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Abstract. We study algebras with scalar involution and, more generally, conic algebras (formerly

known as quadratic algebras) over an arbitrary base ring k on a fixed finitely generated and projec-

tive k-module X with base point 1X . By variation of the base ring, these algebras define schemes
whose structure is described in detail. They also admit natural group actions under which they are

trivial torsors. We determine the quotients by these group actions. This requires a new invariant of

conic algebras, an alternating trilinear map on M = X/k · 1X with values in the second symmetric
power of M . An important tool is the coordinatization of conic algebras in terms of a linear form,

a cross product and a bilinear form on M , all depending on a choice of unital linear form on X,

which replaces the usual description in terms of a vector algebra and a bilinear form in case 2 is a
unit in k.
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Introduction

The theory of composition algebras with non-singular norm form is well known over fields.
These algebras are automatically alternative. It was H. P. Petersson [14] who extended
the theory to arbitrary base rings and even base schemes. Much less is known when one
drops the non-degeneracy condition on the quadratic form but still requires the algebra to
be alternative. Over fields of characteristic 6= 2, there is an unpublished dissertation by
L. Zagler [17], later rediscovered by Kunze and Scheinberg [8] and A. Elduque [5], and
extended to general base rings by K. McCrimmon [12].

In the present paper, we continue McCrimmon’s work in a different direction. Instead
of studying a single algebra of a certain type, we fix a module X and a base point 1X in
X and consider all algebras of a certain type living on X and having unit element 1X .
We assume X to be a finitely generated and projective module of constant rank n + 1
over an arbitrary base ring k, and the base point to be a unimodular vector. Since all
constructions are compatible with arbitrary change of base ring, these algebras give rise to
schemes. Specifically, we consider conic algebras and algebras with scalar involution (see
below) and determine the structure of the schemes defined by them.

An algebra on X is a bilinear map A: X × X → X, usually written A(x, y) = xy,
and satisfying 1Xx = x1X = x for all x ∈ X. Following a terminology proposed by
H. P. Petersson, A is called conic if there exists a quadratic form N on X, called the norm,
such that N(1X) = 1 and

x2 − T (x)x+N(x)1X = 0

for all x ∈ X, where the trace T is given by T (x) = N(x+1X)−N(x)−1. These algebras used
to be called quadratic or of degree 2 in the literature, but the term “quadratic algebra” has
now acquired a different meaning [11], and the notion of degree for arbitrary non-associative
algebras over rings is problematic, so a new terminology is welcome.

In Section 1 we first establish some basic facts on exterior products and formal differ-
entiation of multilinear maps used throughout the paper. Then we deal with constructions
of conic algebras. Given a scalar-valued bilinear form f on X satisfying f(1X , 1X) = 1, one
obtains a conic algebra fm by defining the multiplication

fm(x, y) = f(x, 1X)y − f(x, y)1X + f(1X , y)x, (1)
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with norm N(x) = f(x, x) and trace T (x) = f(x, 1X) + f(1X , x). There are two basic ways
of modifying a given conic algebra A. The one is by changing A to

A′ = A+ gm (2)

where g ∈ Bil0(X), the bilinear forms on X vanishing at (1X , 1X), and gm is defined just
like fm. To explain the other, let M = X/k · 1X and denote the canonical map X → M
by x 7→ ẋ. Let Γ ∈ Ω2(M,X), the set of alternating bilinear maps on M with values in X.
Then if A is conic so is

A′(x, y) = A(x, y) + Γ (ẋ, ẏ), (3)

and any conic algebra on X has the form A(x, y) = fm(x, y) + Γ (ẋ, ẏ), for suitable (not
unique) f and Γ .

Denote by Con(X) the set of conic algebras on X. Our first structure theorem says that
Con(X) is a torsor under the group Ω2(M,X) acting as in (3), with quotient the unital
quadratic forms on X (Theorem 1.13). As a scheme, Con(X) is smooth, affine and finitely
presented over k with fibres isomorphic to affine space of dimension n

(
1 + n+

(
n
2

))
.

We begin Section 2 by introducing a cochain complex of alternating p-linear maps on
a module M with values in Sp−1M , the (p − 1)st symmetric power of M . If M is finitely
generated and projective of rank at least 2, this complex is acyclic (Proposition 2.2). Then
we determine necessary and sufficient conditions for a conic algebra A to be of the form (1).
The obstruction to this is an element ΘA of Z3(M), the closed 3-forms on M with values in
S2M , called the canonical 3-form of A. The main result is Theorem 2.8: A conic algebra
A has the form fm if and only if ΘA = 0. As a consequence (Corollary 2.10), we obtain a
second structure theorem for the scheme Con(X): it is a torsor with group Bil0(X) acting
as in (2), with base Z3(M).

If 2 is a unit in k then X = k ·1X⊕Ker(TA), and A can be described in terms of a bilinear
form and an alternating product on Ker(TA). This is the way conic algebras are treated
in most of the literature, see for example [13, 1]. In general, since 1X is unimodular, X
admits linear forms α satisfying α(1X) = 1 (unital linear forms) and hence decompositions
X = k · 1X ⊕ Ker(α) but they have all to be treated on an equal footing. In Section 3 we
expand on an idea of Petersson’s [15] and, having chosen a unital linear form α, describe
A by a triple (t,K, b) consisting of a linear form t, a bilinear form b and a cross product
K on M , called the α-coordinates of A. We express the norm, trace and canonical 3-form
of a conic algebra as well as the various constructions discussed earlier in terms of these
coordinates, and show how the coordinates change when changing α.

By a transvection we mean an element of ϕ ∈ GL(X) fixing 1X and inducing the identity
on M . The transvections act simply transitively on the set of unital linear forms. They
also act on Con(X) on the right by means of Aϕ(x, y) = ϕ−1

(
A(ϕ(x), ϕ(y)

)
. We use

α-coordinates to describe the quotient of Con(X) by transvections (Theorem 3.10).
In any conic algebra, the map x 7→ x̄ = T (x)1 − x, called the conjugation, has period

two. The algebra is said to be involutive if the conjugation is an algebra involution. These
are the algebras with scalar involution in the sense of [12]. We show in Section 4 that there
is an alternating 2-form ωA on M which measures the deviation of a conic algebra from
being involutive, and study its behaviour under the various constructions. The equation
ωA = 0, describing the set Scalin(X) ⊂ Con(X) of algebras with scalar involution, amounts
to quadratic relations between the α-coordinates (t,K, b). Geometrically, Scalin(X) is a
parabolic cylinder whose generators are given by an action of the group of symmetric bilinear
forms on M . We identify the quotient by this action and show that Scalin(X) is smooth,
affine and finitely presented k-scheme, with fibres isomorphic to affine space of dimension
n+ n

(
n
2

)
+
(
n+1

2

)
(Theorem 4.10).

The theory presented here takes place over an arbitrary commutative ring k, that is
to say, over the affine scheme defined by k. Following the precedent of H. P. Petersson
[14], it is possible to replace k by an arbitrary base scheme. The necessary – and mostly
straightforward — modifications are briefly discussed in the final Section 5.
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Throughout, k denotes an arbitrary commutative associative ring with unit element.
Unsubscripted tensor products are taken over k. The set of natural numbers including 0 is
denoted by N.

1. Conic algebras

1.1. Notation. Let X,Y, Z be k-modules. We denote by L p(X,Y ) the set of multilinear
maps f : Xp → Y . Thus L 1(X, k) = X∗ is the dual of X, L 1(X,Y ) = Hom(X,Y ), and
L 2(X,Y ) = Bil(X,Y ) are the bilinear maps on X with values in Y . The transpose of
f ∈ Bil(X,Y ) is fop(x1, x2) = f(x2, x1). The alternating p-linear maps on X with values in
Y are denoted Ωp(X,Y ). If Y = k we simply write L p(X) = L p(X, k), Bil(X) = Bil(X, k)
and Ωp(X) = Ωp(X, k). Let ψ: X → Y be linear and g ∈ L p(Y,Z). Then ψ∗(g) = g ◦ ψp
denotes the pull-back of g to X.

Let Quad(X,Y ) denote the quadratic maps from X to Y and Quad(X) = Quad(X, k)
the quadratic forms on X. The polarization of a quadratic map q is the symmetric bilinear
map ∂q(x, y) = q(x+ y)− q(x)− q(y), often simply written q(x, y) = ∂q(x, y).

The category of (commutative associative unital) k-algebras is denoted k-alg. If X is a
k-module and R ∈ k-alg, we write XR = X⊗kR for the R-module obtained by base change
from k to R, and denote the R-linear extension of a linear map f : X → Y by fR. Following
[4], k-schemes will be considered as k-functors, that is, set-valued functors on k-alg. If X
is a finitely generated and projective k-module, Xa denotes the affine k-group scheme given
by

Xa(R) = XR (1.1.1)
for all R ∈ k-alg. Its affine algebra is the symmetric algebra over X∗.

1.2. Unital modules. A unital k-module is a pair (X, 1X) where X is a finitely generated
and projective k-module and 1X , the base point, is a unimodular vector; i.e., there exist
linear forms α on X such that α(1X) = 1. If there is no confusion, we often simply write
1 for the base point and, by abuse of language, refer to X as to a unital module. It is
always assumed that X is of constant rank r = n+ 1, and put X[ = X/k · 1, which is then
projective of rank n. Let π = πX : X → X[ denote the canonical map. We often use the
notation M = X[ and π(x) = ẋ for the image of an element x ∈ X under π. Thus the
sequence

0 // k
1X // X

πX // M // 0 (1.2.1)
is split-exact. A morphism ϕ: (X, 1X) → (Y, 1Y ) of unital modules is a module homo-
morphism ϕ: X → Y preserving base points: ϕ(1X) = 1Y . Then ϕ induces a unique
homomorphism ϕ[: X[ → Y [ making the diagram

0 // k
1X // X

πX //

ϕ

��

X[ //

ϕ[

��

0

0 // k
1Y

// Y πY
// Y [ // 0

(1.2.2)

commutative. Unital modules form a category, and the assignments (X, 1X) 7→ X[, ϕ 7→ ϕ[

define a functor [ from unital k-modules to finitely generated projective k-modules.
Unital modules admit arbitrary base change: Since (1.2.1) is split-exact, it remains

so upon tensoring with an arbitrary R ∈ k-alg. Hence XR is unital with base point
1XR = 1X ⊗ 1R ∈ XR, and we have a natural isomorphism

(X[)R = X[ ⊗k R ∼= (XR/R · 1XR) = (XR)[, (1.2.3)
so the functor [ is compatible with base change.

For λ ∈ k let X∗λ be the set of all α ∈ X∗ such that α(1) = λ. Similarly, Bilλ(X)
denotes the set of f ∈ Bil(X) with f(1, 1) = λ and Quadλ(X) is the set of quadratic forms
q: X → k with q(1) = λ. The elements of X∗1 resp. Bil1(X), Quad1(X) are called unital
linear (bilinear, quadratic) forms. Since 1X is unimodular, X∗1 is not empty. This easily
implies that Quad1(X) and Bil1(X) are non-empty as well.
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1.3. Unital algebras. Let (X, 1X) be a unital k-module. We denote by Alg(X) the set
of (not necessarily associative) algebra structures on X with unit element 1 = 1X , that is,
the set of bilinear maps A: X × X → X such that A(x, 1) = A(1, x) = x for all x ∈ X.
Sometimes we will also refer to the triple (X, 1, A) as to “the algebra A” and, as long as A
is fixed, simply write xy = A(x, y) for the product in A. Note that Alg(X) is not empty; for
example, choosing α ∈ X∗1 , the rule A(x, y) = α(x)y + α(y)x − α(x)α(y)1 defines a unital
algebra on X, which is even associative and commutative.

It is immediately seen that the additive group of H(X) := Bil(X[, X) acts simply
transitively on the set Alg(X): If A ∈ Alg(X) and B ∈ H(X) then

A′(x, y) = A(x, y) +B(ẋ, ẏ), (1.3.1)

i.e., A′ = A+π∗(B), defines a unital multiplication on X, and conversely, if A,A′ ∈ Alg(X)
then there exists a unique B ∈ H(X) such that (1.3.1) holds.

The functor Alg(X): R 7→ Alg(XR) from k-alg to sets is representable, but not in a
canonical way, by the scheme H(X)a. Indeed, H(XR) acts simply transitively on Alg(XR)
as above, and since all modules involved are finitely generated and projective, H(XR) ∼=
H(X)R canonically. Now it suffices to fix some A0 ∈ Alg(X) and then map B ∈ H(XR) to
A0 +π∗(B). Thus Alg(X) is a trivial k-torsor with group H(X)a, but there is no canonical
trivialization. In particular, Alg(X) is a smooth finitely presented k-scheme, with fibres
isomorphic to affine space of dimension n2(n+ 1).

We introduce next exterior products and a formal differential calculus for multilinear
maps.

1.4. Lemma. Let X be a k-module and B a unital associative k-algebra. Recall the nota-
tions L p(X,B) and Ωp(X,B) introduced in 1.1. For f ∈ L p(X,B) and g ∈ L q(X,B),
define f ∧ g ∈ L p+q(X,B) by

(f ∧ g)(x1, . . . , xp+q) =
∑

σ∈Sp,q

sgn(σ)f(xσ(1), . . . , xσ(p))g(xσ(p+1), . . . , xσ(p+q)), (1.4.1)

where Sp,q ⊂ Sp+q is the set of all (p, q)-shuffle permutations: σ(1) < · · · < σ(p) and
σ(p+ 1) < · · · < σ(p+ q).

(a) With this product, L (X,B) :=
⊕

p>0 L p(X,B) is an N-graded associative unital
k-algebra, and the direct sum Ω(X,B) =

⊕
p>0 Ωp(X,B) is a subalgebra.

(b) If B is commutative, then L (X,B) is an alternating algebra in the sense of [2, III,
§4, No. 9, Definition 7]; i.e., L (X,B) is anticommutative and the squares of homogeneous
elements of odd degree are zero:

f ∧ g = (−1)deg(f) deg(g)g ∧ f, f ∧ f = 0 if deg(f) is odd.

