2-LOCAL TRIPLE DERIVATIONS ON VON NEUMANN ALGEBRAS

KARIMBERGEN KUDAYBERGENOV, TIMUR OIKHBERG, ANTONIO M. PERALTA, AND BERNARD RUSSO

Abstract

We prove that every (not necessarily linear nor continuous) 2-local triple derivation on a von Neumann algebra M is a triple derivation, equivalently, the set $\operatorname{Der}_{t}(M)$, of all triple derivations on M, is algebraically 2-reflexive in the set $\mathcal{M}(M)=M^{M}$ of all mappings from M into M.

1. Introduction

Let X and Y be Banach spaces. According to the terminology employed in the literature (see, for example, [4]), a subset \mathcal{D} of the Banach space $B(X, Y)$, of all bounded linear operators from X into Y, is called algebraically reflexive in $B(X, Y)$ when it satisfies the property:

$$
\begin{equation*}
T \in B(X, Y) \text { with } T(x) \in \mathcal{D}(x), \forall x \in X \Rightarrow T \in \mathcal{D} \tag{1.1}
\end{equation*}
$$

Algebraic reflexivity of \mathcal{D} in the space $L(X, Y)$, of all linear mappings from X into Y, a stronger version of the above property not requiring continuity of T, is defined by:

$$
\begin{equation*}
T \in L(X, Y) \text { with } T(x) \in \mathcal{D}(x), \forall x \in X \Rightarrow T \in \mathcal{D} \tag{1.2}
\end{equation*}
$$

In 1990 , Kadison proved that (1.1) holds if \mathcal{D} is the set $\operatorname{Der}(M, X)$ of all (associative) derivations on a von Neumann algebra M into a dual M bimodule X [18]. Johnson extended Kadison's result by establishing that the set $\mathcal{D}=\operatorname{Der}(A, X)$, of all (associative) derivations from a C^{*}-algebra A into a Banach A-bimodule X satisfies (1.2) [17].

Algebraic reflexivity of the set of local triple derivations on a C^{*}-algebra and on a JB*-triple have been studied in $[24,9,12]$ and [14]. More precisely, Mackey proves in [24] that the set $\mathcal{D}=\operatorname{Der}_{t}(M)$, of all triple derivations on a JBW**-triple M satisfies (1.1). The result has been supplemented in [12], where Burgos, Fernïb $\frac{1}{2}$ ndez-Polo and the third author of this note prove

[^0]that for each JB^{*}-triple E, the set $\mathcal{D}=\operatorname{Der}_{t}(E)$ of all triple derivations on E satisfies (1.2).

Hereafter, algebraic reflexivity will refer to the stronger version (1.2) which does not assume the continuity of T.

In [6], Brešar and Šemrl proved that the set of all (algebra) automorphisms of $B(H)$ is algebraically reflexive whenever H is a separable, infinitedimensional Hilbert space. Given a Banach space X. A linear mapping $T: X \rightarrow X$ satisfying the hypothesis at (1.2) for $\mathcal{D}=\operatorname{Aut}(X)$, the set of automorphisms on X, is called a local automorphism. Larson and Sourour showed in [22] that for every infinite dimensional Banach space X, every surjective local automorphism T on the Banach algebra $B(X)$, of all bounded linear operators on X, is an automorphism.

Motivated by the results of Šemrl in [31], references witness a growing interest in a subtle version of algebraic reflexivity called algebraic 2reflexivity (cf. $[1,2,10,11,21,23,25,26]$ and [29]). A subset \mathcal{D} of the set $\mathcal{M}(X, Y)=Y^{X}$, of all mappings from X into Y, is called algebraically 2reflexive when the following property holds: for each mapping T in $\mathcal{M}(X, Y)$ such that for each $a, b \in X$, there exists $S=S_{a, b} \in \mathcal{D}$ (depending on a and b), with $T(a)=S_{a, b}(a)$ and $T(b)=S_{a, b}(b)$, then T lies in \mathcal{D}. A mapping $T: X \rightarrow Y$ satisfying that for each $a, b \in X$, there exists $S=S_{a, b} \in \mathcal{D}$ (depending on a and b), with $T(a)=S_{a, b}(a)$ and $T(b)=S_{a, b}(b)$ will be called a 2-local \mathcal{D}-mapping. If we assume that every mapping $S \in \mathcal{D}$ is r - homogeneous (that is, $S(t a)=t^{r} S(a)$ for every $t \in \mathbb{R}$ or \mathbb{C}) with $0<r$, then every 2-local \mathcal{D}-mapping $T: X \rightarrow Y$ is r-homogeneous. Indeed, for each $a \in X$, $t \in \mathbb{C}$ take $S_{a, t a} \in \mathcal{D}$ satisfying $T(t a)=S_{a, t a}(t a)=t^{r} S_{a, t a}(a)=t^{r} T(a)$.

Šemrl establishes in [31] that for every infinite-dimensional separable Hilbert space H, the sets $\operatorname{Aut}(B(H))$ and $\operatorname{Der}(B(H))$, of all (algebra) automorphisms and associative derivations on $B(H)$, respectively, are algebraically 2-reflexive in $\mathcal{M}(B(H))=\mathcal{M}(B(H), B(H))$. Ayupov and the first author of this note proved in [1] that the same statement remains true for general Hilbert spaces (see [20] for the finite dimensional case). Actually, the set $\operatorname{Hom}(A)$, of all homomorphisms on a general C^{*}-algebra A, is algebraically 2-reflexive in the Banach algebra $B(A)$, of all bounded linear operators on A, and the set ${ }^{*}-\operatorname{Hom}(A)$, of all ${ }^{*}$-homomorphisms on A, is algebraically 2 -reflexive in the space $L(A)$, of all linear operators on A (cf. [27]).

In recent contributions, Burgos, Fernïi $\frac{1}{2}$ ndez-Polo and the third author of this note prove that the set ${ }^{*}-\operatorname{Hom}(M)$ (respectively, $\left.\operatorname{Hom}_{t}(M)\right)$, of all *-homomorphisms (respectively, triple homomorphisms) on a von Neumann algebra (respectively, on a JBW*-triple) M, is an algebraically 2-reflexive subset of $\mathcal{M}(M)$ (cf. [10], [11], respectively), while Ayupov and the first author of this note establish that set $\operatorname{Der}(M)$ of all derivations on M is algebraically 2-reflexive in $\mathcal{M}(M)$ (see [2]).

