Remarks on Holger P. Petersson's
 "Idempotent 2-by-2 matrices"

Ottmar Loos
Föhrenweg 10, A-6094 Axams, Austria
email: ottmar.loos@uibk.ac.at

Introduction

This note grew out of H. P. Petersson's recent preprint [4], in particular, his Theorem 7.3. Let \mathbf{X} be the scheme of elementary idempotent 2 -by- 2 matrices over a commutative ring k. There is a natural projection π from \mathbf{X} to the projective line \mathbf{P}_{1}. The standard open covering \mathfrak{U} of \mathbf{P}_{1} by two affine lines pulls up to an open covering \mathfrak{V} of \mathbf{X}. We show that the groups $\operatorname{Pic}_{\mathfrak{L}}\left(\mathbf{P}_{1}\right)$ and $\operatorname{Pic}_{\mathfrak{V}}(\mathbf{X})$ of all line bundles which are trivial over \mathfrak{U} and \mathfrak{V} are isomorphic to the group $\mathbf{Z}(k)$ of locally constant maps $\operatorname{Spec}(k) \rightarrow \mathbb{Z}$. The universal line bundle \mathbf{L} on \mathbf{X} introduced in [4, Sect. 7] is the pull-back of the tautological bundle of \mathbf{P}_{1} and represents one of the two generators of $\mathbb{Z} \subset \mathbf{Z}(k)$.

1. Open coverings of P_{1} and X

1.1. Notations. We follow the notations used in [4]. For a k-module M, let $M_{\mathbf{a}}$ denote the k-functor $R \mapsto M \otimes R\left(R \in k\right.$-alg) and $M_{\mathbf{u}}$ the subfunctor $M_{\mathbf{u}}(R)=$ $\left\{x \in M_{\mathbf{a}}(R): x\right.$ is unimodular $\}$. If M is finitely generated and projective then $M_{\mathbf{a}}$ is affine with affine algebra the symmetric algebra over the dual M^{*} of M, and $M_{\mathbf{u}}$ is a quasi-affine finitely presented k-scheme, open in $M_{\mathbf{a}}$. In particular, $k_{\mathbf{a}}^{n}$ is affine n-space over k and $k_{\mathbf{u}}(R)=R^{\times}$is the set of units of R.
1.2. The projective line. Recall from $[\mathbf{2}, \mathrm{I}, \S 1,3.4]$ that the projective line \mathbf{P}_{1} over k is the functor

$$
\mathbf{P}_{1}(R)=\left\{L \subset R^{2}: L \text { is a direct summand of rank } 1\right\} \quad(R \in k \text {-alg })
$$

If $x=\binom{x_{1}}{x_{2}} \in R^{2}$ is a unimodular vector, we write as usual $R \cdot x=\left(x_{1}: x_{2}\right) \in$ $\mathbf{P}_{1}(R)$. In general, not every $L \in \mathbf{P}_{1}(R)$ is free, so $\left\{\left(x_{1}: x_{2}\right): x\right.$ unimodular $\}$ will be a proper subset of $\mathbf{P}_{1}(R)$. However, equality holds if R is a field. Define open subschemes $\mathbf{U}_{i} \subset \mathbf{P}_{1}$ by

$$
\mathbf{U}_{i}(R)=\left\{\left(x_{1}: x_{2}\right): x_{i} \in R^{\times}\right\} .
$$

Since $\left(r x_{1}: r x_{2}\right)=\left(x_{1}: x_{2}\right)$ for all $r \in R^{\times}$, this means

$$
\mathbf{U}_{1}(R)=\{(1: t): t \in R\}, \quad \mathbf{U}_{2}(R)=\{(t: 1): t \in R\}
$$

and in fact, the maps $t \mapsto(1: t)$ and $t \mapsto(t: 1)$ are isomorphisms $\varphi_{i}: k_{\mathbf{a}} \xrightarrow{\cong} \mathbf{U}_{i}$. The subschemes $\mathbf{U}_{1}, \mathbf{U}_{2}$ form an open affine covering of \mathbf{P}_{1} in the sense of $[\mathbf{2}, I$, $\S 1,3.10]$, i.e., for every field $F \in k$-alg, we have $\mathbf{P}_{1}(F)=\mathbf{U}_{1}(F) \cup \mathbf{U}_{2}(F)$. The intersection $\mathbf{U}_{12}=\mathbf{U}_{1} \cap \mathbf{U}_{2}$ is isomorphic to $k_{\mathbf{u}}$; more precisely, the restrictions φ_{i}^{\prime} of φ_{i} to $k_{\mathbf{u}}$ are isomorphisms $k_{\mathbf{u}} \cong \mathbf{U}_{12}$, and

$$
\begin{equation*}
\left(\varphi_{2}^{\prime-1} \circ \varphi_{1}^{\prime}\right)(\lambda)=\lambda^{-1} \tag{1}
\end{equation*}
$$

for all $\lambda \in R^{\times}, R \in k$-alg.
1.3. The morphism $\pi: X \rightarrow P_{1}$ and the subschemes V_{i} of X. There is an obvious morphism $\pi: \mathbf{X} \rightarrow \mathbf{P}_{1}$ given by

$$
\pi(c)=\operatorname{Im}(c), \quad(c \in \mathbf{X}(R), R \in k-\mathbf{a l g})
$$

and since by definition, any $L \in \mathbf{P}_{1}(R)$ admits a complementary submodule L^{\prime} and the decomposition $R^{2}=L \oplus L^{\prime}$ determines a unique $c \in \mathbf{X}(R)$, it is clear that $\pi(R): \mathbf{X}(R) \rightarrow \mathbf{P}_{1}(R)$ is surjective, for all $R \in k$-alg. The fibre of π over $L=\pi(c) \in \mathbf{P}_{1}(R)$ consists of all idempotents $c^{\prime} \in \mathbf{X}(R)$ with $\operatorname{Im}\left(c^{\prime}\right)=\operatorname{Im}(c)$, equivalently, of all line bundles L^{\prime} such that $R^{2}=L \oplus L^{\prime}$, or of all splittings σ of the exact sequence

$$
0 \longrightarrow L \longrightarrow R^{2} \stackrel{\text { can }}{\rightleftarrows} R^{2} / L \longrightarrow 0,
$$

i.e., can $\circ \sigma=$ Id. After fixing (non-canonically!) one complement of L, this set may be identified with $\operatorname{Hom}\left(R^{2} / L, L\right)$. Now $R^{2} / L \cong L^{*}$ by [4, Lemma 5.2], so we see that the fibre of π over L is an affine space with associated module of translations $\operatorname{Hom}\left(L^{*}, L\right) \cong L^{\otimes 2}$. Let us put

$$
\mathbf{V}_{i}=\pi^{-1}\left(\mathbf{U}_{i}\right) \subset \mathbf{X}
$$

For $c=\left(\begin{array}{cc}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in \mathbf{X}(R)$ let $z_{i}(c)$ be the i-th row of c. Then

$$
\begin{equation*}
c \in \mathbf{V}_{i}(R) \quad \Longleftrightarrow \quad z_{i}(c) \text { is unimodular. } \tag{1}
\end{equation*}
$$

