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Introduction

This note grew out of H. P. Petersson’s recent preprint [4], in particular, his The-
orem 7.3. Let X be the scheme of elementary idempotent 2-by-2 matrices over
a commutative ring k. There is a natural projection π from X to the projective
line P1. The standard open covering U of P1 by two affine lines pulls up to an
open covering V of X. We show that the groups PicU(P1) and PicV(X) of all line
bundles which are trivial over U and V are isomorphic to the group Z(k) of locally
constant maps Spec(k) → Z. The universal line bundle L on X introduced in [4,
Sect. 7] is the pull-back of the tautological bundle of P1 and represents one of the
two generators of Z ⊂ Z(k).

1. Open coverings of P1 and X

1.1. Notations. We follow the notations used in [4]. For a k-module M , let Ma

denote the k-functor R 7→ M ⊗ R (R ∈ k-alg) and Mu the subfunctor Mu(R) =
{x ∈Ma(R) : x is unimodular}. If M is finitely generated and projective then Ma

is affine with affine algebra the symmetric algebra over the dual M∗ of M , and Mu

is a quasi-affine finitely presented k-scheme, open in Ma. In particular, kna is affine
n-space over k and ku(R) = R× is the set of units of R.

1.2. The projective line. Recall from [2, I, §1, 3.4] that the projective line P1

over k is the functor

P1(R) = {L ⊂ R2 : L is a direct summand of rank 1} (R ∈ k-alg).

If x =
(
x1

x2

)
∈ R2 is a unimodular vector, we write as usual R · x = (x1:x2) ∈

P1(R). In general, not every L ∈ P1(R) is free, so {(x1:x2) : x unimodular} will
be a proper subset of P1(R). However, equality holds if R is a field. Define open
subschemes Ui ⊂ P1 by

Ui(R) = {(x1:x2) : xi ∈ R×}.

Since (rx1: rx2) = (x1:x2) for all r ∈ R×, this means

U1(R) = {(1: t) : t ∈ R}, U2(R) = {(t: 1) : t ∈ R},

and in fact, the maps t 7→ (1: t) and t 7→ (t: 1) are isomorphisms ϕi: ka
∼=−→ Ui.

The subschemes U1,U2 form an open affine covering of P1 in the sense of [2, I,
§1, 3.10], i.e., for every field F ∈ k-alg, we have P1(F ) = U1(F ) ∪U2(F ). The
intersection U12 = U1 ∩U2 is isomorphic to ku; more precisely, the restrictions ϕ′i
of ϕi to ku are isomorphisms ku ∼= U12, and

(ϕ′2
−1 ◦ ϕ′1)(λ) = λ−1, (1)

for all λ ∈ R×, R ∈ k-alg.
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1.3. The morphism π: X → P1 and the subschemes Vi of X. There is an
obvious morphism π: X → P1 given by

π(c) = Im(c), (c ∈ X(R), R ∈ k-alg),

and since by definition, any L ∈ P1(R) admits a complementary submodule L′

and the decomposition R2 = L ⊕ L′ determines a unique c ∈ X(R), it is clear
that π(R): X(R) → P1(R) is surjective, for all R ∈ k-alg. The fibre of π over
L = π(c) ∈ P1(R) consists of all idempotents c′ ∈ X(R) with Im(c′) = Im(c),
equivalently, of all line bundles L′ such that R2 = L ⊕ L′, or of all splittings σ of
the exact sequence

0 // L // R2
can // R2/L
σ

oo // 0 ,

i.e., can◦σ = Id. After fixing (non-canonically!) one complement of L, this set may
be identified with Hom(R2/L,L). Now R2/L ∼= L∗ by [4, Lemma 5.2], so we see
that the fibre of π over L is an affine space with associated module of translations
Hom(L∗, L) ∼= L⊗2. Let us put

Vi = π−1(Ui) ⊂ X.