In this paper, we consider the set $\operatorname{Der}_{t}(A)$ of all triple derivations on a C^{*}-algebra A. We recall that every C^{*}-algebra A can be equipped with a ternary product of the form

$$
\{a, b, c\}=\frac{1}{2}\left(a b^{*} c+c b^{*} a\right) .
$$

When A is equipped with this product it becomes a JB^{*}-triple in the sense of [19]. A linear mapping $\delta: A \rightarrow A$ is said to be a triple derivation when it satisfies the (triple) Leibnitz rule:

$$
\delta\{a, b, c\}=\{\delta(a), b, c\}+\{a, \delta(b), c\}+\{a, b, \delta(c)\} .
$$

It is known that every triple derivation is automatically continuous (cf. [3]). We refer to [3, 15] and [28] for the basic references on triple derivations. According to the standard notation, 2-local $\operatorname{Der}_{t}(A)$-mappings from A into A are called 2-local triple derivations.

The goal of this note is to explore the algebraic 2-reflexivity of $\operatorname{Der}_{t}(A)$ in $\mathcal{M}(A)$. Our main result proves that every (not necessarily linear nor continuous) 2-local triple derivation on an arbitrary von Neumann algebra M is a triple derivation (hence linear and continuous) (see Theorem 2.14), equivalently, $\operatorname{Der}_{t}(M)$ is algebraically 2-reflexive in $\mathcal{M}(M)$.

2. 2-LOcal triple derivations on von Neumann algebras

We start by recalling some generalities on triple derivations. Let A be a C*-algebra. For each $b \in A$, we shall denote by M_{b} the Jordan multiplication mapping by the element b, that is $M_{b}(x)=b \circ x=\frac{1}{2}(b x+x b)$. Following standard notation, given elements a, b in A, we denote by $L(a, b)$ the operator on A defined by $L(a, b)(x)=\{a, b, x\}=\frac{1}{2}\left(a b^{*} x+x b^{*} a\right)$. It is known that the mapping $\delta(a, b): A \rightarrow A$, given by

$$
\delta(a, b)(x)=L(a, b)(x)-L(b, a)(x)
$$

is a triple derivation on A (cf. $[3,15])$. A triple derivation which is a finite linear combination of derivations of the form $\delta(a, b)$ is called an inner triple derivation.

Let $\delta: A \rightarrow A$ be a triple derivation on a unital C^{*}-algebra. By [15, Lemmas 1 and 2], $\delta(\mathbf{1})^{*}=-\delta(\mathbf{1})$, and $M_{\delta(\mathbf{1})}=\delta\left(\frac{1}{2} \delta(\mathbf{1}), \mathbf{1}\right)$ is an inner triple derivation on A and the difference $D=\delta-\delta\left(\frac{1}{2} \delta(\mathbf{1}), \mathbf{1}\right)$ is a Jordan *-derivation on A, more concretely,

$$
D(x \circ y)=D(x) \circ y+x \circ D(y), \text { and } D\left(x^{*}\right)=D(x)^{*},
$$

for every $x, y \in A$. By [3, Corollary 2.2], δ (and hence D) is a continuous operator. A widely known result, due to B.E. Johnson, states that every bounded Jordan derivation from a C^{*}-algebra A to a Banach A-bimodule is an associative derivation (cf. [16]). Therefore, D is an associative *derivation in the usual sense. When $A=M$ is a von Neumann algebra, we can guarantee that D is an inner derivation, that is there exists $\widetilde{a} \in A$ satisfying $D(x)=[\widetilde{a}, x]=\widetilde{a} x-x \widetilde{a}$, for every $x \in A$ (cf. [30, Theorem
4.1.6]). Further, from the condition $D\left(x^{*}\right)=D(x)^{*}$, for every $x \in A$, we deduce that $\left(\widetilde{a}^{*}+\widetilde{a}\right) x=x\left(\widetilde{a}^{*}+\widetilde{a}\right)$. Thus, taking $a=\frac{1}{2}\left(\widetilde{a}-\widetilde{a}^{*}\right)$, it follows that $[a, x]=[\widetilde{a}, x]$, for every $x \in M$. We have therefore shown that for every triple derivation δ on a von Neumann algebra M, there exist skew-hermitian elements $a, b \in M$ satisfying

$$
\delta(x)=[a, x]+b \circ x,
$$

for every $x \in M$.
Our first lemma is a direct consequence of the above arguments (see [15, Lemmas 1 and 2]).

Lemma 2.1. Let $T: A \rightarrow A$ be a (not necessarily linear nor continuous) 2-local triple derivation on a unital C^{*}-algebra. Then
(a) $T(\mathbf{1})^{*}=-T(\mathbf{1})$;
(b) $M_{T(\mathbf{1})}=\delta\left(\frac{1}{2} T(\mathbf{1}), \mathbf{1}\right)$ is an inner triple derivation on A;
(c) $\widehat{T}=T-\delta\left(\frac{1}{2} T(\mathbf{1}), \mathbf{1}\right)$ is a 2-local triple derivation on A with $\widehat{T}(\mathbf{1})=0$.

In what follows, we denote by $A_{s a}$ the hermitian elements of the C^{*} algebra A.

Lemma 2.2. Let $T: A \rightarrow A$ be a (not necessarily linear nor continuous) 2-local triple derivation on a unital C^{*}-algebra satisfying $T(\mathbf{1})=0$. Then $T(x)=T(x)^{*}$ for all $x \in A_{\text {sa }}$.

Proof. Let $x \in A_{s a}$. By assumptions,

$$
\begin{gathered}
T(x)^{*}=\{\mathbf{1}, T(x), \mathbf{1}\}=\left\{\mathbf{1}, \delta_{x, \mathbf{1}}(x), \mathbf{1}\right\}=\delta_{x, \mathbf{1}}\{\mathbf{1}, x, \mathbf{1}\}-2\left\{\delta_{x, \mathbf{1}}(\mathbf{1}), x, \mathbf{1}\right\} \\
=\delta_{x, \mathbf{1}}\left(x^{*}\right)-2\{T(\mathbf{1}), x, \mathbf{1}\}=\delta_{x, \mathbf{1}}(x)=T(x)
\end{gathered}
$$

The proof is complete.
Lemma 2.3. Let $T: M \rightarrow M$ be a (not necessarily linear nor continuous) 2-local triple derivation on a von Neumann algebra satisfying $T(\mathbf{1})=0$. Then for every $x, y \in M_{\text {sa }}$ there exists a skew-hermitian element $a_{x, y} \in M$ such that

$$
T(x)=\left[a_{x, y}, x\right], \text { and, } T(y)=\left[a_{x, y}, y\right] .
$$

Proof. For every $x, y \in M_{s a}$ we can find skew-hermitian elements $a_{x, y}, b_{x, y} \in$ M such that

$$
T(x)=\left[a_{x, y}, x\right]+b_{x, y} \circ x, \text { and, } T(y)=\left[a_{x, y}, y\right]+b_{x, y} \circ y .
$$

Taking into account that $T(x)=T(x)^{*}$ (see Lemma 2.2) we obtain

$$
\begin{aligned}
& {\left[a_{x, y}, x\right]+b_{x, y} \circ x=T(x)=T(x)^{*}=\left[a_{x, y}, x\right]^{*}+\left(b_{x, y} \circ x\right)^{*} } \\
&=\left[x, a_{x, y}^{*}\right]+x \circ b_{x, y}^{*}=\left[x,-a_{x, y}\right]-x \circ b_{x, y}=\left[a_{x, y}, x\right]-b_{x, y} \circ x,
\end{aligned}
$$

i.e. $b_{x, y} \circ x=0$, and similarly $b_{x, y} \circ y=0$. Therefore $T(x)=\left[a_{x, y}, x\right]$, $T(y)=\left[a_{x, y}, y\right]$, and the proof is complete.

