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Abstract. The aim of this note is to complete the description
of the Lie inner ideal structure of simple Artinian rings with invo-
lution and of simple rings with involution and minimal one-sided
ideals. Inner ideals are classified by adopting a Jordan approach
based on the notion of a subquotient of an abelian inner ideal.

1. Introduction

Inner ideals of Lie algebras are the analogues of one-sided ideals in

associative rings and algebras. They are subspaces B of a Lie algebra

L such that [B, [B, L]] ⊆ B. Since their introduction over 30 years ago

([F], [B2]), they have proven to be a useful tool for classifying both

finite-dimensional and infinite-dimensional simple Lie algebras.

One-dimensional inner ideals of a Lie algebra L are spanned by an

extremal element, that is, an element x with the property that [x, [x, y]]

is a multiple of x for all y ∈ L. Premet ([P1],[P2]) has shown that

every finite-dimensional simple Lie algebra over an algebraically closed

field of characteristic not 2 or 3 must have nonzero extremal elements.

Moreover, it follows from ([B2], [PS]) (see also [CIR]) that when the

field is algebraically closed of characteristic p > 5, the classical Lie

algebras (modular versions of the complex finite-dimensional simple

Lie algebras) can be characterized as the finite-dimensional simple Lie

algebras satisfying the following two equivalent conditions:

(i) they are generated by extremal elements;
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(ii) they are nondegenerate, (that is, they have no nonzero absolute

zero divisors, where by an absolute zero divisor (or sandwich

element) we mean an element x such that [x, [x, L]] = 0).

Thus, these special types of inner ideals play an essential role in the the-

ory of simple modular Lie algebras and in on-going efforts (see [St]) to

streamline their classification and to extend it to small characteristics.

Further evidence of the usefulness of inner ideals comes from [FGGN],

where it is shown that an abelian inner ideal B of finite length in

an arbitrary nondegenerate Lie algebra L over a commutative ring Φ

such that 2 and 3 are invertible in Φ gives rise to a finite Z-grading

L = L−n⊕· · ·⊕L0⊕· · ·⊕Ln with B = Ln. Zelmanov [Z] described the

simple Lie algebras over fields of characteristic 0 or p > 4n+1 with such

gradings in terms of finite Z-gradings of simple associative rings with

involution. A description of these associative rings and their gradings

was later provided by Smirnov in [S1],[S2]. As a result, any nonde-

generate simple Lie algebra with a nonzero abelian inner ideal of finite

length comes from a simple associative ring with a finite Z-grading

by taking the Lie commutator, from the skew-symmetric elements of

such a simple associative ring with involution, or from the Tits-Kantor-

Koecher construction of a Jordan algebra of a symmetric bilinear form,

or it is of exceptional type E6, E7, E8, F4, G2.

Let R be a simple associative ring of characteristic not 2 or 3 with an

involution ∗ and with minimal one-sided ideals, and let Z denote the

center of R. Such a simple ring R can be realized as the ring F(X) of

all finite rank linear operators a : X → X on a left vector space X over

a division ring with involution (∆,−), where the involution ∗ on F(X)

is given by the adjoint a∗ : X → X ((ax, y) = (x, a∗y), for all x, y ∈ X)

with respect to a nondegenerate Hermitian or skew-Hermitian form (, ),

((x, y) = ε(y, x), ε = ±1) on X. The ring R = F(X) is Artinian if and

only if X is finite-dimensional over ∆, in which case R is the complete

ring End∆ X of linear transformations of the vector space X. In this

paper we consider Lie algebras of the form

L = [K, K]/Z ∩ [K,K],



THE LIE INNER IDEAL STRUCTURE OF ASSOCIATIVE RINGS REVISITED 3

where K = Skew(R, ∗), the set of skew-symmetric elements of R with

respect to ∗. When R has dimension greater than 16 over its center,

L is a nondegenerate central simple Lie algebra over the symmetric

elements of the center of ∆ (relative to the involution −). The de-

scription of the inner ideals of such Lie algebras L was begun in [B1,

Thm. 5.5]. However, there is a case missing from that theorem and its

proof; namely, when the inner ideal B is such that b2 = 0 for all b ∈ B

and B cannot be written in the form eKe∗ for any idempotent e ∈ R

with e∗e = 0. (See 4.1 below for further discussion.) It is the goal

of this paper to finish the classification of the inner ideals of the Lie

algebras L = [K, K]/Z ∩ [K,K]. Theorem 6.1 gives the complete clas-

sification result - the previously omitted case is (ii.2) in the statement

of that theorem.

The finitary orthogonal Lie algebras L = fo(X, (, )) are Lie algebras

of the form [K,K]/Z∩ [K, K], where K = Skew(R, ∗), R = F(X), X is

a vector space over a field F of arbitrary (possibly infinite) dimension

greater than 4, and ∗ is the adjoint involution of a symmetric bilinear

form on X. Their inner ideals were described in [FGG2, Prop. 3.6 (iv)].

However, point spaces (abelian inner ideals all of whose nonzero ele-

ments x satisfy [x, [x, L]] = Fx) are missing from the statement of that

proposition because of the omission above. A further consequence of

this paper is that the description of the inner ideals in finitary orthog-

onal Lie algebras is now complete. (See Remarks 6.7 to follow.)

There is a strong connection between inner ideals of Lie algebras and

inner ideals of Jordan pairs (see [L1]) which has been developed in a

series of articles during the last five years ([FGG1]-[FGG3], [FGGN],

[DFGG1], [DFGG2]). In particular, results from [FGGN] enable us to

adopt a Jordan approach based on the notion of a subquotient of an

abelian inner ideal to obtain the desired Lie theoretic theorems.

2. Lie algebras and Jordan pairs

2.1. Throughout this paper, and unless specified otherwise, we will be

dealing with Lie algebras L, with [x, y] denoting the Lie bracket and adx

the adjoint map determined by x, and with Jordan pairs V = (V +, V −)

[L1] with Jordan triple products {x, y, z}, for x, z ∈ V σ, y ∈ V −σ,
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σ = ± and quadratic operators Qx(y) = 1
2
{x, y, x} over a ring of scalars

Φ containing 1
6
.

2.2. An element x ∈ V σ, σ = ±, is called an absolute zero divisor if

Qx = 0, and V is said to be nondegenerate if it has no nonzero absolute

zero divisors. Similarly, x ∈ L is an absolute zero divisor if ad2
x = 0,

and L is nondegenerate if it has no nonzero absolute zero divisors.

2.3. (INNER IDEALS) An inner ideal of V is a Φ-submodule B of

V σ such that {B, V −σ, B} ⊆ B. Similarly, an inner ideal of L is a Φ-

submodule B of L such that [B, [B, L]] ⊆ B. An abelian inner ideal of L

is an inner ideal B which is also an abelian subalgebra, i.e., [B,B] = 0.

