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Abstract. We show that the norm closure of the set of inner
triple derivations from a factor von Neumann algebra into its pre-
dual, has codimension zero or one in the real vector space of all
triple derivations. It is zero if and only if the factor is finite. We
also prove that every Jordan derivation of a von Neumann algebra
to itself is an inner Jordan derivation and give a new proof that
every triple derivation of a von Neumann algebra to itself is an
inner triple derivation.

1. Introduction

Every derivation of a von Neumann algebra into itself is inner (Sakai
[14], Kadison [11]). Building on earlier work of Bunce and Paschke
[2], Haagerup, on his way to proving that every C∗-algebra is weakly
amenable, showed in [5] that every derivation of a von Neumann algebra
into its predual is inner. Thus the first Hochschild cohomology groups
H1(M,M) and H1(M,M∗) vanish for any von Neumann algebra M .

It is also known that every triple derivation of a von Neumann al-
gebra into itself is an inner triple derivation ([9, Theorem 2]). In [13],
triple derivations and inner triple derivations into a Jordan triple mod-
ule were defined, and in [10], the study of ternary weak amenability
in operator algebras and triples was initiated. Triple derivations and
inner triple derivations into a triple module are recalled in section 2.1

Among other things, it was shown in [10] that every commutative
(real or complex) C∗-algebra A is ternary weakly amenable, that is,
every triple derivation of A into its dual A∗ is an inner triple derivation,
but the C∗-algebras K(H) of all compact operators and B(H) of all
bounded operators on an infinite dimensional Hilbert space H are not
ternary weakly amenable.

Two consequences of [10] are that finite dimensional von Neumann
algebras and abelian von Neumann algebras have the property that
every triple derivation into the predual is an inner triple derivation,
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1In this paper, we use the terms ‘triple’ and ‘ternary’ interchangeably, while

mindful that in some quarters ‘triple’ means ‘Jordan triple’ and ‘ternary’ refers to
an associative triple setting, such as a TRO (ternary ring of operators)
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analogous to the Haagerup result. We show that this rarely happens
in a general von Neumann algebra, but it comes close.

Using ideas from [10], we prove a (triple) cohomological character-
ization of finite factors and a zero-one law for factors. Namely, we
show that for any factor, the linear space of (automatically bounded
by [13, Corollary 15]) triple derivations into the predual, modulo the
norm closure of the inner triple derivations, has dimension 0 or 1: It is
zero if and only if the factor is finite (Theorem 2); and it is 1 otherwise
(Theorem 3).

We use similar ideas to show that every Jordan derivation of a von
Neumann algebra into itself is an inner Jordan derivation (Theorem
1(b)), and to give an alternate proof of [9, Theorem 2], quoted above
(Theorem 1(a)). The proof of Theorem 1 is also based on the deep
result (also quoted above) that every derivation of a von Neumann
algebra is inner, whereas the original proof in [9] depended on results
of Upmeier [17] on derivations of Jordan operator algebras.

Inner triple derivations on a von Neumann algebra M into its predual
M∗ are closely related to the span of commutators of normal functionals
with elements of M , denoted by [M∗,M ]. In particular, a consequence
of Proposition 4.5 is that in any factor of type II1, not every normal
functional which vanishes at the identity is a sum of such commuta-
tors (Corollary 4.6), although it is a norm limit of such commutators
(Lemma 4.2).

2. Triple modules and triple derivations

In this section we recall the general context for triple derivations. In
this note, we shall only use these concepts in the special case of a von
Neumann algebra and its predual, described later in the section. For a
more detailed discussion, the reader is referred to [13] and [10].

Varieties of modules. Let A be an associative algebra. Let us recall
that an A-bimodule is a vector space X, equipped with two bilinear
products (a, x) 7→ ax and (a, x) 7→ xa from A×X to X satisfying the
following axioms:

a(bx) = (ab)x, a(xb) = (ax)b, and, (xa)b = x(ab),

for every a, b ∈ A and x ∈ X. The space A⊕X becomes an associative
algebra with respect to the product

(a, x)(b, y) := (ab, ay + xb).