We state now an observation, which plays an useful role in our study.
Lemma 2.4. Let a and b be skew-hermitian elements in a C^{*}-algebra A. Suppose $x \in A$ is self-adjoint with $[a, x]+2 b \circ x=0$. Then $[a, x]=0$ and $b \circ x=0$.

Proof. Since $0=a x-x a+b x+x b$. Passing to the adjoint, we obtain $a x-x a-(b x+x b)=0$. Conclude the proof by adding and subtracting these two equalities. The proof is complete.

Let M be a von Neumann algebra. If $x \in M_{s a}$, we denote by $s(x)$ the support projection of x - that is, the projection onto $(\operatorname{ker}(x))^{\perp}=\overline{\operatorname{ran}(x)}$. We say that x has full support if $s(x)=1$ (equivalently, $\operatorname{ker}(x)=\{0\}$).

Lemma 2.5. Let M be a von Neumann algebra. Suppose $u \in M_{+}$has full support, $c \in M$ is self-adjoint, and $\sigma\left(c^{2} u\right) \cap(0, \infty)=\emptyset$. Then $c=0$. Consequently, if u and c are as above, and $u c+c u=0\left(\right.$ or $\left.c^{2} u=-c u c \leq 0\right)$, then $c=0$.

Proof. For the fist statement of the lemma, suppose $\sigma\left(c^{2} u\right) \cap(0, \infty)=\emptyset$. Note that

$$
(-\infty, 0] \supseteq \sigma\left(c^{2} u\right) \cup\{0\}=\sigma(c \cdot c u) \supseteq \sigma(c u c) .
$$

However, cuc is positive, hence $\sigma(c u c) \subset[0,\|c u c\|]$, with $\max _{\lambda \in \sigma(c u c)}=$ $\|c u c\|$. Thus, $c u^{1 / 2} u^{1 / 2} c=c u c=0$, which means that $c u^{1 / 2}=u^{1 / 2} c=0$ and hence $s(c) \leq 1-s\left(u^{1 / 2}\right)=1-s(u)=0$, which leads to $c=0$.

To prove the second part, we have $c^{2} u=-c u c \leq 0$, hence in particular, $\sigma\left(c^{2} u\right) \subset(-\infty, 0]$. The proof is complete.

In [2, Lemma 2.2], Ayupov and the first author of this note prove that for every (not necessarily linear nor continuous) 2-local derivation on a von Neumann algebra $\Delta: M \rightarrow M$, and every self-adjoint element $z \in M$, there exists $a \in M$ satisfying

$$
\Delta(x)=[a, x],
$$

for every $x \in \mathcal{W}^{*}(z)$, where $\mathcal{W}^{*}(z)=\{z\}^{\prime \prime}$ denotes the abelian von Neumann subalgebra of M generated by the element z, and the unit element and $\{z\}^{\prime \prime}$ denotes the bicommutant of the set $\{z\}$. We prove next a ternary version of this result.

Lemma 2.6. Let $T: M \rightarrow M$ be a (not necessarily linear nor continuous) 2local triple derivation on a von Neumann algebra. Let $z \in M$ be a self-adjoint element and let $\mathcal{W}^{*}(z)=\{z\}^{\prime \prime}$ be the abelian von Neumann subalgebra of M generated by the element z and the unit element. Then there exist skewhermitian elements $a_{z}, b_{z} \in M$, depending on z, such that

$$
T(x)=\left[a_{z}, x\right]+b_{z} \circ x=a_{z} x-x a_{z}+\frac{1}{2}\left(b_{z} x+x b_{z}\right)
$$

for all $x \in \mathcal{W}^{*}(z)$. In particular, T is linear on $\mathcal{W}^{*}(z)$.

Proof. We can assume that $z \neq 0$. Note that the abelian von Neumann subalgebras generated by 1 and z and by 1 and $1+\frac{z}{2\|z\|}$ coincide. So, replacing z with $1+\frac{z}{2\|z\|}$ we can assume that z is an invertible positive element.

By definition, there exist skew-hermitian elements $a_{z}, b_{z} \in M$ (depending on z) such that

$$
T(z)=\left[a_{z}, z\right]+b_{z} \circ z .
$$

Define a mapping $T_{0}: M \rightarrow M$ given by $T_{0}(x)=T(x)-\left(\left[a_{z}, z\right]+b_{z} \circ z\right)$, $x \in M$. Clearly, T_{0} is a 2-local triple derivation on M. We shall show that $T_{0} \equiv 0$ on $\mathcal{W}^{*}(z)$. Let $x \in \mathcal{W}^{*}(z)$ be an arbitrary element. By assumptions, there exist skew-hermitian elements $c_{z, x}, d_{z, x} \in M$ such that

$$
T_{0}(z)=\left[c_{z, x}, z\right]+d_{z, x} \circ z, \text { and, } T_{0}(x)=\left[c_{z, x}, x\right]+d_{z, x} \circ x .
$$

Since $0=T_{0}(z)=\left[c_{z, x}, z\right]+d_{z, x} \circ z$, we get $\left[c_{z, x}, z\right]+d_{z, x} \circ z=0$.
Taking into account that z is a hermitian element and Lemma 2.4 we get $c_{z, x} z=z c_{z, x}$ and $d_{z, x} z=-z d_{z, x}$.

Since z has a full support, and $d_{z, x}^{2} z=-d_{z, x} z d_{z, x}$, Lemma 2.5 implies that $d_{z, x}=0$. Further

$$
c_{z, x} \in\{z\}^{\prime}=\{z\}^{\prime \prime \prime}=\mathcal{W}^{*}(z)^{\prime},
$$

i.e. $c_{z, x}$ commutes with any element in $\mathcal{W}^{*}(z)$. Therefore $T_{0}(x)=\left[c_{z, x}, x\right]+$ $d_{z, x} \circ x=0$, for all $x \in \mathcal{W}^{*}(z)$. The proof is complete.