(i) The socle of a nondegenerate Jordan pair V is

Soc V = (Soc V +, Soc V −),

where Soc V σ is the sum of all minimal inner ideals of V con-

tained in V σ [L2]. The socle of a nondegenerate Lie algebra L,

Soc L, is defined as the sum of all minimal inner ideals of L

[DFGG1].

(ii) By [L2, Thm. 2] (for Jordan pairs) and [DFGG1, Thm. 2.5] (for

Lie algebras), the socle of a nondegenerate Jordan pair or Lie

algebra is the direct sum of its simple ideals. Moreover, each

simple component of Soc L is either inner simple or contains an

abelian minimal inner ideal.

(iii) A Lie algebra L or Jordan pair V is said to be Artinian if it

satisfies the descending chain condition on all inner ideals.

2.4. (JORDAN SUBQUOTIENTS) Let B ⊆ V + be an inner ideal of V .

Following [LN], the kernel of B is the set KerV B = {y ∈ V − | QBy =

0}. Then (0, KerV B) is an ideal of the Jordan pair (B, V −), and the

quotient SubV B = (B, V −)/(0, KerV B) = (B, V −/ KerV B) is called

the subquotient of B. The kernel and the corresponding subquotient of

an inner ideal B ⊆ V − are defined in a similar way.

The analogues of all these results hold for abelian inner ideals of a

Lie algebra, if we replace the Jordan triple product {x, y, z} by the left

double commutator [[x, y], z] as we describe next.
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2.5. (LIE SUBQUOTIENTS) Let M be an abelian inner ideal of L.

(i) The kernel of M is the set KerL M := {y ∈ L | [M, [M, y]] = 0}.
(ii) The pair of Φ-modules SubL M := (M, L/ KerL M) with the

triple products given by

{m, a, n} := [[m, a], n] for every m,n ∈ M and a ∈ L

{a,m, b} := [[a,m], b] for every m ∈ M and a, b ∈ L,

where x denotes the coset of x relative to the submodule KerL M ,

is a Jordan pair called the subquotient of M [FGGN, Lem. 3.2].

(iii) A Φ-submodule B of M is an inner ideal of L if and only if it

is an inner ideal of SubL M [FGGN, 3.5 (i)].

2.6. (GRADINGS) (See [FGGN, Prop. 3.3].) Let L = L−n ⊕ · · · ⊕L0⊕
· · · ⊕ Ln be a (2n + 1)-grading. Then Ln and L−n are abelian inner

ideals. Moreover, if L is nondegenerate, then SubL Ln is isomorphic

to the Jordan pair (Ln, L−n); the triple products are given by the left

double commutator.

Definition 2.7. Let B and B′ be abelian inner ideals of Lie algebras

L and L′ respectively. Then B and B′ are said to be isomorphic if

SubL B ∼= SubL′ B
′ as Jordan pairs. The same definition makes sense

for inner ideals of Jordan pairs.

Note that if ϕ : L → L′ is an isomorphism of Lie algebras and

ϕ(B) = B′, then B and B′ are isomorphic in the above sense, but the

converse is not true. For instance, the Lie algebra of type E7 contains

two abelian inner ideals of dimension 5 which are not conjugate under

any isomorphism, but whose respective subquotients are isomorphic

[DFGG2]. A similar phenomenon happens for the Jordan algebra of

Albert type [M, p. 457].

Lemma 2.8. Let B and C be abelian inner ideals of a Lie algebra L

with C ⊂ B, and put S := SubL B. Then the Jordan pairs SubL C and

SubS C are isomorphic.

Proof. For x ∈ L/ KerL B, x ∈ KerS C if and only if x ∈ KerL C.

Hence the identity mapping on L induces a linear isomorphism ϕ of
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L/ KerL C onto S−/ KerS C. Then (IdC , ϕ) : SubL C → SubS C is the

required isomorphism. ¤

This lemma together with 2.5 (iii) reduces the classification, up to

isomorphism, of the abelian inner ideals of a Lie algebra L to that of

the inner ideals of the subquotients of the maximal abelian inner ideals

of L.

3. Isotropic idempotents

3.1. In this paper, our primary focus is on Lie algebras of the form

L = [K, K]/Z ∩ [K,K],

where K = Skew(R, ∗) is the set of skew-symmetric elements of a

simple associative ring R of characteristic 6= 2, 3 with involution ∗,
center Z, and minimal one-sided ideals (in particular, we consider the

case when R is an Artinian ring).

3.2. Recall that a simple ring R with involution ∗ and minimal one-

sided ideals can be realized as the ring F(X) of all finite rank lin-

ear operators a : X → X on a left vector space X over a division

ring with involution (∆,−), where the involution ∗ is given by the

adjoint a∗ : X → X ((ax, y) = (x, a∗y), for all x, y ∈ X) with

respect to a nondegenerate Hermitian or skew-Hermitian form (, ),

((x, y) = ε(y, x), ε = ±1) [BMM].

Note that R = F(X) is Artinian if and only if X is finite-dimensional

over ∆. In this case, R is the complete ring End∆ X of linear transfor-

mations of the vector space X.

3.3. Let X be a left vector space over (∆,−) endowed with a nonde-

generate Hermitian or skew-Hermitian form (, ). Given x, y ∈ X, write

y∗x to denote the linear operator on X defined by y∗x(x′) = (x′, y)x

for all x′ ∈ X.

(i) (y∗x)∗ = εx∗y and therefore y∗x ∈ F(X). In fact, any a ∈ F(X)

can be written as a =
∑n

j=1 y∗j xj, where both the yj and the xj

are linearly independent.

(ii) (y∗x)(z∗w) = z∗(w, y)x for all x, y, z, w ∈ X.
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(iii) The operator defined by [x, y] := x∗y − εy∗x, x, y ∈ X, belongs

to K := Skew(F(X), ∗), and it will be called a skew-trace. If V

and W are subspaces of X, by [V, W ] we will mean the additive

span of the skew-traces [v, w], v ∈ V , w ∈ W . With this

convention, K = [X, X].

3.4. Recall that if there exists 0 6= ξ ∈ Skew(∆,−), the involution −
on ∆ can be replaced by ˜, defined as α̃ = ξ−1αξ for all α ∈ ∆, and the

Hermitian form (respectively the skew-Hermitian form) (, ) over (∆,−)

can be replaced by (, )ξ, where (x, y)ξ := (x, y)ξ is a skew-Hermitian

form (respectively Hermitian form) over (∆, ˜ ), without changing the

adjoint involution [K, 1.13 (a)]. So, when working with Lie algebras of

skew-symmetric operators, we can consider two types of inner products:

symmetric, that is, ∆ is a field with the identity map as the involution

(this is the case when Skew(∆,−) = 0 and (, ) is Hermitian), and

skew-Hermitian (in the rest of situations), after possibly changing the

involution in ∆.

