Remarks on Holger P. Petersson's "Idempotent 2-by-2 matrices"

Ottmar Loos

Föhrenweg 10, A-6094 Axams, Austria email: ottmar.loos@uibk.ac.at

Introduction

This note grew out of H. P. Petersson's recent preprint [4], in particular, his Theorem 7.3. Let **X** be the scheme of elementary idempotent 2-by-2 matrices over a commutative ring k. There is a natural projection π from **X** to the projective line \mathbf{P}_1 . The standard open covering \mathfrak{U} of \mathbf{P}_1 by two affine lines pulls up to an open covering \mathfrak{V} of **X**. We show that the groups $\operatorname{Pic}_{\mathfrak{U}}(\mathbf{P}_1)$ and $\operatorname{Pic}_{\mathfrak{V}}(\mathbf{X})$ of all line bundles which are trivial over \mathfrak{U} and \mathfrak{V} are isomorphic to the group $\mathbf{Z}(k)$ of locally constant maps $\operatorname{Spec}(k) \to \mathbb{Z}$. The universal line bundle **L** on **X** introduced in [4, Sect. 7] is the pull-back of the tautological bundle of \mathbf{P}_1 and represents one of the two generators of $\mathbb{Z} \subset \mathbf{Z}(k)$.

1. Open coverings of P_1 and X

1.1. Notations. We follow the notations used in [4]. For a k-module M, let $M_{\mathbf{a}}$ denote the k-functor $R \mapsto M \otimes R$ ($R \in k$ -alg) and $M_{\mathbf{u}}$ the subfunctor $M_{\mathbf{u}}(R) = \{x \in M_{\mathbf{a}}(R) : x \text{ is unimodular}\}$. If M is finitely generated and projective then $M_{\mathbf{a}}$ is affine with affine algebra the symmetric algebra over the dual M^* of M, and $M_{\mathbf{u}}$ is a quasi-affine finitely presented k-scheme, open in $M_{\mathbf{a}}$. In particular, $k_{\mathbf{a}}^n$ is affine n-space over k and $k_{\mathbf{u}}(R) = R^{\times}$ is the set of units of R.

1.2. The projective line. Recall from $[\mathbf{2}, \mathbf{I}, \S 1, 3.4]$ that the projective line \mathbf{P}_1 over k is the functor

$$\mathbf{P}_1(R) = \{ L \subset R^2 : L \text{ is a direct summand of rank 1} | (R \in k\text{-}\mathbf{alg}).$$

If $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in R^2$ is a unimodular vector, we write as usual $R \cdot x = (x_1:x_2) \in \mathbf{P}_1(R)$. In general, not every $L \in \mathbf{P}_1(R)$ is free, so $\{(x_1:x_2): x \text{ unimodular}\}$ will be a proper subset of $\mathbf{P}_1(R)$. However, equality holds if R is a field. Define open subschemes $\mathbf{U}_i \subset \mathbf{P}_1$ by

$$\mathbf{U}_{i}(R) = \{ (x_{1} : x_{2}) : x_{i} \in R^{\times} \}.$$

Since $(rx_1: rx_2) = (x_1: x_2)$ for all $r \in \mathbb{R}^{\times}$, this means

$$\mathbf{U}_1(R) = \{(1:t) : t \in R\}, \quad \mathbf{U}_2(R) = \{(t:1) : t \in R\},\$$

and in fact, the maps $t \mapsto (1:t)$ and $t \mapsto (t:1)$ are isomorphisms $\varphi_i: k_{\mathbf{a}} \stackrel{\cong}{\longrightarrow} \mathbf{U}_i$. The subschemes $\mathbf{U}_1, \mathbf{U}_2$ form an open affine covering of \mathbf{P}_1 in the sense of [2, I, §1, 3.10], i.e., for every field $F \in k$ -alg, we have $\mathbf{P}_1(F) = \mathbf{U}_1(F) \cup \mathbf{U}_2(F)$. The intersection $\mathbf{U}_{12} = \mathbf{U}_1 \cap \mathbf{U}_2$ is isomorphic to $k_{\mathbf{u}}$; more precisely, the restrictions φ'_i of φ_i to $k_{\mathbf{u}}$ are isomorphisms $k_{\mathbf{u}} \cong \mathbf{U}_{12}$, and

$$(\varphi_2^{\prime -1} \circ \varphi_1^{\prime})(\lambda) = \lambda^{-1}, \tag{1}$$

for all $\lambda \in R^{\times}$, $R \in k$ -alg.

1.3. The morphism π : $\mathbf{X} \to \mathbf{P}_1$ and the subschemes \mathbf{V}_i of \mathbf{X} . There is an obvious morphism π : $\mathbf{X} \to \mathbf{P}_1$ given by

$$\pi(c) = \operatorname{Im}(c), \quad (c \in \mathbf{X}(R), \ R \in k\text{-alg}),$$

and since by definition, any $L \in \mathbf{P}_1(R)$ admits a complementary submodule L'and the decomposition $R^2 = L \oplus L'$ determines a unique $c \in \mathbf{X}(R)$, it is clear that $\pi(R): \mathbf{X}(R) \to \mathbf{P}_1(R)$ is surjective, for all $R \in k$ -alg. The fibre of π over $L = \pi(c) \in \mathbf{P}_1(R)$ consists of all idempotents $c' \in \mathbf{X}(R)$ with $\operatorname{Im}(c') = \operatorname{Im}(c)$, equivalently, of all line bundles L' such that $R^2 = L \oplus L'$, or of all splittings σ of the exact sequence

$$0 \longrightarrow L \longrightarrow R^2 \xrightarrow[\sigma]{\text{can}} R^2/L \longrightarrow 0 ,$$

i.e., $\operatorname{can} \circ \sigma = \operatorname{Id}$. After fixing (non-canonically!) one complement of L, this set may be identified with $\operatorname{Hom}(R^2/L, L)$. Now $R^2/L \cong L^*$ by [4, Lemma 5.2], so we see that the fibre of π over L is an affine space with associated module of translations $\operatorname{Hom}(L^*, L) \cong L^{\otimes 2}$. Let us put

$$\mathbf{V}_i = \pi^{-1}(\mathbf{U}_i) \subset \mathbf{X}.$$

For
$$c = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in \mathbf{X}(R)$$
 let $z_i(c)$ be the *i*-th row of *c*. Then

$$c \in \mathbf{V}_i(R) \quad \iff \quad z_i(c) \text{ is unimodular.}$$
(1)

Indeed, $\operatorname{Im}(c) = \pi(c) = R\begin{pmatrix} \alpha \\ \gamma \end{pmatrix} + R\begin{pmatrix} \beta \\ \delta \end{pmatrix}$. Hence $\pi(c) \in \mathbf{U}_1(R)$ implies there exist $r, s \in R$ such that $r\alpha + s\beta = 1$, so $z_1(c)$ is unimodular. Conversely, let this be the case and put $\lambda := r\gamma + s\delta$. Then $\gamma = (r\alpha + s\beta)\gamma = \alpha(r\gamma + s\delta)$ (because $\beta\gamma = \alpha\delta) = \alpha\lambda$, so $\begin{pmatrix} \alpha \\ \gamma \end{pmatrix} = \alpha\begin{pmatrix} 1 \\ \lambda \end{pmatrix}$, and similarly the second column of c is a multiple of $\begin{pmatrix} 1 \\ \lambda \end{pmatrix}$, showing $\operatorname{Im}(c) = R \cdot \begin{pmatrix} 1 \\ \lambda \end{pmatrix} \in \mathbf{U}_1(R)$. The proof for the case i = 2 is analogous.