For c =
(
α β
γ δ

)
∈ X(R) let zi(c) be the i-th row of c. Then

c ∈ Vi(R) ⇐⇒ zi(c) is unimodular. (1)

Indeed, Im(c) = π(c) = R

(
α
γ

)
+ R

(
β
δ

)
. Hence π(c) ∈ U1(R) implies there

exist r, s ∈ R such that rα + sβ = 1, so z1(c) is unimodular. Conversely, let this
be the case and put λ := rγ + sδ. Then γ = (rα + sβ)γ = α(rγ + sδ) (because

βγ = αδ) = αλ, so
(
α
γ

)
= α

(
1
λ

)
, and similarly the second column of c is a

multiple of
(

1
λ

)
, showing Im(c) = R ·

(
1
λ

)
∈ U1(R). The proof for the case i = 2

is analogous.

1.4. Lemma. (a) The Vi are open subschemes covering X.

(b) The maps

ψ1: k2
a → V1, (λ, β) 7→

(
1− λβ β

λ(1− λβ) λβ

)
, (1)

ψ2: k2
a → V2, (µ, γ) 7→

(
µγ µ(1− µγ)
γ 1− µγ

)
, (2)

are isomorphisms making the diagrams

k2
a

ψi

∼=
//

pr1

��

Vi

π

��
ka ϕi

∼= // Ui

(3)

commutative.

(c) The intersection V12 := V1 ∩V2 is the open subscheme of all c ∈ X(R)
for which both rows are unimodular. We have ψ−1

i (V12) = ku×ka. The ψi restrict
to isomorphisms ψ′i: ku × ka

∼=−→ V12, and the change of coordinates φ = ψ′2
−1 ◦

ψ′1: ku × ka → ku × ka is given by
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φ(λ, β) =
(
λ−1, λ(1− λβ)

)
(4)

for all (λ, β) ∈ R× ×R, R ∈ k-alg, and satisfies

φ ◦ φ = Id. (5)

Proof. (a) Since Vi is the inverse image of the open subschemes Ui, it is open in
X. (Alternatively, Vi is the inverse image of (k2)u under the morphism zi: X → k2

a,
by 1.3.1). If R is a field, at least one row of c ∈ X(R) is non-zero, which proves the
covering statement.

(b) It is obvious from (1) that ψ1 takes values in V1. Conversely, assume that

c =
(
α β
γ δ

)
∈ V1(R). The transpose of c is in X(R) along with c, so the span

of the rows of c is a direct summand of rank 1 of the dual (R2)∗. Since (α, β) is
unimodular by 1.3.1, there exists a unique λ ∈ R such that (γ, δ) = λ(α, β). Now
one shows easily, using the fact that tr(c) = 1, that c 7→ (λ, β) is the inverse map of

ψ1. From (1) it is clear that the columns v1, v2 of ψ1(λ, β) are multiples of
(

1
λ

)
,

and that
(

1
λ

)
= v1 + λv2. This proves (π ◦ ψ1)(λ, β) = (1:λ) = ϕ1(λ), so (3)

commutes. The proof for ψ2 is analogous.

(c) Since V12 = π−1(U12), (3) and 1.2.1 imply ψ−1
i (V12) = pr−1

1

(
ϕ−1
i (U12)

)
=

ku × ka. Now (4) follows from (1) and (2). These formulas show also that
φ−1(µ, γ) = (ψ′1

−1 ◦ ψ′2)(µ, γ) =
(
µ−1, µ(1− µγ)

)
. Thus φ−1 = φ, proving (5).

1.5. Remarks. (i) By 1.4.4, the second component of φ is an affine, but not a
linear function of β, in accordance with the fact that X is an affine, but not a
vector bundle over P1. The occurrence of the factor λ2 at β corresponds to the fact
that the fibre of π over L is isomorphic to the affine space determined by L⊗2, as
remarked in 1.3.