Indeed, $\operatorname{Im}(c)=\pi(c)=R\binom{\alpha}{\gamma}+R\binom{\beta}{\delta}$. Hence $\pi(c) \in \mathbf{U}_{1}(R)$ implies there exist $r, s \in R$ such that $r \alpha+s \beta=1$, so $z_{1}(c)$ is unimodular. Conversely, let this be the case and put $\lambda:=r \gamma+s \delta$. Then $\gamma=(r \alpha+s \beta) \gamma=\alpha(r \gamma+s \delta)$ (because $\beta \gamma=\alpha \delta)=\alpha \lambda$, so $\binom{\alpha}{\gamma}=\alpha\binom{1}{\lambda}$, and similarly the second column of c is a multiple of $\binom{1}{\lambda}$, showing $\operatorname{Im}(c)=R \cdot\binom{1}{\lambda} \in \mathbf{U}_{1}(R)$. The proof for the case $i=2$ is analogous.
1.4. Lemma. (a) The \mathbf{V}_{i} are open subschemes covering \mathbf{X}.
(b) The maps

$$
\begin{align*}
& \psi_{1}: k_{\mathbf{a}}^{2} \rightarrow \mathbf{V}_{1}, \quad(\lambda, \beta) \mapsto\left(\begin{array}{cc}
1-\lambda \beta & \beta \\
\lambda(1-\lambda \beta) & \lambda \beta
\end{array}\right), \tag{1}\\
& \psi_{2}: k_{\mathbf{a}}^{2} \rightarrow \mathbf{V}_{2}, \quad(\mu, \gamma) \mapsto\left(\begin{array}{cc}
\mu \gamma & \mu(1-\mu \gamma) \\
\gamma & 1-\mu \gamma
\end{array}\right), \tag{2}
\end{align*}
$$

are isomorphisms making the diagrams

commutative.
(c) The intersection $\mathbf{V}_{12}:=\mathbf{V}_{1} \cap \mathbf{V}_{2}$ is the open subscheme of all $c \in \mathbf{X}(R)$ for which both rows are unimodular. We have $\psi_{i}^{-1}\left(\mathbf{V}_{12}\right)=k_{\mathbf{u}} \times k_{\mathbf{a}}$. The ψ_{i} restrict to isomorphisms $\psi_{i}^{\prime}: k_{\mathbf{u}} \times k_{\mathbf{a}} \xrightarrow{\cong} \mathbf{V}_{12}$, and the change of coordinates $\phi=\psi_{2}^{\prime-1} \circ$ $\psi_{1}^{\prime}: k_{\mathbf{u}} \times k_{\mathbf{a}} \rightarrow k_{\mathbf{u}} \times k_{\mathbf{a}}$ is given by

$$
\begin{equation*}
\phi(\lambda, \beta)=\left(\lambda^{-1}, \lambda(1-\lambda \beta)\right) \tag{4}
\end{equation*}
$$

for all $(\lambda, \beta) \in R^{\times} \times R, R \in k$-alg, and satisfies

$$
\begin{equation*}
\phi \circ \phi=\mathrm{Id} . \tag{5}
\end{equation*}
$$

Proof. (a) Since \mathbf{V}_{i} is the inverse image of the open subschemes \mathbf{U}_{i}, it is open in \mathbf{X}. (Alternatively, \mathbf{V}_{i} is the inverse image of $\left(k^{2}\right)_{\mathbf{u}}$ under the morphism $z_{i}: \mathbf{X} \rightarrow k_{\mathbf{a}}^{2}$, by 1.3.1). If R is a field, at least one row of $c \in \mathbf{X}(R)$ is non-zero, which proves the covering statement.
(b) It is obvious from (1) that ψ_{1} takes values in \mathbf{V}_{1}. Conversely, assume that $c=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in \mathbf{V}_{1}(R)$. The transpose of c is in $\mathbf{X}(R)$ along with c, so the span of the rows of c is a direct summand of rank 1 of the dual $\left(R^{2}\right)^{*}$. Since (α, β) is unimodular by 1.3.1, there exists a unique $\lambda \in R$ such that $(\gamma, \delta)=\lambda(\alpha, \beta)$. Now one shows easily, using the fact that $\operatorname{tr}(c)=1$, that $c \mapsto(\lambda, \beta)$ is the inverse map of ψ_{1}. From (1) it is clear that the columns v_{1}, v_{2} of $\psi_{1}(\lambda, \beta)$ are multiples of $\binom{1}{\lambda}$, and that $\binom{1}{\lambda}=v_{1}+\lambda v_{2}$. This proves $\left(\pi \circ \psi_{1}\right)(\lambda, \beta)=(1: \lambda)=\varphi_{1}(\lambda)$, so (3) commutes. The proof for ψ_{2} is analogous.
(c) Since $\mathbf{V}_{12}=\pi^{-1}\left(\mathbf{U}_{12}\right)$, (3) and 1.2 .1 imply $\psi_{i}^{-1}\left(\mathbf{V}_{12}\right)=\operatorname{pr}_{1}^{-1}\left(\varphi_{i}^{-1}\left(\mathbf{U}_{12}\right)\right)=$ $k_{\mathbf{u}} \times k_{\mathbf{a}}$. Now (4) follows from (1) and (2). These formulas show also that $\phi^{-1}(\mu, \gamma)=\left(\psi_{1}^{\prime-1} \circ \psi_{2}^{\prime}\right)(\mu, \gamma)=\left(\mu^{-1}, \mu(1-\mu \gamma)\right)$. Thus $\phi^{-1}=\phi$, proving (5).
1.5. Remarks. (i) By 1.4.4, the second component of ϕ is an affine, but not a linear function of β, in accordance with the fact that \mathbf{X} is an affine, but not a vector bundle over \mathbf{P}_{1}. The occurrence of the factor λ^{2} at β corresponds to the fact that the fibre of π over L is isomorphic to the affine space determined by $L^{\otimes 2}$, as remarked in 1.3.
(ii) Formula 1.4.5 is the analogue of the fact that, by 1.2.1, the change of coordinates $\varphi_{2}^{-1} \circ \varphi_{1}$ in $k\left[\mathbf{U}_{12}\right] \cong k\left[\mathbf{t}, \mathbf{t}^{-1}\right]$ is inversion $\lambda \mapsto \lambda^{-1}$ which obviously has period two. This will be important later in the proof of Theorem 4.2.
(iii) There is a second projection $\pi^{\prime}: \mathbf{X} \rightarrow \mathbf{P}_{1}$ given by $\pi^{\prime}(c)=\operatorname{Ker}(c)$. Since an element $c \in \mathbf{X}(R)$ can be identified with the decomposition $R^{2}=\operatorname{Im}(c) \oplus \operatorname{Ker}(c)$, it is clear that $\left(\pi, \pi^{\prime}\right)$ is an isomorphism of \mathbf{X} onto the open subscheme $\mathbf{W} \subset \mathbf{P}_{1} \times \mathbf{P}_{1}$ given by $\mathbf{W}(R)=\left\{(L, M) \in \mathbf{P}_{1}(R)^{2}: R^{2}=L \oplus M\right\}$. If $R=K$ is a field, then $(L, M) \in \mathbf{W}(K)$ if and only if $L \neq M$, so $\mathbf{W}(K)$ is the complement of the diagonal in $\mathbf{P}_{1}(K)^{2}$.
(iv) There is no section of $\pi: \mathbf{X} \rightarrow \mathbf{P}_{1}$. Indeed, assume to the contrary that $\sigma: \mathbf{P}_{1} \rightarrow \mathbf{X}$ satisfies $\pi \circ \sigma=$ Id. Then $\sigma_{i}=\sigma \mid \mathbf{U}_{i}: \mathbf{U}_{i} \rightarrow \mathbf{V}_{i}$ are sections of $\pi \mid \mathbf{V}_{i}$. Identify the affine algebras $k\left[\mathbf{U}_{i}\right]$ with the polynomial ring $k[\mathbf{t}]$ by means of φ_{i}. Then $\sigma_{i}\left(\varphi_{i}(\mathbf{t})\right)=\psi_{i}\left(\mathbf{t}, f_{i}(\mathbf{t})\right)$ where the $f_{i}(\mathbf{t})$ are polynomials in \mathbf{t}, and 1.4.4 and 1.2.1 imply