Let A be a Jordan algebra. A Jordan A-module is a vector space
X, equipped with two bilinear products (a, x) 7→ a◦x and (a, x) 7→ x◦a
from A×X to X, satisfying:

a ◦ x = x ◦ a, a2 ◦ (x ◦ a) = (a2 ◦ x) ◦ a, and,

2((x ◦ a) ◦ b) ◦ a+ x ◦ (a2 ◦ b) = 2(x ◦ a) ◦ (a ◦ b) + (x ◦ b) ◦ a2,
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for every a, b ∈ A and x ∈ X. The space A ⊕ X becomes a Jordan
algebra with respect to the product

(a, x) ◦ (b, y) := (a ◦ b, a ◦ y + x ◦ b).
A complex (resp., real) Jordan triple is a complex (resp., real)

vector space E equipped with a triple product

E × E × E → E (xyz) 7→ {x, y, z}
which is bilinear and symmetric in the outer variables and conjugate
linear (resp., linear) in the middle one and satisfying the so-called “Jor-
dan Identity”:

L(a, b)L(x, y)− L(x, y)L(a, b) = L(L(a, b)x, y)− L(x, L(b, a)y),

for all a, b, x, y in E, where L(x, y)z := {x, y, z}.
The Jordan identity is equivalent to

{a, b, {c, d, e}} = {{a, b, c} , d, e} − {c, {b, a, d} , e}+ {c, d, {a, b, e}} ,
which asserts that the map iL(a, a) is a triple derivation (to be defined
shortly). It also shows that the span of the “multiplication” operators
L(x, y) is a Lie algebra.

Let E be a complex (resp. real) Jordan triple. A Jordan triple
E-module is a vector space X equipped with three mappings

{., ., .}1 : X × E × E → X, {., ., .}2 : E ×X × E → X

and {., ., .}3 : E × E ×X → X

in such a way that the space E ⊕X becomes a real Jordan triple with
respect to the triple product {a1 + x1, a2 + x2, a3 + x3} =

{a1, a2, a3}E + {x1, a2, a3}1 + {a1, x2, a3}2 + {a1, a2, x3}3.
The Jordan identity

{a, b, {c, d, e}} = {{a, b, c} , d, e} − {c, {b, a, d} , e}+ {c, d, {a, b, e}} ,
holds whenever exactly one of the elements belongs to X. (We shall
suppress subscripts since it will always be clear which element is in the
module.)

In the complex case we have the unfortunate technical requirement
that {x, a, b}1 (={b, a, x}3) is linear in a and x and conjugate linear in
b; and {a, x, b}2 is conjugate linear in each variable a, b, x. Therefore,
according to this definition, a complex Jordan triple E is not a Jordan
triple E-module. This anomaly, however, does not have any impact on
our results, nor does it apply to associative or Jordan modules.

Every (associative) Banach A-bimodule (resp., Jordan Banach A-
module) X over an associative Banach algebra A (resp., Jordan Banach
algebra A) is a real Banach triple A-module (resp., A-module) with
respect to the “elementary” product

{a, b, c} :=
1

2
(abc+ cba)
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(resp., {a, b, c} = (a ◦ b) ◦ c+ (c ◦ b) ◦ a− (a ◦ c) ◦ b), where one element
of a, b, c is in X and the other two are in A.

In particular, any von Neumann algebra M is a complex Jordan
triple under the triple product {abc} = (ab∗c+ cb∗a)/2 and its predual
M∗ is a Jordan triple M -module, according to the following definition.

Definition 2.1. The dual space, E∗, of a complex (resp., real) Jordan
Banach triple E is a complex (resp., real) triple E-module with respect
to the products:

(2.1) {a, b, ϕ} (x) = {ϕ, b, a} (x) := ϕ {b, a, x}
and

(2.2) {a, ϕ, b} (x) := ϕ {a, x, b},
for every x ∈ X, a, b ∈ E,ϕ ∈ E∗.

Varieties of derivations. Let X be a Banach A-bimodule over an
(associative) Banach algebra A. A linear mapping D : A → X is said
to be a derivation if D(ab) = D(a)b + aD(b), for every a, b in A.
For emphasis we call this a binary (or associative) derivation. We
denote the set of all continuous binary derivations from A to X by
Db(A,X) .

When X is a Jordan Banach module over a Jordan Banach algebra
A, a linear mapping D : A→ X is said to be a derivation if D(a◦b) =
D(a)◦b+a◦D(b), for every a, b in A. For emphasis we call this a Jordan
derivation. We denote the set of continuous Jordan derivations from
A to X by DJ(A,X).