(c) A homomorphism η: B → C of k-algebras induces an algebra homomorphism
η∗: L (X,B) → L (X,C) by composition on the left, and a homomorphism ϕ: X → Y
of k-modules induces an algebra homomorphism ϕ∗: L (Y,B)→ L (X,B) (“pull-back”), by
composition on the right.

Remark. The exterior product defined above is the usual one for alternating multilinear
maps, see [2, III, §11, No. 2, Exemple 3]. In this case, the lemma is well known. The point
here is that it works as well for arbitrary (not necessarily alternating) multilinear maps.

Proof. (a) Clearly, (1.4.1) defines an element f ∧ g of L p+q(X,B) which depends k-
bilinearly on f and g, and 1B ∈ B = L 0(X,B) is the unit element for this multiplication.
It remains to show associativity. We first rewrite (1.4.1) as follows. Let [1, n] denote the
interval {1, . . . , n} in N. For a partition [1, p + q] = I ∪̇ J where |I| = p and |J | = q,
say I = {i1, . . . , ip} and J = {j1, . . . , jq} with i1 < · · · < ip and j1 < · · · < jq, we put
xI = (xi1 , . . . , xip) and xJ = (xj1 , . . . , xjq ). Then
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(f ∧ g)(x1, . . . , xp+q) =
∑

%I,Jf(xI)g(xJ), (1.4.2)

where the sum runs over all such partitions of [1, p+ q] and where %I,J = (−1)ν , with ν the
number of pairs (i, j) ∈ I × J such that i > j, cf. [2, III, §7, No. 3, Lemma 1].

Let also h ∈ L r(X,B) and put N = [1, p+ q + r]. Then(
(f ∧ g) ∧ h)

)
(xN ) =

∑
N=L∪̇K

%L,K(f ∧ g)(xL)h(xK)

=
∑

N=L∪̇K

%L,K

( ∑
L=I∪̇J

%I,Jf(xI)g(xJ)

)
h(xK)

=
∑

N=I∪̇J∪̇K

%I,J %I∪J,K f(xI)g(xJ)h(xK),

where L runs over all p + q-element subsets of N with complement K and I runs over all
p-element subsets of L with complement J . Similarly,(

f ∧ (g ∧ h)
)
(xN ) =

∑
N=I∪̇J∪̇K

%I,J∪K %J,K f(xI)g(xJ)h(xK).

Now the assertion follows from the associativity of the exterior algebra of a free module
which has the structure constants %I,J [2, III, §7, No. 8, formula (20)]. Finally, if f and g
are alternating multilinear maps, then f ∧ g is their usual exterior product which is known
to be alternating as well [2, III, §11, No. 2].

(b) If I and J are disjoint index sets of p and q elements, respectively, then %I,J =
(−1)pq%J,I by [2, III, §7, No. 8, formula (21)]. Hence for f ∈ L p(X,B) and g ∈ L q(X,B)
it follows from (1.4.2) and commutativity of B that f ∧ g = (−1)pqg ∧ f . Now suppose
p odd and decompose [1, 2p] = I ∪̇ {I with |I| = p. Then %I,{I = −%{I,I . Hence for
each term %I,{If(xI)f(x{I) in (1.4.2), there is a corresponding term %{I,If(x{I)f(xI) =
−%I,{If(xI)f(x{I) (by commutativity of B), whence (f ∧ f)(x1, . . . , x2p) = 0.

(c) This is straightforward.

1.5. Definition. Now consider the special case where B = SY is the symmetric algebra
of a k-module Y . We denote the product in SY by ∨. Let ϕ: X → Y be a linear map.
Since Y = S1Y , we consider ϕ as an element of L 1(X,SY ). We define the ϕ-differential of
f ∈ L p(X,SY ) by dϕp f = f ∧ ϕ ∈ L p+1(X,SY ). Explicitly,

(dϕp f)(x0, . . . , xp) =
p∑
i=0

(−1)p+if(x0, . . . , x̂i, . . . , xp) ∨ ϕ(xi). (1.5.1)

In the special case where Y = X and ϕ = Id, we simply write dpf = dId
p f and say dpf is

the differential of f .
It is immediate from Lemma 1.4(b) that

dϕp+1(dϕp f) = (f ∧ ϕ) ∧ ϕ = f ∧ (ϕ ∧ ϕ) = 0,

so we have a cochain complex

0 // L 0(X,SY )
dϕ0 // L 1(X,SY )

dϕ1 // L 2(X,SY )
dϕ2 // · · · (1.5.2)

If f is alternating then so is dϕp f . Indeed, ϕ is an alternating 1-form with values in SY and by
Lemma 1.4(a), the alternating maps form a subalgebra. If f has values in SrY then dϕp f has
values in Sr+1Y . Finally, L p(X,SY ) is a left SY -module by defining (s ∨ f)(x1, . . . , xp) =
s ∨ f(x1, . . . , xp), and then it follows immediately from (1.5.1) that dϕp is SY -linear:

dϕp (s ∨ f) = s ∨ dϕp f. (1.5.3)
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For small degrees and ϕ = Id, we have the explicit formulas

(d0s)(x) = s ∨ x, (1.5.4)
(d1h)(x, y) = h(x) ∨ y − h(y) ∨ x, (1.5.5)

(d2b)(x, y, z) = b(x, y) ∨ z − b(x, z) ∨ y + b(y, z) ∨ x, (1.5.6)

where s ∈ SX = L 0(X,SX), h ∈ L 1(X,SX) = Hom(X,SX), and b ∈ L 2(X,SX)
= Bil(X,SX). Note that (1.5.5) implies the formula

u ◦ d1v = v ∧ u (1.5.7)

for all u, v ∈ X∗, since (u ◦ d1v)(x, y) = u
(
v(x)y − v(y)x

)
= v(x)u(y) − v(y)u(x), for all

x, y ∈ X.

Let ψ: Y → Z be a linear map between k-modules and let

Sψ: SY → SZ (1.5.8)

denote the induced homomorphism of the symmetric algebras. If there is no danger of
confusion, we also write simply ψ: SY → SZ. Correspondingly, we use the notation ψ∗(f) =
(Sψ)◦f ∈ L p(X,Z) for f ∈ L p(X,Y ). Then the differential behaves as follows with respect
to ψ and ϕ:

ψ∗(dϕp f) = dψ◦ϕp

(
ψ∗(f)

)
, (1.5.9)

ϕ∗(dψp g) = dψ◦ϕp

(
ϕ∗(g)

)
, (1.5.10)

where f ∈ L p(X,Y ) and g ∈ L p(Y,Z). The proof is straightforward.
We say f ∈ L p(X,SX) and g ∈ L p(Y,SY ) are ϕ-related if ϕ∗(f) = ϕ∗(g). Then dpf

and dpg are ϕ-related as well. Indeed,

ϕ∗(dpf) = dϕp (ϕ∗(f)) (by (1.5.9)) = dϕp (ϕ∗(g)) = ϕ∗(dpg) (by (1.5.10)).

We now return to unital algebras on a unital module. The following types of multipli-
cations will play a distinguished role in the sequel.

1.6. Lemma. Let X be a unital module. For a scalar-valued bilinear form f ∈ Bil(X)
define a multiplication fm ∈ Bil(X,X) by

fm(x, y) = (d2f)(x, 1, y) = f(x, 1)y − f(x, y)1 + f(1, y)x. (1.6.1)

(a) Then fm(1, x) = fm(x, 1) = f(1, 1)x. Hence f ∈ Bil1(X) implies fm ∈ Alg(X),
and f ∈ Bil0(X) implies that fm(x, y) depends only on ẋ and ẏ.

(b) (fm)op = (fop)m, and f is alternating if and only if fm is alternating.

(c) The map ( )m: Bil(X) → Bil(X,X) is linear and injective if rk(X) 6= 2. In case
rk(X) = 2, we have fm = 0 if and only if f is alternating.

Proof. (a) is immediate from the definition, as is the first statement of (b). If f is
alternating then it follows at once from (1.6.1) that fm(x, x) = 0. Conversely, assume fm

is alternating. If X has rank 1 then after identifying X = k · 1X with k, we have fm = f ,
so we may assume rkX > 2. Then 0 = fm(x, x) =

(
f(x, 1) + f(1, x)

)
x − f(x, x)1, so by

applying π, it follows that
(
f(x, 1) + f(1, x)

)
ẋ = 0. Since M = X[ has rank > 1, this easily

implies (for example, by localization and using a basis) that f(x, 1) + f(1, x) = 0, so we
have f(x, x)1 = 0 and f is alternating.

We prove (c). Linearity being obvious, assume fm = 0. The case rkX = 1, i.e.,
X = k · 1X ∼= k, is clear. Applying π to (1.6.1) shows f(x, 1)ẏ + f(1, y)ẋ = 0, and taking
the exterior product with ẋ resp. ẏ yields 0 = f(x, 1)ẋ ∧ ẏ and 0 = f(1, y)ẋ ∧ ẏ. Hence if
X has rank > 3, i.e., M has rank > 2, it follows by localization that f(x, 1) = f(1, y) = 0
and therefore by (1.6.1) also f(x, y) = 0, for all x, y ∈ X.

Now let rkX = 2. If fm = 0 then fm is in particular alternating, hence so is f by (b).
Conversely, let f be alternating. After localizing we may assume that X = k ·1⊕k ·e is free
of rank 2. Then fm is alternating by (b), and fm(1, e) = f(1, 1)e (by (a)) = 0, so fm = 0.
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Remark. If X has rank 2, every A ∈ Alg(X) is of the form A = fm, where f ∈ Bil1(X)
is unique up to an alternating bilinear form. This is the well-known parametrization of
rank 2 algebras, see [9, Proposition 1.6]. These algebras are automatically associative and
commutative [7, I, (1.3.6)].

1.7. Transvections. The automorphism group of a unital module X is GL1(X), the sub-
group of all ϕ ∈ GL(X) with ϕ(1) = 1. By functoriality (cf. (1.2.2)), we have a homomor-
phism GL1(X)→ GL(X[) sending ϕ to ϕ[. To describe its kernel, let V = M∗ be the dual
of M = X[. Then there is a split exact sequence of groups

1 // V
τ // GL1(X)

( )[ // GL(M) // 1

where, for v ∈ V , the transvection τv ∈ GL1(X) is defined by

τv(x) = x− v(ẋ) · 1. (1.7.1)

This is easily proved by choosing a splitting of the exact sequence (1.2.1). The group
GL1(X) acts on the set Alg(X) on the right by means of

Aϕ(x, y) := ϕ−1
(
A(ϕ(x), ϕ(y)

)
, (1.7.2)

and clearly ϕ: Aϕ → A is an isomorphism of algebras. Explicitly, the action of a transvection
τv on an algebra A is given by

Av := Aτv = A+ gm
v,A (v ∈ V ), (1.7.3)

where gv,A ∈ Bil0(X) is
gv,A(x, y) = v(ẋ)v(ẏ)− v

(
π(xy)

)
. (1.7.4)

Indeed, by a straightforward computation,

Av(x, y) = τ−v
(
τv(x)τv(y)

)
= τ−v

(
(x− v(ẋ)1)(y − v(ẏ)1

)
= xy − v(ẋ)y − xv(ẏ)−

(
v(ẋ)v(ẏ)− v(π(xy))

)
· 1

= (A+ gm
v,A)(x, y).

We claim that

rkX > 3 =⇒ V acts freely on Alg(X) by transvections. (1.7.5)

Indeed, assume that A = Av. Then (1.7.3) and Lemma 1.6(c) imply gv,A = 0, which by
(1.7.4) says that π∗(v) = v ◦ π: X → k is an algebra homomorphism. Since π∗(v)(1) = 0
and A has unit element 1, this implies π∗(v) = 0. As π is surjective, this shows v = 0.

1.8. Conic algebras. Let (X, 1X) be a unital module. An algebra A ∈ Alg(X) is called
conic if there exists a unital quadratic form N such that

x2 − T (x)x+N(x)1 = 0 (1.8.1)

for all x ∈ X, where T (x) = N(x, 1). By linearization, this implies

x ◦ y − T (x)y − T (y)x+N(x, y)1 = 0, (1.8.2)

where x ◦ y = xy + yx is the symmetrized product. Note that algebras of rank two are
automatically conic [7, I, (1.3.6)]. Also note that

T (1) = N(1, 1) = 2N(1) = 2. (1.8.3)

There is at most one N satisfying (1.8.1): Indeed, assume N ′ (with analogously defined T ′)
also satisfies (1.8.1). Then T (1)−T ′(1) = 2−2 = 0, so there exists a unique linear form t on

7
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M = X[ such that t(ẋ) = T (x)−T ′(x). Moreover, T (x)x−N(x)1 = x2 = T ′(x)x−N ′(x)1
implies, by projecting to M , that t(ẋ)ẋ = 0 for all ẋ ∈ M . Since M is finitely generated
and projective, it follows easily by localization that t = 0. Hence T = T ′ and then also
N = N ′ by (1.8.1). We call N = NA the norm and T = TA the trace form of A. From the
definition it is clear that the norm of a conic algebra does not change when passing to the
opposite algebra:

NAop = NA. (1.8.4)

We denote by Con(X) the set of conic algebras on X.

Let (Y, 1Y ) be another unital module and let A ∈ Con(X) and B ∈ Con(Y ) be conic
algebras. A morphism ϕ: A → B of conic algebras is defined to be a morphism of unital
modules which preserves products and norms: ϕ(xy) = ϕ(x)ϕ(y) and NB

(
ϕ(x)

)
= NA(x),

for all x, y ∈ X. The latter property is automatic if ϕ is injective, but not in general.
Conic algebras admit arbitrary base change: let R ∈ k-alg and let AR be the R-linear

extension of A to a bilinear map AR: XR ×XR → XR. Then AR is a conic algebra on XR,
with norm NAR = NA ⊗k R, the base change of the norm of A.