$$
f_{2}\left(\mathbf{t}^{-1}\right)=\mathbf{t} \cdot\left(1-\mathbf{t} f_{1}(\mathbf{t})\right)
$$

in the Laurent polynomial ring $k\left[\mathbf{t}, \mathbf{t}^{-1}\right] \cong k\left[\mathbf{U}_{12}\right]$ which is impossible.
Let \mathfrak{U} (resp. \mathfrak{V}) be the open covering of \mathbf{P}_{1} (resp. \mathbf{X}) given by \mathbf{U}_{1} and \mathbf{U}_{2} (resp. \mathbf{V}_{1} and $\left.\mathbf{V}_{2}\right)$. Our aim is to determine the subgroups $\operatorname{Pic}_{\mathfrak{U}}\left(\mathbf{P}_{1}\right)$ and $\operatorname{Pic}_{\mathfrak{V}}(\mathbf{X})$ of the respective Picard groups consisting of all (isomorphism classes of) line bundles whose restriction to the \mathbf{U}_{i} (resp. \mathbf{V}_{i}) is trivial. We begin by constructing the standard examples of such bundles.

2. The line bundles E and L

2.1. The tautological bundle \mathbf{E} over \mathbf{P}_{1} is the line bundle whose fibre over a point $L \in \mathbf{P}_{1}(R)$ is the R-module L itself, whence the name "tautological". More formally, it is the k-functor

$$
\mathbf{E}(R)=\left\{(L, x): L \in \mathbf{P}_{1}(R), x \in L\right\} \quad(R \in k \text {-alg })
$$

with projection $\mathrm{pr}_{1}: \mathbf{E} \rightarrow \mathbf{P}_{1}$. The sheaf \mathscr{E} of sections of \mathbf{E} is the sheaf usually denoted $\mathscr{O}_{\mathbf{P}_{1}}(-1)$. Now let $\mathbf{L}=\pi^{*}(\mathbf{E})$ be the inverse image of \mathbf{E} on \mathbf{X} under π, that is, the fibre product $\mathbf{L}=\mathbf{X} \times_{\mathbf{P}_{1}} \mathbf{E}$. Thus, for every $R \in k$-alg, $\mathbf{L}(R)$ is the set of all pairs $(c,(L, x))$ where $c \in \mathbf{X}(R),(L, x) \in \mathbf{E}(R)$ and $\pi(c)=L$. Since L is already determined by c, we can and will identify \mathbf{L} with the functor

$$
\mathbf{L}(R)=\{(c, x): c \in \mathbf{X}(R), x \in \operatorname{Im}(c)\} \quad(R \in k-\mathbf{a l g})
$$

Then the following diagram is commutative and Cartesian:

where $\eta(c, x)=(\pi(c), x)$. Denote by \mathscr{L} the sheaf of sections of \mathbf{L}.
Now let $A=k[\mathbf{X}]$ be the affine algebra of \mathbf{X}, thus $A=k[\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma}, \boldsymbol{\delta}]$, subject to the relations $\boldsymbol{\alpha} \boldsymbol{\delta}=\boldsymbol{\beta} \boldsymbol{\gamma}$ and $\boldsymbol{\alpha}+\boldsymbol{\delta}=1$. Let

$$
\mathbf{e}=\left(\begin{array}{ll}
\boldsymbol{\alpha} & \boldsymbol{\beta} \\
\boldsymbol{\gamma} & \boldsymbol{\delta}
\end{array}\right) \in \mathbf{X}(A)
$$

be the "generic" element of \mathbf{X}, corresponding to the identity map under the identification of $\mathbf{X}(R)$ with $\operatorname{Hom}_{k \text {-alg }}(A, R)$, for all $R \in k$-alg. Any $c \in \mathbf{X}(R)$ determines an invertible R-module $L=\operatorname{Im}(c) \subset R^{2}$. In particular, $\operatorname{Im}(\mathbf{e}) \subset A^{2}$ is an invertible A-module; this is the module denoted L_{e} in [4, Sect. 7], and it is related to \mathscr{L} as follows.
2.2. Lemma. $\operatorname{Im}(\mathbf{e})$ is canonically isomorphic to the A-module $\mathscr{L}(\mathbf{X})$ of global sections of \mathbf{L}.

Proof. An element $s \in \mathscr{L}(\mathbf{X})$, i.e., a section $s: \mathbf{X} \rightarrow \mathbf{L}$ of $\mathrm{pr}_{1}: \mathbf{L} \rightarrow \mathbf{X}$, is of the form $s(c)=(c, v(c))$ where $v(c) \in \operatorname{Im}(c)$, for all $c \in \mathbf{X}(R), R \in k$-alg. In particular, $v(\mathbf{e}) \in \operatorname{Im}(\mathbf{e})$, so we obtain a map $\mathscr{L}(\mathbf{X}) \rightarrow \operatorname{Im}(\mathbf{e})$ sending s to $v(\mathbf{e})$. Conversely, let $w \in \operatorname{Im}(\mathbf{e})$ and define a section $s: \mathbf{X} \rightarrow \mathbf{L}$ as follows. For $R \in k$-alg and $c \in \mathbf{X}(R)$, let $\varrho_{c}: A \rightarrow R$ be the k-algebra homomorphism corresponding to c. Then $s(c):=\left(c, \varrho_{c}(w)\right) \in \mathbf{L}(R)$ defines a section $s: \mathbf{X} \rightarrow \mathbf{L}$. One sees immediately that the constructions are inverse to each other.
2.3. There are sections $s_{i} \in \mathscr{E}\left(\mathbf{U}_{i}\right)$ given by

$$
s_{1}\left(\varphi_{1}(\lambda)\right)=\left((1: \lambda),\binom{1}{\lambda}\right), \quad s_{2}\left(\varphi_{2}(\mu)\right)=\left((\mu: 1),\binom{\mu}{1}\right) \quad(\lambda, \mu \in R, R \in k \text {-alg })
$$

These sections "vanish nowhere", i.e., they form bases for the $k\left[\mathbf{U}_{i}\right]$-modules $\mathscr{E}\left(\mathbf{U}_{i}\right)$ of sections of \mathbf{E} over \mathbf{U}_{i}, so \mathscr{E} represents an element of $\operatorname{Pic}_{\mathfrak{U}}\left(\mathbf{P}_{1}\right)$. The sections s_{i} are related on \mathbf{U}_{12} by

$$
\begin{equation*}
s_{2}\left(\varphi_{2}\left(\lambda^{-1}\right)\right)=s_{1}\left(\varphi_{1}(\lambda) \cdot \lambda^{-1} \quad\left(\lambda \in R^{\times}, R \in k \text {-alg }\right)\right. \tag{1}
\end{equation*}
$$

since $\varphi_{1}(\lambda)=\varphi_{2}(\mu)$ if and only if $\lambda \mu=1$ by 1.2 .1 , and $\binom{\mu}{1}=\mu\binom{1}{\mu^{-1}}=$ $\mu\binom{1}{\lambda}$. On the other hand, it is well-known (and follows easily from (1)) that zero is the only section of \mathbf{E} over all of \mathbf{P}_{1}.