In the setting of Jordan Banach triples, a triple or ternary deriva-
tion from a (real or complex) Jordan Banach triple, E, into a Banach
triple E-module, X, is a conjugate linear mapping δ : E → X satisfying

(2.3) δ {a, b, c} = {δ(a), b, c}+ {a, δ(b), c}+ {a, b, δ(c)} ,
for every a, b, c in E. We denote the set of all continuous ternary
derivations from E to X by Dt(E,X). We remind the reader that
ternary (or triple) derivations from E to E, such as in Theorem 1(a),
are defined as linear maps.

The conjugate linearity (as opposed to linearity) of ternary deriva-
tions from a complex Jordan triple into a Jordan triple module is a
reflection of the fact noted above that a complex Jordan triple is not a
Jordan triple module over itself.

Let X be a Banach A-bimodule over an associative Banach algebra
A. Given x0 in X, the mapping Dx0

: A → X, Dx0
(a) = x0a − ax0 is

a bounded (associative or binary) derivation. Derivations of this form
are called inner. We shall use the customary notation adx0 for these
inner derivations. The set of all inner derivations from A to X will be
denoted by Innb(A,X).
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When x0 is an element in a Jordan Banach A-module, X, over a
Jordan Banach algebra, A, for each b ∈ A, the mapping

δx0 ,b = L(x0)L(b)− L(b)L(x0) : A→ X,

δx0 ,b(a) := (x0 ◦ a) ◦ b− (b ◦ a) ◦ x0 , (a ∈ A),

is a bounded derivation. Here L(x0) (resp. L(b)) denotes the module
action a 7→ x0 ◦ a (resp. multiplication a 7→ b ◦ a). Finite sums of
derivations of this form are called inner. The set of all inner Jordan
derivations from A to X is denoted by InnJ(A,X).

Let E be a complex (resp., real) Jordan triple and let X be a triple
E-module. For each b ∈ E and each x0 ∈ X, we conclude, via the main
identity for Jordan triple modules, that the mapping

δ = δ(b, x0) = L(b, x0)− L(x0, b) : E → X,

defined by

(2.4) δ(a) = δ(b, x0)(a) := {b, x0 , a} − {x0 , b, a} (a ∈ E),

is a ternary derivation from E into X. Finite sums of derivations of
the form δ(b, x0) are called inner triple derivations. The set of all
inner ternary derivations from E to X is denoted by Innt(E,X) .

3. Triple derivations on von Neumann algebras

In this section, since we only consider derivations with the same
domain and range, we contract the notation from Db(A,X) to Db(A),
etc.

Our proof of Theorem 1 below uses techniques from [10]. We summa-
rize these tools in the following proposition, whose proof can be easily
read off from the corresponding proofs in [10, Section 3].

Proposition 3.1. Let A be a unital Banach ∗-algebra equipped with
the ternary product given by {a, b, c} = 1

2
(ab∗c+ cb∗a) and the Jordan

product a ◦ b = (ab+ ba)/2.

(a): ([10, Lemma 3.1]) Let δ : Asa → Asa be a (real) linear map-
ping. The following assertions are equivalent:
(i) δ is a ternary derivation and δ(1) = 0.

(ii) δ is a Jordan derivation.
(b): ([10, Lemma 3.2(i)]) InnJ(A) ⊂ Innb(A).
(c): ([10, Lemma 3.2(ii)]) Let D be an element in Innb(A), that

is, D = ad a for some a in A. Then D is a *-derivation
whenever a∗ = −a. Conversely, if D is a *-derivation, then
a∗ = −a+ z for some z in the center of A.

(d): ([10, Lemma 3.4]) Every ternary derivation δ in Dt(A) sat-
isfies the identity δ(1)∗ = −δ(1).
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(e): ([10, Lemma 3.5]) Let Dot (A) be the set of all (continuous)
ternary derivations from A to A vanishing at the unit element.
Then Dt(A) = Dot (A) + Innt(A). More precisely, if δ ∈ Dt(A),
then δ = δ0 + δ1, where δ0 ∈ Dot (A) and δ1, defined by δ1(a) :=
δ(1)◦a = 1

2
(δ(1) a+a δ(1)), is the inner derivation −1

2
L(1, δ(1))+

1
2
L(δ(1), 1).

(f): ([10, Lemma 3.6]) Let δ : A → A be a linear mapping.
Then δ lies in DJ(A) if, and only if, δ {a, 1, b} = {δ(a), 1, b} +
{a, 1, δ(b)} for all a, b ∈ A. Moreover, Dot (A)= D∗J(A).