1.4. Lemma. (a) The \mathbf{V}_i are open subschemes covering \mathbf{X} .

(b) The maps

$$\psi_1: k_{\mathbf{a}}^2 \to \mathbf{V}_1, \quad (\lambda, \beta) \mapsto \begin{pmatrix} 1 - \lambda \beta & \beta \\ \lambda(1 - \lambda \beta) & \lambda \beta \end{pmatrix},$$
(1)

$$\psi_2: k_{\mathbf{a}}^2 \to \mathbf{V}_2, \quad (\mu, \gamma) \mapsto \begin{pmatrix} \mu \gamma & \mu(1 - \mu \gamma) \\ \gamma & 1 - \mu \gamma \end{pmatrix},$$
(2)

are isomorphisms making the diagrams

commutative.

(c) The intersection $\mathbf{V}_{12} := \mathbf{V}_1 \cap \mathbf{V}_2$ is the open subscheme of all $c \in \mathbf{X}(R)$ for which both rows are unimodular. We have $\psi_i^{-1}(\mathbf{V}_{12}) = k_{\mathbf{u}} \times k_{\mathbf{a}}$. The ψ_i restrict to isomorphisms $\psi_i': k_{\mathbf{u}} \times k_{\mathbf{a}} \xrightarrow{\cong} \mathbf{V}_{12}$, and the change of coordinates $\phi = \psi_2'^{-1} \circ \psi_1': k_{\mathbf{u}} \times k_{\mathbf{a}} \rightarrow k_{\mathbf{u}} \times k_{\mathbf{a}}$ is given by

$$\phi(\lambda,\beta) = \left(\lambda^{-1}, \ \lambda(1-\lambda\beta)\right) \tag{4}$$

for all $(\lambda, \beta) \in \mathbb{R}^{\times} \times \mathbb{R}$, $\mathbb{R} \in k$ -alg, and satisfies

$$\phi \circ \phi = \mathrm{Id.} \tag{5}$$

Proof. (a) Since \mathbf{V}_i is the inverse image of the open subschemes \mathbf{U}_i , it is open in **X**. (Alternatively, \mathbf{V}_i is the inverse image of $(k^2)_{\mathbf{u}}$ under the morphism $z_i: \mathbf{X} \to k_{\mathbf{a}}^2$, by 1.3.1). If R is a field, at least one row of $c \in \mathbf{X}(R)$ is non-zero, which proves the covering statement.

(b) It is obvious from (1) that ψ_1 takes values in \mathbf{V}_1 . Conversely, assume that $c = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in \mathbf{V}_1(R)$. The transpose of c is in $\mathbf{X}(R)$ along with c, so the span of the rows of c is a direct summand of rank 1 of the dual $(R^2)^*$. Since (α, β) is unimodular by 1.3.1, there exists a unique $\lambda \in R$ such that $(\gamma, \delta) = \lambda(\alpha, \beta)$. Now one shows easily, using the fact that $\operatorname{tr}(c) = 1$, that $c \mapsto (\lambda, \beta)$ is the inverse map of ψ_1 . From (1) it is clear that the columns v_1, v_2 of $\psi_1(\lambda, \beta)$ are multiples of $\begin{pmatrix} 1 \\ \lambda \end{pmatrix}$, and that $\begin{pmatrix} 1 \\ \lambda \end{pmatrix} = v_1 + \lambda v_2$. This proves $(\pi \circ \psi_1)(\lambda, \beta) = (1:\lambda) = \varphi_1(\lambda)$, so (3) commutes. The proof for ψ_2 is analogous.

(c) Since $\mathbf{V}_{12} = \pi^{-1}(\mathbf{U}_{12})$, (3) and 1.2.1 imply $\psi_i^{-1}(\mathbf{V}_{12}) = \mathrm{pr}_1^{-1}(\varphi_i^{-1}(\mathbf{U}_{12})) = k_{\mathbf{u}} \times k_{\mathbf{a}}$. Now (4) follows from (1) and (2). These formulas show also that $\phi^{-1}(\mu, \gamma) = (\psi_1'^{-1} \circ \psi_2')(\mu, \gamma) = (\mu^{-1}, \ \mu(1 - \mu\gamma))$. Thus $\phi^{-1} = \phi$, proving (5).

1.5. Remarks. (i) By 1.4.4, the second component of ϕ is an affine, but not a linear function of β , in accordance with the fact that **X** is an affine, but not a vector bundle over \mathbf{P}_1 . The occurrence of the factor λ^2 at β corresponds to the fact that the fibre of π over L is isomorphic to the affine space determined by $L^{\otimes 2}$, as remarked in 1.3.

(ii) Formula 1.4.5 is the analogue of the fact that, by 1.2.1, the change of coordinates $\varphi_2^{-1} \circ \varphi_1$ in $k[\mathbf{U}_{12}] \cong k[\mathbf{t}, \mathbf{t}^{-1}]$ is inversion $\lambda \mapsto \lambda^{-1}$ which obviously has period two. This will be important later in the proof of Theorem 4.2.

(iii) There is a second projection $\pi': \mathbf{X} \to \mathbf{P}_1$ given by $\pi'(c) = \operatorname{Ker}(c)$. Since an element $c \in \mathbf{X}(R)$ can be identified with the decomposition $R^2 = \operatorname{Im}(c) \oplus \operatorname{Ker}(c)$, it is clear that (π, π') is an isomorphism of \mathbf{X} onto the open subscheme $\mathbf{W} \subset \mathbf{P}_1 \times \mathbf{P}_1$ given by $\mathbf{W}(R) = \{(L, M) \in \mathbf{P}_1(R)^2 : R^2 = L \oplus M\}$. If R = K is a field, then $(L, M) \in \mathbf{W}(K)$ if and only if $L \neq M$, so $\mathbf{W}(K)$ is the complement of the diagonal in $\mathbf{P}_1(K)^2$.