Assume that ∆ is a field F with the identity map as the invo-

lution and X is an F-vector space of dimension (possibly infinite)

greater than 4. If (, ) is symmetric (respectively, skew-symmetric), then

Skew(F(X), ∗) = [Skew(F(X), ∗), Skew(F(X), ∗)] is a nondegenerate

central simple Lie algebra over F, called the finitary orthogonal algebra

fo(X, (, )) (respectively, the finitary symplectic algebra fsp(X, (, )) (see

[B] for more details).

3.5. Let e =
∑n

j=1 y∗j xj, where both the yj and the xj are linearly

independent. Then e is an idempotent if, and only if, the subsets {xi},
{yj} are dual, i.e., (xi, yj) = δij for all xi, yj.

3.6. For an idempotent e =
∑n

j=1 y∗j xj as above, the following con-

ditions are equivalent: (i) e∗e = 0, (ii) eX is a totally isotropic sub-

space. An idempotent e satisfying these equivalent conditions is called

isotropic. If both e and e∗ are isotropic, we say that e is a ∗-orthogonal

idempotent.
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Lemma 3.7. Let L = [K, K]/Z ∩ [K, K], where Z is the center of

R = F(X), and let e =
∑n

j=1 y∗j xj be an isotropic idempotent of R.

Then

(i) eKe∗ = [eX, eX] is an abelian inner ideal of L, and

(ii) there exists a ∗-orthogonal idempotent f ∈ R such that eKe∗ =

fKf ∗. In fact, f =
∑n

j=1 z∗j xj, where the pairs {xj, zj} span

pairwise hyperbolic planes, so rank e = rank f . Moreover, if R

is Artinian, then rank f ≤ r, where r is the Witt index of (, ).

Proof. (i) This follows from [B1, Thm. 5.5] and [FGG2, (11)].

(ii) Since e is isotropic, e =
∑n

j=1 y∗j xj, where the xj are linearly

independent and they span a totally isotropic subspace. Using [K,

1-13(h)], which also works in the skew-Hermitian case, we can con-

struct a sequence z1, ..., zn of vectors of X such that (xi, zj) = δij and

(zi, zj) = 0 for all i, j. Then f =
∑n

j=1 z∗j xj is the required ∗-orthogonal

idempotent. ¤

4. Maximal abelian inner ideals

Let R be a simple Artinian ring with involution, realized as in the

previous section as the complete ring R = End∆ X of linear transfor-

mations on a finite-dimensional vector space X with a symmetric or

skew-Hermitian form (, ). Assume further that the division ring ∆ has

characteristic 6= 2, 3 and that dimZ R > 16. (Note that the center of

R is given by Z = Z(∆) IdX , where Z(∆) is the center of ∆.) Then

L = [K,K]/Z ∩ [K,K] is a nondegenerate central simple Lie algebra

over the set Sym(Z(∆),−) of symmetric elements of Z(∆) with respect

to the involution − (c.f. [DFGG1, Lem. 4.9]).

4.1. Let B be a proper (equivalently abelian, by [B1, Thm. 4.2]) inner

ideal of the Lie algebra L = [K,K]/Z ∩ [K, K]. Theorem 5.5 of [B1]

states that one of two possibilities holds:

(i) B = eKe∗ for some isotropic idempotent e (in this case a2 = 0

for each a ∈ B), or

(ii) ∆ is a field, say F, with the identity map as the involution, and

there is a basis {x1, ..., xn} of X such that B is the F-span of

the matrix units e1j − ej2, j ≥ 3 with respect to this basis (in



THE LIE INNER IDEAL STRUCTURE OF ASSOCIATIVE RINGS REVISITED 9

this case a2 6= 0 for some a ∈ B); equivalently, B = [x,H⊥],

where H is a hyperbolic plane of the inner product space X and

x is a nonzero isotropic vector of H (c.f. [FGG2, Prop. 3.8]).

However, there do exist proper inner ideals B in L such that a2 = 0

for each a ∈ B, but which cannot be written in the form eKe∗ for any

isotropic idempotent. This case was omitted from the statement and

proof of Theorem 5.5 of [B1]. The reason for this omission occurs in

lines 6 and 7 of [B1, p. 583], where it is asserted that V [K, K]V ⊆
V . The correct statement is {V, [K, K], V } ⊆ V , and this leads to

additional cases which must be considered.

Example 4.2. Let L = o(8,F) be a split simple Lie algebra of type D4

over a field F of characteristic not 2. Thus, in the ring R = EndF(F8)

of linear transformations on the vector space F8, L is the subspace of

transformations which are skew-symmetric relative to a nondegenerate

symmetric bilinear form on F8, so L = K = Skew(R, ∗) in this case.

Viewing L as 8 × 8 matrices over F as in [J, p. 141]), let B be the 2-

dimensional subspace of L spanned by the matrices e16− e25, e17− e35,

where the eij are matrix units. Then B is an inner ideal of L such

that a2 = 0 for every a ∈ B, but B is not of the form eKe∗ for any

isotropic idempotent e. Indeed, by Lemma 3.7 (i), eKe∗ = [eX, eX]

(where X = F8) cannot have dimension 2 for any isotropic idempotent

e.

Nevertheless, we can enlarge B to get an inner ideal of L = o(8,F)

of type eKe∗. Let C := B + F(e27 − e36). Then C = eKe∗ for e =

e11 + e22 + e33, (e∗ = e55 + e66 + e77).

The proof of [B1, Thm. 5.5] actually proves the following result.

Proposition 4.3. Let B be a proper (equivalently, abelian) inner ideal

of L = [K,K]/Z ∩ [K, K].

(i) If a2 6= 0 for some a ∈ B, then (, ) is symmetric and B =

[x, H⊥], where H is a hyperbolic plane of X and x is a nonzero

isotropic vector of H. Moreover, B is a maximal abelian inner

ideal (see the proof of [FGG2, Prop. 3.8]).
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(ii) If a2 = 0 for each a ∈ B, then B ⊂ eKe∗ = [eX, eX] for

some ∗-orthogonal idempotent e. Moreover, eKe∗ is a maximal

abelian inner ideal if and only if rank e is equal to the Witt index

of (, ) (see Lemma 3.7 (ii)).

The information provided by this proposition is actually sufficient to

determine all the inner ideals of L, by the relationship between abelian

inner ideals and Jordan pairs, via the notion of subquotient.