(ii) Formula 1.4.5 is the analogue of the fact that, by 1.2.1, the change of
coordinates ϕ−1

2 ◦ ϕ1 in k[U12] ∼= k[t, t−1] is inversion λ 7→ λ−1 which obviously
has period two. This will be important later in the proof of Theorem 4.2.

(iii) There is a second projection π′: X → P1 given by π′(c) = Ker(c). Since an
element c ∈ X(R) can be identified with the decomposition R2 = Im(c)⊕Ker(c), it
is clear that (π, π′) is an isomorphism of X onto the open subscheme W ⊂ P1×P1

given by W(R) = {(L,M) ∈ P1(R)2 : R2 = L ⊕M}. If R = K is a field, then
(L,M) ∈ W(K) if and only if L 6= M , so W(K) is the complement of the diagonal
in P1(K)2.

(iv) There is no section of π: X → P1. Indeed, assume to the contrary that
σ: P1 → X satisfies π ◦ σ = Id. Then σi = σ

∣∣Ui: Ui → Vi are sections of π
∣∣Vi.

Identify the affine algebras k[Ui] with the polynomial ring k[t] by means of ϕi.
Then σi(ϕi(t)) = ψi(t, fi(t)) where the fi(t) are polynomials in t, and 1.4.4 and
1.2.1 imply

f2(t−1) = t · (1− tf1(t))

in the Laurent polynomial ring k[t, t−1] ∼= k[U12] which is impossible.

Let U (resp. V) be the open covering of P1 (resp. X) given by U1 and U2 (resp.
V1 and V2). Our aim is to determine the subgroups PicU(P1) and PicV(X) of the
respective Picard groups consisting of all (isomorphism classes of) line bundles
whose restriction to the Ui (resp. Vi) is trivial. We begin by constructing the
standard examples of such bundles.
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2. The line bundles E and L

2.1. The tautological bundle E over P1 is the line bundle whose fibre over a
point L ∈ P1(R) is the R-module L itself, whence the name “tautological”. More
formally, it is the k-functor

E(R) = {(L, x) : L ∈ P1(R), x ∈ L} (R ∈ k-alg),

with projection pr1: E → P1. The sheaf E of sections of E is the sheaf usually
denoted OP1(−1). Now let L = π∗(E) be the inverse image of E on X under π,
that is, the fibre product L = X ×P1 E. Thus, for every R ∈ k-alg, L(R) is the
set of all pairs

(
c, (L, x)

)
where c ∈ X(R), (L, x) ∈ E(R) and π(c) = L. Since L is

already determined by c, we can and will identify L with the functor

L(R) = {(c, x) : c ∈ X(R), x ∈ Im(c)} (R ∈ k-alg).

Then the following diagram is commutative and Cartesian:

L
η //

pr1

��

E

pr1

��
X π

// P1

where η(c, x) = (π(c), x). Denote by L the sheaf of sections of L.
Now let A = k[X] be the affine algebra of X, thus A = k[α,β,γ, δ], subject to

the relations αδ = βγ and α + δ = 1. Let

e =
(

α β
γ δ

)
∈ X(A)

be the “generic” element of X, corresponding to the identity map under the identi-
fication of X(R) with Homk-alg(A,R), for all R ∈ k-alg. Any c ∈ X(R) determines
an invertible R-module L = Im(c) ⊂ R2. In particular, Im(e) ⊂ A2 is an invertible
A-module; this is the module denoted Le in [4, Sect. 7], and it is related to L as
follows.

2.2. Lemma. Im(e) is canonically isomorphic to the A-module L (X) of global
sections of L.

Proof. An element s ∈ L (X), i.e., a section s: X → L of pr1: L → X, is of
the form s(c) =

(
c, v(c)

)
where v(c) ∈ Im(c), for all c ∈ X(R), R ∈ k-alg. In

particular, v(e) ∈ Im(e), so we obtain a map L (X) → Im(e) sending s to v(e).
Conversely, let w ∈ Im(e) and define a section s: X → L as follows. For R ∈ k-alg
and c ∈ X(R), let %c: A→ R be the k-algebra homomorphism corresponding to c.
Then s(c) := (c, %c(w)) ∈ L(R) defines a section s: X → L. One sees immediately
that the constructions are inverse to each other.

