ON NORMAL TERNARY WEAK AMENABILITY OF
FACTORS

ROBERT PLUTA AND BERNARD RUSSO

ABSTRACT. We show that the norm closure of the set of inner
triple derivations from a factor von Neumann algebra into its pre-
dual, has codimension zero or one in the real vector space of all
triple derivations. It is zero if and only if the factor is finite. We
also prove that every Jordan derivation of a von Neumann algebra
to itself is an inner Jordan derivation and give a new proof that
every triple derivation of a von Neumann algebra to itself is an
inner triple derivation.

1. INTRODUCTION

Every derivation of a von Neumann algebra into itself is inner (Sakai
[14], Kadison [11]). Building on earlier work of Bunce and Paschke
[2], Haagerup, on his way to proving that every C*-algebra is weakly
amenable, showed in [5] that every derivation of a von Neumann algebra
into its predual is inner. Thus the first Hochschild cohomology groups
HY(M, M) and H*(M, M,) vanish for any von Neumann algebra M.

It is also known that every triple derivation of a von Neumann al-
gebra into itself is an inner triple derivation (|9, Theorem 2]). In [13],
triple derivations and inner triple derivations into a Jordan triple mod-
ule were defined, and in [10], the study of ternary weak amenability
in operator algebras and triples was initiated. Triple derivations and
inner triple derivations into a triple module are recalled in section 2.[]

Among other things, it was shown in [10] that every commutative
(real or complex) C*-algebra A is ternary weakly amenable, that is,
every triple derivation of A into its dual A* is an inner triple derivation,
but the C*-algebras K(H) of all compact operators and B(H) of all
bounded operators on an infinite dimensional Hilbert space H are not
ternary weakly amenable.

Two consequences of [10] are that finite dimensional von Neumann
algebras and abelian von Neumann algebras have the property that
every triple derivation into the predual is an inner triple derivation,
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"n this paper, we use the terms ‘triple’ and ‘ternary’ interchangeably, while
mindful that in some quarters ‘triple’ means ‘Jordan triple’ and ‘ternary’ refers to
an associative triple setting, such as a TRO (ternary ring of operators)
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analogous to the Haagerup result. We show that this rarely happens
in a general von Neumann algebra, but it comes close.

Using ideas from [10], we prove a (triple) cohomological character-
ization of finite factors and a zero-one law for factors. Namely, we
show that for any factor, the linear space of (automatically bounded
by [13, Corollary 15]) triple derivations into the predual, modulo the
norm closure of the inner triple derivations, has dimension 0 or 1: It is
zero if and only if the factor is finite (Theorem 2); and it is 1 otherwise
(Theorem 3).

We use similar ideas to show that every Jordan derivation of a von
Neumann algebra into itself is an inner Jordan derivation (Theorem
1(b)), and to give an alternate proof of [9, Theorem 2|, quoted above
(Theorem 1(a)). The proof of Theorem 1 is also based on the deep
result (also quoted above) that every derivation of a von Neumann
algebra is inner, whereas the original proof in [9] depended on results
of Upmeier [17] on derivations of Jordan operator algebras.

Inner triple derivations on a von Neumann algebra M into its predual
M, are closely related to the span of commutators of normal functionals
with elements of M, denoted by [M,, M]. In particular, a consequence
of Proposition [4.5 is that in any factor of type I1;, not every normal
functional which vanishes at the identity is a sum of such commuta-
tors (Corollary , although it is a norm limit of such commutators

(Lemma [4.2)).

2. TRIPLE MODULES AND TRIPLE DERIVATIONS

In this section we recall the general context for triple derivations. In
this note, we shall only use these concepts in the special case of a von
Neumann algebra and its predual, described later in the section. For a
more detailed discussion, the reader is referred to |13] and [10].

