¢ B .

Conversely, let J = A ® B be the Cartan decomposition
of a real semisimple Jordan algebra J with Cartan involu-
tion #* . Then the real Jordan pair (J,J) has a positive
involution T given by Tx = x* , and thus J is a posi-
tive Jordan triple system with (1). The proof is similar
to 3.7. Observe that, in contrast to the complex case
where B = iA , B and A are not very closely tied to-
gether; for instance B may be zero, or A = R.e and B
of arbitrary dimension.

As in the complex case, the real bounded symmetric
domain associated with (V,V") and 1 is simply the open
unit ball of the spectral norm, or may be described in

terms of the generic minimum polynomial as in 4.16.

11.4. The classification of real bounded symmetric domains

is obtained as follows. As in 4.11, cne is reduced to the

11.5

case of a simple real Jordan pair (V,V ) . 1If the com-
plexification (VE,VE) is not simple then (V,V ) is a
complex Jordan pair, considered as a real Jordan pair by
restriction of scalars. This case was treated in 4.14.
We may therefore assume (V¢,VE) simple; i.e., (V,V)

absolutely simple. Then 4.12 and 4.13 continue to hold,

and we only have to classify absolutely simple real Jordan
pairs. From the results of [L5, §12] together with well-
known facts on real associative division algebras and their
involutions, real Cayley algebras, and real Jordan division
algebras (which are all constructed from positive definite
quadratic forms) one obtains without much difficulty the
following 1list of absolutely simple real Jordan pairs.

Here the symbols Ig,q R Ilgi etc. have been chosen in

such a way that the complexifications are obtained by

simply erasing the superscripts R ,H, etc.

<
1

<
]

R .
Type I . R) , al - .
e p,q Mp,q( ) re P X q matrices

H - - _ R .
Type 12p,2q‘ V=Y Mp,q(ﬂ) , P XQq matrices with

quaternion entries.

Type Iﬁ " vV=yv = Hn(¢) , 1 Xx n complex hermitian
matrices.
R - v = -
Type IIn . V=Y An(R) , real alternating n x n
matrices
H - v o L _
Type II2n . V=Y Hn(ﬁ) , quaternionic n xX n

matrices, hermitian with respect to the

standard involution of H .
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R - .
Type IIIn . V=V = Sn(R) , real symmetric n X n -

matrices.

Type IIIEZ{n . V=V = SHn(H) , Skew-hermitian quaternionic

n X n - matrices.

In these cases, the Jordan pair structure is given by
Q(x)y = x+ y*x , where t§ is the transpose - conjugate of
y (with respect to the standard involution of the coeffi-
cient algebra R,¢,H) . A positive involution is given by
the identity; in other words, the vector spaces V listed
are positive Jordan triple systems with x-t§-x . Note that
III“Z{n is isomorphic with the Jordan pair of the Jordan

algebra of n X n guaternionic matrices, hermitian relative

to an involution of H with 3-dimensional fixed point set.

ype V3’7 . V- VT - RY, with QGIY = aGmLy)x - a@)y

where gq 1s the quadratic form

2 2 2 . 2 .
-y - —xp+xp+1+- +x of index p ,

and q(x,y) = q(x+y) - a(x) - a(y) . A posi-
tive involution is givem by 7Tx =
(—x1,~",—xp, xp+1,-'°,xn) . Note here that
IV§’0 is not absolutely simple and IV§’1

is not simple.

i

Type VO . V=V =My L0 .

o p— —-_.
Type V o V=V = Ml,z(ﬂo) .

11.7

Here @ is the real Cayley division algebra, and 00 the
real split Cayley algebra. The Jordan pair structure is

QX)y = x-(t§-x) where the bar refers to the canonical in-

volution.
Type v1° V=V = H,(0)
. 3 .
@o _
Type VI R V=V = H3(00) , 3 X 3 - matrices

with entries from 0 resp. 00 , hermitian
with respect to the standard involution.
The Jordan pair structure is induced from
the Jordan algebra 33(0) resp. H3(00) R

[4] [
As in 4.14, the type V° imbeds into VI® and Vv © into VI °

A positive involution is given by the identity in case V0
and VID, and by reflection in a gquaternion subalgebra M

of 00 in the other two cases.

11.,5. Among the real Jordan pairs listed above, precisely

the following isomorphism occur.