2.3. There are sections si ∈ E (Ui) given by

s1(ϕ1(λ)) =
(
(1:λ),

(
1
λ

) )
, s2(ϕ2(µ)) =

(
(µ: 1),

(
µ
1

) )
(λ, µ ∈ R, R ∈ k-alg).

These sections “vanish nowhere”, i.e., they form bases for the k[Ui]-modules E (Ui)
of sections of E over Ui, so E represents an element of PicU(P1). The sections si
are related on U12 by

s2(ϕ2(λ−1)) = s1(ϕ1(λ) · λ−1 (λ ∈ R×, R ∈ k-alg), (1)

since ϕ1(λ) = ϕ2(µ) if and only if λµ = 1 by 1.2.1, and
(
µ
1

)
= µ

(
1
µ−1

)
=

µ

(
1
λ

)
. On the other hand, it is well-known (and follows easily from (1)) that zero

is the only section of E over all of P1.
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The sections si may be lifted to nowhere vanishing sections s̃i ∈ L (Vi) by

s̃1(c) =
(
c,

(
1
λ

) )
for c = ψ1(λ, β) ∈ V1(R),

s̃2(c) =
(
c,

(
µ
1

) )
for c = ψ2(µ, γ) ∈ V2(R),

.

Hence L represents an element of PicV(X). The sections s̃i are related on V12 in
the same way as before:

s̃2(c) = s̃1(c) · λ−1 (2)

for c = ψ1(λ, β) = ψ2(µ, γ) ∈ V12(R) since µ = λ−1 by 1.4.4.

3. Auxiliary results on Laurent polynomials over rings

3.1. Recall the constant k-group scheme Z defined by the integers: Z(R) is the
set of all locally constant maps d: Spec(R) → Z with the obvious (additive) group
structure. The elements of Z(R) are in bijection with families ε = (εn)n∈Z of
orthogonal idempotents of R with εn 6= 0 for only finitely many n, and

∑
εn = 1,

by means of the relations

d(p) = n ⇐⇒ εn(p) = 1κ(p), (1)

for all p ∈ Spec(R), R ∈ k-alg. Here we use the notation r(p) for the canonical
image of an element r ∈ R in the quotient field κ(p) of R/p. Then the group law
in Z(R) is described (multiplicatively) by

(ε · ε′)n =
∑

l+m=n

εlε
′
m, (2)

so the inverse of ε is ε−1 = (ε−n)n∈Z, and the unit element of Z(R), i.e., the constant

map 0: S → Z, corresponds to the family εn =
{

1 if n = 0
0 if n 6= 0

}
. Let R[t, t−1] be

the Laurent polynomial ring in one variable t over R. Then (2) implies that there
is a group monomorphism

Z(R) → R[t, t−1]×, d 7→ td :=
∑
n∈Z

εntn.

3.2. Lemma. Let R be a commutative ring and t an indeterminate. Denote by
Nil(R) the nil radical of R.

(a) A polynomial f(t) =
∑
i>0 rit

i is a unit in R[t] if and only if r0 ∈ R× and
ri ∈ Nil(R) for all i > 0.

(b) A Laurent polynomial g ∈ R[t, t−1] is a unit in R[t, t−1] if and only if there
exists an element d ∈ Z(R), a unit u ∈ R× and a nilpotent h ∈ R[t, t−1] such that

g = u td + h. (1)

The element d is uniquely determined by g, called the degree of g, and the map

deg: R[t, t−1]× → Z(R), deg(utd + h) := d,

is a group homomorphism.
Note, however, that u and h are not uniquely determined by g.