Proposition 4.4. Let M be an maximal abelian inner ideal of the Lie

algebra L = [K, K]/Z ∩ [K,K].

(i) If M = [x,H⊥], where H is a hyperbolic plane of the inner

product space X and x is a nonzero isotropic vector of H, then

SubL M is isomorphic to the Clifford pair (H⊥, H⊥), defined by

the restriction of (, ) to H⊥.

(ii) Suppose that M = eKe∗, where e is a ∗-orthogonal idempotent

of R. If (, ) is skew-Hermitian (respectively, symmetric), then

SubL M is isomorphic to the Jordan pair of Hermitian matrices

(Hr(∆,−), Hr(∆,−)) (respectively, SubL M is isomorphic to

the Jordan pair of alternating matrices (Ar(F), Ar(F)), where r

is the Witt index in both cases.

Proof. (i) In this case, L is the finitary orthogonal algebra fo(X, (, )),

so it can be realized as the Tits-Kantor-Koecher algebra of the Clifford

pair (H⊥, H⊥) by [FGG1, 5.11] (see also [FGG1, 5.7] for the definition

of a Clifford pair). Moreover, extending x to a hyperbolic basis {x, y}
of H, we can verify (using formula (12) of [FGG2]) that the pair of

mappings (z 7→ [x, z], v 7→ [y, v]) defines an isomorphism of the Clifford

Jordan pair (H⊥, H⊥) onto the Jordan pair ([x,H⊥], [y,H⊥]), which is

isomorphic to SubL M by 2.6.

(ii) The ∗-orthogonal idempotent e induces a 5-grading R = R−2 ⊕
R−1 ⊕ R0 ⊕ R1 ⊕ R2 such that R2 = eRe∗ and R−2 = e∗Re, and a 5-

grading in L with L2 = eKe∗ and L−2 = e∗Ke, so by 2.6, SubL eKe∗ ∼=
(eKe∗, e∗Ke). By Lemma 3.7 (iii), e =

∑r
i=1 y∗i xi, where the pairs

{xi, yi} span pairwise orthogonal hyperbolic planes Hi, and r is the

Witt index of (, ). Then v :=
∑r

i=1 y∗i yi ∈ e∗Re is an invertible element
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of the associative pair (eRe∗, e∗Re) with inverse u = ε
∑r

i=1 x∗i xi ∈
eRe∗, (ε = ± according to whether (, ) is symmetric or skew-Hermitian).

Hence (eRe∗, e∗Re) is isomorphic to the associative pair (S, S), where

S is the unital ring with unit element u defined on the abelian group

(eRe∗, +) by the product a · b := avb, for all a, b ∈ eRe∗. More-

over, since v∗ = εv, the mapping ? := ε∗ defines an involution on the

ring S such that eKe∗ = Skew(eRe∗, ∗) = Sym(S, ?) if (, ) is skew-

Hermitian, and eKe∗ = Skew(eRe∗, ∗) = Skew(S, ?) if (, ) is sym-

metric. Then we have the Jordan pair isomorphisms (eKe∗, e∗Ke) ∼=
(Sym(S, ?), Sym(S, ?)) ∼= Hr(∆,−), Hr(∆,−)) if (, ) is skew-Hermitian,

and (eKe∗, e∗Ke) ∼= (Skew(S, ?), Skew(S, ?)) ∼= (Ar(∆), Ar(∆)) with ∆

a field, F, if (, ) is symmetric. ¤

5. Point spaces

5.1. POINT SPACES OF JORDAN PAIRS

Assume here that our ring of scalars Φ is a field F.

Let V be a Jordan pair. A subspace P ⊆ V σ, σ = ±, is called a point

space if QxV
−σ = Fx for any nonzero x ∈ P . Note that any subspace

of P is also a point space, and Fx is a minimal inner ideal of V for any

nonzero x ∈ P .

5.2. Let V + be a left module and V − be a right module over an F-

algebra R, and let 〈, 〉 : V + × V − → R be an R-bilinear form. Then

V = (V +, V −) is a Jordan pair over F with Qxy = 〈x, y〉x and Qyx =

y〈x, y〉, for x ∈ V +, y ∈ V −.

Example 5.3. Let V = (V +, V −), the Jordan pair defined by a bilinear

form 〈, 〉 over an F-algebra R. Then V ± are point spaces if and only 〈, 〉
is nondegenerate and R = F (in particular, the subspace M1×r(F) is a

point space of the Jordan pair (M1×r(F),Mr×1(F)) of row matrices and

column matrices). As the next theorem indicates, every point space

has this form when V + is finite-dimensional.

Theorem 5.4. Let V = (V +, V −) be a nondegenerate Jordan pair. If

V + is a point space, then V is the Jordan pair defined by a nondegen-

erate bilinear form. Moreover, if V + has finite dimension, say r, then

V is the Jordan pair (M1×r(F),Mr×1(F)).
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Proof. For any nonzero x ∈ V +, QxV
− = Fx is a minimal inner ideal

of V , so Soc V + = V +. Let (e+, e−) be a nonzero idempotent of V

and let V = V2 ⊕ V1 ⊕ V0 be the corresponding Peirce decomposition.

Then V0 is a nondegenerate Jordan pair with V +
0 being a point space.

We claim that V +
0 = 0, and hence V −

0 = 0 too, by the nondegeneracy

of V0. If V +
0 6= 0, then V0 would contain a nonzero idempotent f =

(f+, f−), and hence Qe+V − ∩ Qf+V − = 0 by [L1, 5.4], which leads to

the contradiction:

F(e+ + f+) = Qe++f+V − = Qe+V − ⊕Qf+V − = Fe+ ⊕ Ff+.

Therefore, V = V2 ⊕ V1 is a nondegenerate Jordan pair coinciding

with its socle. Further, V has capacity one (and hence it is simple)

and two additional properties: (i) V has no invertible elements unless

V = (F,F), and (ii) the coordinate system of V is the field F itself.

By the classification of Jordan pairs of finite capacity [L1, 12.12], V is

the Jordan pair defined by a nondegenerate bilinear form 〈, 〉 : V + ×
V − → F (see [LN, 5.11] for a related result). Finally, if V + has finite

dimension, say r, then V − is canonically isomorphic to the dual of V +.

Via the canonical isomorphism, we can identify the Jordan pair V with

(M1×r(F),Mr×1(F)). ¤

5.5. POINT SPACES IN LIE ALGEBRAS

For the remainder of this section, L will denote a Lie algebra over a

field F of characteristic 6= 2, 3.

Definition 5.6. A subspace P of L will be called a point space if

[P, P ] = 0 and if ad2
x L = Fx for every nonzero element x ∈ P .