The sections s_{i} may be lifted to nowhere vanishing sections $\tilde{s}_{i} \in \mathscr{L}\left(\mathbf{V}_{i}\right)$ by

$$
\begin{aligned}
& \tilde{s}_{1}(c)=\left(c,\binom{1}{\lambda}\right) \quad \text { for } c=\psi_{1}(\lambda, \beta) \in \mathbf{V}_{1}(R), \\
& \tilde{s}_{2}(c)=\left(c,\binom{\mu}{1}\right) \quad \text { for } c=\psi_{2}(\mu, \gamma) \in \mathbf{V}_{2}(R),
\end{aligned}
$$

Hence \mathbf{L} represents an element of $\operatorname{Pic}_{\mathfrak{V}}(\mathbf{X})$. The sections \tilde{s}_{i} are related on \mathbf{V}_{12} in the same way as before:

$$
\begin{equation*}
\tilde{s}_{2}(c)=\tilde{s}_{1}(c) \cdot \lambda^{-1} \tag{2}
\end{equation*}
$$

for $c=\psi_{1}(\lambda, \beta)=\psi_{2}(\mu, \gamma) \in \mathbf{V}_{12}(R)$ since $\mu=\lambda^{-1}$ by 1.4.4.

3. Auxiliary results on Laurent polynomials over rings

3.1. Recall the constant k-group scheme \mathbf{Z} defined by the integers: $\mathbf{Z}(R)$ is the set of all locally constant maps $\mathfrak{d}: \operatorname{Spec}(R) \rightarrow \mathbb{Z}$ with the obvious (additive) group structure. The elements of $\mathbf{Z}(R)$ are in bijection with families $\varepsilon=\left(\varepsilon_{n}\right)_{n \in \mathbb{Z}}$ of orthogonal idempotents of R with $\varepsilon_{n} \neq 0$ for only finitely many n, and $\sum \varepsilon_{n}=1$, by means of the relations

$$
\begin{equation*}
\mathfrak{d}(\mathfrak{p})=n \quad \Longleftrightarrow \quad \varepsilon_{n}(\mathfrak{p})=1_{\boldsymbol{\kappa}(\mathfrak{p})} \tag{1}
\end{equation*}
$$

for all $\mathfrak{p} \in \operatorname{Spec}(R), R \in k$-alg. Here we use the notation $r(\mathfrak{p})$ for the canonical image of an element $r \in R$ in the quotient field $\boldsymbol{\kappa}(\mathfrak{p})$ of R / \mathfrak{p}. Then the group law in $\mathbf{Z}(R)$ is described (multiplicatively) by

$$
\begin{equation*}
\left(\varepsilon \cdot \varepsilon^{\prime}\right)_{n}=\sum_{l+m=n} \varepsilon_{l} \varepsilon_{m}^{\prime} \tag{2}
\end{equation*}
$$

so the inverse of ε is $\varepsilon^{-1}=\left(\varepsilon_{-n}\right)_{n \in \mathbb{Z}}$, and the unit element of $\mathbf{Z}(R)$, i.e., the constant map 0: $S \rightarrow \mathbb{Z}$, corresponds to the family $\varepsilon_{n}=\left\{\begin{array}{ll}1 & \text { if } n=0 \\ 0 & \text { if } n \neq 0\end{array}\right\}$. Let $R\left[\mathbf{t}, \mathbf{t}^{-1}\right]$ be the Laurent polynomial ring in one variable \mathbf{t} over R. Then (2) implies that there is a group monomorphism

$$
\mathbf{Z}(R) \rightarrow R\left[\mathbf{t}, \mathbf{t}^{-1}\right]^{\times}, \quad \mathfrak{d} \mapsto \mathbf{t}^{\mathfrak{D}}:=\sum_{n \in \mathbb{Z}} \varepsilon_{n} \mathbf{t}^{n}
$$

3.2. Lemma. Let R be a commutative ring and \mathbf{t} an indeterminate. Denote by $\mathrm{Nil}(R)$ the nil radical of R.
(a) A polynomial $f(\mathbf{t})=\sum_{i \geqslant 0} r_{i} \mathbf{t}^{i}$ is a unit in $R[\mathbf{t}]$ if and only if $r_{0} \in R^{\times}$and $r_{i} \in \operatorname{Nil}(R)$ for all $i>0$.
(b) A Laurent polynomial $g \in R\left[\mathbf{t}, \mathbf{t}^{-1}\right]$ is a unit in $R\left[\mathbf{t}, \mathbf{t}^{-1}\right]$ if and only if there exists an element $\mathfrak{d} \in \mathbf{Z}(R)$, a unit $u \in R^{\times}$and a nilpotent $h \in R\left[\mathbf{t}, \mathbf{t}^{-1}\right]$ such that

$$
\begin{equation*}
g=u \mathbf{t}^{\mathfrak{d}}+h \tag{1}
\end{equation*}
$$

The element \mathfrak{d} is uniquely determined by g, called the degree of g, and the map

$$
\operatorname{deg}: R\left[\mathbf{t}, \mathbf{t}^{-1}\right]^{\times} \rightarrow \mathbf{Z}(R), \quad \operatorname{deg}\left(u \mathbf{t}^{\mathfrak{d}}+h\right):=\mathfrak{d}
$$

is a group homomorphism.
Note, however, that u and h are not uniquely determined by g.
Proof. (a) is evident if R is a field. In general, consider $r \in R$ and $\mathfrak{p} \in S:=$ $\operatorname{Spec}(R)$. Then $r \in R^{\times} \Longleftrightarrow r(\mathfrak{p}) \neq 0$ for all $\mathfrak{p} \in S$, and $r \in \operatorname{Nil}(R) \Longleftrightarrow r(\mathfrak{p})=0$, for all $\mathfrak{p} \in S$. This proves (a).
(b) Clearly an element as in (1) is a unit in $R\left[\mathbf{t}, \mathbf{t}^{-1}\right]$. Conversely, let $g \in$ $R\left[\mathbf{t}, \mathbf{t}^{-1}\right]^{\times}$, and consider again first the case where R is a field. We leave it to the reader to show that $g=a_{n} \mathbf{t}^{n}$ is a non-zero monomial.