1.9. The conjugation. Let A ∈ Con(X) with norm N and trace T . The conjugation of
A is the linear map ι = ιA: X → X defined by

ι(x) = x̄ = T (x) · 1− x. (1.9.1)

From T (1) = N(1, 1) = 2 it follows that ι2 = IdX and ι(1) = 1. The defining equation
(1.8.1) of a conic algebra can be written as

x̄x = N(x) · 1 = xx̄, (1.9.2)

which implies by linearization that

x̄y + ȳx = N(x, y) · 1 = xȳ + yx̄. (1.9.3)

In general, ι is not an involution of the algebra A, cf. Section 4. Note, however, that it
preserves norms and traces and is compatible with squaring:

N(x̄) = N(x), T (x̄) = T (x), ι(x2) = ι(x)2. (1.9.4)

This follows from (1.9.2) and (1.8.1).
It is useful to introduce the bilinear map H = HA ∈ Bil(X,X) given by

H(x, y) = x̄y.

Then H has diagonal values in k · 1; indeed, (1.9.2) and (1.9.3) imply

H(x, x) = N(x) · 1, (1.9.5)
H(x, y) +H(y, x) = N(x, y) · 1. (1.9.6)

Although H has some properties of a hermitian form, it is in general not true that ι
(
H(x, y)

)
= H(y, x). Rather, this is equivalent to ι being an involution of A, see Lemma 4.2. Since
Aop has the same norm and trace as A, it has the same conjugation as well, which implies

HAop(x, y) = yx̄ = HA(ȳ, x̄). (1.9.7)

We also have the relation
HAop = Hop

A + d1TA. (1.9.8)

Indeed, by (1.5.5),

Hop
A (x, y) + (d1T )(x, y) = HA(y, x) + T (x)y − T (y)x

= ȳx+ T (x)y − T (y)x = (T (y)1− y)x+ T (x)y − T (y)x
= y(T (x)1− x) = yx̄ = HAop(x, y).

8
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Let A ∈ Con(X) and B ∈ Con(Y ) be conic algebras, and let ϕ: A→ B be a homomorphism
of unital algebras. Then it is easy to see that the following conditions are equivalent:

(i) ϕ is a morphism of conic algebras,
(ii) ϕ preserves traces: TB

(
ϕ(x)

)
= TA(x),

(iii) ϕ commutes with conjugations: ϕ
(
ιA(x)

)
= ιB

(
ϕ(x)

)
,

(iv) ϕ preserves H: ϕ
(
HA(x, y)

)
= HB

(
ϕ(x), ϕ(y)

)
.

We introduce the following notation. For a bilinear form f on X, let f1 and f2 be the
linear forms on X obtained by substituting 1X in the first and second variable, respectively:

f1(x) = f(1, x), f2(x) = f(x, 1), (1.9.9)

and denote by [f ] the quadratic form obtained by contraction: [f ](x) = f(x, x).

1.10. Lemma. Let (X, 1X) be a unital module and put M = X[ = X/k · 1X .

(a) Let f ∈ Bil1(X). Then the algebra fm of Lemma 1.6 is conic, with

Nfm = [f ], Tfm = f1 + f2, Hfm = d1f1 + f · 1X . (1.10.1)

(b) Let g ∈ Bil0(X). If A is conic then so is A+ gm with

NA+gm = NA + [g], TA+gm = TA + g1 + g2, HA+gm = HA + d1g1 + g · 1X . (1.10.2)

(c) If A ∈ Con(X) and Γ ∈ Ω2(M,X) then A+ π∗(Γ ) ∈ Con(X) with

NA+π∗(Γ ) = NA, TA+π∗(Γ ) = TA, HA+π∗(Γ ) = HA − π∗(Γ ). (1.10.3)

Conversely, given A,A′ ∈ Con(X) with the same norm, there exists a unique Γ ∈ Ω2(M,X)
such that A′ = A+ π∗(Γ ).

Proof. (a) By Lemma 1.6, we have fm(x, x) =
(
f(x, 1) + f(1, x)

)
x− f(x, x)1, so fm is

conic with the indicated norm and trace. Moreover,

Hfm(x, y) = T (x)y − fm(x, y)

=
(
f1(x) + f2(x)

)
y − f2(x)y − xf1(y) + f(x, y) · 1

= f1(x)y − f1(y)x+ f(x, y) · 1.

(b) Let A′ = A+ gm. Since A is conic,

A′(x, x) = TA(x)x−NA(x) · 1 +
(
g(x, 1) + g(1, x)

)
x− g(x, x) · 1

=
(
TA(x) + g1(x) + g2(x)

)
x−

(
NA(x) + g(x, x)

)
· 1,

so A′ is conic with the indicated norm and trace. Denote the conjugation of A′ by ι′(x) =
T ′(x)1− x. Then

HA′(x, y) = A′(ι′(x), y) = T ′(x)y −A′(x, y)

= T (x)y −A(x, y) +
(
g(1, x) + g(x, 1)

)
y − gm(x, y)

= x̄y + g1(x)y − g1(y)x+ g(x, y) · 1
= HA(x, y) + (d1g1)(x, y) + g(x, y) · 1.

(c) From π∗(Γ )(x, x) = Γ (ẋ, ẋ) = 0 it is clear that A + π∗(Γ ) is conic and its norm
and trace is that of A. Hence A and A + π∗(Γ ) have the same conjugation as well, and it
follows that

HA+π∗(Γ )(x, y) = x̄y + Γ
(
π(x̄), π(y)

)
= HA(x, y) + Γ

(
π(T (x)1− x), π(y)

)
= HA(x, y)− Γ (ẋ, ẏ).

Now let A and A′ be conic with the same norm N and hence trace T . By (1.3.1), A′ =
A+π∗(Γ ) for a unique Γ ∈ Bil(M,X). By (1.8.1) we have Γ (ẋ, ẋ) = A′(x, x)−A(x, x) = 0,
so Γ is in fact alternating.

9
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1.11. Proposition. Every A ∈ Con(X) can be written as

A = fm + π∗(Γ ) (1.11.1)

where f ∈ Bil1(X) and Γ ∈ Ω2(M,X). If also A = (f ′)m + π∗(Γ ′) then f ′ = f + a and
π∗(Γ ′) = π∗(Γ )− am for a unique a ∈ Ω2(X).

Proof. Let c: Bil(X)→ Quad(X), f 7→ [f ], be the contraction map. Since X is finitely
generated and projective, the sequence

0 // Ω2(X) inc // Bil(X) c // Quad(X) // 0 (1.11.2)

is split exact [6, 5.1.15]. Hence, if A ∈ Con(X) with norm N , there exist bilinear forms f
on X such that N(x) = f(x, x), and even f ∈ Bil1(X) since N(1) = f(1, 1) = 1. We claim
that (1.11.1) holds for a suitable Γ . Indeed, (A − fm)(x, x) = x2 −

(
f(x, 1)x − f(x, x) ·

1 + f(1, x)x
)

= x2 − T (x)x + N(x) · 1 = 0, so Γ̃ := A − fm is alternating. Moreover,
Γ̃ (1, y) = 1y − fm(1, y) = y − y = 0, showing that Γ̃ induces a unique Γ ∈ Ω2(M,X) such
that π∗(Γ ) = Γ̃ .

Now suppose also A = f ′m +π∗(Γ ′). Then by (a) and (b), NA = [f ] = [f ′]. Hence there
exists a unique a ∈ Ω2(X) such that f ′ = f + a. Furthermore,

(Γ ′ − Γ )(ẋ, ẏ) = (f − f ′)m(x, y) = −am(x, y).

1.12. The scheme Quad1(X). Since X has rank r = n + 1, the module Quad(X) has
rank

(
n+2

2

)
. Moreover, Quad1(X) being not empty, the evaluation map ε: q 7→ q(1) from

Quad(X) to k is surjective. Hence the sequence

0 // Quad0(X) inc // Quad(X) ε // k // 0

is exact, so Quad0(X) is finitely generated and projective of rank
(
n+2

2

)
− 1.

Let Quad1(X) denote the k-functor R 7→ Quad1(XR). Any choice of q1 ∈ Quad1(X)
yields a bijection Quad1(X) ∼= Quad0(X) by q 7→ q − q1, compatible with base change.
Hence

Quad1(X) ∼= Quad0(X)a (1.12.1)

(not canonically) is a smooth affine k-scheme with fibres isomorphic to affine space of
dimension

(
n+2

2

)
− 1.

Since conic algebras admit arbitrary base change (cf. 1.8), we have a set-valued functor
Con(X) on k-alg given by R 7→ Con(XR). There is a morphism p: Con(X)→ Quad1(X)
given by the norm: p(A) = NA. From Lemma 1.10(c) it is clear that the map (A,Γ ) 7→
A + π∗(Γ ) defines an action of the additive group Ω2(M,X) on Con(X). This action
is compatible with base change as well, so we have an action of the group functor G =
Ω2(M,X)a on Con(X). Refer to [4, III, §4] for torsors.

1.13. Theorem. Con(X) is a trivial torsor with projection p and group G over the base
Quad1(X). As a k-scheme, Con(X) is smooth, affine and finitely presented, with fibres
isomorphic to affine space of dimension n

(
1 + n+

(
n
2

))
.

Proof. By Lemma 1.10(c), the additive group of Ω2(M,X) acts freely on Con(X) and
its orbits are precisely the fibres of p. A section s of p can be obtained as follows. Let
σ: Quad(X)→ Bil(X) be a splitting of the exact sequence (1.11.2). Then σ maps Quad1(X)
to Bil1(X), and Lemma 1.10(a) shows that s(q) := σ(q)m (for q ∈ Quad1(X)) defines a
section of p.

Since all this is compatible with arbitrary base change, Con(X) is a torsor as claimed.
A choice of section yields a (non-canonical) isomorphism Con(X) ∼= Quad1(X)×G, and
by (1.12.1) an isomorphism Con(X) ∼= Quad0(X)a × G. The modules Quad0(X) and
Ω2(M,X) are finitely generated and projective of ranks

(
n+2

2

)
−1 and

(
n
2

)
(n+1), respectively.

This implies the statement about the fibres of Con(X).
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2. The canonical 3-form of a conic algebra

We begin with a cohomological result on a subcomplex of (1.5.2) which may be of indepen-
dent interest.

2.1. Lemma. Let M be a finitely generated and projective k-module of constant rank n =
p+ q. Then for all ~x = (x0, . . . , xp) ∈Mp+1, ~y = (y1, . . . , yq) ∈Mq and ω ∈ Ωn(M),

p∑
i=0

(−1)p+ixi ω(x0, . . . , x̂i, . . . , xp, ~y) =
q∑
j=1

(−1)j−1yj ω(~x, y1, . . . , ŷj , . . . , yq),

Proof. Let x0, . . . , xn ∈ M . Since M has rank n the exterior product x0 ∧ · · · ∧ xn
vanishes. Hence by [2, Chapter III, §7, No. 4, Cor. 3 of Prop. 7]

n∑
i=0

(−1)ixi ω(x0, . . . , x̂i, . . . , xn) = 0.

Now the formula follows by renaming xp+i = yi for i = 1, . . . , q and multiplying with (−1)p.

2.2. Proposition. Let M be a finitely generated and projective k-module of constant rank
n>2. Let X = Y = M and ϕ = Id in (1.5.2). Restricting the differential to the submodules
Ωp(M,Sp−1M), p> 0, we obtain a cochain complex

0
d0 // M∗

d1 // Ω2(M,M)
d2 // Ω3(M,S2M)

d3 // · · ·
dn−1 // Ωn(M,Sn−1M)

dn // 0 (2.2.1)

and this complex is split-exact.

Proof. M is in particular flat, so by [3, §9.3, Proposition 3], there are acyclic complexes

El : 0 // S0M ⊗
∧l

M
d // S1M ⊗

∧l−1
M

d // · · · d // SlM ⊗
∧0

M // 0 (2.2.2)

for l > 1, where d is given by the formula

d
(
s⊗ (y1 ∧ · · · ∧ yq)

)
=

q∑
j=1

(−1)j−1(s ∨ yj)⊗ (y1 ∧ · · · ∧ ŷj ∧ · · · ∧ yq),

for s ∈ Sl−qM and y1, . . . , yq ∈M .
SinceM is finitely generated and projective of rank n, there is an isomorphism ϕ:

∧q
M⊗

Ωn(M)
∼=−→ Ωp(M) given by the inner product:

ϕ(y ⊗ ω)(x) = (ycω)(x) = ω(x ∧ y),

for y ∈
∧q

M , ω ∈ Ωn(M), x ∈
∧p

M , and p + q = n [2, III, §11, No. 11, Prop. 12]. By
tensoring ϕ with SrM on the left, this induces an isomorphism, again denoted

ϕ : SrM ⊗
q∧
M ⊗ Ωn(M)

∼=−→ SrM ⊗ Ωp(M) ∼= Ωp(M,SrM),

and given explicitly by ϕ(s⊗ y ⊗ ω)(x) = s ω(x ∧ y). We claim that the diagram

SrM ⊗
∧q

M ⊗ Ωn(M)
d⊗Id //

ϕ ∼=
��

Sr+1M ⊗
∧q−1

M ⊗ Ωn(M)

∼= ϕ

��
Ωp(M,SrM)

dp

// Ωp+1(M, Sr+1M)

11
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is commutative. Indeed, let s ∈ SrM , y ∈
∧q

M and ω ∈ Ωn(M), and put ~x = (x0, . . . , xp) ∈
Mp+1. We must show that

ϕ
(
(d⊗ Id)(s⊗ y ⊗ ω)

)
(~x) = dp

(
ϕ(s⊗ y ⊗ ω)

)
(~x).

It is no restriction of generality to assume y = y1 ∧ · · · ∧ yq decomposable. Then the left
hand side is

ϕ
( q∑
j=1

(−1)j+1(s ∨ yj)⊗(y1 ∧ · · · ∧ ŷj ∧ · · · ∧ yq)⊗ ω
)

(~x)

=
q∑
j=1

(−1)j+1(s ∨ yj)ω(~x, y1, . . . , ŷj , . . . , yq).

On the other hand, putting ~y = (y1, . . . , yq),

dp
(
ϕ(s⊗ y ⊗ ω)

)
(~x) =

p∑
i=0

(−1)p+ixi ∨ ϕ(s⊗ y ⊗ ω)(x0, . . . , x̂i, . . . , xp)

=
p∑
i=0

(−1)p+i(xi ∨ s)ω(x0, . . . , x̂i, . . . , xp, ~y).