5.7. Note that the following hold:

(i) If P is a point space, then P is an abelian inner ideal of L, P is

a point space of the Jordan pair SubL P , and any subspace of

P is also a point space.

(ii) Let [x,H⊥] be as in Proposition 4.4 (i). An F-subspace P of

[x, H⊥] is a point space if, and only if, P = [x, S], where S is a

totally isotropic subspace of H⊥.

(iii) The abelian inner ideals B and C given in Example 4.2 are

point spaces.
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(iv) In [DFGG2], it is shown that the classical Lie algebras of types

An, Bn+1, and Dn+1 contain point spaces of dimension n, hence,

by (i), point spaces Pi of dimension i = 1, . . . , n. In fact,⊕n
j=1 Fej,n+1 is a point space of An = sln+1(F). On the con-

trary, any nonzero point space of a classical Lie algebras of type

Cn is one-dimensional.

Corollary 5.8. Assume that L is nondegenerate, and let P be a point

space of L. Then SubL P is the Jordan pair defined by a nondegenerate

bilinear form over F. In particular, if P has finite dimension, say r,

then SubL P ∼= (M1×r(F),Mr×1(F)).

Proof. This follows from Theorem 5.4, since P is a point space of

the nondegenerate Jordan pair SubL P = (P, L/ Ker P ) by [FGGN,

3.5 (iii)]. ¤

5.9. POINT SPACES OF FINITARY ORTHOGONAL ALGEBRAS

In this subsection, we describe the point spaces of a finitary or-

thogonal algebra fo(X, (, )) over an F-vector space X of (possibly in-

finite) dimension greater than 4 (see 3.4 for definitions). This is by

no means a restriction since, as will be seen later, in a Lie algebra

L = [K, K]/Z ∩ [K,K] coming from a simple ring R with involution

∗ and minimal one-sided ideals (as in 3.1), point spaces of dimension

greater than 1 occur only when ∗ is the adjoint involution of a sym-

metric bilinear form, i.e., when L is a finitary orthogonal algebra.

The next technical result will used in what follows.

Lemma 5.10. Any nonzero b ∈ fo(X, (, )) has an expression of the

form b =
∑n

k=1[x2k−1, x2k], where {x1, ..., x2n} is linearly independent.

Proof. This is straightforward to show. ¤

Lemma 5.11. An F-subspace P of L = fo(X, (, )) is a point space if,

and only if, all of its elements have rank ≤ 2 and square 0; equivalently,

for any nonzero element a ∈ P , a = [x1, x2], where Fx1+Fx2 is a totally

isotropic two-dimensional subspace.

Proof. Let P be a point space of fo(X, (, )). For any a ∈ P , a2 = 0

(otherwise, by [FGG2, Prop. 3.8], P would be of the form [x,H⊥],
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which is not a point space by 5.7 (ii)). By Lemma 5.10, the rank of

every element of L is even. Suppose that P contains an element a

whose rank is ≥ 4, i.e., a =
∑n

k=1[x2k−1, x2k] ∈ P where n ≥ 2 and

the xi are linearly independent. Taking {yi} dual to {xi}, we obtain

by 3.3 (ii) that b = [y2, y1] is an element of L satisfying 1/2[[a, b], a] =

aba = [x1, x2] /∈ Fa, which is a contradiction. Conversely, if every

nonzero element a of P has rank 2 and a2 = 0, then P is a point space.

Indeed, let a = [x1, x2] ∈ P and c ∈ L. Then

1

2
[[a, c], a] = aca = [x1, x2]c[x1, x2] = (x∗1x2 − x∗2x1)c(x

∗
1x2 − x∗2x1)

= (x∗1x2 − x∗2x1)(x
∗
1cx2 − x∗2cx1)

= x∗1(cx2, x1)x2 − x∗2(cx1, x1)x2

−x∗1(cx2, x2)x1 + x∗2(cx1, x2)x1 = (cx2, x1)a ∈ Fa,

since (cx, x) = 0 for any x ∈ X because c is skew-symmetric and (,) is

symmetric. Therefore, we only need to show that P is abelian. First

note that if {x1, x2} ⊂ X is linearly independent,

[x1, x2]
2 = x∗1(x2, x1)x2 − x∗2(x1, x1)x2 − x∗1(x2, x2)x1 + x∗2(x1, x2)x1 = 0

if, and only if, (x1, x1) = (x1, x2) = (x2, x2) = 0. Now let a = [x1, x2]

and b = [x3, x4] be two nonzero elements of P . Since a+b has rank ≤ 2,

{x1, x2, x3, x4} is linearly dependent, say x4 = αx1 + βx2 + γx3. Then

b = [x3, αx1 +βx2] where x1, x2 and x3 satisfy the following orthogonal

relations:

(xi, xi) = 0, for i = 1, 2, 3, (x1, x2) = 0, and (x3, αx1 + βx2) = 0.

Now we have

[b, a] = ba− ab = b[x1, x2]− [x1, x2]b

= b(x∗1x2 − x∗2x1)− (x∗1x2 − x∗2x1)b

= x∗1(bx2)− x∗2(bx1) + (bx1)
∗x2 − (bx2)

∗x1

= [x1, bx2] + [bx1, x2].
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But

b = [x3, αx1 + βx2] = α[x3, x1] + β[x3, x2]

= α(x∗3x1 − x∗1x3) + β(x∗3x2 − x∗2x3)

implies by the orthogonal relations,

bx1 = α(x1, x3)x1 + β(x1, x3)x2 and bx2 = α(x2, x3)x1 + β(x2, x3)x2.

Hence,

[b, a] = [x1, bx2] + [bx1, x2] = β(x2, x3)[x1, x2] + α(x1, x3)[x1, x2] = 0

by the orthogonal relations again. ¤

5.12. THE TYPE OF A POINT SPACE IN fo(X, (, )))

A point space P of fo(X, (, )) is said to be of type 1 if there exists

a nonzero vector, u, in the image of any nonzero a ∈ P . Point spaces

which are not of type 1 are said to be of type 2. Let S be a totally

isotropic subspace of X of dimension greater than 1. If u is a nonzero

vector in S, then P = [u, S] is a point space of fo(X, (, )) by Lemma

5.11, and P is of type 1 since u is in the image of any nonzero element

of P . As we see next, every point space of type 1 in fo(X, (, )) has this

form.

Proposition 5.13. Every point space P of type 1 of the finitary or-

thogonal algebra fo(X, (, )) is of the form [u, S], where S is a totally

isotropic subspace of X of dimension > 1 and u is a nonzero vector

of S. Moreover, S is uniquely determined by P , and if dim S > 2,

[u, S] = [v, S] implies v = αu for some α ∈ F.