Proof. (a) is evident if R is a field. In general, consider r ∈ R and p ∈ S :=
Spec(R). Then r ∈ R× ⇐⇒ r(p) 6= 0 for all p ∈ S, and r ∈ Nil(R) ⇐⇒ r(p) = 0,
for all p ∈ S. This proves (a).
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(b) Clearly an element as in (1) is a unit in R[t, t−1]. Conversely, let g ∈
R[t, t−1]×, and consider again first the case where R is a field. We leave it to the
reader to show that g = antn is a non-zero monomial.

Now let R be arbitrary, write g =
∑
n∈Z rnt

n where rn ∈ R, and let p ∈ S. By
applying the above to g⊗κ(p), we see that there exists a unique index n =: d(p) ∈ Z
such that rn(p) 6= 0. The map d: S → Z thus defined is locally constant. Indeed,
if d(p0) = n then rn(p0) 6= 0 and hence rn(p) 6= 0 for all p in the basic open
neighbourhood U of p0 in S defined by rn. Since rj(p) = 0 for all other j 6= n, the
function d is constant equal to n on U . This proves d ∈ Z(R).

Let (εn)n∈Z be the family of idempotents corresponding to d. Then
(
rn(1 −

εn)
)
(p) = 0 for all p ∈ S. Indeed, if d(p) = n then (1 − εn)(p) = 0 by 3.1.1, while

if d(p) 6= n, then rn(p) = 0 by definition of d. Hence cn := rn(1 − εn) ∈ Nil(R).
Moreover, u :=

∑
n∈Z rnεn ∈ R× because, for all p ∈ S, by definition of d,

u(p) =
∑
n∈Z

rn(p)εn(p) = rd(p)(p) 6= 0.

Now uεn = rnεn by orthogonality of the εn, and hence

g =
∑
n∈Z

rnεntn +
∑
n∈Z

cntn = utd + h

where h =
∑
cntn is nilpotent, being a finite sum of the nilpotent monomials cntn.

This proves (1). Uniqueness of d = deg(g) is clear since g ⊗ 1κ(p) = u(p) · td(p).
Finally, suppose that g′ = u′ td + h′ is a second element of R[t, t−1]×. Then

gg′ = (utd + h)(u′td′ + h′) ≡ uu′td+d′
(
modNil(R[t, t−1]

)
since d 7→ td is a group homomorphism, showing deg is a homomorphism.

3.3. Lemma. There is an exact sequence

1 //R×
∆ //R[t]× ×R[t]× ∂ //R[t, t−1]×

deg //Z(R) //0

where ∆(r) = (r, r) is the diagonal map, ∂(f1(t), f2(t)) = f1(t) ·f2(t−1)−1 and deg
is as in Lemma 3.2(b).

Proof. Clearly ∂(f1, f2) = 1 if and only if f1(t) = f2(t−1) if and only if f1 =
f2 = r ∈ R×. Next, Im(∂) ⊂ Ker(deg) because deg(f1(t)) = 0 = deg(f2(t−1)) for
fi ∈ R[t]× and deg is a homomorphism. Also, deg is surjective since the map d 7→ td

is even a section of deg. Thus it remains to prove the inclusion Ker(deg) ⊂ Im(∂).
By Lemma 3.2(b), an invertible Laurent polynomial of degree zero has the