Now the commutativity of the diagram follows from Lemma 2.1 by multiplication with s in
the symmetric algebra.

Since Ωn(M) is flat, the sequence obtained from (2.2.2) by tensoring with Ωn(M) is still
exact. By applying the isomorphisms ϕ we obtain the exact sequence

0 // Ωn−l(M,S0M)
dn−l // Ωn−l+1(M,S1M)

dn−l+1// · · ·
dn−1 // Ωn(M,SlM) // 0

Now the exactness of (2.2.1) follows for l = n− 1 (which is still > 1 since n> 2).
To prove that the complex splits, let us put Cp = Ωp(M,Sp−1M) and Zp = Ker(dp) =

Im(dp−1). We must show that Zp is a direct summand in Cp [3, §2, No. 5]. This is done by
descending induction on p. Clearly all Cp are finitely generated and projective. For p = n
we have Zn = Cn since dn = 0. Assume by induction that Zp is a direct summand in Cp,
in particular, that it is finitely generated and projective. Then it follows from the exact
sequence

0 // Zp−1 // Cp−1
dp−1 // Zp // 0

that the same holds true of Zp−1.

2.3. Corollary. Let M be finitely generated and projective of constant rank n> 2 and put

Z3(M) = Ker
(
d3 : Ω3(M,S2M)→ Ω4(M,S3M)

)
.

Then the sequence of k-modules

0 // M∗
d1 // Ω2(M,M)

d2 // Z3(M) // 0 (2.3.1)

is split-exact and Z3(M) is finitely generated and projective of rank n
((
n
2

)
− 1
)
.

Proof. Immediate.

We now return to the study of conic algebras and let, as in 1.2, (X, 1X) be a unimodular
k-module of constant rank n + 1, so M = X[ = X/k · 1X has rank n. The canonical
projection π: X → M is denoted π(x) = ẋ. More generally, if f is any X-valued map, we
put ḟ = π ◦ f .

12
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2.4. Lemma and Definition. Let A be a conic algebra on X and let H = HA be the
bilinear map defined in 1.9.

(a) There exists a unique Θ ∈ Z3(M) such that, for all x, y, z ∈ X,

Θ(ẋ, ẏ, ż) =
∑
cyc

ẋ ∨ Ḣ(y, z) (2.4.1)

= Sπ
(
(d2H)(x, y, z)

)
, (2.4.2)

where
∑

cyc denotes the cyclic sum over x, y, z and Sπ is the induced map on the symmetric
algebras, see (1.5.8). We call Θ = ΘA the canonical 3-form of A. Note that (2.4.2) says Θ
and d2H are π-related as defined in 1.5:

π∗(Θ) = π∗(d2H). (2.4.3)

(b) The canonical 3-form is compatible with morphisms: let B ∈ Con(Y ) be a second
conic algebra, let ϕ: A→ B be a homomorphism of conic algebras as in 1.8 and let ϕ[: X[ →
Y [ be the induced module homomorphism. Then ΘB and ΘA are ϕ[-related: (ϕ[)∗(ΘB) =
(ϕ[)∗(ΘA); explicitly, ΘB

(
ϕ[(ẋ), ϕ[(ẏ), ϕ[(ż)

)
= (Sϕ[)

(
ΘA(ẋ, ẏ, ż)

)
, for all ẋ, ẏ, ż ∈M .

(c) The canonical 3-form is compatible with base change: for R ∈ k-alg and with the
identification (1.2.3), we have ΘAR = (ΘA)R.

Proof. (a) Since H ∈ Bil(X,X) = L 2(X,S1X), we have d2H ∈ L 3(X,S2X). It follows
from (1.5.6) and (1.9.6) that

(d2H)(x, y, z) = x ∨H(y, z)− y ∨H(x, z) + z ∨H(x, y)

=
(∑

cyc

x ∨H(y, z)
)
− y ∨

(
H(x, z) +H(z, x)

)
=
(∑

cyc

x ∨H(y, z)
)
− y ∨N(x, z)1X . (2.4.4)

The kernel of Sπ is the ideal of SX generated by 1X [2, III, §6, No. 2, Proposition 4]. Hence
(2.4.4) shows that, modulo Ker Sπ, d2H is invariant under cyclic permutation. Moreover,

(d2H)(x, x, z) = z ∨H(x, x) = z ∨N(x)1X

by (1.9.5), so (d2H)(x, y, z) is, modulo Ker Sπ, an alternating function of x, y, z. Finally,
the formula

(d2H)(1X , y, z) = 1X ∨H(y, z)− y ∨ z + z ∨ y = 1X ∨H(y, z)

shows that (d2H)(x, y, z) depends, modulo Ker Sπ, only on ẋ, ẏ, ż. Now (2.4.4) implies that
there exists a unique Θ ∈ Ω3(M, S2M) such that (2.4.1) and (2.4.2) hold, so Θ and d2H are
π-related. By 1.5, d3Θ and d3d2H are π-related as well, whence π∗(d3Θ) = π∗(d3d2H) = 0.
Since π is surjective, π∗ is injective, so that d3Θ = 0, as required.

(b) follows immediately from (2.4.1) and the characterization 1.9(iv) of homomorphisms
of conic algebras, and (c) is straightforward.

2.5. Corollary. The canonical 3-form is invariant under transvections: ΘAv = ΘA for all
v ∈ V = M∗.

Proof. By 1.7, ϕ = τv: Av → A is an isomorphism, and the induced map ϕ[: M → M
is the identity. Now the assertion follows from 2.4(b).
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2.6. Examples. (a) Let A = Mat2(k). Here the conjugation is

ι

(
a b
c d

)
=
(
d −b
−c a

)
,

and M = Mat2(k)/k · 1 = pgl2(k). Let eij be the standard matrix units. Then by the
well-known multiplication table of the eij ,

(d2H)(e11, e12, e21) = e11 ∨ (ē12e21)− e12 ∨ (ē11e21) + e21 ∨ (ē11e12)
= e11 ∨ (−e12e21)− e12 ∨ (e22e21) + e21 ∨ (e22e12)
= −e11 ∨ e11 − e12 ∨ e21 + 0 = −e11 ∨ 1X + e11 ∨ e22 − e12 ∨ e21.

Applying Sπ, we obtain

ΘA(ė11, ė12, ė21) = ė11 ∨ ė22 − ė12 ∨ ė21 = det
(
ė11 ė12

ė21 ė22

)
, (2.6.1)

the determinant being taken in the commutative ring SM . Since M is free with basis
ė11, ė12, ė21, this determines the canonical 3-form completely.

(b) Let A = H be the real quaternion division algebra, with R-basis e0 = 1X , e1, e2, e3

and the usual multiplication table: e2
i = −1, eiej = −ejei = el for (i, j, l) a cyclic permuta-

tion of (1, 2, 3). Then HA(ei, ej) = −el, so by (2.4.1),

ΘH(ė1, ė2, ė3) = −
3∑
i=1

ėi ∨ ėi.

2.7. Proposition. The canonical 3-form of a conic algebra has the following properties.

(a) ΘA is a skew-symmetric function of A in the sense that

ΘAop = −ΘA. (2.7.1)

(b) 2ΘA is π-related to the derivative of the commutator C = A−Aop:

2π∗(ΘA) = −π∗(d2C), (2.7.2)

explicitly,
2ΘA(ẋ, ẏ, ż) = −

∑
cyc

π(x) ∨ π([y, z]). (2.7.3)

(c) If A = fm + π∗(Γ ) as in Proposition 1.11 then

ΘA = −d2Γ̇ . (2.7.4)

Proof. (a) By differentiating (1.9.8) we obtain d2HAop = d2H
op
A . Formula (1.9.6) says

HA + Hop
A = ∂N · 1X , and regarding this as a bilinear map on X with values in SX, we

have ∂N · 1X = 1X ∨ ∂N . Hence by (1.5.3),

d2HA + d2H
op
A = 1X ∨ d2(∂N) ≡ 0 mod Ker Sπ, (2.7.5)

and therefore π∗(d2HAop) = −π∗(d2HA). This implies (2.7.1) because of (2.4.2).

(b) From (1.9.1) it follows that HA(x, y)−Hop
A (x, y) = x̄y−yx̄ = −xy+yx = −C(x, y).

Hence d2HA − d2H
op
A = −d2C. Adding this to (2.7.5) yields 2d2HA ≡ −d2C mod Ker Sπ,

so (2.7.2) follows from (2.4.3) by applying π∗. Since the commutator is an alternating
function, its derivative is given by d2C(x, y, z) =

∑
cyc x ∨ [y, z]. This yields (2.7.3).

(c) By (1.10.1) and (1.10.3), HA = d1f1+f ·1X−π∗(Γ ). Hence d2HA = d2d1f+d2(1X∨
f) − d2π

∗(Γ ) = 1X ∨ (d2f) − d2π
∗(Γ ) ≡ −d2π

∗(Γ ) mod Ker Sπ. Since π∗ is injective, it
suffices to show that π∗(ΘA) = −π∗(d2Γ̇ ). Now

π∗(ΘA) = π∗(d2HA) (by (2.4.3)) = −π∗
(
d2(π∗(Γ ))

)
= −dπ2

(
π∗(π∗(Γ ))

)
(by (1.5.9)) = −dπ2

(
π∗(Γ̇ )

)
= −π∗(d2Γ̇ ) (by (1.5.10)).

14
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2.8. Theorem. Let rk(X) > 3 and A ∈ Con(X).

(a) ΘA = 0 if and only if A = fm for a unique f ∈ Bil1(X).

(b) Let g ∈ Bil0(X). Then A+ gm ∈ Con(X) by 1.10(b), and

ΘA+gm = ΘA. (2.8.1)

Conversely, if A′ ∈ Con(X) with ΘA′ = ΘA then A′ = A+ gm, for a unique g ∈ Bil0(X).

(c) If Γ ∈ Ω2(M,X) then

ΘA+π∗(Γ ) = ΘA − d2Γ̇ . (2.8.2)

Proof. (a) If A = fm then ΘA = 0 is clear from (2.7.4). Conversely, let ΘA = 0 and
write A = fm + π∗(Γ ) as in (1.11.1). By (2.7.4), d2Γ̇ = 0, so by Proposition 2.2, there
exists a unique linear form v on M such that Γ̇ = d1v, i.e., Γ̇ (ẋ, ẏ) = v(ẋ)ẏ − v(ẏ)ẋ for all
x, y ∈ X, cf. (1.5.5). Lifting this back to X, we conclude that there exists a unique bilinear
form a on X such that

Γ (ẋ, ẏ) = v(ẋ)y − v(ẏ)x− a(x, y) · 1X .

As Γ is alternating so is a. Putting y = 1X yields 0 = v(ẋ) · 1X − 0− a(x, 1X) · 1X whence
v(ẋ) = a(x, 1X). Now we have

Γ (ẋ, ẏ) = a(x, 1X)y + xa(1X , y)− a(x, y) · 1X = am(x, y),

i.e., π∗(Γ ) = am, which implies

A = fm + π∗(Γ ) = fm + am = (f + a)m.

After replacing f with f + a, we see that A has the required form. Uniqueness follows from
Lemma 1.6(c).

(b) By Lemma 1.10(b), A′ = A + gm is conic with HA′ = HA + d1g1 + g · 1X . Hence
d2HA′ = d2HA + 1X ∨ d2g ≡ d2HA mod Ker Sπ, so ΘA′ = ΘA by (2.4.2). Conversely, let A
and A′ be conic algebras with ΘA = ΘA′ . Write A = fm +π∗(Γ ) and A′ = (f ′)m +π∗(Γ ′) as
in (1.11.1) and consider A′′ := A− π∗(Γ ′) = fm + π∗(Γ − Γ ′) ∈ Con(X) (Lemma 1.10(c)).
Then ΘA′′ = −d2

(
Γ̇ − Γ̇ ′

)
= ΘA −ΘA′ = 0 by (2.7.4), so by (a), A′′ = (f ′′)m for a unique

f ′′ ∈ Bil1(X). Hence

A′ = (f ′)m + π∗(Γ ′) = (f ′)m +A−A′′ = A+ (f ′ − f ′′)m

where g = f ′ − f ′′ ∈ Bil0(X) is unique by Lemma 1.6(c).

(c) Let A′ = A + π∗(Γ ). By Lemma 1.10(c), HA′ = HA − π∗(Γ ). Hence d2HA′ =
d2HA − d2π

∗(Γ ), so (2.8.2) follows from Lemma 2.4(a) by applying π.

2.9. Corollary. Let rkX = 3. Then the map f 7→ fm is a bijection between Bil1(X) and
Con(X).

Proof. For X of rank 3 we have rkM = 2, so the canonical 3-form is automatically zero.
Now the assertion follows from 2.8(a).

Since ΘA is compatible with base change by Lemma 2.4, there is a well-defined morphism
of functors p′: Con(X) → Z3(M)a given by p′(A) = ΘA, for all A ∈ Con(XR) and R ∈
k-alg. The action of the group Bil0(X) on Con(X) by (A, g) 7→ A+ gm is compatible with
base change as well, thus inducing an action of Bil0(X)a on Con(X). Now we have the
following companion result to Theorem 1.13:
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2.10. Corollary. Let rkX > 3. Then Con(X) is a trivial torsor with projection p′(A) =
ΘA and group Bil0(X)a over the base Z3(M)a.

Proof. By Theorem 2.8(b), Bil0(X) acts freely on Con(X) and its orbits are precisely
the fibres of p′. We construct a section s′ of p′ as follows. Choose a section σ: Z3(M) →
Ω2(M,M) of d2 (cf. (2.3.1)) and a section s: M → X of π. Let f ∈ Bil1(X). For a given
z ∈ Z3(M), define Γ ∈ Ω2(M,X) by Γ (ẋ, ẏ) = −s

(
σ(z)(ẋ, ẏ)

)
, and put s′(z) = fm +π∗(Γ ).

Then s′(z) ∈ Con(X) by Lemma 1.10(a),(c). Moreover, by (a) and (c) of Theorem 2.8,
p′(s′(z)) = Θs′(z) = −d2Γ̇ = d2(σ(z)) = z. Since all this is compatible with base change,
the assertion follows.