Proof. Let u be a nonzero vector which lies in the image of every

nonzero element of P . Set S := {x ∈ X | [u, x] ∈ P}. Clearly,

S is a subspace of X and [u, S] ⊆ P . The reverse inclusion also

holds: let a = [x1, x2] ∈ P , where {x1, x2} linearly independent. Since

u ∈ Im(a), u = α1x1 + α2x2, and hence [u, x2] = [α1x1, x2] = α1a ∈ P

implies that x2 ∈ S (the same is true for x1). Moreover, one of

the αi, say α1, is different from 0. Hence [u, x2] = [α1x1, x2] im-

plies a = [x1, x2] = [u, α−1
1 x2] ∈ [u, S]. For the last part, note that

S = {ax | a ∈ P, x ∈ X}, and therefore S is uniquely determined by
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P . Suppose now that P = [v, S] for another nonzero vector v of S.

If {u, v} is linearly independent, then for any s ∈ S and a = [u, s],

v ∈ Im(a) implies {v, s, u} is linearly dependent, i.e., dim S = 2. ¤

Lemma 5.14. Let P be a point space of L = fo(X, (, )). If P con-

tains three elements a = [x1, x2], b = [x1, x3] and c = [x2, x3] such that

{x1, x2, x3} is linearly independent, then P = Fa ⊕ Fb ⊕ Fc; equiva-

lently, P = eKe∗ where e ∈ F(X) is an isotropic idempotent of rank 3.

Moreover, P is of type 2 and a maximal point space.

Proof. Let N be a point space of L containing P , and let [u, v] be any

nonzero element of N . By Lemma 5.11, each of the sets {u, v, x1, x2},
{u, v, x1, x3} and {u, v, x2, x3} is linearly dependent. Hence {u, v} ⊂ S,

the linear span of {x1, x2, x3}. Therefore, N = Fa ⊕ Fb ⊕ Fc = P .

Moreover, P is of type 2 since (Fx1⊕Fx2)∩(Fx1⊕Fx3)∩(Fx2⊕Fx3) = 0.

Finally, Fa ⊕ Fb ⊕ Fc = [S, S] = eKe∗ for any idempotent e ∈ F(X)

such that eX = S. ¤

Corollary 5.15. Suppose that X contains a totally isotropic subspace

of dimension 5. Then fo(X, (, )) has two point spaces of dimension 3

which are not conjugate under any isomorphism of fo(X, (, )).

Proof. Let {x1, x2, x3, x4, x5} be a linearly independent subset of X

whose linear span is totally isotropic, and let S denote the linear span

of x2, x3, x4. Then P = [S, S] and N = [x1,Fx1 + S] are point spaces

of dimension 3. Moreover, P is maximal by Lemma 5.14, but N is

contained in the 4-dimensional point space [x1,Fx1 + S + Fx5]. ¤

Theorem 5.16. Let P be a point space of L = fo(X, (, )). Then either

P is of type 1, or P = eKe∗ for some isotropic idempotent e of rank 3

and P is a point space of type 2.

Proof. If dim P = 1, then P = F[x1, x2] is of type 1. The same is true if

dim P = 2. Indeed, P = Fa⊕ Fb implies, by Lemma 5.11, a = [x1, x2]

and b = [x3, α1x1 + α2x2]. Hence P = [u, S], where u = α1x1 + α2x2

and S = Fx1 + Fx2 + Fx3.

Suppose then that dim P ≥ 3, and let (a, b, c) be any triple of linearly

independent elements of P . By Lemma 5.11, we may write a = [x1, x2],
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b = [x3, y1] and c = [x4, y2], where {y1, y2} is contained in the linear

span of {x1, x2}, each of the sets {x1, x2, x3} and {x1, x2, x4} is linearly

independent, and {x3, x4, y1, y2} is linearly dependent.

If for some a, b, c as above we have that {y1, y2} is linearly indepen-

dent, then we can write x4 = αx3 + βy1 + γy2 with α 6= 0, and hence

[x3, y2] ∈ P . Since [y1, y2] and [x3, y1] also belong to P , we have by

Lemma 5.14 that P = eKe∗ for some isotropic idempotent e of rank 3.

If on the contrary, for fixed a = [x1, x2] we have that {y1, y2} is

linearly dependent for any choice of b, c, then P is a point space of

type 1. ¤

5.17. GRADINGS INDUCED BY FINITE-DIMENSIONAL POINT SPACES

It was shown in [FGGN, Cor. 5.2] that each abelian inner ideal B of

finite length in a nondegenerate Lie algebra L induces a finite (2n+1)-

grading L = L−n ⊕ · · · ⊕ L0 ⊕ · · · ⊕ Ln such that B = Ln.

In this subsection we construct the grading induced by a finite-

dimensional point space P of the finitary orthogonal algebra fo(X, (, )).

Since gradings induced by inner ideals of the form eKe∗, where e is an

isotropic idempotent, were described in [FGGN, Prop. 6.7], we can as-

sume that P is of type 1, i.e, P = [x, S], where S is a finite-dimensional

totally isotropic subspace of X and x ∈ S.

Proposition 5.18. Let P = [x, S] be a finite-dimensional point space

of type 1 of the finitary algebra fo(X, (, )). Then L has a 7-grading with

L3 = P .

Proof. Let {x = x1, x2, . . . , xn} be a basis of S. As noted in the proof

of Lemma 3.7 (ii), we can construct a sequence y1, y2, . . . , yn of vectors

of X such that (xi, yj) = δij and (yi, yj) = 0 for all i, j. Set U =

Fx2⊕ · · ·⊕Fxn, V = Fy2⊕ · · ·⊕Fyn, and W = (Fx1⊕U ⊕V ⊕Fy1)
⊥.

Since Fx1 ⊕ U ⊕ V ⊕ Fy1 is a nondegenerate subspace of X, X =

Fy1 ⊕ U ⊕ W ⊕ V ⊕ Fx1. Let e0, e1, e2, e3, e4 be the projections of

X = Fy1 ⊕ V ⊕W ⊕ <U ⊕ Fx1 onto Fy1, V , W , U , Fx1, respectively.