1) 12’1 = II§ = III} = If’l =1 = R0 = RR)
@) et = vy ° x i 0 v % = @0

(3) Iﬁ’s = 11} ;

(4) 11} = Iv§’° ; TIIy = 1v§:1 ;

(6) IIi ES IVI;’3 ; 11& = IVE’I ;
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(7) o R ; i 5

= T E=4
P,q q,p 2p,2q 2q,2p
(8) AR
I n

11.6. Let (V,V ) be a.real Jordan pair Qith positive
involution T . Let K = Aut(V’)0 , a comp#ct connected
group, and < ,> a positive definite Aut(V)-invariant
scalar product on V . We may consider Aut(V,V_) as a
subgroup of GL(V) and then Aut(V) is the intersection
of Aut(vV,V ) with the orthogonal group of < ,> (cf.
11.3). With the definitions of 5.1, Proposition 5.2 re-
mains valid. Note, however, that A = R.e does not tell
much about Vz(e) = A8 B (cf. 11.3) except that it is a
real Jordan division algebra; B may be zero or more-than-
onedimensional., Part (a) of 5.3 continues to hold, and we
define the real rank of V +to be the dimension of a maxi-
mal flat subspace. This is the same as the capacity of
(V,V") as defined in [P3], but not the same as the rank
of (V,V ) as defined in [L5, 15.18] (ranmk and real rank
agree if (V,V ) is reduced; see below). Part (b) of 5.3
is no longer true in the real case, and the situation is

more complicated.

11.7. LEMMA. Let (V,V') be a simple real Jordan pair,

e a maximal tripotent, Vole) = J=A®B as in 11.3.

Then J is a simple real Jordan algebra, and A is either

simple or the sum of two simple ideals. In the second

case, there exists ¢ ¢ A such that (i) cz = e (ii)

2

11.9

the Cartan involution * of J is given by z* = P(c)z ,

(iii) the Peirce spaces of of ¢ and e in V agree,

(iv) the Jordan algebra J' = V2(c) (with unit ¢ and

quadratic representation P'(x)y = Q(x)Q(c)y) is formally

——

real.

Proof. The Jordan pair (Vz(e), Vé(e)) is simple and
hence so is J ([L5, 10.14, 1.6]). Now (i) and (ii)
follow from [He 1, Satz 2.3, Kor.]. We have

c* = P(clec = c3 = c = c"1 . Now 10.2, which continues to

hold in the real case, implies D(e,e) = D(c,c) and hence

e and ¢ have the same Peirce spaces. Moreover,

PV = @(x)QEQ)IR@)Y = QXQDY = Qx)QEH)y =
P'(x)y , and since * is a Cartan involution, it follows

that J' is formally real.

11.8. PROPOSITION. Let (V,V ) be a simple real Jordan

pair with positive involution. If (el,---,er) and

(ei,---,e%) are frames of tripotents then there exists

f e K such that f(ej) =+e; , i=1,--.,r .

Proof. In view of 5.3 (a) it suffices to show that, for
one particular frame (el,---,er) and any permutation ¢
of {i,---,r} there exists f ¢ X with f(ei) = e5i) °
Let e = e+ .- te, and Vz(e) = A ® B as before. By
11.7, we may assume that A 1is simple. (Otherwise replace
e by ¢ and decompose c = ¢yt te, into a frame).
Now (el,-~-,er) is an orthogonal system of primitive

idempotents of A and therefore there exist a ¢ Aij for
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i # j (where the Aij are the Peirce spaces of A

. . 2 _

relative to el,---.er) with a e; + e‘j . Let

A= D(a,Ei) - D(ei,'aI) ¢ 1 = Lie(K) . Then one checks that
A(ei) = a = - A(ej) . A(a) = 2(ej ~-e.) , and A(ek) = 0

1
for i # k # j It follows that f = exp(%A) ¢ K inter-
changes ey and ej and leaves the other ey fixed. The

Proposition follows.

Remark. From [P3, Th. 6] together with 5.11 one gets the
somewhat weaker result that £ ¢ Inn(V,V ) N Aut(V) , an
open subgroup of Aut(V) which is in general not connected

(hence # K)

11.9. Let (V,V ) be simple real, e a primitive tri-
potent. Then the isomorphism class of the Jordan division
algebra Vo(e) is independent of the choice of e (and
in fact determined by dim Vz(e)) . We say (V,V ) is
reduced if Vg(e) = R.e Note that Vz(e) has (absolute)
rank 2 unless it is one-dimensional, being the Jordan
algebra of a positive definite quadratic form. This

implies that (V,V ) is reduced if and only if the real

rank agrees with the rank of the complexification, and the

latter is twice the former in the non-reduced case. In
. ~ i
the l1list 11.4, the non-reduced types are fgp,Zq R III2n B

Ivﬁ’o ) Vm , and in these cases, the dimension of Vz(e)

(e primitive) is 4, 3, n, 8 respectively.