(iv) There is no section of $\pi: \mathbf{X} \to \mathbf{P}_1$. Indeed, assume to the contrary that $\sigma: \mathbf{P}_1 \to \mathbf{X}$ satisfies $\pi \circ \sigma = \text{Id}$. Then $\sigma_i = \sigma | \mathbf{U}_i: \mathbf{U}_i \to \mathbf{V}_i$ are sections of $\pi | \mathbf{V}_i$. Identify the affine algebras $k[\mathbf{U}_i]$ with the polynomial ring $k[\mathbf{t}]$ by means of φ_i . Then $\sigma_i(\varphi_i(\mathbf{t})) = \psi_i(\mathbf{t}, f_i(\mathbf{t}))$ where the $f_i(\mathbf{t})$ are polynomials in \mathbf{t} , and 1.4.4 and 1.2.1 imply

$$f_2(\mathbf{t}^{-1}) = \mathbf{t} \cdot (1 - \mathbf{t} f_1(\mathbf{t}))$$

in the Laurent polynomial ring $k[\mathbf{t}, \mathbf{t}^{-1}] \cong k[\mathbf{U}_{12}]$ which is impossible.

Let \mathfrak{U} (resp. \mathfrak{V}) be the open covering of \mathbf{P}_1 (resp. \mathbf{X}) given by \mathbf{U}_1 and \mathbf{U}_2 (resp. \mathbf{V}_1 and \mathbf{V}_2). Our aim is to determine the subgroups $\operatorname{Pic}_{\mathfrak{U}}(\mathbf{P}_1)$ and $\operatorname{Pic}_{\mathfrak{V}}(\mathbf{X})$ of the respective Picard groups consisting of all (isomorphism classes of) line bundles whose restriction to the \mathbf{U}_i (resp. \mathbf{V}_i) is trivial. We begin by constructing the standard examples of such bundles.

2. The line bundles E and L

2.1. The tautological bundle **E** over \mathbf{P}_1 is the line bundle whose fibre over a point $L \in \mathbf{P}_1(R)$ is the *R*-module *L* itself, whence the name "tautological". More formally, it is the *k*-functor

$$\mathbf{E}(R) = \{(L, x) : L \in \mathbf{P}_1(R), x \in L\} \quad (R \in k\text{-alg}),$$

with projection $pr_1: \mathbf{E} \to \mathbf{P}_1$. The sheaf \mathscr{E} of sections of \mathbf{E} is the sheaf usually denoted $\mathscr{O}_{\mathbf{P}_1}(-1)$. Now let $\mathbf{L} = \pi^*(\mathbf{E})$ be the inverse image of \mathbf{E} on \mathbf{X} under π , that is, the fibre product $\mathbf{L} = \mathbf{X} \times_{\mathbf{P}_1} \mathbf{E}$. Thus, for every $R \in k$ -alg, $\mathbf{L}(R)$ is the set of all pairs (c, (L, x)) where $c \in \mathbf{X}(R), (L, x) \in \mathbf{E}(R)$ and $\pi(c) = L$. Since L is already determined by c, we can and will identify \mathbf{L} with the functor

$$\mathbf{L}(R) = \{(c, x) : c \in \mathbf{X}(R), x \in \operatorname{Im}(c)\} \quad (R \in k\text{-alg}).$$

Then the following diagram is commutative and Cartesian:

where $\eta(c, x) = (\pi(c), x)$. Denote by \mathscr{L} the sheaf of sections of **L**.

Now let $A = k[\mathbf{X}]$ be the affine algebra of \mathbf{X} , thus $A = k[\alpha, \beta, \gamma, \delta]$, subject to the relations $\alpha \delta = \beta \gamma$ and $\alpha + \delta = 1$. Let

$$\mathbf{e} = \begin{pmatrix} \boldsymbol{\alpha} & \boldsymbol{\beta} \\ \boldsymbol{\gamma} & \boldsymbol{\delta} \end{pmatrix} \in \mathbf{X}(A)$$

be the "generic" element of \mathbf{X} , corresponding to the identity map under the identification of $\mathbf{X}(R)$ with $\operatorname{Hom}_{k-\operatorname{alg}}(A, R)$, for all $R \in k-\operatorname{alg}$. Any $c \in \mathbf{X}(R)$ determines an invertible R-module $L = \operatorname{Im}(c) \subset R^2$. In particular, $\operatorname{Im}(\mathbf{e}) \subset A^2$ is an invertible A-module; this is the module denoted L_e in [4, Sect. 7], and it is related to \mathscr{L} as follows.

2.2. Lemma. Im(e) is canonically isomorphic to the A-module $\mathscr{L}(\mathbf{X})$ of global sections of L.

Proof. An element $s \in \mathscr{L}(\mathbf{X})$, i.e., a section $s: \mathbf{X} \to \mathbf{L}$ of $\mathrm{pr}_1: \mathbf{L} \to \mathbf{X}$, is of the form s(c) = (c, v(c)) where $v(c) \in \mathrm{Im}(c)$, for all $c \in \mathbf{X}(R)$, $R \in k$ -alg. In particular, $v(\mathbf{e}) \in \mathrm{Im}(\mathbf{e})$, so we obtain a map $\mathscr{L}(\mathbf{X}) \to \mathrm{Im}(\mathbf{e})$ sending s to $v(\mathbf{e})$. Conversely, let $w \in \mathrm{Im}(\mathbf{e})$ and define a section $s: \mathbf{X} \to \mathbf{L}$ as follows. For $R \in k$ -alg and $c \in \mathbf{X}(R)$, let $\varrho_c: A \to R$ be the k-algebra homomorphism corresponding to c. Then $s(c) := (c, \varrho_c(w)) \in \mathbf{L}(R)$ defines a section $s: \mathbf{X} \to \mathbf{L}$. One sees immediately that the constructions are inverse to each other.