Varieties of modules. Let A be an associative algebra. Let us recall
that an A-bimodule is a vector space X, equipped with two bilinear
products (a,z) — az and (a,x) — za from A x X to X satisfying the
following axioms:

a(bx) = (ab)x, a(xb) = (ax)b, and, (za)b = x(ab),

for every a,b € A and x € X. The space A@ X becomes an associative
algebra with respect to the product

(a,2)(b,y) := (ab, ay + xb).
Let A be a Jordan algebra. A Jordan A-module is a vector space

X, equipped with two bilinear products (a, x) — aox and (a, z) — zoa
from A x X to X, satisfying:

aox==x0a, a’o(roa)=(a’*ox)oa, and,

2((xoa)ob)oa+xo(a’®ob)=2(xoa)o(aob)+ (xob)oa?
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for every a,b € A and x € X. The space A @ X becomes a Jordan
algebra with respect to the product

(a,x)o (b,y):=(aobjaocy+xo0b).
A complex (resp., real) Jordan triple is a complex (resp., real)
vector space F equipped with a triple product

ExXEXE—E (xyz) — {z,y, 2z}

which is bilinear and symmetric in the outer variables and conjugate
linear (resp., linear) in the middle one and satisfying the so-called “Jor-
dan Identity”:

L(a,b)L(x,y) - L(QJ’y)L(a?b) = L(L(a7 b):L‘,y) - L([E, L(b7 (l)y)7

for all a,b,x,y in E, where L(z,y)z := {x,y, z}.
The Jordan identity is equivalent to

{a,b,{c,d,e}} = {{a,b,c},d, e} —{c,{b,a,d} e} + {c,d,{a,b,e}},
which asserts that the map iL(a,a) is a triple derivation (to be defined
shortly). It also shows that the span of the “multiplication” operators
L(z,y) is a Lie algebra.

Let F be a complex (resp. real) Jordan triple. A Jordan triple
FE-module is a vector space X equipped with three mappings

{ o h: X XEXE—=X, {,, h:ExXXxE—=>X

and {.,.,.}3s: EXEx X —> X
in such a way that the space F @ X becomes a real Jordan triple with
respect to the triple product {a1 + x1,a9 + w2, a3 + 23} =

{ab a2, a3}E + {xla Az, a3}1 + {ala T2, a3}2 + {ah a2, .’13'3}3.
The Jordan identity

{a,b,{c,d,e}} = {{a,b,c},d, e} —{c,{b,a,d} e} +{c,d,{a,b,e}},

holds whenever exactly one of the elements belongs to X. (We shall
suppress subscripts since it will always be clear which element is in the
module.)

In the complex case we have the unfortunate technical requirement
that {x,a,b}; (={b,a,x}3) is linear in a and x and conjugate linear in
b; and {a,z,b}s is conjugate linear in each variable a,b, x. Therefore,
according to this definition, a complex Jordan triple E is not a Jordan
triple F-module. This anomaly, however, does not have any impact on
our results, nor does it apply to associative or Jordan modules.

Every (associative) Banach A-bimodule (resp., Jordan Banach A-
module) X over an associative Banach algebra A (resp., Jordan Banach
algebra A) is a real Banach triple A-module (resp., A-module) with
respect to the “elementary” product

1
{a,b,c} = §(abc + cba)
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(resp., {a,b,c} = (aob)oc+ (cob)oa— (aoc)ob), where one element
of a,b,cis in X and the other two are in A.
In particular, any von Neumann algebra M is a complex Jordan

triple under the triple product {abc} = (ab*c+ cb*a)/2 and its predual
M, is a Jordan triple M-module, according to the following definition.

Definition 2.1. The dual space, E*, of a complex (resp., real) Jordan
Banach triple F is a complex (resp., real) triple E-module with respect
to the products:

(2.1) {a,b, 0} (x) = {p,b,a} () := ¢ {b,a,z}
and
(2.2) {a, 0,0} () = p{a,x,b},

for every x € X,a,b € E,p € E*.

Varieties of derivations. Let X be a Banach A-bimodule over an
(associative) Banach algebra A. A linear mapping D : A — X is said
to be a derivation if D(ab) = D(a)b + aD(b), for every a,b in A.
For emphasis we call this a binary (or associative) derivation. We
denote the set of all continuous binary derivations from A to X by
Dy(A, X) .

When X is a Jordan Banach module over a Jordan Banach algebra
A, alinear mapping D : A — X is said to be a derivation if D(aob) =
D(a)ob+aoD(b), for every a,bin A. For emphasis we call this a Jordan
derivation. We denote the set of continuous Jordan derivations from
Ato X by D;y(A, X).