11.10. let J pe a real semisimple Jordan algebra,

J=A@®B a Cartan decomposition with Cartan involution *

5
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and (V,V ) = (J,J) the associated Jordan pair with posi~-
tive involution T = * . Then the set of maximal tripotents

is the "unit circle"
* -
C={xedJ|x =x 4

(see [He2] for an extensive study). Indeed, the condition
for a tripotent is x = x(3) = P(x)x* Thus we have to
show that a maximal tripotent is invertible in J . Clearly
this is the case for the unit element e of J . If ¢

is a maximal tripotent then 5.3 (a) implies f(Vz(c)) =

= Vz(e) = J for some f € K, and hence J = Vz(c) which
implies c¢ invertible. 1In contrast to the complex case,

C is in general not connected (see below for more infor-
mation). The tangent space of C at e is B , and

exp(B) © C ; in fact, exp(B) = {02 [ec e €} (cf. [He2,

Satz 1.1]). The Cartan involution * of J induces a
Cartan involution 6 of the structure group Str(J) by
8(g) (x) = [g#_l(x*)]* where 4 1is the canonical involution
of Str(J) , and K is the fixed point set of & in
str(@° .

11.11. PROPOSITION. ZLet (V,V ) be a simple real Jordan.

pair with positive involution.

(i) If (V,V) = (A,A) is the Jordan pair associated

with a simple formally real Jordan algebra of degree ( =

rank) v then the set € of maximal tripotents of V

is {aeA]a-= a™l} and has r + 1 connected components.,

R C 1 )
These are the cases III_ , In,n s Ifgn s Ivi, , vi? .
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(ii) If (Vv,v ) = (J,J) , J a simple reduced real Jordan

algebra with Cartan involution * = 7 , and J. is not iso-

topic with a formally real algebra, then the set C of

maximal tripotents has 2 connected components. These are

R , IIR
n,n

L)

the cases I bn » TVR'P witn 2<p< (B, vi© |

(iii) If (V.V') is not reduced, or contains no invertible

elements, then K acts transitively on frames, and the

set of maximal tripotents is connected. (The rest of the

cases, including all complex Jordan pairs).

Proof. (i) C is isomorphic with the set of idempotents

of A via a > 3(a+e) . Now the assertionm follows from

well-known facts on formally real Jordan algebras (see also
[He2, Satz 5.3 (e)]).

(ii) See [He2, Satz 5.3 (Bl)’ (B2)]

(iii) Let (el,-»-,e ) be a frame of tripotents. Let

T

e~eyj+---+te , J= V2(e) =A®B . By 11.8, it suffices
to show that there exists f ¢ K with f(ei) = -ey .

f(ej) = ej , for all i # j . If V is not reduced then
Vii = R.ei ® Bi is a Cartan decomposition with

B; =V;; NB#0 . Choose x ¢ B; such that x2 = - e; -
Then A = D(x,e) - D(e,X) ¢ 1 = Lie(X) , and by 9.13, we
have D(x,8) = D(e,X') = - D(e,X) hemce 4 = 2D(x,3) .
Now A(ey) = Z{XEei} = 4x , A(x) = 2{xex]} = 42 = - de; ,

and A(ej) =0 for j# i . Hence f = exp(&A) has the

required properties.

11.13

If V contains no invertible elements then ViO # 0,
i=1,-++,r . Choose x e V,, such that [xfei} =e; -
This is possible since {X§ei} € AN V;y = R.e; by the
Peirce rules, and {xiei} is a positive multiple of e ,
by 10.4.2. Then 4 = D(x,e) - D(e,x) € 1 , and

A(ei) =x , A(x) = - e A(ej) =0 for j # i . Hence

i

we may set f = exp(wA) .

11.12. Let M be the set of tripotents of a real Jordan
pair with positive involution. Then Theorem 5.6 holds if

we replace 1iA(e) by B(e) , the (-1)-eigenspace of *

in Vé(e) . Also, S = M/R is now only a compact

Riemannian symmetric space. Note that the Peirce reflection
B(e,2e) is in gemeral not in K , nor are the "unit circles”
C(e) connected. The proof that d ~ e 1if and only if

d € C(e) has to be modified; cf. the proof of 11.7. The
fibration p : M > S is obtained as follows. Let e e M

and consider the map f : V (e} X C(e) » M given by

[

f(u,c) = k(u).c where k(u) = exp(D(u,e) - D(e,u)) e K .