2.3. There are sections $s_i \in \mathscr{E}(\mathbf{U}_i)$ given by

$$s_1(\varphi_1(\lambda)) = \left((1;\lambda), \begin{pmatrix} 1\\\lambda \end{pmatrix}\right), \quad s_2(\varphi_2(\mu)) = \left((\mu;1), \begin{pmatrix} \mu\\1 \end{pmatrix}\right) \quad (\lambda, \mu \in R, \ R \in k\text{-alg}).$$

These sections "vanish nowhere", i.e., they form bases for the $k[\mathbf{U}_i]$ -modules $\mathscr{E}(\mathbf{U}_i)$ of sections of **E** over \mathbf{U}_i , so \mathscr{E} represents an element of $\operatorname{Pic}_{\mathfrak{U}}(\mathbf{P}_1)$. The sections s_i are related on \mathbf{U}_{12} by

$$s_2(\varphi_2(\lambda^{-1})) = s_1(\varphi_1(\lambda) \cdot \lambda^{-1} \quad (\lambda \in R^{\times}, \ R \in k\text{-alg}),$$
(1)

since $\varphi_1(\lambda) = \varphi_2(\mu)$ if and only if $\lambda \mu = 1$ by 1.2.1, and $\begin{pmatrix} \mu \\ 1 \end{pmatrix} = \mu \begin{pmatrix} 1 \\ \mu^{-1} \end{pmatrix} = \mu \begin{pmatrix} 1 \\ \lambda \end{pmatrix}$. On the other hand, it is well-known (and follows easily from (1)) that zero is the only section of **E** over all of **P**₁.

The sections s_i may be lifted to nowhere vanishing sections $\tilde{s}_i \in \mathscr{L}(\mathbf{V}_i)$ by

$$\begin{split} \tilde{s}_1(c) &= \left(c, \begin{pmatrix} 1\\\lambda \end{pmatrix}\right) \quad \text{for } c = \psi_1(\lambda, \beta) \in \mathbf{V}_1(R), \\ \tilde{s}_2(c) &= \left(c, \begin{pmatrix} \mu\\1 \end{pmatrix}\right) \quad \text{for } c = \psi_2(\mu, \gamma) \in \mathbf{V}_2(R), \end{split}$$

Hence **L** represents an element of $\operatorname{Pic}_{\mathfrak{V}}(\mathbf{X})$. The sections \tilde{s}_i are related on \mathbf{V}_{12} in the same way as before:

$$\tilde{s}_2(c) = \tilde{s}_1(c) \cdot \lambda^{-1} \tag{2}$$

for $c = \psi_1(\lambda, \beta) = \psi_2(\mu, \gamma) \in \mathbf{V}_{12}(R)$ since $\mu = \lambda^{-1}$ by 1.4.4.

3. Auxiliary results on Laurent polynomials over rings

3.1. Recall the constant k-group scheme **Z** defined by the integers: **Z**(R) is the set of all locally constant maps \mathfrak{d} : Spec(R) $\to \mathbb{Z}$ with the obvious (additive) group structure. The elements of **Z**(R) are in bijection with families $\varepsilon = (\varepsilon_n)_{n \in \mathbb{Z}}$ of orthogonal idempotents of R with $\varepsilon_n \neq 0$ for only finitely many n, and $\sum \varepsilon_n = 1$, by means of the relations

$$\mathfrak{d}(\mathfrak{p}) = n \quad \Longleftrightarrow \quad \varepsilon_n(\mathfrak{p}) = \mathbf{1}_{\kappa(\mathfrak{p})},\tag{1}$$

for all $\mathfrak{p} \in \operatorname{Spec}(R)$, $R \in k$ -alg. Here we use the notation $r(\mathfrak{p})$ for the canonical image of an element $r \in R$ in the quotient field $\kappa(\mathfrak{p})$ of R/\mathfrak{p} . Then the group law in $\mathbf{Z}(R)$ is described (multiplicatively) by

$$(\varepsilon \cdot \varepsilon')_n = \sum_{l+m=n} \varepsilon_l \varepsilon'_m, \tag{2}$$

so the inverse of ε is $\varepsilon^{-1} = (\varepsilon_{-n})_{n \in \mathbb{Z}}$, and the unit element of $\mathbf{Z}(R)$, i.e., the constant map 0: $S \to \mathbb{Z}$, corresponds to the family $\varepsilon_n = \begin{cases} 1 & \text{if } n = 0 \\ 0 & \text{if } n \neq 0 \end{cases}$. Let $R[\mathbf{t}, \mathbf{t}^{-1}]$ be the Laurent polynomial ring in one variable \mathbf{t} over R. Then (2) implies that there is a group monomorphism

$$\mathbf{Z}(R) \to R[\mathbf{t}, \mathbf{t}^{-1}]^{\times}, \quad \mathfrak{d} \mapsto \mathbf{t}^{\mathfrak{d}} := \sum_{n \in \mathbb{Z}} \varepsilon_n \mathbf{t}^n.$$

3.2. Lemma. Let R be a commutative ring and t an indeterminate. Denote by Nil(R) the nil radical of R.

(a) A polynomial $f(\mathbf{t}) = \sum_{i \ge 0} r_i \mathbf{t}^i$ is a unit in $R[\mathbf{t}]$ if and only if $r_0 \in R^{\times}$ and $r_i \in \operatorname{Nil}(R)$ for all i > 0.

(b) A Laurent polynomial $g \in R[\mathbf{t}, \mathbf{t}^{-1}]$ is a unit in $R[\mathbf{t}, \mathbf{t}^{-1}]$ if and only if there exists an element $\mathfrak{d} \in \mathbf{Z}(R)$, a unit $u \in R^{\times}$ and a nilpotent $h \in R[\mathbf{t}, \mathbf{t}^{-1}]$ such that

$$g = u \mathbf{t}^{\mathfrak{d}} + h. \tag{1}$$

The element \mathfrak{d} is uniquely determined by g, called the degree of g, and the map

deg:
$$R[\mathbf{t}, \mathbf{t}^{-1}]^{\times} \to \mathbf{Z}(R), \quad \deg(u\mathbf{t}^{\mathfrak{d}} + h) := \mathfrak{d},$$

is a group homomorphism.

Note, however, that u and h are not uniquely determined by g.

Proof. (a) is evident if R is a field. In general, consider $r \in R$ and $\mathfrak{p} \in S :=$ Spec(R). Then $r \in R^{\times} \iff r(\mathfrak{p}) \neq 0$ for all $\mathfrak{p} \in S$, and $r \in \operatorname{Nil}(R) \iff r(\mathfrak{p}) = 0$, for all $\mathfrak{p} \in S$. This proves (a).

(b) Clearly an element as in (1) is a unit in $R[\mathbf{t}, \mathbf{t}^{-1}]$. Conversely, let $g \in R[\mathbf{t}, \mathbf{t}^{-1}]^{\times}$, and consider again first the case where R is a field. We leave it to the reader to show that $g = a_n \mathbf{t}^n$ is a non-zero monomial.