Now let R be arbitrary, write $g=\sum_{n \in \mathbb{Z}} r_{n} \mathbf{t}^{n}$ where $r_{n} \in R$, and let $\mathfrak{p} \in S$. By applying the above to $g \otimes \boldsymbol{\kappa}(\mathfrak{p})$, we see that there exists a unique index $n=: \mathfrak{d}(\mathfrak{p}) \in \mathbb{Z}$ such that $r_{n}(\mathfrak{p}) \neq 0$. The map $\mathfrak{d}: S \rightarrow \mathbb{Z}$ thus defined is locally constant. Indeed, if $\mathfrak{d}\left(\mathfrak{p}_{0}\right)=n$ then $r_{n}\left(\mathfrak{p}_{0}\right) \neq 0$ and hence $r_{n}(\mathfrak{p}) \neq 0$ for all \mathfrak{p} in the basic open neighbourhood U of \mathfrak{p}_{0} in S defined by r_{n}. Since $r_{j}(\mathfrak{p})=0$ for all other $j \neq n$, the function \mathfrak{d} is constant equal to n on U. This proves $\mathfrak{d} \in \mathbf{Z}(R)$.

Let $\left(\varepsilon_{n}\right)_{n \in \mathbb{Z}}$ be the family of idempotents corresponding to \mathfrak{d}. Then $\left(r_{n}(1-\right.$ $\left.\left.\varepsilon_{n}\right)\right)(\mathfrak{p})=0$ for all $\mathfrak{p} \in S$. Indeed, if $\mathfrak{d}(\mathfrak{p})=n$ then $\left(1-\varepsilon_{n}\right)(\mathfrak{p})=0$ by 3.1.1, while if $\mathfrak{d}(\mathfrak{p}) \neq n$, then $r_{n}(\mathfrak{p})=0$ by definition of \mathfrak{d}. Hence $c_{n}:=r_{n}\left(1-\varepsilon_{n}\right) \in \operatorname{Nil}(R)$. Moreover, $u:=\sum_{n \in \mathbb{Z}} r_{n} \varepsilon_{n} \in R^{\times}$because, for all $\mathfrak{p} \in S$, by definition of \mathfrak{d},

$$
u(\mathfrak{p})=\sum_{n \in \mathbb{Z}} r_{n}(\mathfrak{p}) \varepsilon_{n}(\mathfrak{p})=r_{\mathfrak{d}(\mathfrak{p})}(\mathfrak{p}) \neq 0
$$

Now $u \varepsilon_{n}=r_{n} \varepsilon_{n}$ by orthogonality of the ε_{n}, and hence

$$
g=\sum_{n \in \mathbb{Z}} r_{n} \varepsilon_{n} \mathbf{t}^{n}+\sum_{n \in \mathbb{Z}} c_{n} \mathbf{t}^{n}=u \mathbf{t}^{\mathfrak{d}}+h
$$

where $h=\sum c_{n} \mathbf{t}^{n}$ is nilpotent, being a finite sum of the nilpotent monomials $c_{n} \mathbf{t}^{n}$. This proves (1). Uniqueness of $\mathfrak{d}=\operatorname{deg}(g)$ is clear since $g \otimes 1_{\kappa(\mathfrak{p})}=u(\mathfrak{p}) \cdot \mathbf{t}^{\mathfrak{d}(\mathfrak{p})}$. Finally, suppose that $g^{\prime}=u^{\prime} \mathbf{t}^{\mathfrak{d}}+h^{\prime}$ is a second element of $R\left[\mathbf{t}, \mathbf{t}^{-1}\right]^{\times}$. Then

$$
g g^{\prime}=\left(u \mathbf{t}^{\mathfrak{d}}+h\right)\left(u^{\prime} \mathbf{t}^{\mathfrak{o}^{\prime}}+h^{\prime}\right) \equiv u u^{\prime} \mathbf{t}^{\mathfrak{o}+\mathfrak{o}^{\prime}}\left(\bmod \operatorname{Nil}\left(R\left[\mathbf{t}, \mathbf{t}^{-1}\right]\right)\right.
$$

since $\mathfrak{d} \mapsto \mathbf{t}^{\mathfrak{d}}$ is a group homomorphism, showing deg is a homomorphism.
3.3. Lemma. There is an exact sequence

$$
1 \longrightarrow R^{\times} \xrightarrow{\Delta} R[\mathbf{t}]^{\times} \times R[\mathbf{t}]^{\times} \xrightarrow{\partial} R\left[\mathbf{t}, \mathbf{t}^{-1}\right]^{\times} \xrightarrow{\operatorname{deg}} \mathbf{Z}(R) \longrightarrow 0
$$

where $\Delta(r)=(r, r)$ is the diagonal map, $\partial\left(f_{1}(\mathbf{t}), f_{2}(\mathbf{t})\right)=f_{1}(\mathbf{t}) \cdot f_{2}\left(\mathbf{t}^{-1}\right)^{-1}$ and deg is as in Lemma 3.2(b).

Proof. Clearly $\partial\left(f_{1}, f_{2}\right)=1$ if and only if $f_{1}(\mathbf{t})=f_{2}\left(\mathbf{t}^{-1}\right)$ if and only if $f_{1}=$ $f_{2}=r \in R^{\times}$. Next, $\operatorname{Im}(\partial) \subset \operatorname{Ker}(\operatorname{deg})$ because $\operatorname{deg}\left(f_{1}(\mathbf{t})\right)=0=\operatorname{deg}\left(f_{2}\left(\mathbf{t}^{-1}\right)\right)$ for $f_{i} \in R[\mathbf{t}]^{\times}$and deg is a homomorphism. Also, deg is surjective since the map $\mathfrak{d} \mapsto \mathbf{t}^{\mathfrak{d}}$ is even a section of deg. Thus it remains to prove the inclusion $\operatorname{Ker}(\mathrm{deg}) \subset \operatorname{Im}(\partial)$.

By Lemma 3.2(b), an invertible Laurent polynomial of degree zero has the form $g(\mathbf{t})=u \cdot 1+h(\mathbf{t})$ where $u \in R^{\times}$and $h(\mathbf{t})=\sum_{i \geqslant-n} c_{i} \mathbf{t}^{i}$ for some $n \in \mathbb{N}$, with $c_{i} \in \operatorname{Nil}(R)$. Hence $G(\mathbf{t}):=\mathbf{t}^{n} g(\mathbf{t}) \in R[\mathbf{t}]$. Denote the canonical maps $R \rightarrow \bar{R}=R / \operatorname{Nil}(R)$ and $R[\mathbf{t}] \rightarrow \bar{R}[\mathbf{t}]$ by a bar. Then $\bar{G}(\mathbf{t})=\mathbf{t}^{n} \bar{u}=\bar{P}(\mathbf{t}) \cdot \bar{Q}(\mathbf{t})$ where $\bar{P}(\mathbf{t})=\mathbf{t}^{n}$ is monic and $\bar{Q}(\mathbf{t})=\bar{u} \in \bar{R}^{\times}$. Clearly \bar{P} and \bar{Q} are strongly relatively prime in $\bar{R}[\mathbf{t}]$, so by Hensel's Lemma [1, III, $\S 4.3$, Theorem 1], applied to the discretely topologized ring $A=R$ and the ideal $\mathfrak{m}=\operatorname{Nil}(R)$, the polynomials \bar{P}, \bar{Q} lift uniquely to polynomials $P, Q \in R[\mathbf{t}], P$ monic, such that $G=P \cdot Q$. Write $P(\mathbf{t})=\mathbf{t}^{m}+a_{1} \mathbf{t}^{m-1}+\cdots+a_{m}$ and $Q(\mathbf{t})=b_{0}+b_{1} \mathbf{t}+\cdots$. Then $\bar{P}(\mathbf{t})=\mathbf{t}^{n}$ and $\bar{Q}=\bar{u}$ shows $m=n, b_{0} \in R^{\times}$and $a_{i}, b_{i} \in \operatorname{Nil}(R)$ for $i>0$. By Lemma 3.2(a), the polynomial $F(\mathbf{t}):=1+a_{1} \mathbf{t}+\cdots+a_{n} \mathbf{t}^{n}=\mathbf{t}^{n} P\left(\mathbf{t}^{-1}\right)$ belongs to $R[\mathbf{t}]^{\times}$. Now put $f_{1}(\mathbf{t}):=Q(\mathbf{t})$ and $f_{2}(\mathbf{t}):=F(\mathbf{t})^{-1}$. Then