In the setting of Jordan Banach triples, a triple or ternary deriva-
tion from a (real or complex) Jordan Banach triple, F, into a Banach
triple F-module, X is a conjugate linear mapping 0 : £ — X satisfying

(2.3) d{a,b,c} ={d(a),b,c} +{a,ds(b),c} + {a,b,6(c)},

for every a,b,c in E. We denote the set of all continuous ternary
derivations from E to X by Dy(FE,X). We remind the reader that
ternary (or triple) derivations from E to E, such as in Theorem 1(a),
are defined as linear maps.

The conjugate linearity (as opposed to linearity) of ternary deriva-
tions from a complex Jordan triple into a Jordan triple module is a
reflection of the fact noted above that a complex Jordan triple is not a
Jordan triple module over itself.

Let X be a Banach A-bimodule over an associative Banach algebra
A. Given z, in X, the mapping D, : A — X, D, (a) = z,a — az, is
a bounded (associative or binary) derivation. Derivations of this form
are called inner. We shall use the customary notation ad xq for these
inner derivations. The set of all inner derivations from A to X will be
denoted by Znny(A, X).
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When z, is an element in a Jordan Banach A-module, X, over a
Jordan Banach algebra, A, for each b € A, the mapping

By = L) L(B) = L(O)L(wo) - A = X,

Ozy (@) = (z,0a) 0 b= (boa)ow,, (acA),

is a bounded derivation. Here L(xq) (resp. L(b)) denotes the module
action a +— xp o a (resp. multiplication a +— b o a). Finite sums of
derivations of this form are called inner. The set of all inner Jordan
derivations from A to X is denoted by Znn (A, X).

Let E be a complex (resp., real) Jordan triple and let X be a triple
E-module. For each b € E and each z, € X, we conclude, via the main
identity for Jordan triple modules, that the mapping

§d =0(b,z,) = L(b,x9) — L(x0,b) : E — X,
defined by
(2.4) d(a) =9(b,x,)(a) :=={b,x,,a} — {x,,b,a} (a€FE),

is a ternary derivation from FE into X. Finite sums of derivations of
the form 0(b, z,) are called inner triple derivations. The set of all
inner ternary derivations from E to X is denoted by Znn,(E, X) .

3. TRIPLE DERIVATIONS ON VON NEUMANN ALGEBRAS

In this section, since we only consider derivations with the same
domain and range, we contract the notation from D,(A, X) to Dy(A),
ete.

Our proof of Theorem 1 below uses techniques from [10]. We summa-
rize these tools in the following proposition, whose proof can be easily
read off from the corresponding proofs in |10, Section 3].

Proposition 3.1. Let A be a unital Banach *-algebra equipped with
the ternary product given by {a,b,c} = % (ab*c + cb*a) and the Jordan

2
product a o b= (ab+ ba)/2.

(a): ([10, Lemma 3.1]) Let 6 : Ay — Asq be a (real) linear map-
ping. The following assertions are equivalent:
(1) § is a ternary derivation and 6(1) = 0.
(17) 0 is a Jordan derivation.
(b): (J10, Lemma 3.2(i)]) Znn,(A) C Znny(A).
(c): (|10, Lemma 3.2(ii)]) Let D be an element in Inny(A), that

is, D = ada for some a in A. Then D is a *-derivation
whenever a* = —a. Conversely, if D is a *-derivation, then
a* = —a+ z for some z in the center of A.

(d): ([10, Lemma 3.4]) Every ternary derivation & in Di(A) sat-
isfies the identity 0(1)* = —d(1).
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(e): ([10, Lemma 3.5]) Let D{(A) be the set of all (continuous)
ternary derivations from A to A vanishing at the unit element.
Then Dy(A) = D2(A) + Inni(A). More precisely, if 6 € Di(A),
then 6 = dg + 01, where &y € DY(A) and 91, defined by 61(a) :=
6(1)oa = 1(0(1) a+a 6(1)), is the inner derivation —3L(1,6(1))+
sL(6(1),1).

(f): ([10, Lemma 3.6]) Let 6 : A — A be a linear mapping.
Then § lies in Dy(A) if, and only if, § {a,1,b} = {6(a),1,b} +
{a,1,0(b)} for all a,b € A. Moreover, D?(A)= D%(A).

(g): ([10, Prop. 3.7]) D(A) = D5 (A) + Inni(A).

Theorem 1. Let M be any von Neumann algebra.

(a): Ewvery triple derivation of M is an inner triple derivation.
(b): Every Jordan derivation of M is an inner Jordan derivation.