Now let R be arbitrary, write $g = \sum_{n \in \mathbb{Z}} r_n \mathbf{t}^n$ where $r_n \in R$, and let $\mathfrak{p} \in S$. By applying the above to $g \otimes \kappa(\mathfrak{p})$, we see that there exists a unique index $n =: \mathfrak{d}(\mathfrak{p}) \in \mathbb{Z}$ such that $r_n(\mathfrak{p}) \neq 0$. The map $\mathfrak{d}: S \to \mathbb{Z}$ thus defined is locally constant. Indeed, if $\mathfrak{d}(\mathfrak{p}_0) = n$ then $r_n(\mathfrak{p}_0) \neq 0$ and hence $r_n(\mathfrak{p}) \neq 0$ for all \mathfrak{p} in the basic open neighbourhood U of \mathfrak{p}_0 in S defined by r_n . Since $r_j(\mathfrak{p}) = 0$ for all other $j \neq n$, the function \mathfrak{d} is constant equal to n on U. This proves $\mathfrak{d} \in \mathbf{Z}(R)$.

Let $(\varepsilon_n)_{n\in\mathbb{Z}}$ be the family of idempotents corresponding to \mathfrak{d} . Then $(r_n(1 - \varepsilon_n))(\mathfrak{p}) = 0$ for all $\mathfrak{p} \in S$. Indeed, if $\mathfrak{d}(\mathfrak{p}) = n$ then $(1 - \varepsilon_n)(\mathfrak{p}) = 0$ by 3.1.1, while if $\mathfrak{d}(\mathfrak{p}) \neq n$, then $r_n(\mathfrak{p}) = 0$ by definition of \mathfrak{d} . Hence $c_n := r_n(1 - \varepsilon_n) \in \operatorname{Nil}(R)$. Moreover, $u := \sum_{n\in\mathbb{Z}} r_n \varepsilon_n \in R^{\times}$ because, for all $\mathfrak{p} \in S$, by definition of \mathfrak{d} ,

$$u(\mathfrak{p}) = \sum_{n \in \mathbb{Z}} r_n(\mathfrak{p}) \varepsilon_n(\mathfrak{p}) = r_{\mathfrak{d}(\mathfrak{p})}(\mathfrak{p}) \neq 0.$$

Now $u\varepsilon_n = r_n\varepsilon_n$ by orthogonality of the ε_n , and hence

$$g = \sum_{n \in \mathbb{Z}} r_n \varepsilon_n \mathbf{t}^n + \sum_{n \in \mathbb{Z}} c_n \mathbf{t}^n = u \mathbf{t}^{\mathfrak{d}} + h$$

where $h = \sum c_n \mathbf{t}^n$ is nilpotent, being a finite sum of the nilpotent monomials $c_n \mathbf{t}^n$. This proves (1). Uniqueness of $\mathfrak{d} = \deg(g)$ is clear since $g \otimes \mathbf{1}_{\kappa(\mathfrak{p})} = u(\mathfrak{p}) \cdot \mathbf{t}^{\mathfrak{d}(\mathfrak{p})}$. Finally, suppose that $g' = u' \mathbf{t}^{\mathfrak{d}} + h'$ is a second element of $R[\mathbf{t}, \mathbf{t}^{-1}]^{\times}$. Then

$$gg' = (u\mathbf{t}^{\mathfrak{d}} + h)(u'\mathbf{t}^{\mathfrak{d}'} + h') \equiv uu'\mathbf{t}^{\mathfrak{d}+\mathfrak{d}'} \pmod{\operatorname{Nil}(R[\mathbf{t}, \mathbf{t}^{-1}])}$$

since $\mathfrak{d} \mapsto t^{\mathfrak{d}}$ is a group homomorphism, showing deg is a homomorphism.

3.3. Lemma. There is an exact sequence

$$1 \longrightarrow R^{\times} \xrightarrow{\Delta} R[\mathbf{t}]^{\times} \times R[\mathbf{t}]^{\times} \xrightarrow{\partial} R[\mathbf{t}, \mathbf{t}^{-1}]^{\times} \xrightarrow{\operatorname{deg}} \mathbf{Z}(R) \longrightarrow 0$$

where $\Delta(r) = (r, r)$ is the diagonal map, $\partial(f_1(\mathbf{t}), f_2(\mathbf{t})) = f_1(\mathbf{t}) \cdot f_2(\mathbf{t}^{-1})^{-1}$ and deg is as in Lemma 3.2(b).

Proof. Clearly $\partial(f_1, f_2) = 1$ if and only if $f_1(\mathbf{t}) = f_2(\mathbf{t}^{-1})$ if and only if $f_1 = f_2 = r \in \mathbb{R}^{\times}$. Next, $\operatorname{Im}(\partial) \subset \operatorname{Ker}(\operatorname{deg})$ because $\operatorname{deg}(f_1(\mathbf{t})) = 0 = \operatorname{deg}(f_2(\mathbf{t}^{-1}))$ for $f_i \in \mathbb{R}[\mathbf{t}]^{\times}$ and deg is a homomorphism. Also, deg is surjective since the map $\mathfrak{d} \mapsto \mathfrak{t}^{\mathfrak{d}}$ is even a section of deg. Thus it remains to prove the inclusion $\operatorname{Ker}(\operatorname{deg}) \subset \operatorname{Im}(\partial)$.

By Lemma 3.2(b), an invertible Laurent polynomial of degree zero has the form $g(\mathbf{t}) = u \cdot 1 + h(\mathbf{t})$ where $u \in R^{\times}$ and $h(\mathbf{t}) = \sum_{i \geq -n} c_i \mathbf{t}^i$ for some $n \in \mathbb{N}$, with $c_i \in \operatorname{Nil}(R)$. Hence $G(\mathbf{t}) := \mathbf{t}^n g(\mathbf{t}) \in R[\mathbf{t}]$. Denote the canonical maps $R \to \overline{R} = R/\operatorname{Nil}(R)$ and $R[\mathbf{t}] \to \overline{R}[\mathbf{t}]$ by a bar. Then $\overline{G}(\mathbf{t}) = \mathbf{t}^n \overline{u} = \overline{P}(\mathbf{t}) \cdot \overline{Q}(\mathbf{t})$ where $\overline{P}(\mathbf{t}) = \mathbf{t}^n$ is monic and $\overline{Q}(\mathbf{t}) = \overline{u} \in \overline{R}^{\times}$. Clearly \overline{P} and \overline{Q} are strongly relatively prime in $\overline{R}[\mathbf{t}]$, so by Hensel's Lemma [1, III, §4.3, Theorem 1], applied to the discretely topologized ring A = R and the ideal $\mathfrak{m} = \operatorname{Nil}(R)$, the polynomials $\overline{P}, \overline{Q}$ lift uniquely to polynomials $P, Q \in R[\mathbf{t}], P$ monic, such that $G = P \cdot Q$. Write $P(\mathbf{t}) = \mathbf{t}^m + a_1 \mathbf{t}^{m-1} + \cdots + a_m$ and $Q(\mathbf{t}) = b_0 + b_1 \mathbf{t} + \cdots$. Then $\overline{P}(\mathbf{t}) = \mathbf{t}^n$ and $\overline{Q} = \overline{u}$ shows $m = n, b_0 \in R^{\times}$ and $a_i, b_i \in \operatorname{Nil}(R)$ for i > 0. By Lemma 3.2(a), the polynomial $F(\mathbf{t}) := 1 + a_1 \mathbf{t} + \cdots + a_n \mathbf{t}^n = \mathbf{t}^n P(\mathbf{t}^{-1})$ belongs to $R[\mathbf{t}]^{\times}$. Now put $f_1(\mathbf{t}) := Q(\mathbf{t})$ and $f_2(\mathbf{t}) := F(\mathbf{t})^{-1}$. Then