$$
f_{1}(\mathbf{t}) f_{2}\left(\mathbf{t}^{-1}\right)^{-1}=Q(\mathbf{t}) F\left(\mathbf{t}^{-1}\right)=Q(\mathbf{t}) \mathbf{t}^{-n} P(\mathbf{t})=\mathbf{t}^{-n} G(\mathbf{t})=g(\mathbf{t}),
$$

as desired.

4. Determination of $\operatorname{Pic}_{\mathfrak{U}}\left(\mathbf{P}_{1}\right)$ and $\operatorname{Pic}_{\mathfrak{V}}(\mathbf{X})$.

4.1. Theorem. There is a natural isomorphism Φ : $\operatorname{Pic}_{\mathfrak{U}}\left(\mathbf{P}_{1}\right) \xrightarrow{\cong} \mathbf{Z}(k)$ mapping the tautological bundle to $-1 \in \mathbb{Z} \subset \mathbf{Z}(k)$ as follows.

Identify $k\left[\mathbf{U}_{i}\right]$ with the polynomial ring $k[\mathbf{t}]$ by means of the isomorphisms φ_{i} of 1.2 and identify $k\left[\mathbf{U}_{12}\right]$ with the Laurent polynomial ring $k\left[\mathbf{t}, \mathbf{t}^{-1}\right]$ by means of the open embedding $\mathbf{U}_{12} \subset \mathbf{U}_{1}$. Let \mathscr{M} be a representative of an element $[\mathscr{M}] \in$ $\operatorname{Pic}_{\mathfrak{U}}\left(\mathbf{P}_{1}\right)$, and let $s_{i} \in \mathscr{M}\left(\mathbf{U}_{i}\right)$ be sections trivializing \mathscr{M} over \mathbf{U}_{i}, so that $s_{2}=s_{1}$. g_{12} on \mathbf{U}_{12} where $g_{12} \in k\left[\mathbf{t}, \mathbf{t}^{-1}\right]^{\times}$. Then the element $\operatorname{deg}\left(g_{12}\right) \in \mathbf{Z}(k)$ depends only on the isomorphism class of \mathscr{M}, and $[\mathscr{M}] \mapsto \operatorname{deg}\left(g_{12}\right)$ is the desired isomorphism.

Proof. By standard facts, computing $\operatorname{Pic}_{\mathfrak{U}}\left(\mathbf{P}_{1}\right)$ amounts to computing the Čech cohomology group $H^{1}=H^{1}(\mathfrak{U}, \mathscr{F})$ of the sheaf $\mathscr{F}=\mathscr{O}_{\mathbf{P}_{1}}^{\times}$with respect to the covering \mathfrak{U}. Recall that $H^{1}=Z^{1} / B^{1}$ where $Z^{1}=Z^{1}(\mathfrak{U}, \mathscr{F})$ is the group of Čech 1-cocycles $\left(g_{i j}\right) \in \mathscr{F}\left(\mathbf{U}_{i} \cap \mathbf{U}_{j}\right)$ and $B^{1}=\partial^{0}\left(C^{0}\right)$ is the group of coboundaries.

Since \mathfrak{U} has only two elements, we have a group isomorphism $Z^{1} \cong \mathscr{F}\left(\mathbf{U}_{12}\right)$ sending $\left(g_{i j}\right)$ to g_{12}. Note that this isomorphism is not unique; $\left(g_{i j}\right) \mapsto g_{21}=$ g_{12}^{-1} would have been just as good. We identify the group C^{0} of 0 -cochains with $\mathscr{F}\left(\mathbf{U}_{1}\right) \times \mathscr{F}\left(\mathbf{U}_{2}\right)$. Then the coboundary operator $\partial^{0}: C^{0} \rightarrow C^{1}$ is given by

$$
\begin{equation*}
\partial^{0}\left(g_{1}, g_{2}\right)=\varrho_{1}\left(g_{1}\right) \cdot \varrho_{2}\left(g_{2}\right)^{-1} \tag{1}
\end{equation*}
$$

where $g_{i} \in \mathscr{F}\left(\mathbf{U}_{i}\right)$ and $\varrho_{i}: \mathscr{F}\left(\mathbf{U}_{i}\right) \rightarrow \mathscr{F}\left(\mathbf{U}_{12}\right)$ are the restriction homomorphisms.
Now consider the isomorphisms $\varphi_{i}: k_{\mathbf{a}} \rightarrow \mathbf{U}_{i}$ and $\varphi_{i}^{\prime}: k_{\mathbf{u}} \rightarrow \mathbf{U}_{12}$ of 1.2. After identifying the affine algebras of $k_{\mathbf{a}}$ and $k_{\mathbf{u}}$ with $k[\mathbf{t}]$ and $k\left[\mathbf{t}, \mathbf{t}^{-1}\right]$, we have induced isomorphisms $\varphi_{i}^{*}: \mathscr{F}\left(\mathbf{U}_{i}\right) \rightarrow k[\mathbf{t}]^{\times}$and $\varphi_{i}^{\prime *}: \mathscr{F}\left(\mathbf{U}_{12}\right) \rightarrow k\left[\mathbf{t}, \mathbf{t}^{-1}\right]^{\times}$. Under these isomorphisms, the coboundary operator ∂^{0} corresponds to the map $\partial^{\prime}: k[\mathbf{t}]^{\times} \times$ $k[\mathbf{t}]^{\times} \rightarrow k\left[\mathbf{t}, \mathbf{t}^{-1}\right]^{\times}$given by

$$
\begin{equation*}
\partial^{\prime}\left(f_{1}, f_{2}\right)=f_{1} \cdot \phi^{*}\left(f_{2}\right)^{-1} \tag{2}
\end{equation*}
$$

where $\phi=\varphi_{2}^{\prime-1} \circ \varphi_{1}^{\prime}$ is the change of coordinates map. Details are left to the reader. By $1.2 .1, \phi$ is inversion on $k_{\mathbf{u}}$, so ϕ^{*} is the automorphism $\mathbf{t} \mapsto \mathbf{t}^{-1}$ of $k\left[\mathbf{t}, \mathbf{t}^{-1}\right]$. It follows that $\partial^{\prime}=\partial$, the map considered in Lemma 3.3. Hence the diagram

is commutative and has exact rows, so there is a unique isomorphism $H^{1} \rightarrow \mathbf{Z}(k)$ making the diagram commutative. Explicitly, it is given by the procedure described in the statement of the theorem. Finally, 2.3 .1 implies that the tautological bundle is mapped to $-1 \in \mathbf{Z}(k)$.
4.2. Theorem. There is a natural isomorphism $\Psi: \operatorname{Pic}_{\mathfrak{V}}(\mathbf{X}) \xrightarrow{\cong} \mathbf{Z}(k)$ making the diagram

commutative. Hence π^{*} is an isomorphism, and the bundle $\mathbf{L}=\pi^{*}(\mathbf{E})$ of 2.1 is mapped to -1 under π^{*}.