(g): ([10, Prop. 3.7]) Dt(A) = D∗J(A) + Innt(A).

Theorem 1. Let M be any von Neumann algebra.

(a): Every triple derivation of M is an inner triple derivation.
(b): Every Jordan derivation of M is an inner Jordan derivation.

Proof. To prove (a) it suffices, by Proposition 3.1(g), to show that
D∗J(M) ⊂ Innt(M). Suppose δ is a self-adjoint Jordan derivation of
M . By [15], δ is an associative derivation and by [11] and [14] and
Proposition 3.1(b), δ(x) = ax − xa where a∗ + a = z is a self adjoint
element of the center of M .

We shall use the fact that for every von Neumann algebra M , M =
Z(M) + [M,M ], where Z(M) denotes the center of M (see the begin-
ning of the next section). Let us therefore write

a = z′ +
∑
j

[bj + icj, b
′
j + ic′j],

where bj, b
′
j, cj, c

′
j are self adjoint elements of M and z′ ∈ Z(M). It

follows that

0 = a∗ + a− z = (z′)∗ + z′ − z + 2i
∑
j

([cj, b
′
j] + [bj, c

′
j])

so that
∑

j([cj, b
′
j] + [bj, c

′
j]) belongs to the center of M . We now have

(3.1) δ = ad a = ad
∑
j

([bj, b
′
j]− [cj, c

′
j])

and therefore a direct calculation shows that δ is equal to the inner
triple derivation∑

j

(
L(bj, 2b

′
j)− L(2b′j, bj)− L(cj, 2c

′
j) + L(2c′j, cj)

)
,

which proves (a).
We have just shown that a self adjoint Jordan derivation δ of M has

the form (3.1). Then another direct calculation shows that δ is equal
to the inner Jordan derivation∑

j

(
L(bj)L(b′j)− L(b′j)L(bj)− L(cj)L(c′j) + L(c′j)L(cj)

)
.
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If δ is any Jordan derivation, so are δ∗ and iδ, so δ is an inner Jordan
derivation. �

4. Normal ternary weak amenability for factors

We shall use the facts that if M is a finite von Neumann algebra, then
every element ofM of (central) trace zero is a finite sum of commutators
([4, Theoreme 3.2]), and if M is properly infinite (no finite central
projections), then every element of M is a finite sum of commutators
([8],[6, Theorem 1],[7, Corollary to Theorem 8],[1, Lemma 3.1]).

Let M be a von Neumann algebra and consider the submodule M∗ ⊂
M∗. Then

(4.1) Dt(M,M∗) = Inn∗b(M,M∗) ◦ ∗+ Innt(M,M∗).

This was inadvertently stated and proved for M semifinite in [10, Cor.
3.10] but the same proof holds in general.

In particular, Dt(L∞, L1) = Innt(L∞, L1), so that L∞ is normally
ternary weakly amenable, according to the following definition. (Recall
from the introduction that a Jordan triple system is said to be ternary
weakly amenable if Dt(E,E∗) = Innt(E,E∗), and that L∞ is ternary
weakly amenable.)

Definition 4.1. A Jordan triple system E which is the dual space of
a Banach space E∗ is normally ternary weakly amenable if Dt(E,E∗) =
Innt(E,E∗).

Let M be any von Neumann algebra and let φ0 be any fixed normal
state. Then

(4.2) M∗ = ker 1̂ + Cφ0,

where

ker 1̂ = {ψ ∈M∗ : ψ(1) = 0}.

Lemma 4.2. If M is a factor, then [M∗,M ] = ker 1̂ (norm closure).

Proof. It is clear that [M∗,M ] ⊂ ker 1̂. If x ∈ M satisfies x̂([ϕ, b]) = 0
for all ϕ ∈ M∗ and b ∈ M , then ϕ(bx − xb) = 0, and so x belongs to
the center of M and is a scalar multiple of 1. Thus for any ψ ∈ ker 1̂,
ψ(x) = 0, proving the lemma. �

Lemma 4.3. If M is a properly infinite von Neumann algebra, if ψ ∈
M∗ and if Dψ ◦ ∗ belongs to the norm closure of Innt(M,M∗), where
Dψ = adψ, then ψ(1) = 0.