Proof. To prove (a) it suffices, by Proposition [3.1|g), to show that
D%(M) C Inny(M). Suppose 0 is a self-adjoint Jordan derivation of
M. By [15], 0 is an associative derivation and by [11] and [14] and
Proposition [3.1b), §(z) = ax — za where a* + a = z is a self adjoint
element of the center of M.

We shall use the fact that for every von Neumann algebra M, M =
Z(M) + [M, M], where Z(M) denotes the center of M (see the begin-
ning of the next section). Let us therefore write

a=2z+ Z[bj + iy, b 4 ic],
j
where b;, b, ¢j, c; are self adjoint elements of M and 2’ € Z(M). It

] 790
follows that

O=a"4+a—2z= (z’)*+z’—z+2i2([cj,b;} + [bj,¢j))
J

so that »_([c;, U] + [bj, }]) belongs to the center of M. We now have

VRG]

(3.1) 6—ada—adz ([bj, 03] — [cj, c4])

and therefore a direct Calculatlon shows that ¢ is equal to the inner
triple derivation

> (L(by, 20)) — L2V, by) = L(ej, 2¢)) + L(2¢], ¢;))
J
which proves (a).
We have just shown that a self adjoint Jordan derivation ¢ of M has

the form (3.1). Then another direct calculation shows that § is equal
to the inner Jordan derivation

> (L)L) = L) Lb;) — Les) L(€)) + L(¢)L(ey)) -

J
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If 9 is any Jordan derivation, so are 0* and 4, so ¢ is an inner Jordan
derivation. O

4. NORMAL TERNARY WEAK AMENABILITY FOR FACTORS

We shall use the facts that if M is a finite von Neumann algebra, then
every element of M of (central) trace zero is a finite sum of commutators
([4, Theoreme 3.2]), and if M is properly infinite (no finite central
projections), then every element of M is a finite sum of commutators
(18,16, Theorem 1],[7, Corollary to Theorem 8],[1, Lemma 3.1]).

Let M be a von Neumann algebra and consider the submodule M, C
M*. Then

(4.1) Dy(M, M.,) = Inny;(M, M,) o x + Inn,(M, M,).

This was inadvertently stated and proved for M semifinite in [10, Cor.
3.10] but the same proof holds in general.

In particular, Dy(L>, L) = Znn,(L>, L"), so that L> is normally
ternary weakly amenable, according to the following definition. (Recall
from the introduction that a Jordan triple system is said to be ternary
weakly amenable if Dy(E, E*) = Inn,(F, E*), and that L*™ is ternary
weakly amenable.)

Definition 4.1. A Jordan triple system E which is the dual space of
a Banach space E, is normally ternary weakly amenable if D,(E, E,) =
Innt(E, E*)

Let M be any von Neumann algebra and let ¢ be any fixed normal
state. Then

(4.2) M, = ker 1+ Cay,
where
ker1 = {¢ € M, : ¢(1) = 0}.
Lemma 4.2. If M is a factor, then [M,, M] = ker 1 (norm closure).

Proof. Tt is clear that [M,, M] C ker 1. If x € M satisfies ([, b]) = 0
for all p € M, and b € M, then p(bx — 2b) = 0, and so = belongs to
the center of M and is a scalar multiple of 1. Thus for any ¢ € ker 1,
Y (z) = 0, proving the lemma. O

Lemma 4.3. If M is a properly infinite von Neumann algebra, if 1 €
M, and if Dy o x belongs to the norm closure of Inn.(M, M,), where
Dy = ad?, then (1) = 0.

Proof. For € > 0, there exist ¢; € M, and b; € M such that

n

1Dy 0% = > (L(g;,b;) — L(bj, ;)| < e.

=1
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For x,a € M, direct calculations yield

n n

1 1
‘w(a*x —za’) — 3 Z(%’bj —bip;)(a"x) — 3 Z(bj%' — jbj) (za”)

j=1 j=1
We set © =1 to get

n n

5 Dby — BE)@) + 5 Dby — ) (") < elal,
— —
and therejfore J
(4.3) |Y(a*r — za®) — %i(gpjbj —bipi)(a"r — xa®)| < 2¢llall||z||,
=1
for every a,x € M, that isj
W(la.a]) 5 3 (st — b (a.aD)| < 2elal .
j=1
and therefore
%Z 58— by, 2)| < Belal ]|
Let us now write _
2 (pid Z = by + byps = G3b + b — b))