Let L(X) denote the ring of all linear operators on X having an adjoint

with respect to (, ). It is easy to see that e0, e1, e2, e3, e4 are idempotents

in L(X) with e∗0 = e4, e∗1 = e3 and e∗2 = e2, which induces a 9-grading

R = R−4 ⊕R−3 ⊕R−2 ⊕R−1 ⊕R0 ⊕R1 ⊕R2 ⊕R3 ⊕R4 in the simple
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ring R = F(X) with Rk =
∑

i−j=k eiRej for all k. Moreover, each

Rk is invariant under ∗ and Skew(R4, ∗) = Skew(R−4, ∗) = 0. Hence

L = fo(X, (, )) = Skew(F(X), ∗) = L−3⊕L−2⊕L−1⊕L0⊕L1⊕L2⊕L3,

where Lk = Skew(Rk, ∗), is a 7-grading in L with L3 = Skew(e4Re1 +

e3Re0, ∗) = {e4ae1+e3be0−e3a
∗e0−e4b

∗e1 | a, b ∈ R} = {e4(a−b∗)e1−
e3(a

∗ − b)e0 | a, b ∈ R} = {e4ce1 − (e4ce1)
∗ | c ∈ R}. Take c = y∗x, for

x, y ∈ X (any c ∈ R is a sum of rank one operators of this form). Then

e4ce1 = e4(y
∗x)e1 = (e∗1y)∗e4x = (e3y)∗e4x = u∗(αx1), with α ∈ F and

u = e3y ∈ U , implies e4ce1 − (e4ce1)
∗ = u∗(αx1) − (αx1)

∗u = [αu, x1].

Therefore, L3 = [x1, U ] = [x1,Fx1 + U ] = [x, S] = P . ¤

6. Inner ideal structure of rings with involution

We return to the case that R is a simple Artinian ring of charac-

teristic 6= 2, 3 with involution ∗ and center Z such that dimZ R > 16,

realized as the complete ring End∆ X of linear transformations on a

vector space X over a division ring with involution (∆,−), where the

involution ∗ is the adjoint relative to a nondegenerate symmetric or

skew-Hermitian form on X as in 3.2. Also as above, K = Skew(R, ∗),
the skew-symmetric elements of R relative to ∗. Everything is ready

to state and prove the completed version of [B1, Thm. 5.5].

Theorem 6.1. Let R = End∆ X be a simple Artinian ring of charac-

teristic 6= 2, 3 with involution ∗ such that dimZ R > 16, and let B be a

proper (equivalently, abelian) inner ideal of L = [K, K]/Z ∩ [K, K].

(i) If there exists a ∈ B with a2 6= 0, then L = fo(X, (, )) and

B = [x,H⊥], where H is a hyperbolic plane of X and x is a

nonzero isotropic vector of H.

(ii) If every a ∈ B has a2 = 0, then

(ii.1) if (, ) is skew-Hermitian, B = gKg∗ = [gX, gX], where g

is an isotropic idempotent of R,

(ii.2) if (, ) is symmetric, either B is a point space of type 1, or

B = gKg∗ for some isotropic idempotent of rank greater

than 2.

Moreover, any subspace [x,H⊥] is a maximal abelian inner ideal, while

gKg∗ is a maximal abelian inner ideal if and only if rank g is equal to
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the Witt index of (, ). Two point spaces are isomorphic if and only if

they have the same dimension; and for any point space P of dimension

n, SubL P ∼= (M1×n(F), Mn×1(F)).

Proof. By Proposition 4.3 (i), it suffices to consider the case that a2 = 0

for each a ∈ B. Then, by (ii) of Proposition 4.3, B ⊆ eKe∗ for a ∗-
orthogonal idempotent e. If (, ) is skew-Hermitian (respectively, sym-

metric), we have by Proposition 4.4 (ii) that SubL eKe∗ is isomorphic

to the Jordan pair of Hermitian matrices (Hr(∆,−), Hr(∆,−)) (re-

spectively, SubL eKe∗ is isomorphic to the Jordan pair of alternating

matrices (Ar(F), Ar(F))), where r is the Witt index in both cases. Since

by 2.5 (iii) the inner ideals of L contained in eKe∗ are precisely the in-

ner ideals of SubL eKe∗ contained in eKe∗, all we must do is to consider

the inner ideal structure of the Jordan pairs (Hr(∆,−), Hr(∆,−)) and

(Ar(F), Ar(F)).

Let us assume first that (, ) is skew-Hermitian. Following the nota-

tion introduced in the proof of Proposition 4.4, we have the isomor-

phisms

SubL eKe∗ ∼= (eKe∗, e∗Ke) ∼= (Sym(S, ?), Sym(S, ?))

∼= (Hr(∆,−), Hr(∆,−)).

By [M, §5, Thm. 2], any inner ideal of the Jordan algebra J := Sym(S, ?)

is of the form B = f ·J · f ? = (fv)J(vf ?), where f is an idempotent of

S and v is invertible. Put g := fv. Then g2 = (fvf)v = fv = g, and

g = fv ∈ Sv = (eRe∗)v implies g∗g = (eg)∗(eg) = g∗(e∗e)g = 0, so g

is an isotropic idempotent of R. Moreover, since ve = v and v∗ = −v,

we have gKg∗ = fvKvf ∗ = fv(eKe∗)vf ∗ = fvSvf ∗ = f · J · f ? = B.

Assume now that (, ) is symmetric. As in the previous case, we have

the sequence of isomorphisms

SubL eKe∗ ∼= (eKe∗, e∗Ke) ∼= (Skew(S, ?), Skew(S, ?))

∼= (Ar(F), Ar(F)).

It follows from [N, 3.2 (e)] that every inner B of (Ar(F), Ar(F)) is of

the form As(F) for s ≤ r, or its subquotient is covered by a family of

collinear idempotents. If the first holds, then B = f ·J ·f ? = (fv)J(vf ?)
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for some idempotent f of S and some invertible v, and hence, as in the

previous skew-Hermitian case, B = gKg∗ for an isotropic idempotent

g of R. In the second case, B is a point space and therefore it is

uniquely determined up to isomorphism by its dimension by Theorem

5.4. Moreover, since by Theorem 5.16 point spaces of type 2 are of the

form eKe∗ for an isotropic idempotent of rank 3, we may assume that

B is of type 1 in (ii). This gives (ii.2) and completes the proof. ¤

6.2. INNER IDEALS OF THE LIE ALGEBRA [K, K]

In order to extend the theorem above to the non-Artinian case, we

need to determine the inner ideals of the Lie algebra of [K, K].

Theorem 6.3. Let R = End∆ X be a simple Artinian ring of charac-

teristic 6= 2, 3 with involution ∗ such that dimZ R > 16; let L be the Lie

algebra [K,K] over Sym(Z(∆),−); and let B be a proper inner ideal

of L.

(i) If the involution is of the first kind, then either (i.1) B = gKg∗,
where g is an isotropic idempotent of R, or (i.2) B = [x,H⊥],

where H is a hyperbolic plane of X and x is a nonzero isotropic

vector of H, or (i.3) B is a type 1 point space of dimension

greater than 1. In the last two cases ∆ is a field and L =

fo(X, (, )).