Then f(0,c) = ¢ , £(u,C(e)) = k(u).C(e) = Ck(u).e) .
For the differential of £ at (0,c) one obtains by a

simple computation
d£(0,c) - (v,w) = w + {vec] - {&vec} = w + D(c,e)v

where v ¢ Vl(e) and W ¢ Te(C(e)) = B(c) . Thus
df(0,c)-(v,w) = 0 implies w = D(c,e)v = 0 , and since ¢

is invertible in Vz(e) , we get v =0 by 10.2. Hence
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£ is an immersion at all points of {0} x C(e) , and by
comparing dimensions, we see that it is a local diffeo-
morphism. By compactness of C(e) , there exists an open
neighborhood U of O in Vl(e) such that £ :U x C(e) » M
is an open imbedding. Now it follows easily that S is a

compact manifold and p: M - 8 a fibration.

11.13. Let 5 be a real bounded symmetric domain. All of
the results of §6 on the boundary structure of D which
make sense for real domains remain valid. There are now no
holomorphic boundary components but we dg have affine (and
metric) boundary components, and they are described by 6.3.
The sets (i)-(iii) of 6.5 still coincide but are no longer
connected. It would be interesting to characterize the set

of maximal tripotents as the Shilov boundary of a suitable

function space.

11.14. Let (V,V') be a real semisimple Jordan pair and
(?,?’) = (V,V) ® € its complexification. Let
X=VxV/~ be as in 7.6. Then X is a compact real
manifold; moreover, X = X(R) 1is the set of real points of
a real projective algebraic variety X whose complexifi-~
cation is the variety ¥ defined by (V,V ) . Thus one
may think of X also as of X together with the Galois
action induced by complex conjugation relative to (V,V ) .
The manifolds X obtained in this way are precisely the

symmetric R-spaces studied in [T1].

11.15

Let gf=§g£(§)o, a real semisimple connected algebraic group
with trivial centre (whose complexification is G = Aut (i)o) . Let
6=6®%, H=-60nHR where H= Aut(v,v)?, ana vE
as in 8.6. Then the results of §8 all remain valid. In
8.9, we have Aut(v,v)? = Inn(v,V") as algebraic groups
(!) . 1In general, Inn(V,V") , the subgroup of GL(V) XGL(V")
generated by all (B(x,y) ,(B(y,x)—l) , (x,¥y) quasi-
invertible, is neither topologically connected nor equal to
Inn(V,V")(R) . For an extension of these results to arbi~

trary base fields see [L6, L7].

11.15. Now let T be a positive involution of the real
Jordan pair (V,V ) . Then 7T defines commuting auto-
morphisms ¢ and 8 of period 2 of the real algebraic group
G as in 9.2 and 9.5. Let go and gc be the fixed point

sets of ¢ and © din G and let

- 0 - 0
G, = G, R, 6, =G ®)

be the topological identity components of the sets of real
points. Then gb and gc are real reductive (in general

not semisimple) algebraic groups with Lie algebras
8o = 1® v, 8,7 iteom

where 1 = Der(V) = Lie(K), p={u-ufue v},
m = {u—&% |u e vV} . Thus e uT = p ® m . The complex-
ifications of 35 and g, are isomorphic (but have not

much to do with g = Lie(G) , in contrast to the complex
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case). We note that

1 t = [p,p] = [m,m] .

Indeed, the second equality is immediate from the definitions.
By 8.7, § = [u+ @ u e B l=(m®yp, m& p] =
= [p,p] ® [m,p] , and this is the decomposition of § into
the (+1)-eigenspaces of 8 . On the other hand, the fixed
point set of 6 in § is 1

As in 9.7, a tripotent e of V defines a homo~-
morphism f :SLZ(R) -+ G , and we have 9.8 and 9.9, with
identical proofs (replace ip by m). It follows that

8 ]GO is a Cartan involution and hence

(2) G, = exp(p)-K

is a Cartan decomposition.