$$f_1(\mathbf{t})f_2(\mathbf{t}^{-1})^{-1} = Q(\mathbf{t})F(\mathbf{t}^{-1}) = Q(\mathbf{t})\mathbf{t}^{-n}P(\mathbf{t}) = \mathbf{t}^{-n}G(\mathbf{t}) = g(\mathbf{t})$$

as desired.

4. Determination of $Pic_{\mathfrak{U}}(\mathbf{P}_1)$ and $Pic_{\mathfrak{V}}(\mathbf{X})$.

4.1. Theorem. There is a natural isomorphism Φ : Pic_{\mathfrak{U}}(\mathbf{P}_1) $\xrightarrow{\cong}$ $\mathbf{Z}(k)$ mapping the tautological bundle to $-1 \in \mathbb{Z} \subset \mathbf{Z}(k)$ as follows.

Identify $k[\mathbf{U}_i]$ with the polynomial ring $k[\mathbf{t}]$ by means of the isomorphisms φ_i of 1.2 and identify $k[\mathbf{U}_{12}]$ with the Laurent polynomial ring $k[\mathbf{t}, \mathbf{t}^{-1}]$ by means of the open embedding $\mathbf{U}_{12} \subset \mathbf{U}_1$. Let \mathscr{M} be a representative of an element $[\mathscr{M}] \in$ $\operatorname{Pic}_{\mathfrak{U}}(\mathbf{P}_1)$, and let $s_i \in \mathscr{M}(\mathbf{U}_i)$ be sections trivializing \mathscr{M} over \mathbf{U}_i , so that $s_2 = s_1 \cdot$ g_{12} on \mathbf{U}_{12} where $g_{12} \in k[\mathbf{t}, \mathbf{t}^{-1}]^{\times}$. Then the element $\deg(g_{12}) \in \mathbf{Z}(k)$ depends only on the isomorphism class of \mathscr{M} , and $[\mathscr{M}] \mapsto \deg(g_{12})$ is the desired isomorphism.

Proof. By standard facts, computing $\operatorname{Pic}_{\mathfrak{U}}(\mathbf{P}_1)$ amounts to computing the Čech cohomology group $H^1 = H^1(\mathfrak{U}, \mathscr{F})$ of the sheaf $\mathscr{F} = \mathscr{O}_{\mathbf{P}_1}^{\times}$ with respect to the covering \mathfrak{U} . Recall that $H^1 = Z^1/B^1$ where $Z^1 = Z^1(\mathfrak{U}, \mathscr{F})$ is the group of Čech 1-cocycles $(g_{ij}) \in \mathscr{F}(\mathbf{U}_i \cap \mathbf{U}_j)$ and $B^1 = \partial^0(C^0)$ is the group of coboundaries.

Since \mathfrak{U} has only two elements, we have a group isomorphism $Z^1 \cong \mathscr{F}(\mathbf{U}_{12})$ sending (g_{ij}) to g_{12} . Note that this isomorphism is not unique; $(g_{ij}) \mapsto g_{21} = g_{12}^{-1}$ would have been just as good. We identify the group C^0 of 0-cochains with $\mathscr{F}(\mathbf{U}_1) \times \mathscr{F}(\mathbf{U}_2)$. Then the coboundary operator $\partial^0 \colon C^0 \to C^1$ is given by

$$\partial^0(g_1, g_2) = \varrho_1(g_1) \cdot \varrho_2(g_2)^{-1}, \tag{1}$$

where $g_i \in \mathscr{F}(\mathbf{U}_i)$ and $\varrho_i : \mathscr{F}(\mathbf{U}_i) \to \mathscr{F}(\mathbf{U}_{12})$ are the restriction homomorphisms.

Now consider the isomorphisms $\varphi_i: k_{\mathbf{a}} \to \mathbf{U}_i$ and $\varphi'_i: k_{\mathbf{u}} \to \mathbf{U}_{12}$ of 1.2. After identifying the affine algebras of $k_{\mathbf{a}}$ and $k_{\mathbf{u}}$ with $k[\mathbf{t}]$ and $k[\mathbf{t}, \mathbf{t}^{-1}]$, we have induced isomorphisms $\varphi_i^*: \mathscr{F}(\mathbf{U}_i) \to k[\mathbf{t}]^{\times}$ and $\varphi'_i^*: \mathscr{F}(\mathbf{U}_{12}) \to k[\mathbf{t}, \mathbf{t}^{-1}]^{\times}$. Under these isomorphisms, the coboundary operator ∂^0 corresponds to the map $\partial': k[\mathbf{t}]^{\times} \times k[\mathbf{t}]^{\times} \to k[\mathbf{t}, \mathbf{t}^{-1}]^{\times}$ given by

$$\partial'(f_1, f_2) = f_1 \cdot \phi^*(f_2)^{-1} \tag{2}$$

where $\phi = \varphi_2^{\prime - 1} \circ \varphi_1^{\prime}$ is the change of coordinates map. Details are left to the reader. By 1.2.1, ϕ is inversion on $k_{\mathbf{u}}$, so ϕ^* is the automorphism $\mathbf{t} \mapsto \mathbf{t}^{-1}$ of $k[\mathbf{t}, \mathbf{t}^{-1}]$. It follows that $\partial' = \partial$, the map considered in Lemma 3.3. Hence the diagram

is commutative and has exact rows, so there is a unique isomorphism $H^1 \to \mathbf{Z}(k)$ making the diagram commutative. Explicitly, it is given by the procedure described in the statement of the theorem. Finally, 2.3.1 implies that the tautological bundle is mapped to $-1 \in \mathbf{Z}(k)$.