2.1. Complete additivity of 2-local derivations and 2-local triple derivations on von Neumann algebras.

Let $\mathcal{P}(M)$ denote the lattice of projections in a von Neumann algebra M. Let X be a Banach space. A mapping $\mu: \mathcal{P}(M) \rightarrow X$ is said to be finitely additive when

$$
\mu\left(\sum_{i=1}^{n} p_{i}\right)=\sum_{i=1}^{n} \mu\left(p_{i}\right),
$$

for every family p_{1}, \ldots, p_{n} of mutually orthogonal projections in M. A mapping $\mu: \mathcal{P}(M) \rightarrow X$ is said to be bounded when the set

$$
\{\|\mu(p)\|: p \in \mathcal{P}(M)\}
$$

is bounded.
The celebrated Bunce-Wright-Mackey-Gleason theorem ([7, 8]) states that if M has no summand of type I_{2}, then every bounded finitely additive mapping $\mu: \mathcal{P}(M) \rightarrow X$ extends to a bounded linear operator from M to X.

According to the terminology employed in [32] and [13], a completely additive mapping $\mu: \mathcal{P}(M) \rightarrow \mathbb{C}$ is called a charge. The Dorofeev-Sherstnev theorem ([32, Theorem 29.5] or [13, Theorem 2]) states that any charge on a von Neumann algebra with no summands of type I_{n} is bounded.

We shall use the Dorofeev-Shertsnev theorem in Corollary 2.8 in order to be able to apply the Bunce-Wright-Mackey-Gleason theorem in Proposition 2.9. To this end, we need Proposition 2.7, which is implicitly applied in [2, proof of Lemma 2.3] for 2-local associative derivations. A proof is included here for completeness reasons.

First, we recall some facts about the strong* topology. For each normal positive functional φ in the predual of a von Neumann algebra M, the mapping

$$
x \mapsto\|x\|_{\varphi}=\left(\varphi\left(\frac{x x^{*}+x^{*} x}{2}\right)\right)^{\frac{1}{2}} \quad(x \in M)
$$

defines a prehilbertian seminorm on M. The strong* topology of M is the locally convex topology on M defined by all the seminorms $\|\cdot\|_{\varphi}$, where φ runs in the set of all positive functionals in M_{*} (cf. [30, Definition 1.8.7]). It is known that the strong* topology of M is compatible with the duality (M, M_{*}), that is a functional $\psi: M \rightarrow \mathbb{C}$ is strong* continuous if and only if it is weak* continuous (see [30, Corollary 1.8.10]). We also recall that the product of every von Neumann algebra is jointly strong* continuous on bounded sets (see [30, Proposition 1.8.12]).

Suppose $X=W$ is another von Neumann algebra, and let τ denote the norm, the weak ${ }^{*}$ or the strong* topology of W. The mapping μ is said to be τ-completely additive (respectively, countably or sequentially τ-additive) when

$$
\begin{equation*}
\mu\left(\sum_{i \in I} p_{i}\right)=\tau-\sum_{i \in I} \mu\left(p_{i}\right) \tag{2.1}
\end{equation*}
$$

for every family (respectively, sequence) $\left\{p_{i}\right\}_{i \in I}$ of mutually orthogonal projections in M.

It is known that every family $\left(p_{i}\right)_{i \in I}$ of mutually orthogonal projections in a von Neumann algebra M is summable with respect to the weak* topology of M and $p=$ weak $^{*}-\sum_{i \in I} p_{i}$ is a projection in M (cf. [30, Definition 1.13.4]). Further, for each normal positive functional ϕ in M_{*} and every finite set $F \subset I$, we have

$$
\left\|p-\sum_{i \in F} p_{i}\right\|_{\phi}^{2}=\phi\left(p-\sum_{i \in F} p_{i}\right),
$$

which implies that the family $\left(p_{i}\right)_{i \in I}$ is summable with respect to the strong* topology of M with the same limit, that is, $p=$ strong $^{*}-\sum_{i \in I} p_{i}$.

Proposition 2.7. Let $T: M \rightarrow M$ be a (not necessarily linear nor continuous) 2-local triple derivation on a von Neumann algebra. Then the following statements hold:
(a) The restriction $\left.T\right|_{\mathcal{P}(M)}$ is sequentially strong ${ }^{*}$ additive, and consequently sequentially weak* additive;
(b) $\left.T\right|_{\mathcal{P}(M)}$ is weak* completely additive, i.e.,

$$
\begin{equation*}
T\left(w e a k^{*}-\sum_{i \in I} p_{i}\right)=w e a k^{*}-\sum_{i \in I} T\left(p_{i}\right) \tag{2.2}
\end{equation*}
$$

for every family $\left(p_{i}\right)_{i \in I}$ of mutually orthogonal projections in M.
Proof. (a) Let $\left(p_{n}\right)_{n \in \mathbb{N}}$ be a sequence of mutually orthogonal projections in M. Let us consider the element $z=\sum_{n \in \mathbb{N}} \frac{1}{n} p_{n}$. By Lemma 2.6 there exist skew-hermitian elements $a_{z}, b_{z} \in M$ such that $T(x)=\left[a_{z}, x\right]+b_{z} \circ x$ for all $x \in \mathcal{W}^{*}(z)$. Since $\sum_{n=1}^{\infty} p_{n}, p_{m} \in \mathcal{W}^{*}(z)$, for all $m \in \mathbb{N}$, and the product of M is jointly strong* continuous, we obtain that

$$
\begin{gathered}
T\left(\sum_{n=1}^{\infty} p_{n}\right)=\left[a_{z}, \sum_{n=1}^{\infty} p_{n}\right]+b_{z} \circ\left(\sum_{n=1}^{\infty} p_{n}\right) \\
\quad=\sum_{n=1}^{\infty}\left[a_{z}, p_{n}\right]+\sum_{n=1}^{\infty} b_{z} \circ p_{n}=\sum_{n=1}^{\infty} T\left(p_{n}\right),
\end{gathered}
$$

i.e. $\left.T\right|_{\mathcal{P}(M)}$ is a countably or sequentially strong* additive mapping.
(b) Let φ be a positive normal functional in M_{*}, and let $\|\cdot\|_{\varphi}$ denote the prehilbertian seminorm given by $\|z\|_{\varphi}^{2}=\frac{1}{2} \varphi\left(z z^{*}+z^{*} z\right)(z \in M)$. Let $\left\{p_{i}\right\}_{i \in I}$ be an arbitrary family of mutually orthogonal projections in M. For every $n \in \mathbb{N}$ define

$$
I_{n}=\left\{i \in I:\left\|T\left(p_{i}\right)\right\|_{\varphi} \geq 1 / n\right\} .
$$

We claim, that I_{n} is a finite set for every natural n. Otherwise, passing to a subset if necessary, we can assume that there exists a natural k such that I_{k} is infinite and countable. In this case the series $\sum_{i \in I_{k}} T\left(p_{i}\right)$ does not converge with respect to the semi-norm $\|.\|_{\varphi}$. On the other hand, since I_{k} is a countable set, by (a), we have

$$
T\left(\sum_{i \in I_{k}} p_{i}\right)=\text { strong }^{*}-\sum_{i \in I_{k}} T\left(p_{i}\right)
$$

which is impossible. This proves the claim.
We have shown that the set

$$
I_{0}=\left\{i \in I:\left\|T\left(p_{i}\right)\right\|_{\varphi} \neq 0\right\}=\bigcup_{n \in \mathbb{N}} I_{n}
$$

is a countable set, and $\left\|T\left(p_{i}\right)\right\|_{\varphi}=0$, for every $i \in I \backslash I_{0}$.