Proof. For ε > 0, there exist ϕj ∈M∗ and bj ∈M such that

‖Dψ ◦ ∗ −
n∑
j=1

(L(ϕj, bj)− L(bj, ϕj))‖ < ε.
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For x, a ∈M , direct calculations yield∣∣∣∣∣ψ(a∗x− xa∗)− 1

2

n∑
j=1

(ϕjbj − b∗jϕ∗j)(a∗x)− 1

2

n∑
j=1

(bjϕj − ϕ∗jb∗j)(xa∗)

∣∣∣∣∣ < ε‖a‖‖x‖.

We set x = 1 to get∣∣∣∣∣12
n∑
j=1

(ϕjbj − b∗jϕ∗j)(a∗) +
1

2

n∑
j=1

(bjϕj − ϕ∗jb∗j)(a∗)

∣∣∣∣∣ < ε‖a‖,

and therefore

(4.3)

∣∣∣∣∣ψ(a∗x− xa∗)− 1

2

n∑
j=1

(ϕjbj − b∗jϕ∗j)(a∗x− xa∗)

∣∣∣∣∣ < 2ε‖a‖‖x‖,

for every a, x ∈M , that is,∣∣∣∣∣ψ([a, x])− 1

2

n∑
j=1

(ϕjbj − b∗jϕ∗j)([a, x])

∣∣∣∣∣ < 2ε‖a‖‖x‖,

and therefore∣∣∣∣∣ψ([a, x])− 1

2

n∑
j=1

(ϕ∗jb
∗
j − bjϕj)([a, x])

∣∣∣∣∣ < 3ε‖a‖‖x‖.

Let us now write∑
j

(ϕjbj − b∗jϕ∗j) =
n∑
j=1

(ϕjbj − bjϕj + bjϕj − ϕ∗jb∗j + ϕ∗jb
∗
j − b∗jϕ∗j)

so that

2ψ −
∑
j

(ϕjbj − b∗jϕ∗j) =

2ψ −
∑
j

[ϕj, bj]−
∑

(bjϕj − ϕ∗jb∗j) + 2ψ − 2ψ −
∑
j

[ϕ∗j , b
∗
j ]

and

4ψ −
∑
j

[ϕj, bj]−
∑
j

[ϕ∗j , b
∗
j ] =

2ψ −
∑
j

(ϕjbj − b∗jϕ∗j) + 2ψ +
∑
j

(bjϕj − ϕ∗jb∗j).

Thus ∣∣∣∣∣4ψ([a, x])−
∑
j

[ϕj, bj]([a, x])−
∑
j

[ϕ∗j , b
∗
j ]([a, x])

∣∣∣∣∣ ≤∣∣∣∣∣2ψ([a, x])−
∑
j

(ϕjbj − b∗jϕ∗j)([a, x])

∣∣∣∣∣



ON NORMAL TERNARY WEAK AMENABILITY OF FACTORS 9

+

∣∣∣∣∣2ψ([a, x]) +
∑
j

(bjϕj)− ϕ∗jb∗j)([a, x])

∣∣∣∣∣ < 10ε‖a‖‖x‖.

Since [M,M ] = M , 1 =
∑

k[ak, xk] and therefore

|4ψ(1)| ≤ 10ε
∑
k

‖xk‖‖ak‖,

proving that ψ(1) = 0. �

The proof of the following lemma is contained in [10, Lemma 3.2].

Lemma 4.4. If M is a von Neumann algebra, and ψ ∈ M∗ satisfies
ψ∗ = −ψ, then Dψ is a self-adjoint mapping. Conversely, if M is
properly infinite and Dψ is self-adjoint, then ψ∗ = −ψ.

Theorem 2. Let M be a von Neumann algebra.

(a): If every triple derivation of M into M∗ is approximated in
norm by inner triple derivations, then M is finite.

(b): If M is a finite factor, then every triple derivation of M into
M∗ is approximated in norm by inner triple derivations.

(c): If M is a factor, then M is finite if and only if every triple
derivation of M into M∗ is approximated in norm by inner triple
derivations.

Proof. (a) Assume that every triple derivation of M into M∗ is a norm
limit of inner such derivations and also assume for the moment that M
is properly infinite. If ψ ∈ M∗ satisfies ψ∗ = −ψ, then by Lemma 4.4,
and (4.1), Dψ ◦ ∗ ∈ Dt(M,M∗). Then by Lemma 4.3, ψ(1) = 0. This
is a contradiction if we take ψ = iφ0 where φ0 is any normal state of
M . This proves that M cannot be properly infinite.