Proof. We proceed as in the proof of 4.1. Let \mathscr{G} be the sheaf $\mathscr{O}_{\mathbf{X}}^{\times}$and identify $C^{0}(\mathfrak{V}) \cong \mathscr{G}\left(\mathbf{V}_{1}\right) \times \mathscr{G}\left(\mathbf{V}_{2}\right)$ and $Z^{1}(\mathfrak{V}) \cong \mathscr{G}\left(\mathbf{V}_{12}\right)$. Then the coboundary operator $\partial^{0}: C^{0}(\mathfrak{V}) \rightarrow Z^{1}(\mathfrak{V})$ is given by 4.1.1. Again as before, we consider the isomorphisms $\psi_{i}: k_{\mathbf{a}}^{2} \rightarrow \mathbf{V}_{i}$ and $\psi_{i}^{\prime}: k_{\mathbf{u}} \times k_{\mathbf{a}} \rightarrow \mathbf{V}_{12}$ of 1.4. After identifying the affine algebra of $k_{\mathbf{a}}^{2}$ with the polynomial ring $k[\mathbf{t}, \mathbf{y}]$ in two variables and the affine algebra of $k_{\mathbf{u}} \times k_{\mathbf{a}}$ with $k\left[\mathbf{t}, \mathbf{t}^{-1}, \mathbf{y}\right]$, we have induced isomorphisms $\psi_{i}^{*}: \mathscr{G}\left(\mathbf{V}_{i}\right) \rightarrow k[\mathbf{t}, \mathbf{y}]^{\times}$ and $\psi_{i}^{\prime *}: \mathscr{G}\left(\mathbf{V}_{12}\right) \rightarrow k\left[\mathbf{t}, \mathbf{t}^{-1}, \mathbf{y}\right]^{\times}$. Let ϕ be the change of coordinates 1.4.4. Then again ∂^{0} corresponds to the map ∂^{\prime} of 4.1.2.

Put $R=k[\mathbf{y}]$, so that $k[\mathbf{t}, \mathbf{y}]=R[\mathbf{t}]$ and $k\left[\mathbf{t}, \mathbf{t}^{-1}, \mathbf{y}\right]=R\left[\mathbf{t}, \mathbf{t}^{-1}\right]$. We wish to apply Lemma 3.3. However, the automorphism ϕ^{*} of the k-algebra $R\left[\mathbf{t}, \mathbf{t}^{-1}\right]$ is no longer just given by $\mathbf{t} \mapsto \mathbf{t}^{-1}$ but also involves the variable \mathbf{y}, so ∂^{\prime} is not equal to the map ∂ of Lemma 3.3. Hence the following detour is required.

From 1.4.4, we see that ϕ can be factored in the form $\phi=\iota \circ \vartheta$ where $\iota(\lambda, \beta)=$ $\left(\lambda^{-1}, \beta\right)$ and $\vartheta(\lambda, \beta)=(\lambda, \lambda(1-\lambda \beta))$. Putting $I=\iota^{*}$ and $\Theta=\vartheta^{*}$, this shows

$$
\begin{equation*}
\phi^{*}=\Theta \circ I \tag{2}
\end{equation*}
$$

where Θ and I are the automorphisms of $k\left[\mathbf{t}, \mathbf{t}^{-1}, \mathbf{y}\right]$ given by the formulas

$$
\begin{align*}
\Theta(\mathbf{t}) & =\mathbf{t}, \quad \Theta(\mathbf{y})=\mathbf{t}(1-\mathbf{t y}) \tag{3}\\
I(\mathbf{t}) & =\mathbf{t}^{-1}, \quad I(\mathbf{y})=\mathbf{y} . \tag{4}
\end{align*}
$$

By 1.4.5, ϕ^{*} squares to the identity and obviously $I^{2}=\mathrm{Id}$. Hence (2) implies

$$
\begin{equation*}
I=\Theta \circ I \circ \Theta \tag{5}
\end{equation*}
$$

Next observe (cf. [3, 0.12.2]) that an idempotent ε of the polynomial ring $R=k[\mathbf{y}]$ belongs to k. Hence the natural homomorphism $k \rightarrow R$ induces an isomorphism

$$
\begin{equation*}
\mathbf{Z}(k) \stackrel{\cong}{\Longrightarrow} \mathbf{Z}(R) . \tag{6}
\end{equation*}
$$

Using the description of the units of $R=k[\mathbf{y}]$ in Lemma 3.2(a), part (b) of that lemma shows that $g \in R\left[\mathbf{t}, \mathbf{t}^{-1}\right]^{\times}$if and only if $g=\mu \mathbf{t}^{\mathfrak{D}}+h$ where $\mu \in k^{\times}$, $\mathfrak{d}=\operatorname{deg}(g) \in \mathbf{Z}(k)$ and $h \in R\left[\mathbf{t}, \mathbf{t}^{-1}\right]$ is nilpotent. From this and the formulas for Θ and I we see

$$
\begin{equation*}
\operatorname{deg}(\Theta(g))=\operatorname{deg}(g), \quad \operatorname{deg}(I(g))=-\operatorname{deg}(g) \quad\left(g \in R\left[\mathbf{t}, \mathbf{t}^{-1}\right]^{\times}\right) \tag{7}
\end{equation*}
$$

With the notations introduced above, the map ∂ of Lemma 3.3 is expressed by

$$
\begin{equation*}
\partial\left(f_{1}, f_{2}\right)=f_{1} \cdot I\left(f_{2}\right)^{-1} \tag{8}
\end{equation*}
$$

while by 4.1.2 and (2),

$$
\begin{equation*}
\partial^{\prime}\left(f_{1}, f_{2}\right)=f_{1} \cdot \Theta\left(I\left(f_{2}\right)\right)^{-1} \tag{9}
\end{equation*}
$$

for $f_{i} \in R[\mathbf{t}]^{\times}$. We claim that

$$
\begin{equation*}
\operatorname{Im}\left(\partial^{\prime}\right)=\operatorname{Im}(\partial)=\operatorname{Ker}(\operatorname{deg}) \tag{10}
\end{equation*}
$$