form g(t) = u · 1 + h(t) where u ∈ R× and h(t) =
∑
i>−n ci t

i for some n ∈ N,
with ci ∈ Nil(R). Hence G(t) := tng(t) ∈ R[t]. Denote the canonical maps
R → R̄ = R/Nil(R) and R[t] → R̄[t] by a bar. Then Ḡ(t) = tnū = P̄ (t) · Q̄(t)
where P̄ (t) = tn is monic and Q̄(t) = ū ∈ R̄×. Clearly P̄ and Q̄ are strongly
relatively prime in R̄[t], so by Hensel’s Lemma [1, III, §4.3, Theorem 1], applied to
the discretely topologized ring A = R and the ideal m = Nil(R), the polynomials
P̄ , Q̄ lift uniquely to polynomials P,Q ∈ R[t], P monic, such that G = P ·Q. Write
P (t) = tm + a1tm−1 + · · · + am and Q(t) = b0 + b1t + · · ·. Then P̄ (t) = tn and
Q̄ = ū shows m = n, b0 ∈ R× and ai, bi ∈ Nil(R) for i > 0. By Lemma 3.2(a), the
polynomial F (t) := 1 + a1t + · · · + antn = tnP (t−1) belongs to R[t]×. Now put
f1(t) := Q(t) and f2(t) := F (t)−1. Then

f1(t)f2(t−1)−1 = Q(t)F (t−1) = Q(t)t−nP (t) = t−nG(t) = g(t),

as desired.
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4. Determination of PicU(P1) and PicV(X).

4.1. Theorem. There is a natural isomorphism Φ: PicU(P1)
∼=−→ Z(k) mapping

the tautological bundle to −1 ∈ Z ⊂ Z(k) as follows.
Identify k[Ui] with the polynomial ring k[t] by means of the isomorphisms ϕi

of 1.2 and identify k[U12] with the Laurent polynomial ring k[t, t−1] by means of
the open embedding U12 ⊂ U1. Let M be a representative of an element [M ] ∈
PicU(P1), and let si ∈ M (Ui) be sections trivializing M over Ui, so that s2 = s1 ·
g12 on U12 where g12 ∈ k[t, t−1]×. Then the element deg(g12) ∈ Z(k) depends only
on the isomorphism class of M , and [M ] 7→ deg(g12) is the desired isomorphism.

Proof. By standard facts, computing PicU(P1) amounts to computing the Čech
cohomology group H1 = H1(U,F ) of the sheaf F = O×

P1
with respect to the

covering U. Recall that H1 = Z1/B1 where Z1 = Z1(U,F ) is the group of Čech
1-cocycles (gij) ∈ F (Ui ∩Uj) and B1 = ∂0(C0) is the group of coboundaries.

Since U has only two elements, we have a group isomorphism Z1 ∼= F (U12)
sending (gij) to g12. Note that this isomorphism is not unique; (gij) 7→ g21 =
g−1
12 would have been just as good. We identify the group C0 of 0-cochains with

F (U1)×F (U2). Then the coboundary operator ∂0: C0 → C1 is given by

∂0(g1, g2) = %1(g1) · %2(g2)−1, (1)

where gi ∈ F (Ui) and %i: F (Ui) → F (U12) are the restriction homomorphisms.
Now consider the isomorphisms ϕi: ka → Ui and ϕ′i: ku → U12 of 1.2. After

identifying the affine algebras of ka and ku with k[t] and k[t, t−1], we have induced
isomorphisms ϕ∗i : F (Ui) → k[t]× and ϕ′∗i : F (U12) → k[t, t−1]×. Under these
isomorphisms, the coboundary operator ∂0 corresponds to the map ∂′: k[t]× ×
k[t]× → k[t, t−1]× given by

∂′(f1, f2) = f1 · φ∗(f2)−1 (2)

where φ = ϕ′2
−1◦ϕ′1 is the change of coordinates map. Details are left to the reader.

By 1.2.1, φ is inversion on ku, so φ∗ is the automorphism t 7→ t−1 of k[t, t−1]. It
follows that ∂′ = ∂, the map considered in Lemma 3.3. Hence the diagram

C0

∼=
��

∂0
// Z1

∼=
��

can // H1 // 0

F (U1)×F (U2)

ϕ∗
1×ϕ

∗
2
∼=

��

∂0
// F (U12)

ϕ′∗
1

∼=
��

// H1

∼=
��

// 0

k[t]× × k[t]×
∂

// k[t, t−1]×
deg

// Z(k) // 0

is commutative and has exact rows, so there is a unique isomorphism H1 → Z(k)
making the diagram commutative. Explicitly, it is given by the procedure described
in the statement of the theorem. Finally, 2.3.1 implies that the tautological bundle
is mapped to −1 ∈ Z(k).