4.2. Theorem. There is a natural isomorphism Ψ : $\operatorname{Pic}_{\mathfrak{V}}(\mathbf{X}) \xrightarrow{\cong} \mathbf{Z}(k)$ making the diagram

commutative. Hence π^* is an isomorphism, and the bundle $\mathbf{L} = \pi^*(\mathbf{E})$ of 2.1 is mapped to -1 under π^* .

Proof. We proceed as in the proof of 4.1. Let \mathscr{G} be the sheaf $\mathscr{O}_{\mathbf{X}}^{\times}$ and identify $C^{0}(\mathfrak{V}) \cong \mathscr{G}(\mathbf{V}_{1}) \times \mathscr{G}(\mathbf{V}_{2})$ and $Z^{1}(\mathfrak{V}) \cong \mathscr{G}(\mathbf{V}_{12})$. Then the coboundary operator $\partial^{0}: C^{0}(\mathfrak{V}) \to Z^{1}(\mathfrak{V})$ is given by 4.1.1. Again as before, we consider the isomorphisms $\psi_{i}: k_{\mathbf{a}}^{2} \to \mathbf{V}_{i}$ and $\psi'_{i}: k_{\mathbf{u}} \times k_{\mathbf{a}} \to \mathbf{V}_{12}$ of 1.4. After identifying the affine algebra of $k_{\mathbf{a}}^{2}$ with the polynomial ring $k[\mathbf{t}, \mathbf{y}]$ in two variables and the affine algebra of $k_{\mathbf{u}} \times k_{\mathbf{a}}$ with $k[\mathbf{t}, \mathbf{t}^{-1}, \mathbf{y}]$, we have induced isomorphisms $\psi_{i}^{*}: \mathscr{G}(\mathbf{V}_{i}) \to k[\mathbf{t}, \mathbf{y}]^{\times}$ and $\psi'_{i}^{*}: \mathscr{G}(\mathbf{V}_{12}) \to k[\mathbf{t}, \mathbf{t}^{-1}, \mathbf{y}]^{\times}$. Let ϕ be the change of coordinates 1.4.4. Then again ∂^{0} corresponds to the map ∂' of 4.1.2.

Put $R = k[\mathbf{y}]$, so that $k[\mathbf{t}, \mathbf{y}] = R[\mathbf{t}]$ and $k[\mathbf{t}, \mathbf{t}^{-1}, \mathbf{y}] = R[\mathbf{t}, \mathbf{t}^{-1}]$. We wish to apply Lemma 3.3. However, the automorphism ϕ^* of the k-algebra $R[\mathbf{t}, \mathbf{t}^{-1}]$ is no longer just given by $\mathbf{t} \mapsto \mathbf{t}^{-1}$ but also involves the variable \mathbf{y} , so ∂' is not equal to the map ∂ of Lemma 3.3. Hence the following detour is required.

From 1.4.4, we see that ϕ can be factored in the form $\phi = \iota \circ \vartheta$ where $\iota(\lambda, \beta) = (\lambda^{-1}, \beta)$ and $\vartheta(\lambda, \beta) = (\lambda, \lambda(1 - \lambda\beta))$. Putting $I = \iota^*$ and $\Theta = \vartheta^*$, this shows

$$\phi^* = \Theta \circ I \tag{2}$$

where Θ and I are the automorphisms of $k[\mathbf{t}, \mathbf{t}^{-1}, \mathbf{y}]$ given by the formulas

$$\Theta(\mathbf{t}) = \mathbf{t}, \quad \Theta(\mathbf{y}) = \mathbf{t}(1 - \mathbf{t}\mathbf{y}), \tag{3}$$

$$I(\mathbf{t}) = \mathbf{t}^{-1}, \quad I(\mathbf{y}) = \mathbf{y}.$$
(4)

By 1.4.5, ϕ^* squares to the identity and obviously $I^2 = \text{Id.}$ Hence (2) implies

$$I = \Theta \circ I \circ \Theta. \tag{5}$$

Next observe (cf. [3, 0.12.2]) that an idempotent ε of the polynomial ring $R = k[\mathbf{y}]$ belongs to k. Hence the natural homomorphism $k \to R$ induces an isomorphism

$$\mathbf{Z}(k) \xrightarrow{\cong} \mathbf{Z}(R). \tag{6}$$

Using the description of the units of $R = k[\mathbf{y}]$ in Lemma 3.2(a), part (b) of that lemma shows that $g \in R[\mathbf{t}, \mathbf{t}^{-1}]^{\times}$ if and only if $g = \mu \mathbf{t}^{\mathfrak{d}} + h$ where $\mu \in k^{\times}$, $\mathfrak{d} = \deg(g) \in \mathbf{Z}(k)$ and $h \in R[\mathbf{t}, \mathbf{t}^{-1}]$ is nilpotent. From this and the formulas for Θ and I we see

$$\deg(\Theta(g)) = \deg(g), \quad \deg(I(g)) = -\deg(g) \quad (g \in R[\mathbf{t}, \mathbf{t}^{-1}]^{\times}).$$
(7)

With the notations introduced above, the map ∂ of Lemma 3.3 is expressed by

$$\partial(f_1, f_2) = f_1 \cdot I(f_2)^{-1}, \tag{8}$$

while by 4.1.2 and (2),

$$\partial'(f_1, f_2) = f_1 \cdot \Theta(I(f_2))^{-1},$$
(9)

for $f_i \in R[\mathbf{t}]^{\times}$. We claim that

$$\operatorname{Im}(\partial') = \operatorname{Im}(\partial) = \operatorname{Ker}(\operatorname{deg}).$$
(10)

Indeed, the second equality follows from Lemma 3.3. As deg vanishes on $R[\mathbf{t}]^{\times}$, it follows from (7) and (9) that $\operatorname{Im}(\partial') \subset \operatorname{Ker}(\operatorname{deg}) = \operatorname{Im}(\partial)$. To prove $\operatorname{Im}(\partial) \subset \operatorname{Im}(\partial')$, it suffices by (8) to have $I(f) \in \operatorname{Im}(\partial')$, for all $f \in R[\mathbf{t}]^{\times}$. The automorphism Θ of $R[\mathbf{t}, \mathbf{t}^{-1}]$ induces an endomorphism (but not an automorphism) of the subring $R[\mathbf{t}]$. This is evident from (3). Hence $\Theta(f) \in R[\mathbf{t}]^{\times}$, and by (5), $I(f) = \Theta(I(\Theta(f))) = \partial'(1, \Theta(f)^{-1}) \in \operatorname{Im}(\partial')$. Now (10) and Lemma 3.3 together with (6) yields the desired isomorphism

$$\Psi: \operatorname{Pic}_{\mathfrak{V}}(\mathbf{X}) \cong H^{1}(\mathfrak{V}, \mathscr{G}) \cong R[\mathbf{t}, \mathbf{t}^{-1}]^{\times} / \operatorname{Im}(\partial') \xrightarrow{\operatorname{deg}} \mathbf{Z}(k).$$