11.16. Let B/ < V be the real bounded symmetric domain
defined by T . The restriction of the Bergman metric of
the complexification ﬁ¢ of B to W& is a Riemannian
metric on & , given by ds2 = <B(x,X) Tdx,d©> (cf. 2.10).
Since S is totally geodesic it is itself a Riemannian
symmetric space, and its exponential map at O is given

by 4.8. We claim that G0 is (by restriction to & iso-

morphic with) the group of displacements of the symmetric

space b& ; i.e., the group generated by all sksy,x,y c b,

where s, denotes the geodesic symmetry around the point

x (cf. [L2]). Indeed, K acts on . by isometries. By

11.17

4.4, the vector fields in p restrict to Killing vector
fields on & . Hence 11.15.2 shows that G, is contained
in the group of isometries of S . Now it follows from
11.15.1 and general facts on symmetric spaces that Go is
the group of displacements of 4 .

Finally, note that metric boundary components of £
can be defined as in the complex case (2.10), and the
proof of 9.11 shows that they agree with the affine boundary

components.

11.17. Let e be a tripotent. Then the homomorphism
b4 :§£2 - G induced by e maps the R-split torus
T-(¢D) |a® - b¥ = 1} of SL, into G . Denoting the
image of T by Ié , 9.12-9.17 all remain valid if we
replace iA by B (where Vz(e) = A @ B). Note that G0
acts on 5 and permutes the boundary components. This
follows from their characterization as metric boundary
components since Go acts by isometries on b .

The real root system ¢ of G0 may be computed as
in 9.18, 9.19. In particular, 9.19 (a), (b) hold in the
real case as well (where now Bj_‘_j = B N Vij) . Part (c},

however, now takes the following form.

11.18. PROPOSITION. Let (V,V ) be an absolutely simple

real Jordan pair with positive involution T , and let

(el,---er) be a frame of tripotents with the property that

for e = e;+---te, we have Vz(e) = A® B with A sim-

ple (cf. 11.7). Then there are the following possibilities.
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CVRE I CICRETS )} is of type A._; for the types

o, ap L i, e =2, ang Vil -3)

r,r 2r

+ wj} is of type B for the cases

i T
R 00 2
Ir, with r < q , 112r+1 , vV (r=2)
@ & ={+ 2w, + w; * wJ} is of type C, for the cases
H ’0 =
I&2i1f',2r ’ III2r ’ IVﬁ (r=1)
~ ) R
D &= {+ wy * wj} is of type D, for tge cases Ir,r’
R n o
gy, P 2<p < (5], r = 2) , and VI °(x = 3)

(®C) & = {+ Wi,k 205, & owy ok wj} is of type BC_, in the

0

H _
cases Izr,zq(r <@, V (r=1)

Observe that (A) and (D) correspond to the cases (i) and
(ii) of 11.11, respectively, and (BC), (B), and (C) to

case (iii). 1In fact, the number of comnnected components
of the set of maximal tripotents is equal to the index of
the Weyl group of ¢ in the group of all signed permuta-

tions of Wystrc,w,  (resp. ej,---,e)) .

11.19. In contrast to the complex case, the real algebraic
group 90 (resp. the Riemannian symmetric space &) does
not determine the Jordan pair uniquely. For example, the
domains associated with the non-isomorphic Jordan pairs

v ° and 12,4 are isomorphic as symmetric spaces. The
same happens for II§ and vi%® % (R,R) . This is all the
L

more surprising as V is an exceptional Jordan pair

(cf. [L-Mc] and ﬂg 4 s mnot.

11.19

11.20. Partial Cayley transformations and Siegel domain
realizations work the same way as in the complex case,
provided we replace iA by B (J =A@ B = Vz(e)) through-
out, and define the "real part" Re(x) for x e V2 by
%(x-+x*) . The endomorphisms ¢(z) of v; (cf. 10.4) are
now of course R-linear . Also, there is no way of converting
right half planes into upper half planes as in the complex

case.




Al
Appendix:
List of identities for Jordan pairs
(For proofs see [L5])
Let (VF,¥") be a Jordan pair, with quadratic maps
Q: vtk > Hom(V"',Vi) . Thus for x ¢ Vi'-, Yy ¢ V+, we have '

s

Qx)y = Qxy e V& and Q¥ is guadratic in x and linear

in y . We set
{xyz} = D(x,7)z = Q(x,2)y = Qx+2)y - Ly - Qv ,
B(x,y) = 1d - D(x,y) + Q9
x7 = B(x,y)'l(x;Qxy) (the quasi-inverse) .