Indeed, the second equality follows from Lemma 3.3. As deg vanishes on $R[\mathbf{t}]^{\times}$, it follows from (7) and (9) that $\operatorname{Im}\left(\partial^{\prime}\right) \subset \operatorname{Ker}(\mathrm{deg})=\operatorname{Im}(\partial)$. To prove $\operatorname{Im}(\partial) \subset \operatorname{Im}\left(\partial^{\prime}\right)$, it suffices by (8) to have $I(f) \in \operatorname{Im}\left(\partial^{\prime}\right)$, for all $f \in R[\mathbf{t}]^{\times}$. The automorphism Θ of $R\left[\mathbf{t}, \mathbf{t}^{-1}\right]$ induces an endomorphism (but not an automorphism) of the subring $R[\mathbf{t}]$. This is evident from (3). Hence $\Theta(f) \in R[\mathbf{t}]^{\times}$, and by (5), $I(f)=\Theta(I(\Theta(f)))=$ $\partial^{\prime}\left(1, \Theta(f)^{-1}\right) \in \operatorname{Im}\left(\partial^{\prime}\right)$. Now (10) and Lemma 3.3 together with (6) yields the desired isomorphism

$$
\Psi: \operatorname{Pic}_{\mathfrak{V}}(\mathbf{X}) \cong H^{1}(\mathfrak{V}, \mathscr{G}) \cong R\left[\mathbf{t}, \mathbf{t}^{-1}\right]^{\times} / \operatorname{Im}\left(\partial^{\prime}\right) \xrightarrow{\operatorname{deg}} \mathbf{Z}(k) .
$$

It remains to show that (1) is commutative. The map $\pi^{*}: \operatorname{Pic}_{\mathfrak{U}}\left(\mathbf{P}_{1}\right) \rightarrow \operatorname{Pic}_{\mathfrak{V}}(\mathbf{X})$ is induced by the maps $\pi_{i}^{*}: \mathscr{F}\left(\mathbf{U}_{i}\right) \rightarrow \mathscr{G}\left(\mathbf{V}_{i}\right)$ and $\pi_{12}^{*}: \mathscr{F}\left(\mathbf{U}_{12}\right) \rightarrow \mathscr{G}\left(\mathbf{V}_{12}\right)$, where π_{i} and π_{12} are the restrictions of the projection $\pi: \mathbf{X} \rightarrow \mathbf{P}_{1}$. After the identifications of these rings with polynomial resp. Laurent polynomial rings as above, these are just the natural injections $k[\mathbf{t}]^{\times} \rightarrow R[\mathbf{t}]^{\times}$and $k\left[\mathbf{t}, \mathbf{t}^{-1}\right]^{\times} \rightarrow R\left[\mathbf{t}, \mathbf{t}^{-1}\right]^{\times}$induced from $k \rightarrow R$. From (3), (4) and (9) one sees easily that the diagram

is commutative with exact rows. This implies commutativity of (1) and completes the proof.
4.3. Corollary. \mathscr{E} has infinite order in $\operatorname{Pic}\left(\mathbf{P}_{1}\right)$ and \mathscr{L} has infinite order in $\operatorname{Pic}(\mathbf{X})$.
4.4. Corollary. If k is a factorial ring then $\operatorname{Pic}\left(\mathbf{P}_{1}\right) \cong \mathbb{Z} \cong \operatorname{Pic}(\mathbf{X})$, generated by \mathscr{E} and \mathscr{L}, respectively.

Proof. The Picard group of an integral domain is canonically embedded into the ideal class group, and the latter is trivial for a factorial domain [1, VII, §1.2, Remarks after Prop. 4, and $\S 3$, Def. 1]. Also, $k[\mathbf{t}]$ is factorial along with k. Hence every line bundle on \mathbf{P}_{1} is trivialized by \mathfrak{U}, i.e., $\operatorname{Pic}\left(\mathbf{P}_{1}\right)=\operatorname{Pic}_{\mathfrak{U}}\left(\mathbf{P}_{1}\right)$. Moreover, $\mathbf{Z}(k) \cong \mathbb{Z}$ since k has no non-trivial idempotents. Now the first isomorphism follows from Theorem 4.1, and the proof of the second one is analogous.
4.5. Remarks. (i) The isomorphisms Φ and Ψ of 4.1 and 4.2 are easily seen to be compatible with base change. Hence, the sub-functors $\mathbf{P i c}_{\mathfrak{U}}\left(\mathbf{P}_{1}\right)$ and $\mathbf{P i c}_{\mathfrak{V}}(\mathbf{X})$ of the Picard functors $\operatorname{Pic}\left(\mathbf{P}_{1}\right)$ and $\operatorname{Pic}(\mathbf{X})$ defined by

$$
\mathbf{P i c}_{\mathfrak{U}}\left(\mathbf{P}_{1}\right)(R)=\operatorname{Pic}_{\mathfrak{U}}\left(\mathbf{P}_{1} \otimes R\right), \quad \mathbf{P i c}_{\mathfrak{V}}(\mathbf{X})(R)=\operatorname{Pic}_{\mathfrak{V}}(\mathbf{X} \otimes R)
$$

are actually isomorphic to \mathbf{Z}.
(ii) The canonical projection $p: \mathbf{P}_{1} \rightarrow \mathbf{S}=\mathbf{S p e c}(k)$ induces a homomorphism $p^{*}: \operatorname{Pic}(k) \cong \operatorname{Pic}(\mathbf{S}) \rightarrow \operatorname{Pic}\left(\mathbf{P}_{1}\right)$. This is an isomorphism onto a direct summand because p has sections (the elements of $\mathbf{P}_{1}(k)$ are in bijection with the sections of p). We claim that $p^{*}(\operatorname{Pic}(k)) \cap \operatorname{Pic}_{\mathfrak{U}}\left(\mathbf{P}_{1}\right)=0$. Indeed, let $i_{1}: \mathbf{U}_{1} \rightarrow \mathbf{P}_{1}$ be the inclusion and $p_{1}=p \mid \mathbf{U}_{1}$. Then $p_{1}=p \circ i_{1}$ and hence $p_{1}^{*}=i_{1}^{*} \circ p^{*}$. Since $\mathbf{U}_{1}(k) \neq \emptyset$ as well, $p_{1}^{*}: \mathbf{P i c}(k) \rightarrow \mathbf{P i c}\left(\mathbf{U}_{1}\right)$ is injective, so $i_{1}^{*}: p^{*}(\mathbf{P i c}(k)) \rightarrow \mathbf{P i c}\left(\mathbf{U}_{1}\right)$ is injective. Hence for an element $p^{*}([L])=[\mathscr{M}] \in p^{*}(\mathbf{P i c}(k)) \cap \operatorname{Pic}_{\mathfrak{U}}\left(\mathbf{P}_{1}\right)$ we have $i_{1}^{*}([\mathscr{M}])=0$ (since the restriction of \mathscr{M} to \mathbf{U}_{1} is trivial $)=p_{1}^{*}([L])$ and therefore $[L]=0$ in $\mathbf{P i c}(k)$. Question: Is

$$
p^{*}(\mathbf{P i c}(k)) \oplus \operatorname{Pic}_{\mathfrak{U}}\left(\mathbf{P}_{1}\right)=\operatorname{Pic}\left(\mathbf{P}_{1}\right) ?
$$

Analogous statements hold and questions can be asked for $\operatorname{Pic}(\mathbf{X})$.
Acknowledgement I am grateful to H. P. Petersson who carefully read an earlier draft of this note and suggested numerous improvements.

References

[1] N. Bourbaki, Commutative Algebra, Hermann, Paris, 1972, Translated from the French.
[2] M. Demazure and P. Gabriel, Groupes algébriques, vol. 1, Masson, Paris, 1970.
[3] O. Loos, Generically algebraic Jordan algebras over commutative rings, J. Algebra 297 (2006), 474-529.
[4] H. P. Petersson, Idempotent 2-by-2 matrices, preprint, 2007.