If M is arbitrary, write M = pM + (1 − p)M for some central pro-
jection p, where pM is finite and (1 − p)M is properly infinite. It is
easy to see that if δ ∈ Dt(M,M∗), then pδ ∈ D(pM, (pM)∗) and simi-
larly for (1−p)δ and that if Innt(M,M∗) is norm dense in Dt(M,M∗),
then Innt(pM, (pM)∗) is norm dense in Dt(pM, (pM)∗), and Innt((1−
p)M, ((1− p)M)∗) is norm dense in Dt((1− p)M, ((1− p)M)∗). By the
preceding paragraph, 1− p = 0, so that M is finite.

(b) Suppose that M is a finite factor. Let ψ ∈ M∗ be such that
the inner derivation Dψ : x 7→ ψ · x − x · ψ, is self adjoint, that is,
Dψ ∈ Inn∗b(M,M∗). By the proof of Lemma 4.4 (namely, [10, Lemma
3.2]), ψ∗ = −ψ on [M,M ]. Let us assume temporarily that ψ(1) ∈ iR,
so that ψ∗ = −ψ on M = C1 + [M,M ]. We also assume, temporarily,
that ψ = x̂ψ for some xψ ∈M , that is, ψ(y) = tr (yxψ) for y ∈M .

We then have

(4.4) xψ = tr (xψ)1 +
∑
j

[aj + ibj, cj + idj]
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where aj, bj, cj, dj are self adjoint elements of M . Expanding the right
side of (4.4) and using the fact that x∗ψ = −xψ, we have

xψ = tr (xψ)1 +
∑
j

([aj, cj]− [bj, dj])

so that
x̂ψ = tr (xψ)tr (·) +

∑
j

([aj, cj]
̂− [bj, dj]

̂ ).

It is easy to check that for a, b, x, y ∈M ,

[a, b]̂([x∗, y]) = {â, 2b, x} (y)− {2b, â, x} (y).

Thus

Dψ(x∗)(y) = ψ(x∗y − yx∗) = tr

(∑
j

([aj, cj]− [bj, dj]) [x∗, y]

)
so that

(4.5) Dψ ◦ ∗ =
∑
j

(
L(âj, 2cj)− L(2cj, âj)− L(b̂j, 2dj) + L(2dj, b̂j)

)
belongs to Innt(M,M∗).

By replacing ψ by ψ′ = ψ − <ψ(1) tr (·), so that Dψ = Dψ′ , we now
have that if ψ = x̂ψ for some xψ ∈ M , then Dψ ◦ ∗ ∈ Innt(M,M∗).
Since elements of the form x̂ are dense in M∗ and ‖Dψ‖ ≤ 2 ‖ψ‖, it
follows that for every ψ ∈ M∗, Dψ ◦ ∗ belongs to the norm closure of
Innt(M,M∗). From (4.1), Innt(M,M∗) is norm dense in Dt(A,A∗).

(c) This is immediate from (a) and (b). �

Theorem 3. If M is a properly infinite factor, then the real vector
space of triple derivations of M into M∗, modulo the norm closure of
the inner triple derivations, has dimension 1.

Proof. Let Dψ ∈ Inn∗b(M,M∗) so that again by the proof of Lemma 4.4
(namely, [10, Lemma 3.2]), since M = [M,M ], we have ψ∗ = −ψ and
so ψ(1) = iλ for some λ ∈ R. Write, by (4.2),

(4.6) ψ = ϕ+ iλφ0

with ϕ(1) = 0. By Lemma 4.2, for every ε > 0, there exist ϕj ∈ M∗
and bj ∈ M , such that with ϕε =

∑
j[ϕj, bj], we have ‖ϕ − ϕε‖ < ε.

Since ϕ∗ = −ϕ we may assume ϕ∗ε = −ϕε.
If we write ϕj = ξj + iηj and bj = cj + idj where ξ,, ηj, cj, dj are

selfadjoint, then it follows from ϕ∗ε = −ϕε that

ϕε =
∑
j

([ξj, cj]− [ηj, dj]).

Further calculation shows that for all x ∈M ,

Dϕε(x
∗) =

∑
j

({ξj, 2cj, x} − {2cj, ξj, x} − {ηj, 2dj, x}+ {2dj, ηj, x}).
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This shows that Dϕε ◦ ∗ ∈ Innt(M,M∗) so that Dϕ ◦ ∗ belongs to the
norm closure of Innt(M,M∗).