J
so that
2 — Z(%bj —blys) =
20 =D _lpsbil = 3 _(bies = @ib)) + 200 = 26 = > [}, b]
and
477ZJ Z(p]v _Z‘p]?b*]_
J
2 — ) (b — b +2¢+Z i5 — 0505,

Thus

4’17/)([(],7 ZL‘D - Z[%pmb K[a $]) Z[@;’ b;]([a,x])

J J

<

2¢([a,2]) =D (5b; — b5} ([a.2])

J

< ef|alfff]].
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+ [20((a,2]) + D (b)) — #365) ([, 2])| < 10¢]all[l].
J
Since [M, M| =M, 1=, [ax, x)] and therefore
[4(1)] < 10 Y fla|llal
i

proving that (1) = 0. O
The proof of the following lemma is contained in |10, Lemma 3.2].

Lemma 4.4. If M is a von Neumann algebra, and b € M, satisfies
Y* = =, then Dy is a self-adjoint mapping. Conversely, if M s
properly infinite and Dy, is self-adjoint, then ¢* = —.

Theorem 2. Let M be a von Neumann algebra.

(a): If every triple derivation of M into M, is approximated in
norm by inner triple derivations, then M 1is finite.

(b): If M 1is a finite factor, then every triple derivation of M into
M., is approzimated in norm by inner triple derivations.

(c): If M is a factor, then M is finite if and only if every triple
derivation of M into M, is approximated in norm by inner triple
derivations.

Proof. (a) Assume that every triple derivation of M into M, is a norm
limit of inner such derivations and also assume for the moment that M
is properly infinite. If ¢ € M, satisfies ¢* = —1, then by Lemma [£.4]
and (4.1, Dy o € Dy(M, M,). Then by Lemma 4.3} 4(1) = 0. This
is a contradiction if we take ¢ = i¢y where ¢, is any normal state of
M. This proves that M cannot be properly infinite.

If M is arbitrary, write M = pM + (1 — p)M for some central pro-
jection p, where pM is finite and (1 — p)M is properly infinite. It is
easy to see that if § € D;(M, M,), then pd € D(pM, (pM).) and simi-
larly for (1 —p)d and that if Znn,(M, M,) is norm dense in D,(M, M,),
then Znn,(pM, (pM).,) is norm dense in D;(pM, (pM).), and Znn,((1—
p)M, ((1—p)M),) is norm dense in D,((1 —p)M, ((1 —p)M).). By the
preceding paragraph, 1 — p = 0, so that M is finite.

(b) Suppose that M is a finite factor. Let ¢ € M, be such that
the inner derivation Dy : z — ¢ - x — x - 9, is self adjoint, that is,
Dy, € Inn; (M, M,). By the proof of Lemma {4.4] (namely, |10, Lemma
3.2]), ¥* = — on [M, M]. Let us assume temporarily that (1) € iR,
so that ¥* = —¢ on M = C1 + [M, M]. We also assume, temporarily,
that ¢ = &, for some x,, € M, that is, ¥(y) = tr (yx,) for y € M.

We then have

(4.4) ry =tr(zy)l+ Y _[a; +ibj, ¢; + id}]

J
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where a;, b;, ¢, d; are self adjoint elements of M. Expanding the right
side of (4.4) and using the fact that zj, = —xy, we have

Ty = tr (131/,)1 + Z([ajucj] - [bjudj])
J
so that
$¢—tr .75¢t1" +Z aj7C] bj7d] )

It is easy to check that for a, b, x, y e M,

[av b]A<[x*> y]) = {&’ 20, .%‘} (y) - {Qb’ a, m} (y)

Thus

Dy(z")(y) = Y(a"y —ya™) = tr (Z (laj, cj] = [bj, d;]) WJJ])

so that
(45) Dyox =3 (L(as,2¢5) = L(2e;, ;) = L{b;, 2d5) + L(2d;. b))

j
belongs to Znn,(M, M,).

By replacing ¢ by ¢ = ¢ — Ry(1) tr (+), so that Dy, = Dy, we now
have that if ¢y = 2, for some x, € M, then Dy o * € Inn,(M, M,).
Since elements of the form & are dense in M, and || Dy|| < 2||¢], it
follows that for every ¢» € M,, D, o * belongs to the norm closure of
Inny(M, M,). From ([4.1)), Znn,(M, M,) is norm dense in Dy(A, A*).