4.2. Theorem. There is a natural isomorphism Ψ : PicV(X)
∼=−→ Z(k) making the

diagram

PicU(P1)

Φ ""DD
DD

DD
DD

π∗ // PicV(X)

Ψ}}zz
zz

zz
zz

Z(k)

(1)

commutative. Hence π∗ is an isomorphism, and the bundle L = π∗(E) of 2.1 is
mapped to −1 under π∗.
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Proof. We proceed as in the proof of 4.1. Let G be the sheaf O×
X and identify

C0(V) ∼= G (V1) × G (V2) and Z1(V) ∼= G (V12). Then the coboundary operator
∂0: C0(V) → Z1(V) is given by 4.1.1. Again as before, we consider the isomor-
phisms ψi: k2

a → Vi and ψ′i: ku × ka → V12 of 1.4. After identifying the affine
algebra of k2

a with the polynomial ring k[t,y] in two variables and the affine alge-
bra of ku×ka with k[t, t−1,y], we have induced isomorphisms ψ∗i : G (Vi) → k[t,y]×

and ψ′∗i : G (V12) → k[t, t−1,y]×. Let φ be the change of coordinates 1.4.4. Then
again ∂0 corresponds to the map ∂′ of 4.1.2.

Put R = k[y], so that k[t,y] = R[t] and k[t, t−1,y] = R[t, t−1]. We wish to
apply Lemma 3.3. However, the automorphism φ∗ of the k-algebra R[t, t−1] is no
longer just given by t 7→ t−1 but also involves the variable y, so ∂′ is not equal to
the map ∂ of Lemma 3.3. Hence the following detour is required.

From 1.4.4, we see that φ can be factored in the form φ = ι ◦ ϑ where ι(λ, β) =
(λ−1, β) and ϑ(λ, β) =

(
λ, λ(1− λβ)

)
. Putting I = ι∗ and Θ = ϑ∗, this shows

φ∗ = Θ ◦ I (2)

where Θ and I are the automorphisms of k[t, t−1,y] given by the formulas

Θ(t) = t, Θ(y) = t(1− ty), (3)
I(t) = t−1, I(y) = y. (4)

By 1.4.5, φ∗ squares to the identity and obviously I2 = Id. Hence (2) implies

I = Θ ◦ I ◦Θ. (5)

Next observe (cf. [3, 0.12.2]) that an idempotent ε of the polynomial ring R = k[y]
belongs to k. Hence the natural homomorphism k → R induces an isomorphism

Z(k)
∼=−→ Z(R). (6)

Using the description of the units of R = k[y] in Lemma 3.2(a), part (b) of that
lemma shows that g ∈ R[t, t−1]× if and only if g = µ td + h where µ ∈ k×,
d = deg(g) ∈ Z(k) and h ∈ R[t, t−1] is nilpotent. From this and the formulas for
Θ and I we see

deg(Θ(g)) = deg(g), deg(I(g)) = −deg(g) (g ∈ R[t, t−1]×). (7)

With the notations introduced above, the map ∂ of Lemma 3.3 is expressed by

∂(f1, f2) = f1 · I(f2)−1, (8)

while by 4.1.2 and (2),
∂′(f1, f2) = f1 ·Θ(I(f2))−1, (9)

for fi ∈ R[t]×. We claim that

Im(∂′) = Im(∂) = Ker(deg). (10)