Set $p=\sum_{i \in I \backslash I_{0}} p_{i} \in M$. We shall show that $\varphi(T(p))=0$. Let q denote the support projection of φ in M. Having in mind that $\left\|T\left(p_{i}\right)\right\|_{\varphi}^{2}=0$, for every $i \in I \backslash I_{0}$, we deduce that $T\left(p_{i}\right) \perp q$ for every $i \in I \backslash I_{0}$.

Replacing T with $\widehat{T}=T-\delta\left(\frac{1}{2} T(\mathbf{1}), \mathbf{1}\right)$ we can assume that $T(\mathbf{1})=0$ (cf. Lemma 2.1) and $T(x)=T(x)^{*}$, for every $x \in M_{s a}$ (cf. Lemma 2.2). By Lemma 2.3, for every $i \in I \backslash I_{0}$ there exists a skew-hermitian element $a_{i}=a_{p, p_{i}} \in M$ such that

$$
T(p)=a_{i} p-p a_{i}, \text { and, } T\left(p_{i}\right)=a_{i} p_{i}-p_{i} a_{i} .
$$

Since $T\left(p_{i}\right) \perp q$ we get $\left(a_{i} p_{i}-p_{i} a_{i}\right) q=q\left(a_{i} p_{i}-p_{i} a_{i}\right)=0$, for all $i \in I \backslash I_{0}$. Thus, since $p a_{i} p_{i} q=p_{i} a_{i} q$,

$$
\begin{gathered}
\left(T(p) p_{i}\right) q=\left(a_{i} p-p a_{i}\right) p_{i} q=a_{i} p_{i} q-p a_{i} p_{i} q \\
=a_{i} p_{i} q-p_{i} a_{i} q=\left(a_{i} p_{i}-p_{i} a_{i}\right) q=0
\end{gathered}
$$

and similarly

$$
q\left(p_{i} T(p)\right)=0
$$

for every $i \in I \backslash I_{0}$. Consequently,

$$
\begin{equation*}
(T(p) p) q=T(p)\left(\sum_{i \in I \backslash I_{0}} p_{i}\right) q=0=q\left(\sum_{i \in I \backslash I_{0}} p_{i}\right) T(p)=q(p T(p)) . \tag{2.3}
\end{equation*}
$$

Therefore,

$$
\begin{gathered}
T(p)=\delta_{p, \mathbf{1}}(p)=\delta_{p, \mathbf{1}}\{p, p, p\}=2\left\{\delta_{p, \mathbf{1}}(p), p, p\right\}+\left\{p, \delta_{p, \mathbf{1}}(p), p\right\} \\
=2\{T(p), p, p\}+\{p, T(p), p\}=p T(p)+T(p) p+p T(p)^{*} p \\
=p T(p)+T(p) p+p T(p) p,
\end{gathered}
$$

which implies that

$$
\begin{gathered}
\varphi(T(p))=\varphi(p T(p)+T(p) p+p T(p) p) \\
=\varphi(q p T(p) q)+\varphi(q T(p) p q)+\varphi(q p T(p) p q)=(\text { by }(2.3))=0 .
\end{gathered}
$$

Finally, by (a) we have

$$
T\left(\sum_{i \in I_{0}} p_{i}\right)=\|\cdot\|_{\varphi^{-}} \sum_{i \in I_{0}} T\left(p_{i}\right) .
$$

Two more applications of (a) give:

$$
\begin{aligned}
& \varphi\left(T\left(\sum_{i \in I} p_{i}\right)\right)=\varphi\left(T\left(p+\sum_{i \in I_{0}} p_{i}\right)\right)=\varphi\left(T(p)+T\left(\sum_{i \in I_{0}} p_{i}\right)\right) \\
&=\varphi(T(p))+\varphi\left(T\left(\sum_{i \in I_{0}} p_{i}\right)\right)=\sum_{i \in I_{0}} \varphi\left(T\left(p_{i}\right)\right) .
\end{aligned}
$$

By the Cauchy-Schwarz inequality, $0 \leq\left|\varphi T\left(p_{i}\right)\right|^{2} \leq\left\|T\left(p_{i}\right)\right\|_{\varphi}^{2}=0$, for every $i \in I \backslash I_{0}$, and hence $\sum_{i \in I_{0}} \varphi\left(T\left(p_{i}\right)\right)=\sum_{i \in I} \varphi\left(T\left(p_{i}\right)\right)$. The arbitrariness of φ shows that $T\left(\right.$ weak $\left.^{*}-\sum_{i \in I} p_{i}\right)=$ weak $^{*}-\sum_{i \in I} T\left(p_{i}\right)$.

Let ϕ be a normal functional in the predual of a von Neumann algebra M. Our previous Proposition 2.7 assures that for every (not necessarily linear nor continuous) 2-local triple derivation $T: M \rightarrow M$ the mapping $\left.\phi \circ T\right|_{\mathcal{P}(M)}: \mathcal{P}(M) \rightarrow \mathbb{C}$ is a completely additive mapping or a charge on M. Under the additional hypothesis of M being a continuous von Neumann algebra or, more generally, a von Neumann algebra with no Type I_{n}-factors $(1<n<\infty)$ direct summands (i.e. without direct summand isomorphic to a matrix algebra $\left.M_{n}(\mathbb{C}), 1<n<\infty\right)$, the Dorofeev-Sherstnev theorem ([32, Theorem 29.5] or [13, Theorem 2]) imply that $\left.\phi \circ T\right|_{\mathcal{P}(M)}$ is a bounded charge, that is, the set $\{|\phi \circ T(p)|: p \in \mathcal{P}(M)\}$ is bounded. The uniform boundedness principle gives:

Corollary 2.8. Let M be a von Neumann algebra with no Type I_{n}-factor direct summands $(1<n<\infty)$ and let $T: M \rightarrow M$ be a (not necessarily linear nor continuous) 2-local triple derivation. Then the restriction $\left.T\right|_{\mathcal{P}(M)}$ is a bounded weak* completely additive mapping.

2.2. Additivity of 2-local triple derivations on hermitian parts of von Neumann algebras.

Suppose now that M is a von Neumann algebra with no Type I_{n}-factor direct summands $(1<n<\infty)$, and $T: M \rightarrow M$ is a (not necessarily linear nor continuous) 2-local triple derivation. By Corollary 2.8 combined with the Bunce-Wright-Mackey-Gleason theorem [7, 8], there exits a bounded linear operator $G: M \rightarrow M$ satisfying that $G(p)=T(p)$, for every projection $p \in M$.