Then the following identities hold (the first three are the

defining identities of a Jordan pair)

JP1 D(x,y)Qx = D(y,x) ,
JP2  DQy,y) = D(x,Q,x) ,
I Q) = QQ,Q .
JP¢ D(x,¥)Q, = Q(x,Q,y)
JPS  Q(x,z)D(y,x) + QD(y,2z) = Q(x,{xyz}) + Qz,Q.y)
| = DG, ¥)Q(x,2) + Dz, e, ,
JP6  D(x,{yxz}) + . Q,2) = D(x,2z)D(x,y) + D(Q,y,z)

= D(x,¥)D(x,2) + D(Qz,y) ,



A2

IJP7

Jp8

JP9

JP10
JPl1l
JPl2
JP13
Jpl4
JP15
JP16
JP17
JPl8
JP19
JP20
JP21
Jp22
Jp23
Jp24
JP25
JP26

Jp27

Jp28
Jp29
JP30
JP31
Jp32

D({xyz},y) = D(z,Q.x) + Déx,Qyz) s

D(x, {yxz}) = D(Qy,z) + D(Qz,y) ,

D(x,y)D(z,y) = Q(x,2)Q, + D(x,Q,2) ,

Q(x,2)D(y,x) = Q(Qy,2z) + D(z,¥)Q, ,

D(x,y)Q(x,2z) = Q(Q,¥,2) + QD(y,2) ,

D(x-,y)Qz + QD(y,x) = Q(z, (xyz}]) ,

D(x,y)D(x,2z) = D(Q,v,z) + QQ(y,2) ,

{xy{uvz]} ~ [uvi{xyz]] = {{xyu}vz} - [ulyxvlz} ,
[DGx,y),D(u,v)] = D({xyu},v) - D(u,{yxv}) ,

{{xyu}vz} - {u{yxvlz} = {x{vuylz} - {{uvxlyz] .
D(Q,y,2)Q, = Q. D(y,Q.2) ,

D(Q,y,2)D(x,y) = QQ.D(x,2) + D(x,9,Q,2) ,

Q(Q,v,{xyz}) = QQ,Q(x,2) + Q(x,2)Q,Q, ,

Qlxyz]) + Q(Qy,9,¥) = QQ.Q, + Q,Q,Q, + Q(x,2)Q,Q(x,2) ,
Qlxyz1) + Q(Q,Qyz,2) = QQ,Q, + Q,Q,Q, +D(X,¥)Q,D(y,x) ,
QUQ,Qyz, {xy2}) = QQQD(Y,%) + D(x,5)Q,Q,9, »
B(x,7)Q, = QB(y,x) = Qx-Qy) ,

B(Qy,¥) = B(x,Q,x) = B(x,y)B(x,-y) .
Bx,7)% = B(2x-Q,7,7) = B(x,2y -Qyx) ,
Q(B(x,y)z) = B(x,¥)Q,B(y,x) ,

Q(B(x,y)=z, x=Q.¥) = B(x,y)(Q(x,2) - D(z,7)Q)

(Q(x,z) - QxD(Y,Z))B(Y,X) 2
B(x,7)Q(x") = Q&¥)B(y,%) = Q ,

B(x,7)Q(x7,2) +Q,D(y,2) = Q(x",2)B(y,x) +D(2,¥)Q, = Q(x,2) ,
B(x:Y)D(xy,z) = D(x’z) - QxQ(YJz) 3
D(z,x")B(y,x) = D(z,x) - Q(¥,2)Q, »

D&,y - Qux) = D(x-Qy,¥) = D(x,¥) ,

A3

JpP33 B(x,y)B(x',z)
JP34 B(z,xY)B(¥,x)

JP35 B(x,y) T = B(xY,-y) = B(-x,¥%) .

B(x,y +z) ,

B(y +z,x) ,

The quasi-inverse satisfies

y

x’ = x + Qx(yx) 5 } (symmetry)

Qy(nyz> = (ny)z ,

] (shifting)
B(u,v) P WY o g, vn?
2 = ()2,
(addition
formulae)

x
x+z)Y = xy-i-B(:I:,y)-i(z(y )) .

The following identity of degree 11 (an analogue of Glennie's

i@entity) holds in all special Jordan pairs but not, e.g.,

in the Jordan pairs of type V or VI (cf. [L-Mc]).

@ {z,%,00x,7)Q,0%] - Q0,0 (x,5)Q,Q,z

= 197, %,Q0,2)Q,Q,¥) - 0,01, x)QQ.z -
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