Indeed, the second equality follows from Lemma 3.3. As deg vanishes on R[t]×, it
follows from (7) and (9) that Im(∂′) ⊂ Ker(deg) = Im(∂). To prove Im(∂) ⊂ Im(∂′),
it suffices by (8) to have I(f) ∈ Im(∂′), for all f ∈ R[t]×. The automorphism Θ of
R[t, t−1] induces an endomorphism (but not an automorphism) of the subring R[t].
This is evident from (3). Hence Θ(f) ∈ R[t]×, and by (5), I(f) = Θ(I(Θ(f))) =
∂′(1, Θ(f)−1) ∈ Im(∂′). Now (10) and Lemma 3.3 together with (6) yields the
desired isomorphism

Ψ : PicV(X) ∼= H1(V,G ) ∼= R[t, t−1]×
/

Im(∂′)
deg−→ Z(k).

8



It remains to show that (1) is commutative. The map π∗: PicU(P1) → PicV(X) is
induced by the maps π∗i : F (Ui) → G (Vi) and π∗12: F (U12) → G (V12), where πi
and π12 are the restrictions of the projection π: X → P1. After the identifications
of these rings with polynomial resp. Laurent polynomial rings as above, these are
just the natural injections k[t]× → R[t]× and k[t, t−1]× → R[t, t−1]× induced from
k → R. From (3), (4) and (9) one sees easily that the diagram

k[t]× × k[t]×

��

∂ // k[t, t−1]×

��

deg // Z(k) // 0

R[t]× ×R[t]×
∂′

// R[t, t−1]×
deg

// Z(k) // 0

is commutative with exact rows. This implies commutativity of (1) and completes
the proof.

4.3. Corollary. E has infinite order in Pic(P1) and L has infinite order in
Pic(X).

4.4. Corollary. If k is a factorial ring then Pic(P1) ∼= Z ∼= Pic(X), generated by
E and L , respectively.

Proof. The Picard group of an integral domain is canonically embedded into
the ideal class group, and the latter is trivial for a factorial domain [1, VII, §1.2,
Remarks after Prop. 4, and §3, Def. 1]. Also, k[t] is factorial along with k. Hence
every line bundle on P1 is trivialized by U, i.e., Pic(P1) = PicU(P1). Moreover,
Z(k) ∼= Z since k has no non-trivial idempotents. Now the first isomorphism follows
from Theorem 4.1, and the proof of the second one is analogous.

4.5. Remarks. (i) The isomorphisms Φ and Ψ of 4.1 and 4.2 are easily seen to
be compatible with base change. Hence, the sub-functors PicU(P1) and PicV(X)
of the Picard functors Pic(P1) and Pic(X) defined by

PicU(P1)(R) = PicU(P1 ⊗R), PicV(X)(R) = PicV(X⊗R)

are actually isomorphic to Z.

(ii) The canonical projection p: P1 → S = Spec(k) induces a homomorphism
p∗: Pic(k) ∼= Pic(S) → Pic(P1). This is an isomorphism onto a direct summand
because p has sections (the elements of P1(k) are in bijection with the sections of p).
We claim that p∗(Pic(k))∩PicU(P1) = 0. Indeed, let i1: U1 → P1 be the inclusion
and p1 = p

∣∣U1. Then p1 = p ◦ i1 and hence p∗1 = i∗1 ◦ p∗. Since U1(k) 6= ∅ as well,
p∗1: Pic(k) → Pic(U1) is injective, so i∗1: p

∗(Pic(k)) → Pic(U1) is injective. Hence
for an element p∗([L]) = [M ] ∈ p∗(Pic(k)) ∩ PicU(P1) we have i∗1([M ]) = 0 (since
the restriction of M to U1 is trivial) = p∗1([L]) and therefore [L] = 0 in Pic(k).
Question: Is

p∗(Pic(k))⊕ PicU(P1) = Pic(P1)?

Analogous statements hold and questions can be asked for Pic(X).

Acknowledgement I am grateful to H. P. Petersson who carefully read an earlier
draft of this note and suggested numerous improvements.
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