Let z be a self-adjoint element in M. By Lemma 2.6, there exist skewhermitian elements $a_{z}, b_{z} \in M$ such that $T(x)=\left[a_{z}, x\right]+b_{z} \circ x$, for every $x \in$ $\mathcal{W}^{*}(z)$. Since $\left.G\right|_{\mathcal{W}^{*}(z)},\left.T\right|_{\mathcal{W}^{*}(z)}: \mathcal{W}^{*}(z) \rightarrow M$ are bounded linear operators, which coincide on the set of projections of $\mathcal{W}^{*}(z)$, and every self-adjoint element in $\mathcal{W}^{*}(z)$ can be approximated in norm by finite linear combinations of mutually orthogonal projections in $\mathcal{W}^{*}(z)$, it follows that $T(x)=G(x)$ for every $x \in \mathcal{W}^{*}(z)$, and hence

$$
T(a)=G(a), \text { for every } a \in M_{s a}
$$

in particular, T is additive on $M_{s a}$.
The above arguments materialize in the following result.
Proposition 2.9. Let $T: M \rightarrow M$ be a (not necessarily linear nor continuous) 2-local triple derivation on a von Neumann algebra with no Type
I_{n}-factor direct summands $(1<n<\infty)$. Then the restriction $\left.T\right|_{M_{s a}}$ is additive.

Corollary 2.10. Let $T: M \rightarrow M$ be a (not necessarily linear nor continuous) 2-local triple derivation on a properly infinite von Neumann algebra. Then the restriction $\left.T\right|_{M_{s a}}$ is additive.

Next we shall show that the conclusion of the above corollary is also true for a finite von Neumann algebra.

First we show that every 2-local triple derivation on a von Neumann algebra "intertwines" central projections.

Lemma 2.11. If T is a (not necessarily linear nor continuous) 2-local triple derivation on a von Neumann algebra M, and p is a central projection in M, then $T(M p) \subset M p$. In particular, $T(p x)=p T(x)$ for every $x \in M$.

Proof. Consider $x \in M p$, then $x=p x p=\{x, p, p\}$. T coincides with a triple derivation $\delta_{x, p}$ on the set $\{x, p\}$, hence
$T(x)=\delta_{x, p}(x)=\delta_{x, p}\{x, p, p\}=\left\{\delta_{x, p}(x), p, p\right\}+\left\{x, \delta_{x, p}(p), p\right\}+\left\{x, p, \delta_{x, p}(p)\right\}$
lies in $M p$.
For the final statement, fix $x \in M$, and consider skew-hermitian elements $a_{x, x p}, b_{x, x p} \in M$ satisfying

$$
T(x)=\left[a_{x, x p}, x\right]+b_{x, x p} \circ x, \text { and } T(x p)=\left[a_{x, x p}, x p\right]+b_{x, x p} \circ(x p)
$$

The assumption p being central implies that $p T(x)=T(p x)$.
Proposition 2.12. Let $T: M \rightarrow M$ be a (not necessarily linear nor continuous) 2-local triple derivation on a finite von Neumann algebra. Then the restriction $\left.T\right|_{M_{s a}}$ is additive.

Proof. Since M is finite there exists a faithful normal semi-finite trace τ on M. We shall consider the following two cases.

Case 1. Suppose τ is a finite trace. Replacing T with $\widehat{T}=T-\delta\left(\frac{1}{2} T(\mathbf{1}), \mathbf{1}\right)$ we can assume that $T(\mathbf{1})=0$ (cf. Lemma 2.1) and $T(x)=T(x)^{*}$, for every $x \in M_{s a}$ (cf. Lemma 2.2). By Lemma 2.3, for every $x, y \in M_{s a}$ there exists a skew-hermitian element $a_{x, y} \in M$ such that $T(x)=\left[a_{x, y}, x\right]$ and $T(y)=\left[a_{x, y}, y\right]$. Then

$$
T(x) y+x T(y)=\left[a_{x, y}, x\right] y+x\left[a_{x, y}, y\right]=\left[a_{x, y}, x y\right]
$$

that is,

$$
\left[a_{x, y}, x y\right]=T(x) y+x T(y)
$$

Further

$$
0=\tau\left(\left[a_{x, y}, x y\right]\right)=\tau(T(x) y+x T(y))
$$

i.e. $\tau(T(x) y)=-\tau(x T(y))$, for every $x, y \in M_{s a}$. For arbitrary $u, v, w \in$ $M_{s a}$, set $x=u+v$, and $y=w$. The above identity implies

$$
\tau(T(u+v) w)=-\tau((u+v) T(w))=
$$

$=-\tau(u T(w))-\tau(v T(w))=\tau(T(u) w)+\tau(T(v) w)=\tau((T(u)+T(v)) w)$, and so

$$
\tau((T(u+v)-T(u)-T(v)) w)=0
$$

for all $u, v, w \in M_{s a}$. Take $w=T(u+v)-T(u)-T(v)$. Then $\tau\left(w w^{*}\right)=0$. Since the trace τ is faithful it follows that $w w^{*}=0$, and hence $w=0$. Therefore $T(u+v)=T(u)+T(v)$.

Case 2. As in Case 1, we may assume $T(\mathbf{1})=0$. Suppose now that τ is a semi-finite trace. Since M is finite there exists a family of mutually orthogonal central projections $\left\{z_{i}\right\}$ in M such that z_{i} has finite trace for all i and $\bigvee z_{i}=1$ (cf. [30, $\S 2.2$ or Corollary 2.4.7]). By Lemma 2.11, for each i, T maps $z_{i} M$ into itself. From Case $1,\left.T\right|_{z_{i} M}: z_{i} M \rightarrow z_{i} M$ is additive. Furthermore,
$z_{i} T(x+y)=\left.T\right|_{z_{i} M}\left(z_{i} x+z_{i} y\right)=\left.T\right|_{z_{i} M}\left(z_{i} x\right)+\left.T\right|_{z_{i} M}\left(z_{i} y\right)=z_{i} T(x)+z_{i} T(y)$, for every $x, y \in M$ and every i. Therefore

$$
\begin{aligned}
T(x+y)= & \left(\sum_{i} z_{i}\right) T(x+y)=\sum_{i} z_{i} T(x+y)=\sum_{i}\left(z_{i} T(x)+z_{i} T(y)\right) \\
& =\left(\sum_{i} z_{i}\right) T(x)+\left(\sum_{i} z_{i}\right) T(y)=T(x)+T(y)
\end{aligned}
$$

for every $x, y \in M$. The proof is complete.
Let $T: M \rightarrow M$ be a (not necessarily linear nor continuous) 2-local triple derivation on an arbitrary von Neumann algebra. In this case there exist orthogonal central projections $z_{1}, z_{2} \in M$ with $z_{1}+z_{2}=1$ such that:
$(-) z_{1} M$ is a finite von Neumann algebra;
$(-) z_{2} M$ is a properly infinite von Neumann algebra, (cf. [30, §2.2]).