According to (4.1), every δ ∈ Dt(M,M∗) has the form δ = δ0 + δ1,
where δ0 = Dψ ◦ ∗ is selfadjoint, and δ1 ∈ Innt(M,M∗) is the inner
triple derivation 1

2
L(δ(1), 1)− 1

2
L(1, δ(1)). Lemma 4.3 shows now that

the map

δ + Innt(M,M∗) 7→ λ

is an isomorphism

Dt(M,M∗)/Innt(M,M∗) ∼ R,

where λ is defined by (4.6).

Explicitly, we define a map Φ : Dt(M,M∗)/Innt(M,M∗) → R as
follows. If δ ∈ Dt(M,M∗), say δ = Dψ ◦ ∗ + δ1 as above, and [δ] =

δ+Innt(M,M∗), let Φ([δ]) = −iψ(1) ∈ R. It follows from Lemmas 4.4
and 4.3 that Φ is well defined, and it is easily seen to be linear, onto
and one to one.

Explicitly, if λ ∈ R and we let ψ = iλφ0 where φ0 is any normal
state, then Φ([Dψ ◦ ∗]) = λ. Also, if Φ([δ]) = 0 where δ = Dψ ◦ ∗+ δ1,

then ψ(1) = 0 and by the first part of the proof, Dψ ◦∗ ∈ Inn(M,M∗),

so that δ ∈ Inn(M,M∗). �

In the following proposition we shall identify the predual M∗ of a
finite von Neumann algebra with the non-commutative L1-space with
respect to a fixed faithful normal finite trace, which we denote by tr .
See, for example [16, Ch. IX.2] or [12]. We shall write M∗ = L1(M, tr ).

For every ψ ∈ M∗, ψ = T̂ for some T ∈ L1(M, tr ), that is, ψ(y) =
tr (yT ) for y ∈M . We shall write (M∗)0 for the set of elements ψ ∈M∗
such that ψ(1) = 0 (in (4.1) we called this space ker 1̂).

Proposition 4.5. Let M be a finite factor. Then M is normally
ternary weakly amenable if and only if (M∗)0 = [M∗,M ].

Proof. The first part of this proof is similar to the proofs of Theorems 2
and 3. Suppose that M is finite, and that (M∗)0 = [M∗,M ]. Let
ψ ∈ M∗ be such that the inner derivation Dψ : x 7→ ψ · x − x · ψ, is
self adjoint, that is, Dψ ∈ Inn∗b(M,M∗). By Lemma 4.4, ψ∗ = −ψ on
[M,M ]. Let us assume temporarily that ψ(1) ∈ iR, so that ψ∗ = −ψ
on M = C1 + [M,M ]. We know that ψ = T̂ for some T ∈ L1(M, tr ).

By our assumption, we then have

(4.7) T = tr (T )1 +
∑
j

[Sj + iTj, cj + idj]

where Sj, Tj are self adjoint elements of L1(M, tr ) and cj, dj are self
adjoint elements of M . Expanding the right side of (4.7) and using the
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fact that T ∗ = −T , we have

T = tr (T )1 +
∑
j

([Sj, cj]− [Tj, dj])

so that

T̂ = tr (T )tr (·) +
∑
j

([Sj, cj]
̂− [Tj, dj]

̂ ).

It is easy to check that for S ∈ L1(M, tr ) and c, x, y ∈M ,

[S, c]̂([x∗, y]) =
{
Ŝ, 2c, x

}
(y)−

{
2c, Ŝ, x

}
(y).

Thus

(4.8) Dψ ◦∗ =
∑
j

(
L(Ŝj, 2cj)− L(2cj, Ŝ)− L(T̂j, 2dj) + L(2dj, T̂j)

)
,

which belongs to Innt(M,M∗).
By replacing ψ by ψ′ = ψ − <ψ(1) tr (·), so that Dψ = Dψ′ , we now

have that for every ψ, Dψ ◦∗ ∈ Innt(M,M∗). From (4.1), Dt(A,A∗) =
Innt(M,M∗) proving that M is normally ternary weakly amenable.

Conversely, suppose that M is a finite factor and that M is normally
ternary weakly amenable. Let ψ ∈M∗ with tr (ψ) = ψ(1) = 0. Suppose
first that ψ∗ = −ψ so thatDψ is self adjoint and thereforeDψ◦∗ belongs
to Dt(M,M). By our assumption, there exist ϕj ∈ M∗ and bj ∈ M
such that Dψ ◦ ∗ =

∑n
j=1(L(ϕj, bj)− L(bj, ϕj)) on M .