(c) This is immediate from (a) and (b). O

Theorem 3. If M is a properly infinite factor, then the real vector
space of triple derivations of M into M,, modulo the norm closure of
the inner triple deriwations, has dimension 1.

Proof. Let Dy € Innj (M, M,) so that again by the proof of Lemma
(namely, |10, Lemma 3.2]), since M = [M, M], we have ¢)* = — and
so (1) =i\ for some A € R. Write, by (4.2]),

(4.6) P =+ 1Ay
with (1) = 0. By Lemma [.2] for every ¢ > 0, there exist ¢; € M,
and b; € M, such that with o = >_[p;,b;], we have [[p — || < e.
Since ¢* = —p we may assume @ = —..

If we write ¢; = & + in; and b; = ¢; + id; where §,n;,¢;,d; are
selfadjoint, then it follows from ¢! = —¢, that

0o =Y ([ ¢] — [ dj)).
J
Further calculation shows that for all x € M,

D%(LE*) = Z({&‘vQCﬁx} - {QCj,fj,:E} - {nj72dj7$} + {devnj’x})'

J
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This shows that D, o x € Znn,(M, M,) so that D, o * belongs to the
norm closure of Znn,(M, M,).

According to ([4.1), every 6 € Dy(M, M,) has the form § = d + 61,
where 6y = D, o * is selfadjoint, and 6, € Znn,(M, M,) is the inner
triple derivation 1L(8(1),1) — 2L(1,0(1)). Lemma shows now that
the map

d +Inny(M, M) — A

is an isomorphism
Dy(M, M.)/Znn,(M, M,) ~ R,

where A is defined by .

Explicitly, we define a map ® : D,(M, M.,)/Inn, (M, M,) — R as
follows. If § € Dy(M,M.,), say § = Dy o x + 9y as above, and [§] =
d+Inny (M, M,), let ©([0]) = —ip(1) € R. It follows from Lemmas
and that ® is well defined, and it is easily seen to be linear, onto
and one to one.

Explicitly, if A € R and we let ¢ = 1A¢py where ¢y is any normal
state, then ®([Dy o %]) = A. Also, if ®([¢]) = 0 where 6 = Dy, o * + 6,
then (1) = 0 and by the first part of the proof, Dy, 0% € Inn(M, M,),
so that 0 € Znn(M, M,). O

In the following proposition we shall identify the predual M, of a
finite von Neumann algebra with the non-commutative L!-space with
respect to a fixed faithful normal finite trace, which we denote by tr.
See, for example [16, Ch. IX.2] or [12]. We shall write M, = L'(M, tr).
For every ¢ € M,, 1 = T for some T € L'(M, tr), that is, 1(y) =
tr (yT') for y € M. We shall write (M, ), for the set of elements ¢ € M,
such that (1) =0 (in we called this space ker 1).

Proposition 4.5. Let M be a finite factor. Then M is normally
ternary weakly amenable if and only if (M) = [M,, M].

Proof. The first part of this proof is similar to the proofs of Theorems

and Suppose that M is finite, and that (M,)o = [M,, M]. Let

1 € M, be such that the inner derivation Dy :  — ¢ -2 — 2 -, is

self adjoint, that is, Dy, € Znnj(M, M,). By Lemma Y* = —1) on

[M, M]. Let us assume temporarily that (1) € iR, so that ¢* = —

on M = C1 + [M, M]. We know that ¢ = T for some T € L'(M, tr).
By our assumption, we then have

(4.7) T =tr(T)L+ Y _[S;+iT}, ¢; +id)]
J

where S;, T; are self adjoint elements of L'(M, tr) and ¢;,d; are self
adjoint elements of M. Expanding the right side of (4.7)) and using the
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fact that T* = —T', we have

T =tr (T 1+Z 1S}, ¢;] — T3, d;))

so that
T = )+ o] - (54

It is easy to check that for S € LI(M, tr) and ¢, x,y € M,

S.el (2", 9]) = {S.20,0} (1) — {20, 8.2} (v).
Thus
(4.8) Dyox =Y (L(Sj, 2¢;) — L(2¢;,5) — L(T5,2d;) + L(de,Tj)> :

J
which belongs to Znn, (M, M,).