By Lemma 2.11, for each $k=1,2, z_{k} T$ maps $z_{k} M$ into itself. By Corollary 2.10 and Proposition 2.12 both $z_{1} T$ and $z_{2} T$ are additive on $M_{s a}$. So $T=z_{1} T+z_{2} T$ also is additive on $M_{s a}$.

We have thus proved the following result:
Proposition 2.13. Let $T: M \rightarrow M$ be a (not necessarily linear nor continuous) 2-local triple derivation on an arbitrary von Neumann algebra. Then the restriction $\left.T\right|_{M_{s a}}$ is additive.

2.3. Main result.

We can state now the main result of this section.
Theorem 2.14. Let M be an arbitrary von Neumann algebra and let T : $M \rightarrow M$ be a (not necessarily linear nor continuous) 2-local triple derivation. Then T is a triple derivation (hence linear and continuous). Equivalently, the set $\operatorname{Der}_{t}(M)$, of all triple derivations on M, is algebraically 2-reflexive in the set $\mathcal{M}(M)=M^{M}$ of all mappings from M into M.

We need the following two Lemmata.
Lemma 2.15. Let $T: M \rightarrow M$ be a (not necessarily linear nor continuous) 2-local triple derivation on a von Neumann algebra with $T(\mathbf{1})=0$. Then there exists a skew-hermitian element $a \in M$ such that $T(x)=[a, x]$, for all $x \in M_{s a}$.

Proof. Let $x \in M_{s a}$. By Lemma 2.3 there exist a skew-hermitian element $a_{x, x^{2}} \in M$ such that $T(x)=\left[a_{x, x^{2}}, x\right], T\left(x^{2}\right)=\left[a_{x, x^{2}}, x^{2}\right]$.

Thus,

$$
T\left(x^{2}\right)=\left[a_{x, x^{2}}, x^{2}\right]=\left[a_{x, x^{2}}, x\right] x+x\left[a_{x, x^{2}}, x\right]=T(x) x+x T(x),
$$

i.e.

$$
\begin{equation*}
T\left(x^{2}\right)=T(x) x+x T(x), \tag{2.4}
\end{equation*}
$$

for every $x \in M_{s a}$.
By Proposition 2.13 and Lemma 2.2, $\left.T\right|_{M_{s a}}: M_{s a} \rightarrow M_{s a}$ is a real linear mapping. Now, we consider the linear extension \hat{T} of $\left.T\right|_{M_{s a}}$ to M defined by

$$
\hat{T}\left(x_{1}+i x_{2}\right)=T\left(x_{1}\right)+i T\left(x_{2}\right), x_{1}, x_{2} \in M_{s a} .
$$

Taking into account the homogeneity of T, Proposition 2.13 and the identity (2.4) we obtain that \hat{T} is a Jordan derivation on M. By [5, Theorem 1] any Jordan derivation on a semi-prime algebra is a derivation. Since M is von Neumann algebra, \hat{T} is a derivation on M (see also [33] and [16]). Therefore there exists an element $a \in M$ such that $\hat{T}(x)=[a, x]$ for all $x \in M$. In particular, $T(x)=[a, x]$ for all $x \in M_{s a}$. Since $T\left(M_{s a}\right) \subseteq M_{s a}$, we can assume that $a^{*}=-a$, which completes the proof.

Lemma 2.16. Let $T: M \rightarrow M$ be a (not necessarily linear nor continuous) 2-local triple derivation on a von Neumann algebra. If $\left.T\right|_{M_{s a}} \equiv 0$, then $T \equiv 0$.

Proof. Let $x \in M$ be an arbitrary element and let $x=x_{1}+i x_{2}$, where $x_{1}, x_{2} \in M_{s a}$. Since T is homogeneous, by passing to the element $(1+$ $\left.\left\|x_{2}\right\|\right)^{-1} x$ if necessary, we can suppose that $\left\|x_{2}\right\|<1$. In this case the element $y=\mathbf{1}+x_{2}$ is positive and invertible. Take skew-hermitian elements $a_{x, y}, b_{x, y} \in M$ such that

$$
T(x)=\left[a_{x, y}, x\right]+b_{x, y} \circ x, \text { and } T(y)=\left[a_{x, y}, y\right]+b_{x, y} \circ y .
$$

Since $T(y)=0$, we get $\left[a_{x, y}, y\right]+b_{x, y} \circ y=0$. By Lemma 2.4 we obtain that $\left[a_{x, y}, y\right]=0$ and $i b_{x, y} \circ y=0$. Taking into account that $i b_{x, y}$ is hermitian, y is positive and invertible, Lemma 2.5 implies that $b_{x, y}=0$.

We further note that $0=\left[a_{x, y}, y\right]=\left[a_{x, y}, \mathbf{1}+x_{2}\right]=\left[a_{x, y}, x_{2}\right]$, i.e. $\left[a_{x, y}, x_{2}\right]=$ 0 . Now, $T(x)=\left[a_{x, y}, x\right]+b_{x, y} \circ x=\left[a_{x, y}, x_{1}+i x_{2}\right]=\left[a_{x, y}, x_{1}\right]$, i.e. $T(x)=$ [$\left.a_{x, y}, x_{1}\right]$. Therefore,

$$
T(x)^{*}=\left[a_{x, y}, x_{1}\right]^{*}=\left[x_{1}, a_{x, y}^{*}\right]=\left[x_{1},-a_{x, y}\right]=\left[a_{x, y}, x_{1}\right]=T(x) .
$$

So $T(x)^{*}=T(x)$. Now, replacing x by $i x$ we obtain, from the homogeneity of T, that $T(x)^{*}=-T(x)$. Combining the last two identities we obtain that $T(x)=0$, which finishes the proof.

Proof of Theorem 2.14. Let us define $\widehat{T}=T-\delta\left(\frac{1}{2} T(\mathbf{1}), \mathbf{1}\right)$. Then \widehat{T} is a 2-local triple derivation on M with $\widehat{T}(\mathbf{1})=0$ (cf. Lemma 2.1) and $\widehat{T}(x)=$ $\widehat{T}(x)^{*}$, for every $x \in M_{s a}$ (cf. Lemma 2.2). By Lemma 2.15 there exists an element $a \in M$ such that $\widehat{T}(x)=[a, x]$ for all $x \in M_{s a}$. Consider the 2-local triple derivation $\widehat{T}-[a, \cdot]$. Since $\left.(\widehat{T}-[a, \cdot])\right|_{M_{s a}} \equiv 0$, Lemma 2.16 implies that $\widehat{T}=[a, \cdot]$, and hence $T=[a, \cdot]+\delta\left(\frac{1}{2} T(\mathbf{1}), \mathbf{1}\right)$, witnessing the desired statement.