By combining this corollary with Theorem 1.13, we obtain:

2.11. Corollary. Let rkX>3. Then Con(X) is a trivial torsor with projection p′′ = p×p′
and group Ω2(X)a, acting by (A, g) 7→ A+ gm, over the base Quad1(X)× Z3(M)a.

Proof. Clearly, the action of Ω2(X) is compatible with p′′. Conversely, let p(A) = p(A′)
and p′(A) = p′(A′). Then by Theorem 2.8(b), A = A′+gm for some g ∈ Bil0(X). Moreover,
NA = NA′ = NA+[g] by (1.10.2), so [g] = 0 and g is alternating. A section of p′′ is obtained
as follows. Choose a section s1: Quad1(X) → Bil1(X) of c, a section s: M → X of π, and
a section σ: Z3(M)→ Ω2(M,M). Then s′′(q, z) := s1(q)m − π∗

(
s(σ(z))

)
is a section of p′′.

3. Coordinates for conic algebras

3.1. Preliminaries. Let X be a unital module as in 1.2 and recall the exact sequence
(1.2.1). The unital linear forms on X are precisely the retractions α: X → k of 1X : k → X.
Hence they are in one-to-one correspondence with the sections of π: X →M , by assigning
to α ∈ X∗1 the section sα: M → X given by

sα(ẋ) = x− α(x) · 1X . (3.1.1)

Thus sα : M
∼=−→ Mα := Ker(α) = Im(sα) is an isomorphism of k-modules with inverse

π: Mα →M , and
X = k · 1X ⊕Mα (direct sum of k-modules). (3.1.2)

For f ∈ L p(X,SX) let s∗α(f) ∈ L p(M, SX) be the pull-back of f to M via sα, and for
g ∈ L p(M, SX) we write π∗(g) = Sπ ◦ g ∈ L p(M,SM), as in 1.4. Then π∗

(
s∗α(f)

)
=

Sπ ◦ f ◦ spα = s∗α
(
π∗(f)

)
∈ L p(M, SM), and similarly α∗

(
s∗α(f)

)
∈ L p(M, Sk). The

derivative of 1.5 behaves with respect to these operations as follows:

π∗
(
s∗α(dpf)

)
= dp

(
π∗(s∗αf)

)
, (3.1.3)

α∗
(
s∗α(dpf)

)
= 0. (3.1.4)

Indeed, recalling from (1.5.1) the definition of the ϕ-differential, we have

π∗
(
s∗α(dpf)

)
= π∗

(
dsαp s

∗
α(f)

)
(by (1.5.10))

= dπ◦sαp

(
π∗s
∗
α(f)

)
(by (1.5.9)) = dp

(
π∗(s∗α(f))

)
,

since π ◦ sα = IdM . The second formula is proved similarly, using the fact that α ◦ sα = 0.
In the special case where f ∈ L p(X, k) has scalar values, we have π∗(s∗α(f)) = s∗α(f) since
the restriction of Sπ to S0X = k is the identity. Hence (3.1.3) reads in this case

π∗
(
s∗α(dpf)

)
= dps∗α(f). (3.1.5)

3.2. α-coordinates. We now give a description of conic algebras on X in terms of data
on M and a unital linear form α on X. This is inspired by Petersson’s polar decomposition
of quaternion algebras [15]. While not intrinsic, it is an effective computational tool.

Let A be a conic algebra on X with norm NA, trace TA, conjugation x 7→ x̄ and bilinear
map HA(x, y) = x̄y as in 1.9. We define a linear form t and a bilinear form b on M , as well
as a bilinear map K: M ×M →M , all depending on α, by the formulas
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t = s∗α(TA), (3.2.1)
K = π∗

(
s∗α(HA)

)
= s∗α(ḢA), (3.2.2)

b = α
(
s∗α(HA)

)
. (3.2.3)

More explicitly, we have

t(ẋ) = TA
(
sα(ẋ)

)
= TA

(
x− α(x)1X

)
= TA(x)− 2α(x) (by (1.8.3)), (3.2.4)

so t is the linear form on M induced by the linear form TA − 2α on X which vanishes at
1X . Similarly, since HA(x, 1) = x̄ = TA(x)1− x and HA(1, y) = y,

K(ẋ, ẏ) = ḢA(sα(x), sα(y)) = ḢA(x− α(x)1, y − α(y)1)
= ḢA(x, y)− α(x)ḢA(1, y)− α(y)ḢA(x, 1) + α(x)α(y)ḢA(1, 1)
= ḢA(x, y)− α(x)ẏ + α(y)ẋ = π

(
(HA − d1α)(x, y)

)
. (3.2.5)

From IdX = 1X ⊗ α+ sα ◦ π it follows that (3.2.2) and (3.2.3) are equivalent to the single
equation

b · 1X + sα ◦K = s∗α(HA), (3.2.6)

explicitly,
b(ẋ, ẏ) · 1X + sα

(
K(ẋ, ẏ)

)
= HA

(
sα(ẋ), sα(ẏ)

)
= sα(ẋ)sα(ẏ). (3.2.7)

In general, b is not symmetric. The following formula says that b measures the failure of α
to be an algebra homomorphism:

b(ẋ, ẏ) = α(x)α(y)− α(xy). (3.2.8)

Indeed, by (3.2.3) we have b(ẋ, ẏ) = α
(
sα(ẋ) · sα(ẏ)

)
, and

sα(ẋ) · sα(ẏ) =
(
x̄− α(x)1

)
sα(ẏ) =

(
T (x)− α(x)

)
sα(ẏ)− x

(
y − α(y)1

)
=
(
T (x)− α(x)

)
sα(ẏ)− xy + xα(y),

so (3.2.8) follows by applying α to this relation and using α
(
sα(ẏ)

)
= 0.

From (1.9.5) and (3.2.5) it is clear that K(ẋ, ẋ) = 0, so K ∈ Ω2(M,M) is alternating.
We call the triple φα(A) := (t,K, b) the coordinates of A with respect to α or the α-
coordinates of A. They depend on A as well as on the choice of α. If necessary, we will
write (t,K, b) = (tα,Kα, bα) or (tA,KA, bA) or even (tαA,K

α
A, b

α
A) to indicate this fact.

The α-coordinates are compatible with base change in the following sense. Suppose
R ∈ k-alg and let αR be the R-linear extension of α to a unital linear form on XR. Identify
MR with (XR)[ as in (1.2.3). Then the αR-coordinates of AR are the R-linear extensions
of the α-coordinates of A:

(tAR ,KAR , bAR) = (tA,KA, bA)R.

The proof is straightforward.
The α-coordinates of Aop are given by

tAop = tA, KAop = Kop
A + d1tA, bAop = bop

A . (3.2.9)

Indeed, the first formula is clear from (3.2.4) since A and Aop have the same trace. The
second formula follows from (1.9.8) by applying π∗ ◦ s∗α, and the third formula is immediate
from (3.2.8).

We define the cross product with respect to α as the alternating map ×: Mα×Mα →Mα

given by
x× y = sα

(
K(ẋ, ẏ)

)
(x, y ∈Mα). (3.2.10)

By (3.1.2), an arbitrary element of X has the form λ1⊕x where λ ∈ k and x = sα(ẋ) ∈Mα.
Then it follows from (3.2.1) and (3.2.7) that the multiplication in A is given by the formula
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(λ1⊕ x)(µ1⊕ y) =
(
λµ− b(ẋ, ẏ)

)
1⊕

(
µx+

(
λ+ t(ẋ)

)
y − x× y

)
. (3.2.11)

This is the analogue of Petersson’s formula [15, (2.5.2)]. Note that he uses the cross product
x×P y = sα(KP (ẋ, ẏ)) defined by the equation

sα(ẋ)sα(ẏ) = b(ẋ, ẏ) · 1− sα
(
KP (ẋ, ẏ)

)
.

The relation between the two is

x×P y = −x× y + t(ẋ)y − t(ẏ)x,

which accounts for the difference between [15, (2.5.2)] and (3.2.11).

Examples. (a) Let A = H be the usual real division algebra of quaternions, with or-
thonormal basis e0 = 1, e1, e2, e3. Let e∗i be the dual basis and put α = e∗0, so that
Mα =

⊕3
i=1 R · ei. Then x̄ = −x for x ∈ Mα so t = 0, and the cross product in the sense

of (3.2.10) is the negative of the usual cross product on R3, while b is the standard scalar
product on R3.

(b) Let A = fm as in 1.6, where f ∈ Bil1(X). Then f1(x) = f(1, x) and f2(x) = f(x, 1)
are unital linear forms. The α-coordinates of A with respect to α := f1 are particularly
simple, being given by

t(ẋ) = f2(x)− f1(x), K = 0, b(ẋ, ẏ) = f(sα(ẋ), sα(ẏ)). (3.2.12)

Indeed, by (1.10.1), TA = f1 +f2 and HA = d1f1 +f ·1X . Hence, TA−2α = f1 +f2−2f1 =
f2 − f1 which yields the formula for t by (3.2.4). Furthermore,

K = π∗
(
s∗α(HA)) = π∗(s∗α(d1f1 + f · 1X)) = d1

(
π∗s
∗
α(f1)) + 0 = 0,

b = α(s∗α(d1f1 + f · 1X)) = 0 + s∗α(f),

by (3.1.3) and (3.1.4) and because s∗α(f1) = α ◦ sα = 0.

3.3. Proposition. Let α ∈ X∗1 be a unital linear form and let

P (M) := M∗ × Ω2(M, M)× Bil(M)

be the parameter space for the α-coordinates.

(a) The coordinate map

φα: Con(X)→ P (M), φα(A) = (tαA, K
α
A, b

α
A)

defined in 3.2 is bijective, with inverse

φ−1
α (t,K, b) = fm + π∗(Γ ),

where

f(x, y) =
(
α(x) + t(ẋ)

)
α(y) + b(ẋ, ẏ), Γ (ẋ, ẏ) = −sα

(
K(ẋ, ẏ)

)
. (3.3.1)

(b) Norm, trace and the canonical 3-form of a conic algebra A are given in terms of its
α-coordinates (t,K, b) by

NA(λ1⊕ sα(ẋ)) = λ2 + λt(ẋ) + b(ẋ, ẋ), (3.3.2)
TA(λ1⊕ sα(ẋ)) = 2λ+ t(ẋ), (3.3.3)

ΘA = d2K. (3.3.4)
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Proof. (a) From from (3.2.11) it is clear that A is uniquely determined by (t,K, b),
so φα is injective. Conversely, for a given (t,K, b) ∈ P (M) define f and Γ by (3.3.1),
and put A = fm + π∗(Γ ). By Lemma 1.10, A is conic, with TA = f1 + f2 and HA =
d1f1 + f · 1X − π∗(Γ ). Denoting the α-coordinates of A by (t′,K ′, b′), it remains to show
that (t′,K ′, b′) = (t,K, b).

From the definition of f in (3.3.1) it follows immediately that f1 = α and f2 = α+π∗(t).
Hence t′ = s∗α(TA) = s∗α(2α+π∗(t)) = t, since s∗α(α) = 0 and π ◦ sα = IdM . Next, applying
π to the second formula of (3.3.1) shows Γ̇ = −K. Now (3.2.5) implies

K ′(ẋ, ẏ) = π
(
(HA − d1f1)(x, y)

)
= π

(
f(sα(ẋ), sα(ẏ)) · 1X − Γ (ẋ, ẏ)

)
= 0 +K(ẋ, ẏ).

Finally, Γ takes values in Im sα = Ker(α) by (3.3.1), so α◦Γ = 0. Also, since α(sα(ẏ)) = 0,
(3.3.1) implies s∗α(f) = b. Therefore, by (3.2.3) and using (3.1.4),

b′ = α(s∗α(HA)) = α(s∗α(d1f1 + f · 1X − π∗(Γ ))) = 0 + s∗α(f)− 0 = b,

as required.

(b) From the definition of the conjugation and of t we have

sα(ẋ) = t(ẋ)1X − sα(ẋ).

Now (3.3.2) follows from (1.9.2) and (3.2.7), while (3.3.3) is immediate from (3.2.4). Finally,
(3.3.4) is a consequence of (2.7.4) since A = fm + π∗(Γ ) and Γ̇ = −K.

We now show how the basic modifications of conic algebras described in Lemma 1.10
are reflected in their α-coordinates.

3.4. Proposition. Let A be a conic algebra with α-coordinates (t,K, b).

(a) Let g ∈ Bil0(X), put A′ = A+gm and let g1 and g2 be the linear forms on X defined
by g1(x) = g(1, x) and g2(x) = g(x, 1), cf. (1.9.9). Then the α-coordinates (t′,K ′, b′) of A′

are

t′ = t+ s∗α(g1 + g2), (3.4.1)
K ′ = K + d1s

∗
α(g1), (3.4.2)

b′ = b+ s∗α(g). (3.4.3)

(b) Let Γ ∈ Ω2(M,X) and put A′ = A + π∗(Γ ). Then the α-coordinates (t′,K ′, b′) of
A′ are

(t′,K ′, b′) = (t, K − Γ̇ , b− α ◦ Γ ). (3.4.4)

Proof. (a) By (1.10.2), TA′ = TA + g1 + g2 so (3.4.1) follows from (3.2.1). Next,

K ′ = π∗
(
s∗α(HA′)

)
(by (3.2.2)) = π∗

(
s∗α(H + d1g1 + g · 1X)

)
(by (1.10.2))

= K + π∗
(
s∗α(d1g1)

)
= K + d1

(
s∗α(g1)

)
(by (3.1.5)).

In the same way, by (3.2.3) and (3.1.4),

b′ = α
(
s∗α(HA + d1g1 + g · 1X)

)
= α

(
s∗α(HA)

)
+ α ◦

(
s∗α(d1g1)

)
+ s∗α(g)

= b+ 0 + s∗α(g).