By replacing ¢ by ¢/ = ¢ — Rip(1) tr (+), so that D, = Dy, we now
have that for every ¢, Dy 0% € Inn,(M, M,). From ([L1]), Dy(A, A*) =
Inny(M, M,) proving that M is normally ternary weakly amenable.

Conversely, suppose that M is a finite factor and that M is normally
ternary weakly amenable. Let ¢ € M, with tr (¢) = ¢(1) = 0. Suppose
first that * = —1 so that D, is self adjoint and therefore D,,0* belongs
to Dy(M, M). By our assumption, there exist ¢; € M, and b; € M
such that Dw O x = Z?:I(L“Oj? bj) — L(bj, QOJ)) on M.

For x,a € M, direct calculations yield

n n

Pt —wa%) = 5 3 (eby — B})(a%n) + 5 D (b — #3b) (wa).
j=1 j=1
We set © =1 to get
1 . * * * 1 . * 7k *
(4.9) 0= 52(%’@' — bipi)(a )+§Z(bj90j — p;b3)(a®),
j=1 j=1
and therefore
1
. a*r — xa* — (a"z — xza®),
4.10 P 2 *

for every a,x € M.
Since M = C1 + [M, M] and ¢(1) = 0 it follows that

n n

1 *k * 1 X 7 %k
Y = 2 Z(‘ijj — bjp;) = 2 Z(Spjbj — bjj).

j=1 j=1



ON NORMAL TERNARY WEAK AMENABILITY OF FACTORS 13

Hence
n

20 = Y (b — bjep; + bjp; — @b + @by — biey)

j=1
= ) [ei bl =20+ [gh b1,
j=1 =1

which shows that ¢ € [M,, M].

Now let ¢p € (M,)o and write ¢ = 1)1 + 19, where )} = 1); and
Wy = —1by. Since 0 = tr (¢0) = tr (¢1) + tr (¢2) and tr (1) = ¢¥1(1) is
real and tr (¢9) = 19(1) is purely imaginary, tr (¢;) = 0 = tr (¢)2). By
the previous paragraph, iy, s € [M,, M| and so ¢ = —i(ithy) + 1y €
[M., M], completing the proof. O

For a finite factor of type I, both statements in Proposition 4.5| are
known to be true. For a finite factor of type II, the corresponding state-
ments with [M,, M| and Znn,(M, M,) replaced by their norm closures
are also true. No infinite factor can be approximately normally ternary
weakly amenable by Theorem [2] So the analog of Proposition in-
volving norm closures is false for all infinite factors by Lemma [4.2]

Corollary 4.6. For any factor of type 11, (M,)q # [M., M].
Proof. Suppose that (M,)y = [M,, M]. Let ¢» = i¢y € M,, where ¢y

is any normal state. Then ¢* = —¢, D, € Innj(M,M,) so that
Dy ox = 3. (L(p,b;) — L(bj, ¢;)) which implies that ¢ € [M., M]
and ¥ (1) = 0, a contradiction. O

After proving Corollory we learned from Ken Dykema that it
can be obtained from [3| Theorem 4.6], which states a necessary and
sufficient condition, in terms of its spectral decomposition, for a normal
operator in L'(M) (where M a II; factor) to belong to [L'(M), M],
and that the same holds for a factor of type 1/, by using [3, Theorem
4.7].

As for the case of a factor of type I, it is shown in [19, Main
Theorem| that if d,, L 0, > d, < oo and T' = diag (— > dp,dy,ds,...) €
B(H), then > d,logn < oo implies T' € [C2(H), C2(H)]. Conversely,
it was shown in |18, Theorem 10] that if > d,, logn = oo, then T &
[OQ(H),CQ(H)], so that (M*)O = Cl(H>0 7& [OQ(H),CQ(H)] Finally,
it is stated in [20, Theorem 2.1] that ) d, logn < oo if and only if
T € [Ci(H), B(H)], thus, (M.)o # [M,, M| for M an infinite factor of
type L

Problem 1. Do Theorem 3 and part (b) of Theorem 2 hold for general
von Neumann algebras? (Direct integral theory, as used in [4], has
resisted so far.)

Problem 2. Characterize those von Neumann algebras which are nor-
mally ternary weakly amenable. (Conjecture: finite of type I.)
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Problem 3. Does Corollary hold for factors of type I117 (The
techniques of this paper, as well as those of 3] are not available.)

[1]
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