It remains to show that (1) is commutative. The map π^* : $\operatorname{Pic}_{\mathfrak{U}}(\mathbf{P}_1) \to \operatorname{Pic}_{\mathfrak{V}}(\mathbf{X})$ is induced by the maps π_i^* : $\mathscr{F}(\mathbf{U}_i) \to \mathscr{G}(\mathbf{V}_i)$ and π_{12}^* : $\mathscr{F}(\mathbf{U}_{12}) \to \mathscr{G}(\mathbf{V}_{12})$, where π_i and π_{12} are the restrictions of the projection π : $\mathbf{X} \to \mathbf{P}_1$. After the identifications of these rings with polynomial resp. Laurent polynomial rings as above, these are just the natural injections $k[\mathbf{t}]^{\times} \to R[\mathbf{t}]^{\times}$ and $k[\mathbf{t}, \mathbf{t}^{-1}]^{\times} \to R[\mathbf{t}, \mathbf{t}^{-1}]^{\times}$ induced from $k \to R$. From (3), (4) and (9) one sees easily that the diagram

$$\begin{split} k[\mathbf{t}]^{\times} & \times k[\mathbf{t}]^{\times} \xrightarrow{\partial} k[\mathbf{t}, \mathbf{t}^{-1}]^{\times} \xrightarrow{\operatorname{deg}} \mathbf{Z}(k) \longrightarrow 0 \\ & \downarrow & \downarrow & \parallel \\ R[\mathbf{t}]^{\times} & \times R[\mathbf{t}]^{\times} \xrightarrow{\partial'} R[\mathbf{t}, \mathbf{t}^{-1}]^{\times} \xrightarrow{\operatorname{deg}} \mathbf{Z}(k) \longrightarrow 0 \end{split}$$

is commutative with exact rows. This implies commutativity of (1) and completes the proof.

4.3. Corollary. \mathscr{E} has infinite order in $\operatorname{Pic}(\mathbf{P}_1)$ and \mathscr{L} has infinite order in $\operatorname{Pic}(\mathbf{X})$.

4.4. Corollary. If k is a factorial ring then $\operatorname{Pic}(\mathbf{P}_1) \cong \mathbb{Z} \cong \operatorname{Pic}(\mathbf{X})$, generated by \mathscr{E} and \mathscr{L} , respectively.

Proof. The Picard group of an integral domain is canonically embedded into the ideal class group, and the latter is trivial for a factorial domain [1, VII, §1.2, Remarks after Prop. 4, and §3, Def. 1]. Also, $k[\mathbf{t}]$ is factorial along with k. Hence every line bundle on \mathbf{P}_1 is trivialized by \mathfrak{U} , i.e., $\operatorname{Pic}(\mathbf{P}_1) = \operatorname{Pic}_{\mathfrak{U}}(\mathbf{P}_1)$. Moreover, $\mathbf{Z}(k) \cong \mathbb{Z}$ since k has no non-trivial idempotents. Now the first isomorphism follows from Theorem 4.1, and the proof of the second one is analogous.

4.5. Remarks. (i) The isomorphisms Φ and Ψ of 4.1 and 4.2 are easily seen to be compatible with base change. Hence, the sub-functors $\operatorname{Pic}_{\mathfrak{U}}(\mathbf{P}_1)$ and $\operatorname{Pic}_{\mathfrak{V}}(\mathbf{X})$ of the Picard functors $\operatorname{Pic}(\mathbf{P}_1)$ and $\operatorname{Pic}_{\mathfrak{V}}(\mathbf{X})$ defined by

$$\operatorname{Pic}_{\mathfrak{U}}(\mathbf{P}_1)(R) = \operatorname{Pic}_{\mathfrak{U}}(\mathbf{P}_1 \otimes R), \quad \operatorname{Pic}_{\mathfrak{V}}(\mathbf{X})(R) = \operatorname{Pic}_{\mathfrak{V}}(\mathbf{X} \otimes R)$$

are actually isomorphic to **Z**.

(ii) The canonical projection $p: \mathbf{P}_1 \to \mathbf{S} = \mathbf{Spec}(k)$ induces a homomorphism $p^*: \operatorname{Pic}(k) \cong \operatorname{Pic}(\mathbf{S}) \to \operatorname{Pic}(\mathbf{P}_1)$. This is an isomorphism onto a direct summand because p has sections (the elements of $\mathbf{P}_1(k)$ are in bijection with the sections of p). We claim that $p^*(\operatorname{Pic}(k)) \cap \operatorname{Pic}_{\mathfrak{U}}(\mathbf{P}_1) = 0$. Indeed, let $i_1: \mathbf{U}_1 \to \mathbf{P}_1$ be the inclusion and $p_1 = p | \mathbf{U}_1$. Then $p_1 = p \circ i_1$ and hence $p_1^* = i_1^* \circ p^*$. Since $\mathbf{U}_1(k) \neq \emptyset$ as well, $p_1^*: \operatorname{Pic}(k) \to \operatorname{Pic}(\mathbf{U}_1)$ is injective, so $i_1^*: p^*(\operatorname{Pic}(k)) \to \operatorname{Pic}(\mathbf{U}_1)$ is injective. Hence for an element $p^*([L]) = [\mathscr{M}] \in p^*(\operatorname{Pic}(k)) \cap \operatorname{Pic}_{\mathfrak{U}}(\mathbf{P}_1)$ we have $i_1^*([\mathscr{M}]) = 0$ (since the restriction of \mathscr{M} to \mathbf{U}_1 is trivial) $= p_1^*([L])$ and therefore [L] = 0 in $\operatorname{Pic}(k)$. Question: Is

$$p^*(\operatorname{Pic}(k)) \oplus \operatorname{Pic}_{\mathfrak{U}}(\mathbf{P}_1) = \operatorname{Pic}(\mathbf{P}_1)?$$

Analogous statements hold and questions can be asked for $Pic(\mathbf{X})$.

Acknowledgement I am grateful to H. P. Petersson who carefully read an earlier draft of this note and suggested numerous improvements.

References

- [1] N. Bourbaki, Commutative Algebra, Hermann, Paris, 1972, Translated from the French.
- [2] M. Demazure and P. Gabriel, Groupes algébriques, vol. 1, Masson, Paris, 1970.
- [3] O. Loos, Generically algebraic Jordan algebras over commutative rings, J. Algebra 297 (2006), 474–529.
- [4] H. P. Petersson, Idempotent 2-by-2 matrices, preprint, 2007.