(b) A and A′ have the same norm and trace, hence the same conjugation, so we have
t′ = t. Furthermore, by (1.10.3), HA′ = HA − π∗(Γ ). Hence s∗α(HA′) = s∗α(HA)− Γ , from
which the remaining formulas follow easily by (3.2.6).
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3.5. Corollary. Let (t,K, b) be the α-coordinates of A ∈ Con(X), let v ∈ V = M∗ and let
τv be the transvection defined by v. Put Av = A+ gm

v,A as in 1.7. Then

s∗α(gv,A) = (v − t)⊗ v + v ◦K, (3.5.1)

and the α-coordinates (tv,Kv, bv) of Av are

tv = t− 2v, (3.5.2)
Kv = K − d1v, (3.5.3)
bv = b+ (v − t)⊗ v + v ◦K. (3.5.4)

Proof. We use the formulas (3.4.1)–(3.4.3) with g(x, y) = gv,A(x, y) = v(ẋ)v(ẏ) −
v(π(xy)). Then g1(x) = g2(x) = −v(ẋ) which implies s∗α(gi) = −v. Hence tv = t − 2v
by (3.4.1) and Kv = K − d1v by (3.4.2). The remaining formula then follows from
(3.4.3) once we have shown (3.5.1). We have HA(x, y) = x̄y = TA(x)y − xy, whence
gv,A(x, y) =

(
v(ẋ) − TA(x)

)
v(ẏ) + v

(
ḢA(x, y)

)
. Now (3.5.1) follows by putting x = sα(ẋ)

and y = sα(ẏ) in this formula and observing (3.2.1) and (3.2.2).

3.6. Change of coordinates. We study next how the α-coordinates of A change with α.
Thus let α be a second unital linear form. Then α′−α vanishes at 1X , so there is a unique
linear form v on M such that α′(x) = α(x) + v(ẋ), i.e., α′ = α+ π∗(v). We claim that the
α′-coordinates of A are precisely the α-coordinates of Av,

φα′(A) = φα+π∗(v)(A) = φα(Av). (3.6.1)

In detail, the α′-coordinates (t′,K ′, b′) of A are given in terms of the α-coordinates (t,K, b)
of A by formulas derived from (3.5.2) – (3.5.4) as follows:

(t′, K ′, b′) = (t− 2v, K − d1v, b+ (v − t)⊗ v + v ◦K). (3.6.2)

Indeed, an easy verification using (1.7.1) shows that

sα′ = τv ◦ sα, π ◦ τv = π, α′ ◦ τv = α. (3.6.3)

Let (tv,Kv, bv) be the α-coordinates of Av as in (3.5.2) – (3.5.4). Since τv: Av → A is
an isomorphism of algebras by 1.7, we have τ∗v (TA) = TAv by (ii) of 1.9. Hence by (3.2.1),
t′ = s∗α′(TA) = s∗α(τ∗v (TA)) = s∗α(TAv ) = tv. Similarly, by (iv) of 1.9, HA(τv(x), τv(y))
= τv

(
HAv (x, y)

)
, i.e., τ∗v (HA) = (τv)∗(HAv ). Now by (3.2.2),

K ′ = π∗
(
s∗α′(HA)

)
= π∗

(
s∗ατ
∗
v (HA)

)
= π∗

(
s∗α(τv)∗(HAv )

)
= π∗

(
(τv)∗(s∗α(HAv ))

)
= (π ◦ τv)∗

(
s∗α(HAv )

)
= π∗

(
s∗α(HAv )

)
= Kv.

One shows in the same way, using (3.2.3), that b′ = bv.

3.7. Suppose from now on that rkX > 3, so that M = X/k · 1 is a finitely generated
and projective k-module of rank n > 2. By (1.7.5), V = M∗ acts freely on Con(X) by
transvections, and our objective is now to identify the quotient of Con(X) by this action;
equivalently, by Corollary 3.5, the quotient of P (M) by the action of V described in (3.5.2)–
(3.5.4). In case 2 is a unit in the base ring, it follows from (3.5.2) that every orbit of V
contains exactly one algebra whose first α-coordinate is zero, and from this it is not hard
to show that Con(X)/V ∼= Ω2(M,M) × Bil(M), see also 3.11. In general, however, it is
not possible to reduce the first α-coordinate of A to zero by a transvection, and one has to
proceed differently.

Recall from 2.3 the split-exact sequence

0 // M∗
d1 // Ω2(M,M)
%

oo
d2 // Z3(M)
σ

oo // 0 (3.7.1)

A splitting of this sequence is given either by a retraction %: Ω2(M,M) → M of d1 or,
equivalently, a section σ of d2, related by the formulas

% ◦ d1 = IdM∗ , d1 ◦ %+ σ ◦ d2 = IdΩ2(M,M), d2 ◦ σ = IdZ3(M). (3.7.2)

Then also Ker(%) = Im(σ), in particular, % ◦ σ = 0. In general, there is no canonical
splitting.
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3.8. Lemma. Let (%, σ) be a splitting as above. Choose a unital linear form α on X and
let φα: Con(X)→ P (M) be the coordinate map as in Proposition 3.3. Then the map

χ: Con(X)→ P (M), χ(A) := φα
(
A%(K)

)
,

is transvection-invariant: χ(Av) = χ(A) for all v ∈ V , and independent of the choice of
α. The second component of χ(A) is σ(ΘA). Denoting the first and third components
by ϑA and βA, respectively, we obtain transvection-invariant maps ϑ: Con(X) → M∗ and
β: Con(X)→ Bil(M) given explicitly in terms of the α-coordinates (t,K, b) of A by

ϑA = t− 2%(K), βA = b+
(
%(K)− t

)
⊗ %(K) + %(K) ◦K. (3.8.1)

Proof. To show transvection-invariance, let v ∈ V . The second α-coordinate of Av is,
by (3.5.3), Kv = K − d1v. Hence %(Kv) = %(K − d1v) = %(K) − v by (3.7.2). Since the
additive group V acts on Con(X) by (A, v) 7→ Av, cf. 1.7, we have (Av)w = Av+w for all
v, w ∈ V . This implies

χ(Av) = φα
(
(Av)%(K

v)
)

= φα
(
Av+%(K)−v) = φα

(
A%(K)

)
= χ(A).

Next, we show the independence of α. Let α′ be a second unital linear form and define χ′

like χ, but with α′ in place of α. Then α′ = α+π∗(v) as in 3.6 where v ∈ V . Let (t′,K ′, b′)
be the α′-coordinates of A. By (3.6.2) we have K ′ = K − d1v and thus %(K ′) = %(K)− v.
Hence by (3.6.1),

χ′(A) = φα′
(
A%(K

′)
)

= φα
(
A%(K

′)+v
)

= φα
(
A%(K)

)
= χ(A),

so χ is independent of the choice of α.
The second component of χ(A) is, by (3.5.3), (3.7.2) and (3.3.4),

K − d1

(
%(K)

)
= σ

(
d2(K)

)
= σ(ΘA).

The formulas for ϑA and βA follow immediately from the definition of χ(A) and (3.5.2) and
(3.5.4).

Remark. The maps χ, ϑ and β do depend on the choice of the splitting (%, σ) of (3.7.1).
These splittings form a torsor under the group Hom

(
Z3(M),M∗

)
: If (%′, σ′) is a second

splitting then there exists a unique ζ: Z3(M)→M∗ such that %′ = %+ ζ ◦ d2 and σ′ = σ−
d1◦ζ, and conversely, these formulas define a splitting (%′, σ′) for any ζ ∈ Hom(Z3(M),M∗).
Let χ′ and ϑ′A, β

′
A be defined using %′ instead of %. Then a straightforward computation

shows that
ϑ′A = ϑA − 2ζ(ΘA),

β′A = βA +
(
ζ(ΘA)− ϑA

)
⊗ ζ(ΘA) + ζ(ΘA) ◦ σ(ΘA),

while the second component of χ′(A) is of course σ′(ΘA) = σ(ΘA)− d1

(
ζ(ΘA)

)
.

3.9. Let P (M) be the coordinate space as in Proposition 3.3, and define a k-functor P(M)
by R 7→ P (MR), for all R ∈ k-alg. Then

P(M) ∼= M∗a × Ω2(M,M)a × Bil(M)a, (3.9.1)

in particular, P(M) is a smooth affine finitely presented k-scheme. Since the coordinate
map φα is compatible with base change, it induces an isomorphism

φα: Con(X)
∼=−→ P(M). (3.9.2)

Furthermore, let
Q(M) := M∗ × Z3(M)× Bil(M), (3.9.3)

and define a k-functor Q(M) by R 7→ Q(MR).
The maps ϑ and β of Lemma 3.8 are compatible with base change as well, so there is a

well-defined morphism

ξ: Con(X)→ Q(M), ξ(A) = (ϑA, ΘA, βA), (3.9.4)

for all A ∈ Con(XR) and R ∈ k-alg.
Let B(X) = Con(X)/V be the quotient by the action of transvections, and define

a k-functor B(X) by R 7→ B(XR) = Con(XR)/VR, for all R ∈ k-alg. We denote by
can: Con(X)→ B(X), A 7→ [A], the canonical map.
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3.10. Theorem. Let rkX = n+ 1 > 3. Then Con(X) is a trivial torsor under the group
of transvections, with base B(X) and projection can. Moreover, ξ induces an isomorphism
η: B(X)→ Q(M) by η([A]) = ξ(A), so B(X) is a smooth affine finitely presented k-scheme
with fibre isomorphic to affine space of dimension n2 + n

(
n
2

)
.

Proof. By (1.7.5), V = M∗ acts freely on Con(X) by transvections. By Lemma 3.8 and
Corollary 2.5 we have ξ(Av) = ξ(A) for all v ∈ V . Hence ξ induces a map η: B(X)→ Q(M)
making the lower triangle of the following diagram commutative:

Con(X)
φα

∼=
//

can

��

ξ

%%KKKKKKKKKKKKKK
P (M)

q

��
B(X)

η

∼= // Q(M)

(3.10.1)

Let α ∈ X∗1 . Then the upper triangle of the diagram is commutative as well, provided we
define

q(t,K, b) =
(
t− 2%(K), d2K, b+

(
%(K)− t

)
⊗ %(K) + %(K) ◦K

)
. (3.10.2)

This follows from (3.8.1).
We show that η is injective. Let A,A′ ∈ Con(X) and assume η([A]) = η([A′]), equiva-

lently, ξ(A) = ξ(A′). By (3.9.4), we have in particular ΘA = ΘA′ , so by Theorem 2.8(b),
A′ = A + gm for a unique g ∈ Bil0(X). Let φα(A) = (t,K, b) and φα(A′) = (t′,K ′, b′) be
the α-coordinates of A and A′, respectively, and write ḡ = s∗α(g) and ḡi = s∗α(gi) for short.
Then Proposition 3.4(a) shows

t′ = t+ ḡ1 + ḡ2, K ′ = K + d1ḡ1, b′ = b+ ḡ. (3.10.3)

On the other hand, q(t′,K ′, b′) = q(t,K, b) by the commutativity of the diagram. Compar-
ing the first components, we obtain

0 = t′ − 2%(K ′)− (t− 2%(K)) = t′ − t− 2
(
%(K ′)− %(K)

)
= ḡ1 + ḡ2 − 2ḡ1 = ḡ2 − ḡ1.

Put v = −ḡ1 ∈ M∗. We claim that g = gv,A as in (1.7.4). Then it will follow from (1.7.3)
that A′ = A+ gm

v,A = Av is obtained from A by a transvection, as desired.
To this end, we evaluate the remaining third component of (3.10.2). By definition of v

and the formulas (3.10.3), we have t′ = t− 2v and K ′ = K−d1v. Hence, putting u = %(K)
and u′ = %(K ′) for short,

u′ = u− v and u′ − t′ = u− v − t+ 2v = (u− t) + v.

Now compute, using (3.10.2), (3.10.3) and (1.5.7):

0 = b′ +
(
u′ − t′

)
⊗ u′ + u′ ◦K ′ − b−

(
u− t

)
⊗ u− u ◦K

= ḡ +
(
u− t+ v

)
⊗
(
u− v

)
+
(
u− v

)
◦ (K − d1v)−

(
u− t

)
⊗ u− u ◦K

= ḡ + (t− v)⊗ v − v ◦K.

In view of (3.5.1) this shows
s∗α(g) = s∗α(gv,A). (3.10.4)

Recall the decomposition X = k · 1 ⊕Mα of (3.1.2). From (3.10.4) we already see that
g and gv,A agree on Mα ×Mα. Moreover, by definition of v, we have g(1, x) = −v(ẋ) =
gv,A(1, x) = g(x, 1) = gv,A(x, 1) which proves g = gv,A, as required.

Finally, we show that η is surjective. By the commutativity of the diagram and the fact
that φα is bijective, it suffices to show that q admits a section. For (t, z, b) ∈ Q(M) let
s(t, z, b) = (t, σ(z), b) ∈ P (M). Then %(σ(z)) = 0, as remarked in 3.7. Hence by (3.10.2),
q
(
s(t, z, b)

)
= (t,d2σ(z), b) = (t, z, b), since σ is a section of d2.

Since all this is compatible with arbitrary base change, Con(X) is a torsor as claimed.
From (3.9.3) it follows that Q(M) ∼= M∗a × Z3(M)a × Bil(M)a. This proves the statement
about the structure of B(X) in view of Corollary 2.3.
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3.11. The case where 2 is a unit in the base ring. Suppose 2 is a unit in k. Then
a conic algebra A has a canonical unital linear form αA = 1

2TA. The corresponding de-
composition (3.1.2) is X = k · 1 ⊕ Ker(TA), and we write simply sA = sαA . We call the
αA-coordinates of A the canonical coordinates of A and denote them by (t0A,K

0
A, b

0
A). From

(3.2.1) it is clear that t0A = 0, while K0
A and b0A are determined by the formula

−sA(ẋ)sA(ẏ) = b0A(ẋ, ẏ) · 1 + sA
(
K0
A(ẋ, ẏ)

)
, (3.11.1)

since ιA is −Id on Ker(TA).
We claim that the map κ: Con(X) → Ω2(M,M) × Bil(M), κ(A) = (K0

A, b
0
A), induces

a bijection Con(X)/V ∼= Ω2(M,M) × Bil(M). This is essentially the description of conic
algebras over fields of characteristic different from 2 given in [13, 1, 5] and many other
references.