For x, a ∈M , direct calculations yield

ψ(a∗x− xa∗) =
1

2

n∑
j=1

(ϕjbj − b∗jϕ∗j)(a∗x) +
1

2

n∑
j=1

(bjϕj − ϕ∗jb∗j)(xa∗).

We set x = 1 to get

(4.9) 0 =
1

2

n∑
j=1

(ϕjbj − b∗jϕ∗j)(a∗) +
1

2

n∑
j=1

(bjϕj − ϕ∗jb∗j)(a∗),

and therefore

(4.10) ψ(a∗x− xa∗) =
1

2

n∑
j=1

(ϕjbj − b∗jϕ∗j)(a∗x− xa∗),

for every a, x ∈M .

Since M = C1 + [M,M ] and ψ(1) = 0 it follows that

ψ =
1

2

n∑
j=1

(ϕjbj − b∗jϕ∗j) =
1

2

n∑
j=1

(ϕ∗jb
∗
j − bjϕj).
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Hence

2ψ =
n∑
j=1

(ϕjbj − bjϕj + bjϕj − ϕ∗jb∗j + ϕ∗jb
∗
j − b∗jϕ∗j)

=
n∑
j=1

[ϕj, bj]− 2ψ +
n∑
j=1

[ϕ∗j , b
∗
j ],

which shows that ψ ∈ [M∗,M ].
Now let ψ ∈ (M∗)0 and write ψ = ψ1 + ψ2, where ψ∗1 = ψ1 and

ψ∗2 = −ψ2. Since 0 = tr (ψ) = tr (ψ1) + tr (ψ2) and tr (ψ1) = ψ1(1) is
real and tr (ψ2) = ψ2(1) is purely imaginary, tr (ψ1) = 0 = tr (ψ2). By
the previous paragraph, iψ1, ψ2 ∈ [M∗,M ] and so ψ = −i(iψ1) + ψ2 ∈
[M∗,M ], completing the proof. �

For a finite factor of type I, both statements in Proposition 4.5 are
known to be true. For a finite factor of type II, the corresponding state-
ments with [M∗,M ] and Innt(M,M∗) replaced by their norm closures
are also true. No infinite factor can be approximately normally ternary
weakly amenable by Theorem 2. So the analog of Proposition 4.5 in-
volving norm closures is false for all infinite factors by Lemma 4.2.

Corollary 4.6. For any factor of type II1, (M∗)0 6= [M∗,M ].

Proof. Suppose that (M∗)0 = [M∗,M ]. Let ψ = iφ0 ∈ M∗, where φ0

is any normal state. Then ψ∗ = −ψ, Dψ ∈ Inn∗b(M,M∗) so that
Dψ ◦ ∗ =

∑
j (L(ϕ,, bj)− L(bj, ϕj)) which implies that ψ ∈ [M∗,M ]

and ψ(1) = 0, a contradiction. �

After proving Corollory 4.6, we learned from Ken Dykema that it
can be obtained from [3, Theorem 4.6], which states a necessary and
sufficient condition, in terms of its spectral decomposition, for a normal
operator in L1(M) (where M a II1 factor) to belong to [L1(M),M ],
and that the same holds for a factor of type II∞ by using [3, Theorem
4.7].

As for the case of a factor of type I∞, it is shown in [19, Main
Theorem] that if dn ↓ 0,

∑
dn <∞ and T = diag (−

∑
dn, d1, d2, . . .) ∈

B(H), then
∑
dn log n < ∞ implies T ∈ [C2(H), C2(H)]. Conversely,

it was shown in [18, Theorem 10] that if
∑
dn log n = ∞, then T 6∈

[C2(H), C2(H)], so that (M∗)0 = C1(H)0 6= [C2(H), C2(H)]. Finally,
it is stated in [20, Theorem 2.1] that

∑
dn log n < ∞ if and only if

T ∈ [C1(H), B(H)], thus, (M∗)0 6= [M∗,M ] for M an infinite factor of
type I.

Problem 1. Do Theorem 3 and part (b) of Theorem 2 hold for general
von Neumann algebras? (Direct integral theory, as used in [4], has
resisted so far.)

Problem 2. Characterize those von Neumann algebras which are nor-
mally ternary weakly amenable. (Conjecture: finite of type I.)
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Problem 3. Does Corollary 4.6 hold for factors of type III? (The
techniques of this paper, as well as those of [3] are not available.)
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