References

[1] Sh. Ayupov, K.K. Kudaybergenov, 2-local derivations and automorphisms on $B(H)$, J. Math. Anal. Appl. 395, no. 1, 15-18 (2012).
[2] Sh. Ayupov, K.K. Kudaybergenov, 2-local derivations on von Neumann algebras, to appear in Positivity. DOI 10.1007/s11117-014-0307-3.
[3] T.J. Barton, Y. Friedman, Bounded derivations of JB*-triples, Quart. J. Math. Oxford 41, 255-268 (1990).
[4] C. Batty, L. Molnar, On topological reflexivity of the groups of *-automorphisms and surjective isometries of $B(H)$, Arch. Math. 67, 415-421 (1996).
[5] M. Brešar, Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 104, 10031006 (1988).
[6] M. Brešar, P. Šemrl, On local automorphisms and mappings that preserve idempotents, Studia Math. 113, no. 2, 101-108 (1995).
[7] L.J. Bunce, J.D.M. Wright, The Mackey-Gleason problem, Bull. Amer. Math. Soc. 26, 288-293 (1992).
[8] L.J. Bunce, J.D.M. Wright, The Mackey-Gleason problem for vector measures on projections in von Neumann algebras, J. London Math. Soc. 49, 133-149 (1994).
[9] M. Burgos, F.J. Fernández-Polo, J.J. Garcés, A.M. Peralta, Local triple derivations on C*-algebras, Communications in Algebra 42, 1276-1286 (2014).
[10] M. Burgos, F.J. Fernández-Polo, J.J. Garcés, A.M. Peralta, A Kowalski-Słodkowski theorem for 2-local *-homomorphisms on von Neumann algebras, preprint 2014.
[11] M. Burgos, F.J. Fernández-Polo, J.J. Garcés, A.M. Peralta, 2-local triple homomorphisms on von Neumann algebras and JBW*-triples, preprint 2014.
[12] M. Burgos, F.J. Fernández-Polo, A.M. Peralta, Local triple derivations on C*algebras and JB*-triples, Bull. London Math. Soc., doi:10.1112/blms/bdu024. arXiv:1303.4569v2.
[13] S. Dorofeev, On the problem of boundedness of a signed measure on projections of a von Neumann algebra, J. Funct. Anal. 103, 209-216 (1992).
[14] F.J. Fernández-Polo, A. Molino Salas, A.M. Peralta, Local triple derivations on real C*-algebras and JB*-triples, to appear in Bull. Malaysian Math. Sci. Soc.
[15] T. Ho, J. Martinez-Moreno, A.M. Peralta, B. Russo, Derivations on real and complex JB*-triples, J. London Math. Soc. (2) 65, no. 1, 85-102 (2002).
[16] B.E. Johnson, Symmetric amenability and the nonexistence of Lie and Jordan derivations, Math. Proc. Cambridge Philos. Soc. 120, no. 3, 455-473 (1996).
[17] B.E. Johnson, Local derivations on C ${ }^{*}$-algebras are derivations, Trans. Amer. Math. Soc. 353, 313-325 (2001).
[18] R.V. Kadison, Local derivations, J. Algebra 130, 494-509 (1990).
[19] W. Kaup, A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces, Math. Z. 183, 503-529 (1983).
[20] S.O. Kim, J.S. Kim, Local automorphisms and derivations on \mathbb{M}_{n}, Proc. Amer. Math. Soc. 132, no. 5, 1389-1392 (2004).
[21] S.O. Kim, J.S. Kim, Local automorphisms and derivations on certain C^{*}-algebras, Proc. Amer. Math. Soc. 133, no. 11, 3303-3307 (2005).
[22] D.R. Larson and A.R. Sourour, Local derivations and local automorphisms of $B(X)$, Proc. Sympos. Pure Math. 51, Part 2, Providence, Rhode Island 1990, pp. 187-194.
[23] J.-H. Liu, N.-C. Wong, 2-Local automorphisms of operator algebras, J. Math. Anal. Appl. 321 741-750 (2006).
[24] M. Mackey, Local derivations on Jordan triples, Bull. London Math. Soc. 45, no. 4, 811-824 (2013). doi: $10.1112 / \mathrm{blms} / \mathrm{bdt} 007$
[25] L. Molnar, 2-local isometries of some operator algebras, Proc. Edinburgh Math. Soc. 45, 349-352 (2002).
[26] L. Molnar, Local automorphisms of operator algebras on Banach spaces, Proc. Amer. Math. Soc. 131, 1867-1874 (2003).
[27] A.M. Peralta, A note on 2-local representations of C^{*}-algebras, to appear in Operators and Matrices.
[28] A. M. Peralta and B. Russo, Automatic continuity of triple derivations on C*-algebras and JB*-triples, Journal of Algebra 399, 960-977 (2014).
[29] F. Pop, On local representation of von Neumann algebras, Proc. Amer. Math. Soc. 132, No. 12, Pages 3569-3576 (2004).
[30] S. Sakai, C^{*}-algebras and W^{*}-algebras, Springer-Verlag, Berlin 1971.
[31] P. Šemrl, Local automorphisms and derivations on $B(H)$, Proc. Amer. Math. Soc. 125, 2677-2680 (1997).
[32] A.N. Sherstnev, Methods of bilinear forms in noncommutative theory of measure and integral, Moscow, Fizmatlit, 2008, 256 pp.
[33] A.M. Sinclair, Jordan homomorphisms and derivations on semisimple Banach algebras, Proc. Amer. Math. Soc. (3) 24, 209-214 (1970).
E-mail address: karim2006@mail.ru
Ch. Abdirov 1, Department of Mathematics, Karakalpak State University, Nukus 230113, Uzbekistan

E-mail address: oikhberg@illinois.edu
Dept. of Mathematics, University of Illinois, Urbana IL 61801, USA
E-mail address: oikhberg@illinois.edu
E-mail address: aperalta@ugr.es
Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain.

Current address: Visiting Professor at Department of Mathematics, College of Science, King Saud University, P.O.Box 2455-5, Riyadh-11451, Kingdom of Saudi Arabia.

E-mail address: brusso@uci.edu
Department of Mathematics, UC Irvine, Irvine CA, USA

[^0]: 2010 Mathematics Subject Classification. Primary 46L05; 46L40.
 Key words and phrases. triple derivation; 2-local triple derivation.
 Second author partially supported by Simons Foundation travel grant 210060. Third author partially supported by the Spanish Ministry of Science and Innovation, D.G.I. project no. MTM2011-23843, Junta de Andalucía grant FQM375, and the Deanship of Scientific Research at King Saud University (Saudi Arabia) research group no. RG-1435020.