We first show that κ(Av) = κ(A) for all v ∈ V . Since τv: Av → A is an isomorphism,
we have TA ◦ τv = TAv . This implies

τv
(
sAv (ẋ)

)
= τv

(
x− 1

2
TAv (x) · 1

)
= x− v(ẋ)1− 1

2
TA
(
x− v(ẋ)1

)
1 = x− 1

2
TA(x)1 = sA(ẋ)

for all ẋ ∈M , thus τv ◦ sAv = sA. By (3.11.1) applied to Av instead of A we have

−sAv (ẋ)sAv (ẏ) = b0Av (ẋ, ẏ) · 1 + sAv
(
K0
Av (ẋ, ẏ)

)
. (3.11.2)

Now apply τv to this, use τv◦sAv = sA and compare with (3.11.1). It follows that K0
Av = K0

A

and b0Av = b0A, showing κ(Av) = κ(A).
Conversely, let A and A′ be conic algebras with the same canonical coordinates K0 =

K0
A′ = K0

A and b0 = b0A′ = b0A. Since TA′(1) = TA(1) = 2, there exists a unique v ∈ V
such that TA(x) − TA′(x) = 2v(ẋ). We claim that A′ = Av. By definition of v we have
αA′ = αA − π∗(v) which implies sA = τv ◦ sA′ as in (3.6.3). Let us show that τv: A′ → A
is an isomorphism. From the easily checked relation TA′ = TA ◦ τv it follows that τv
maps Ker(TA′) isomorphically onto Ker(TA). Moreover, τv preserves the unit element, so
it suffices to show that it preserves the product of two elements in Ker(TA′). Since A and
A′ have the same canonical coordinates,

−τv
(
sA′(ẋ)sA′(ẏ)

)
= τv

(
b0(ẋ, ẏ) · 1 + sA′(K0(ẋ, ẏ))

)
= b0(ẋ, ẏ) · 1 + sA

(
K0(ẋ, ẏ)

)
= −sA(ẋ)sA(ẏ) = −τv(sA′(ẋ))τv(sA′(ẏ)),

as desired. On the other hand, by 1.7, τv: Av → A is an isomorphism as well. Hence
Id = τ−1

v ◦ τv: A′ → Av is an isomorphism, which proves A′ = Av.
4. Algebras with scalar involution

4.1. Definition. Let (X, 1X) be a unital k-module of constant rank n + 1. As usual, we
write M = X[ = X/k · 1X . Following Becker [1], a conic algebra A on X is said to be
involutive or an algebra with scalar involution if the conjugation ιA is an algebra involution;
that is, if xy = ȳx̄ for all x, y ∈ X. These algebras are precisely the algebras with scalar
involution in the sense of McCrimmon [12], whose underlying module is finitely generated
and projective of constant positive rank, see [12, Theorem 1.1]. The following invariant
measures the deviation of a conic algebra A from being involutive.

4.2. Lemma. Let A ∈ Con(X). We use the notations introduced in 1.8 and 1.9.

(a) There is a unique alternating 2-form ωA on M such that

ωA(ẋ, ẏ) · 1X = HA(x, y)−HA(y, x) (4.2.1)
= ȳx̄− xy (4.2.2)
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for all x, y ∈ X, so A is involutive if and only if ωA = 0. The following formulas hold:

ωA(ẋ, ẏ) = TA
(
HA(x, y)

)
−NA(x, y) (4.2.3)

= TA(x)TA(y)− TA(xy)−NA(x, y), (4.2.4)
ωAop = −ωA, (4.2.5)

2ωA(ẋ, ẏ) = −TA
(
[x, y]

)
. (4.2.6)

(b) ωA is compatible with homomorphisms: if ϕ: A → B is a homomorphism of conic
algebras A ∈ Con(X) and B ∈ Con(Y ) as in 1.8 and ϕ[: X[ → Y [ denotes the induced
module homomorphism then ωB(ϕ[(ẋ), ϕ[(ẏ)) = ωA(ẋ, ẏ) for all ẋ, ẏ ∈ X[, i.e., (ϕ[)∗(ωB) =
ωA.

(c) ωA is compatible with base change in the sense that, with the identification (1.2.3),
ωAR = (ωA)R for all R ∈ k-alg.

Proof. (a) Let D(x, y) = HA(x, y) −HA(y, x) be the right hand side of (4.2.1). Then
D(x, x) = 0 by (1.9.5) and obviously D(x, 1) = x̄ − x = 0, so D(x, y) is alternating and
depends only on ẋ and ẏ. Moreover, by (1.9.1) and (1.9.6),

D(x, y) = TA(x̄y) · 1X −HA(x, y)−HA(y, x) =
{
TA(x̄y)−NA(x, y)

}
· 1.

This proves (4.2.1) and (4.2.3). Now (4.2.4) is immediate from (4.2.3) and the fact that
x̄ = TA(x)1 − x. Applying π to this relation we obtain π(x̄) = −π(x) = −ẋ. Hence
ȳx̄− xy = −

[
HA(x̄, y)−HA(y, x̄)

]
= −ωA(π(x̄), ẏ) = ωA(ẋ, ẏ) which proves (4.2.2).

From (4.2.4) and the fact that A and Aop have the same norms and traces, we see

ωAop(ẋ, ẏ) = TA(x)TA(y)− TA(yx)−NA(x, y) = ωA
(
ẏ, ẋ) = −ωA(ẋ, ẏ).

Formula (4.2.6) follows again from (4.2.4):

−2ωA(ẋ, ẏ) = −ωA(ẋ, ẏ) + ωA(ẏ, ẋ)
= −TA(x)TA(y) + TA(xy) +NA(x, y) + TA(y)TA(x)− TA(yx)−NA(y, x)

= TA
(
[x, y]

)
.

(b) follows easily from (4.2.4) and the fact that a homomorphism of conic algebras
preserves products, norms and traces, and (c) is straightforward.

4.3. Corollary. ωA is invariant under transvections: ωA = ωAv for all v ∈ V = M∗.

Proof. Immediate from Lemma 4.2(b) since τv: Av → A is an isomorphism with (τv)[ =
IdM .

4.4. Lemma. (a) Let f ∈ Bil1(X) be a unital bilinear form on X and A = fm as in
Lemma 1.10(a). Define linear forms f1 and f2 as in (1.9.9). Then

π∗(ωfm) = f1 ∧ f2 + f − fop. (4.4.1)

(b) Let A be a conic algebra and let g ∈ Bil0(X), with g1 and g2 defined as in (1.9.9).
Then A+ gm is conic by Lemma 1.10(b), and

ωA+gm(ẋ, ẏ) = ωA(ẋ, ẏ) + g1(xȳ) + g2(x̄y) + (g1 ∧ g2 + g − gop)(x, y). (4.4.2)

(c) Let A ∈ Con(X) and Γ ∈ Ω2(M,X). Then A+ π∗(Γ ) is conic by Lemma 1.10(c),
and

ωA+π∗(Γ ) = ωA − TA ◦ Γ. (4.4.3)
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Proof. (a) By (4.2.1) and (1.10.1),

ωA(ẋ, ẏ) · 1 = HA(x, y)−HA(y, x)

= f1(x)y − f1(y)x+ f(x, y) · 1− f1(y)x+ f1(x)y − f(y, x) · 1
= f1(x)(ȳ + y)− f1(y)(x̄+ x) +

(
f(x, y)− f(y, x)

)
· 1

=
{
f1(x)

(
f1(y) + f2(y)

)
− f1(y)

(
f1(x) + f2(x)

)
+ f(x, y)− f(y, x)

}
· 1

=
{
f1(x)f2(y)− f1(y)f2(x) + f(x, y)− f(y, x)

}
· 1.

(b) Let A′ = A + gm and write TA = T , TA′ = T ′ and similarly N and N ′, H and H ′

and ω and ω′ for short. By Lemma 1.10(b), T ′ = T + g1 + g2, N ′(x) = N(x) + g(x, x) and
H ′ = H+d1g1+g ·1. Hence by (4.2.3) and (1.5.7), and observing g1(1) = g2(1) = g(1, 1) = 0
as well as T ′(1) = 2,

ω′(ẋ, ẏ) = T ′(H ′(x, y))−N ′(x, y)

= T ′
(
H(x, y) + d1g1(x, y) + g(x, y) · 1

)
−N(x, y)− g(x, y)− g(y, x)

= ω(ẋ, ẏ) + (g1 + g2)(x̄y) + T ′
(
d1g1(x, y)

)
+ 2g(x, y)− g(x, y)− g(y, x).

A simple computation shows

g1(x̄y) + T ′
(
d1g1(x, y)

)
= g1(x̄y) + (T + g1 + g2)

(
g1(x)y − g1(y)x

)
= g1

(
x̄y + T (y)x− T (x)y

)
+ (g1 ∧ g2)(x, y)

= g1(xȳ) + (g1 ∧ g2)(x, y).

Substituting this into the preceding formula yields (4.4.2).

(c) By Lemma 1.10(c), A and A′ := A + π∗(Γ ) have the same norm and trace, while
HA′(x, y) = HA(x, y)− Γ (ẋ, ẏ). Hence by (4.2.1) and since Γ is alternating,

ωA′(ẋ, ẏ) · 1 = HA(x, y)− Γ (ẋ, ẏ)−HA(y, x) + Γ (ẏ, ẋ)

= ωA(ẋ, ẏ)−
{
Γ (ẋ, ẏ) + Γ (ẋ, ẏ)

}
=
{
ωA(ẋ, ẏ)− TA

(
Γ (ẋ, ẏ)

)}
· 1.

4.5. Lemma. Let α be a unital linear form on X and let (t,K, b) be the α-coordinates of
A ∈ Con(X). Then

ωA = t ◦K + b− bop. (4.5.1)

Proof. Since π(sα(ẋ)) = ẋ, we have

ωA(ẋ, ẏ) = TA
(
HA(sα(ẋ), sα(ẏ))

)
−NA

(
sα(ẋ), sα(ẏ)

)
(by (4.2.3))

= TA
(
b(ẋ, ẏ) · 1 + sα(K(ẋ, ẏ))

)
− b(ẋ, ẏ)− b(ẏ, ẋ) (by (3.2.7) and (3.3.2))

= 2b(ẋ, ẏ) + t
(
K(ẋ, ẏ)

)
− b(ẋ, ẏ)− b(ẏ, ẋ) (by (1.8.3) and (3.2.4)).

As in 3.3, let P (M) be the parameter space for the α-coordinates and let

P ′(M) := {(t,K, b) ∈ P (M) : t ◦K + b− bop = 0}. (4.5.2)

Recall the k-functor P(M) of 3.9 and define a k-functor P′(M) ⊂ P(M) by R 7→ P′(MR),
for all R ∈ k-alg.

25



24 March 2011

4.6. Proposition. Let

Scalin(X) = {A ∈ Con(X) : ωA = 0} (4.6.1)

be the set of involutive conic algebras on X, and define a k-functor Scalin(X) by R 7→
Scalin(XR) for R ∈ k-alg. Then Scalin(X) is a closed finitely presented subscheme of
Con(X).

Proof. Choose a unital linear form α and recall the isomorphism φα: Con(X) ∼= P(M)
of (3.9.2). Lemma 4.5 shows that φα restricts to a bijection φ′α: Scalin(X) ∼= P ′(M), which
by Lemma 4.2(c) is compatible with arbitrary base change, so we have an isomorphism of
functors

φ′α: Scalin(X)
∼=−→ P′(M). (4.6.2)

Hence it suffices to prove that P′(M) is a closed finitely presented subscheme of P(M).
Recall the isomorphism (3.9.1). Since all modules involved are finitely generated and pro-
jective, the relation t ◦ K + b − bop = 0 defining P′(M) amounts to finitely many scalar
polynomial equations. This proves our assertion.

Our aim now is to describe Scalin(X) in more detail. Similarly to Con(X) (cf. 2.10),
Scalin(X) admits a group action making it a trivial torsor. However, it is evident from
Lemma 4.4(b) that algebras with scalar involution are not stable under the action of an
arbitrary g ∈ Bil0(X). We first determine the biggest subgroup of Bil0(X) which preserves
ωA for all conic algebras under this action.

4.7. Lemma. Let rkX > 3. For a bilinear form g ∈ Bil0(X) the following conditions are
equivalent:

(i) ωA+gm = ωA for all A ∈ Con(X),
(ii) g1 = g2 = 0 and g is symmetric,
(iii) g = π∗(h) for a unique symmetric bilinear form h on M .

Proof. (i) =⇒ (ii): By (4.4.2), we have

g1(xȳ) + g2(x̄y) + (g1 ∧ g2 + g − gop)(x, y) = 0, (4.7.1)

for all x, y ∈ X and all conic algebras A on X. Let in particular α, β ∈ X∗1 be unital
linear forms, put f(x, y) = α(x)β(y) and A = fm as in Lemma 1.10(a). Then f1 = β,
so by (1.10.1), x̄y = HA(x, y) = (d1β + f · 1)(x, y). By Lemma 1.6(b), Aop = (fop)m,
and by (1.9.7), xȳ = HA(x̄, ȳ) = HAop(y, x). Since (fop)1 = f2 = α, it follows that
xȳ = (d1α+ fop · 1)(y, x) = (−d1α+ f · 1)(x, y). Substitute this into (4.7.1) and recall that
g1(1) = g2(1) = g(1, 1) = 0. Since g1 ◦ d1α = α ∧ g1 and g2 ◦ d1β = β ∧ g2 by (1.5.7), we
obtain

−α ∧ g1 + β ∧ g2 + g1 ∧ g2 + g − gop = 0, (4.7.2)

for all α, β ∈ X∗1 . Let λ, µ ∈ X∗0 . Then α + λ and β + µ are unital linear forms as well.
Replacing α, β by α+ λ and β + µ in (4.7.2) and subtracting results in

λ ∧ g1 − µ ∧ g2 = 0. (4.7.3)

Pulling back a linear form on M to X via π yields an isomorphism π∗: M∗
∼=−→ X∗0 . Let

wi be the unique linear form on M with π∗(wi) = gi, and similarly let λ = π∗(u) and
µ = π∗(v) where u, v ∈ M∗. Then (4.7.3) says that u ∧ w1 − v ∧ w2 = 0 for all u, v ∈ M∗.
Since rkM = rkX− 1 > 2, this implies (for example by localization and working in a basis)
that w1 = w2 = 0, whence also g1 = g2 = 0. Now (4.7.2) shows g = gop is symmetric.

(ii) =⇒ (iii): Since g1(x) = g(1, x) = 0 and g2(x) = g(x, 1) = 0, it is clear that g(x, y)
depends only on ẋ and ẏ, so g induces a unique symmetric bilinear form h on M such that
h(ẋ, ẏ) = g(x, y).

(iii) =⇒ (i): Let h be a symmetric bilinear form on M and g = π∗(h). Then g = gop

and g1(x) = g(1, x) = h(1̇, ẋ) = 0 as well as g2(x) = 0, so the assertion follows from (4.4.2).
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4.8. Rost shifts. Let Sym(M) denote the k-module of symmetric bilinear forms on M .
By Lemma 4.7, A ∈ Scalin(X) and h ∈ Sym(M) imply A + π∗(h)m ∈ Scalin(X). We call
this the Rost shift of A by h, since it generalizes the Rost shift of quadratic algebras, see
[16] and [10, Lemma 3.1]. Explicitly, (1.6.1) shows that(

A+ π∗(h)m
)
(x, y) = xy − h(ẋ, ẏ) · 1, (4.8.1)

since π∗(h)(1, x) = π∗(h)(x, 1) = 0. As π∗(h)m depends linearly on h, the additive group
Sym(M) acts on Scalin(X) by Rost shifts.

4.9. Lemma. Let Ω2
π(X,M) := {F ∈ Ω2(X,M) : F (1, y) = ẏ for all y ∈ X} and recall

that X∗2 = {λ ∈ X∗ : λ(1X) = 2}.

(a) Ω2
π(X,M) and X∗2 are affine subspaces of Ω2(X,M) and X∗, respectively, with

associated modules of translations isomorphic to Ω2(M,M) and M∗.

(b) For any conic algebra A, we have TA ∈ X∗2 and ḢA ∈ Ω2
π(X,M).

(c) Let sα: M → X be the section of π defined by a unital linear form α. Then
s∗α: Ω2

π(X,M)
∼=−→ Ω2(M,M) is bijective and compatible with the actions of Ω2(M,M) in

the sense that s∗α
(
F + π∗(K)

)
= s∗α(F ) + K. Similarly, s∗α: X∗2 → M∗ is bijective and

compatible with the actions of M∗.

Proof. (a) If F ∈ Ω2
π(X,M) and K ∈ Ω2(M,M) then F +π∗(K) ∈ Ω2

π(X,M). Indeed,
F + π∗(K) is clearly an alternating bilinear map on X with values in M , and

(F + π∗(K))(1, y) = F (1, y) +K(1̇, ẏ) = F (1, y) = ẏ.

Conversely, for any two F ′, F ∈ Ω2
π(X,M), we have (F ′ − F )(1, y) = ẏ − ẏ = 0, so (F ′ −

F )(x, y) depends only on ẋ, and by its alternating nature also only on ẏ. Hence there
exists a unique K ∈ Ω2(M,M) such that F − F ′ = π∗(K). Thus Ω2(M,M) acts simply
transitively on Ω2

π(X,M) by (F,K) 7→ F + π∗(K).
In the same way, given λ ∈ X∗2 and v ∈ M∗, we have λ + π∗(v) ∈ X∗2 , and conversely,

the difference of two elements λ, λ′ ∈ X∗2 has the form λ′ − λ = π∗(v) for a unique v ∈M∗.

(b) We have TA ∈ X∗2 by (1.8.3). Since HA(1, y) = 1̄y = y we see ḢA(1, y) = ẏ, and
HA(x, x) = NA(x) · 1 by (1.9.5) implies that ḢA is alternating.

(c) Clearly, s∗α(F ) ∈ Ω2(M,M), and s∗α(F + π∗(K)) = s∗α(F ) + s∗α(π∗(K)) = s∗α(F ) +
(π ◦ sα)∗(K) = s∗α(F ) +K. Since Ω2(M,M) acts simply transitively on Ω2

π(X,M) and on
itself by addition, the assertion follows. The proof for X∗2 is similar.

Let W (X) = X∗2 ×Ω2
π(X,M). By (c), a choice of unital linear form α yields a bijection

ψα: W (X) → M∗ × Ω2(M,M) which is easily seen to be compatible with arbitrary base
change. Hence the k-functor W(X) : R 7→ W (XR) is isomorphic (not canonically) to
M∗a ×Ω2(M,M)a; in particular, it is a smooth affine finitely presented k-scheme with fibres
isomorphic to affine space of dimension n+ n ·

(
n
2

)
. By (b), we have a morphism

p: Scalin(X)→W(X), p(A) = (TA, ḢA).

4.10. Theorem. Scalin(X) is a trivial torsor with group Sym(M)a acting by Rost shifts,
projection p and base W(X). Hence Scalin(X) is a smooth affine finitely presented k-
scheme with fibres isomorphic to affine space of dimension n+ n

(
n
2

)
+
(
n+1

2

)
.

Proof. By Lemma 4.7, the fibres of p consist of orbits of Sym(M). To prove the remaining
statements, we use α-coordinates. Let φα be the coordinate map and let φ′α be the restriction
to Scalin(X). Then the following diagram is commutative and the horizontal maps are
bijective:
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Scalin(X)
φ′α
∼=

//

p

��

P ′(M)

p′

��
W (X)

ψα

∼= // M∗ × Ω2(M,M)

(4.10.1)

where P ′(M) is defined in (4.5.2) and p′(t,K, b) = (t,K). Indeed, ψα is bijective as noted
before, and φ′α: Scalin(X)→ P ′(M) is bijective by (4.6.2). Commutativity is seen as follows.
For A ∈ Scalin(X) we have s∗α(TA) = t and s∗α(ḢA) = K by (3.2.1) and (3.2.2). Hence
ψα
(
p(A)

)
= (t,K) = p′(t,K, b) = p′

(
φ′α(A)

)
.

Note that Sym(M) acts on P ′(M) on the right via (t,K, b) + h = (t,K, b + h), since
t ◦ K + (b + h) − (b + h)op = t ◦ K + b − bop by symmetry of h. Then φ′α is equivariant
with respect to the actions of Sym(M). This follows from (3.4.1) and (3.4.2) since for
h ∈ Sym(M) and g = π∗(h), we have g1 = g2 = 0. Hence it suffices to show that the fibres
of p′ are precisely the orbits of Sym(M) and that p′ admits a section, in order to have the
corresponding statements for p.

Now p′(t,K, b) = p′(t′,K ′, b′) if and only if t = t′, K = K ′. By definition of P ′(M), this
implies b − bop = −t ◦K = −t′ ◦K ′ = b′ − b′op. It follows that h := b′op − bop = b′ − b is
symmetric, and b′ = b+ h. Thus the fibres of p′ are precisely the orbits of Sym(M).

We construct a section of p′ as follows. Since M is finitely generated and projective, the
sequence of k-modules

0 // Sym(M) inc // Bil(M)
alt // Ω2(M)
γ

oo // 0 (4.10.2)

where alt(b) = b−bop, is split exact. Let γ: Ω2(M)→ Bil(M) be a splitting of this sequence.
Then a section s′ of p′ is given by s′(t,K) =

(
t,K,−γ(t◦K)

)
. Indeed, putting b = −γ(t◦K),

we have
t ◦K + b− bop = t ◦K + alt(b) = t ◦K − alt

(
γ(t ◦K)

)
= 0,

so s′(t,K) ∈ P ′(M), and obviously p′ ◦ s′ = Id.
Since the modules involved are finitely generated and projective, all these constructions

are compatible with arbitrary base change. Hence Scalin(X) is a torsor as indicated, and
therefore isomorphic (not canonically) to W × Sym(M)a. Finally, Sym(M) is a finitely
generated and projective k-module of rank

(
n+1

2

)
. This implies the statement about the

fibres of Scalin(X).

4.11. A geometric interpretation. The defining equation (4.5.2) for P ′(M) can be in-
terpreted as saying that P ′(M) is a parabolic cylinder in (t,K, b)-space, with generators
the lines (more precisely, the affine subspaces)

{(t,K, b+ h) : h ∈ Sym(M)}
given by the action of Sym(M). The quotient by this action can regarded as the hyperbolic
paraboloid in M∗ × Ω2(M,M)× Ω2(M) with the equation

{(t,K, a) : t ◦K + a = 0},
in analogy to the standard hyperbolic paraboloid {(x, y, z) : xy + z = 0} in affine 3-space.

From Corollary 4.3 it is evident that involutive conic algebras are stable under the
group of transvections. We now describe the quotient of Scalin(X) by this action. Choose
a splitting (%, σ) of (3.7.1). Recall the definition of Q(M) in (3.9.3), and define

Q′(M) = {(t, z, b) ∈ Q(M) : t ◦ σ(z) + b− bop = 0},
as well as a k-functor Q′(M) by R 7→ Q′(MR), for all R ∈ k-alg. Note that

Q′(M) ∼= M∗a × Z3(M)a × Sym(M)a (4.11.1)
(not canonically). Indeed, let γ be a section of alt: Bil(M) → Ω2(M) as in (4.10.2). Then
one checks that the map sending (t, z, b) ∈ Q′(M) to

(
t, z, b− γ(alt(b))

)
is an isomorphism,

with inverse given by (t, z, h) 7→
(
t, z, h − γ(t ◦ σ(z))

)
, and it is compatible with arbitrary

base change.
Let B′(X) = Scalin(X)/V and let B′(X) be the functor R 7→ B′(XR) = Scalin(XR)/VR,

for all R ∈ k-alg, with can′: Scalin(X)→ B′(X) the canonical map.
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4.12. Corollary. Let rkX = n+1>3. Then Scalin(X) is a trivial torsor under the group
of transvections with base B′(M) and projection can′. The map ξ of (3.9.4) restricts to a
map ξ′: Scalin(X) → Q′(M) and induces an isomorphism η′: B′(X) → Q′(M). Hence
B′(X) is a smooth affine finitely presented k-scheme with fibres isomorphic to affine space
of dimension n

(
n
2

)
+
(
n+1

2

)
.

Proof. We have the following sub-diagram of (3.10.1), where primes indicate the restric-
tions of the corresponding maps:

Scalin(X)
φ′α
∼=

//

can′

��

ξ′

&&MMMMMMMMMMMMMMM
P ′(M)

q′

��
B′(X)

η′

∼= // Q′(M)

Indeed, let us first show that ξ maps Scalin(X) to Q′(M). We use the notations introduced
in Lemma 3.8. If A ∈ Scalin(X) then so is A%(K), by Corollary 4.3. Hence χ(A) =
φα(A%(K)) ∈ P ′(M), as follows from (4.6.2). By Lemma 3.8, χ(A) = (ϑA, σ(ΘA), βA), so
we have ϑA ◦σ(ΘA)+βA−βop

A = 0. This says precisely that ξ(A) = (ϑA, ΘA, βA) ∈ Q′(M).
We can identify B′(X) with the image of Scalin(X) under can: Con(X)→ B(X). Then it
follows from Theorem 3.10 that η restricts to an injective map η′: B′(X)→ Q′(M), making
the lower triangle of the diagram commutative. Commutativity of the upper triangle follows
from the corresponding fact for (3.10.1). It remains to show that η′ is surjective as well. As
in the proof of Theorem 3.10, it suffices to show that q′ admits a section. In fact, one checks
that the section s of q constructed there restricts to a section of q′. All this is compatible
with arbitrary base change, so Scalin(X) is a torsor as indicated. The statement about the
fibres of B′(X) follows from (4.11.1) and Corollary 2.3.

5. Extending the theory to an arbitrary base scheme.

Following the example of Petersson [14], it is possible to replace the base ring k by an
arbitrary base scheme S. We indicate this briefly.

Finitely generated and projective k-modules X,Y,M, . . . have to be interpreted as vector
bundles (locally free OS-modules of finite rank) over S. The split-exact sequences of the
theory over rings become exact, but not necessarily split-exact sequences of sheaves. For
example, (1.2.1) now becomes the exact sequence of locally free sheaves

0 // OS
1X // X

πX // M // 0

This sequence splits over any open affine subscheme U of S but not necessarily globally.
Hence unital linear forms exist only Zariski-locally on S, and the same holds true for unital
quadratic and unital bilinear forms. In particular, conic algebras exist over any open affine
U ⊂ S, but not necessarily globally over S. The complex (2.2.1) is exact as a sequence of
locally free sheaves over S but no longer split-exact.

Suitably formulated, the main results remain valid. Since (1.11.2) splits over any open
affine U ⊂ S but not necessarily globally, Proposition 1.11 now reads: Given A ∈ Con(X),
for every open affine U ⊂ S, there exist f ∈ H0(U,Bil1(X)) (i.e., a section of the sheaf
Bil1(X) over U) and Γ ∈ H0(U,Ω2(M,X)) such that A

∣∣U = fm + π∗(Γ ).
Theorem 1.13, Corollary 2.10 and Theorem 4.10 now say that Con(X) resp. Scalin(X)

are (not necessarily trivial) torsors in the Zariski topology. Theorem 2.8 requires the follow-
ing modification in the proof of part (a). Choose an open affine covering (Ui) of S. Then
A
∣∣Ui has the form fm

i , for a unique section fi ∈ H0(Ui,Bil1(X)). By uniqueness, these
sections agree on the overlaps Ui ∩Uj , hence define a global section f ∈ H0(S,Bil1(X))
such that A = fm. The proof of part (b) has to modified similarly.

The α-coordinates of Section 3 now become truly local coordinates: since unital linear
forms exist in general only on open affine subschemes, so do α-coordinates. If α and α′
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are unital linear forms on open affine subschemes U and U′, respectively, the change of
coordinate formulas in 3.6 will be valid only on the intersection U ∩U′.

The retraction % and the splitting σ of 3.7 are only available locally on open affine
subschemes of S. Hence Theorem 3.10 has to be phrased as follows: The quotient sheaf
B(X) = Con(X)/̃Va (in the Zariski topology, see [4, Chapitre III]) is a scheme, locally iso-
morphic to Q(M), and Con(X) is a Zariski torsor over B(X) with group Va. Corollary 4.12
has to be interpreted similarly.
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