(ii) If the involution is of the second kind, then either (ii.1) B =

(Z∩[K,K])+gKg∗, or (ii.2) B = gKg∗, where g is an isotropic

idempotent of R.

Proof. Suppose first that ∗ is an involution of the first kind. Then, by

[B1, Lem. 4.23], b3 = 0 for any b ∈ B. Hence B ∩Z = 0, and B can be

regarded as a proper inner ideal of the Lie algebra [K,K]/Z ∩ [K, K].

Then, by Theorem 6.1, B = gKg∗, where g is an isotropic idempotent

of R, or ∆ is a field F with the identity as involution, (, ) is symmetric

and either B = [x,H⊥] or B is a point space.

Suppose now that ∗ is an involution of the second kind, and set

B′ := B + (Z ∩ [K,K]). Then B′/Z ∩ [K, K] is a proper inner ideal

of [K, K]/Z ∩ [K, K] and hence, again by Theorem 6.1, it is of the

form gKg∗, where g is an isotropic idempotent of R (the other cases
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cannot occur because ∗ is of the second kind). Then any b ∈ B can

be written as b = z + c for some z ∈ Z ∩ [K,K] and c ∈ gKg∗. Since

c is von Neumann regular and skew-symmetric, there exists a ∈ K

such that c = cac = c(g∗ag)c, with g∗ag = [g∗ag, g] ∈ [K,K]. Since c

has zero square, c = c(g∗ag)c = 1/2[[c, g∗ag], c] = 1/2[[b, g∗ag], b] ∈ B.

Therefore, both c and z belong to B, i.e, B = (B∩gKg∗)⊕(B∩Z). But

B ∩ gKg∗ = fKf ∗ for some isotropic idempotent f of R by Theorem

6.1, and since ∗ is of the second kind, if B ∩ Skew(Z, ∗) = B ∩ Z 6= 0,

then B ∩ Z = Z ∩ [K,K]. ¤

6.4. THE NON-ARTINIAN CASE

Assume now that R is a simple ring with minimal one-sided ideals

and involution ∗, i.e., R is the ring F(X) of all finite rank linear opera-

tors a : X → X on a vector space X over a division ring with involution

(∆,−) having an adjoint a∗ : X → X with respect to a nondegenerate

Hermitian or skew-Hermitian form (, ) (see 3.2). Even in the case when

R is not Artinian, equivalently, when X is infinite-dimensional over ∆,

R can be still described as a direct limit of simple Artinian algebras

Rα with the same type of involution as R. In fact, R is a strongly

local matrix ring in the following sense: any finite subset of R is con-

tained in an inner ideal of the form eRe for some self-adjoint finite rank

idempotent e of R (see [BMM, 4.6.15]). Note that in geometric terms,

eRe ∼= F(V ), where V is a finite-dimensional nondegenerate subspace

of X; in fact, V = eX; equivalently, e is the projection on V determined

by the decomposition X = V ⊕ V ⊥. Moreover, Z(eRe) = Z(∆)e.

6.5. Suppose that R is not Artinian and set K = Skew(R, ∗) as

usual. Since Z = 0, L = [K,K] is a simple nondegenerate Lie algebra.

Moreover, L is a direct limit of Lie algebras Lα = [Kα, Kα], with Kα =

Skew(eαReα, ∗) = eαKeα for a self-adjoint finite rank idempotent eα of

R.

Theorem 6.6. Let L = [K,K] be as above. If B is a proper inner

ideal of L, then either

(i) B = [S, S] for a totally isotropic subspace S of X of possibly

infinite dimension, or
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(ii) B is a type 1 point space of dimension greater than 1, or

(iii) B = [x,H⊥], where H is a hyperbolic plane of X and x is a

nonzero isotropic vector of H.

In cases (ii) and (iii), ∆ is necessarily is a field and L = fo(X, (, )).

Moreover, B = [S, S] as in (i), and B is a nonzero point space of

L (over F = Sym(∆,−)) if and only if either (, ) is symmetric and

dimF S = 2 or 3, or (, ) is skew-symmetric and dimF S = 1.

Proof. Choose a directed set {eα} of self-adjoint idempotents of R =

F(X) of finite rank > 4 (eα ≤ eβ ⇔ eαReα ⊂ eβReβ ⇔ eαX ⊂ eβX).

Set Zα = Z(Rα) = Z(∆)eα and Lα = [Kα, Kα] as in 6.5. If B is a

proper inner ideal of L, it follows from [B1, Thm. 4.21] (if the involution

∗ is of the first kind), and from [B1, Thm. 4.26] (if the involution is of

the second kind) that B is abelian. Then Bα = B ∩ Lα is an abelian

inner ideal of Lα. If a2 6= 0 for some a ∈ B, then we have by [FGG2,

Prop. 3.8] that (,) is symmetric and B = [x,H⊥], so we may assume

that a2 = 0 for any a ∈ B.

If the involution ∗ of R is of the first kind, then the same is true

for the involution of each ring Rα = eαReα. Then by Theorem 6.3 we

have for each index α that either Bα is a point space (in this case (,) is

symmetric), or Bα = gαKαg∗α = gαKg∗α for some isotropic idempotent

gα of Rα (of rank > 3 if (,) is symmetric, by Theorem 5.16). If the

former holds for all indices α, then B itself is a point space by Lemma

5.11. Suppose on the contrary that for some index α, Bα = gαKg∗α,

where gα is an isotropic idempotent (of rank > 3 if (, ) is symmetric, c.f.

Theorem 5.16). Then for every eβ ≥ eα, Bβ = gβKg∗β = [gβX, gβX],

for some isotropic idempotent gβ of R, c.f. Lemma 3.7 (i). Since these

eβ form a directed set, the same is true for the family of corresponding

subspaces eβX. Hence S :=
⋃

eβX is a totally isotropic subspace of X

and B = [S, S].

We claim that if the involution ∗ of R is of the second kind, then

for each index α, Bα = gαKαg∗α, where gα is an isotropic idempotent of

Rα = eαReα, and hence B = [S, S] for some totally isotropic subspace S

of X as in the previous case. Otherwise, by Theorem 6.3, there exists an

index α such that Bα = (Zα∩[Kα, Kα])+gαKαg∗α, with Zα∩[Kα, Kα] 6=
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0. Since Zα ∩ [Kα, Kα] ⊂ Zα ∩ Kα = Skew(Z(∆),−)eα, there exists

a nonzero element z ∈ Skew(Z(∆),−) such that zeα ∈ B, but this

leads to a contradiction. Indeed, let f be a nonzero self-adjoint finite

rank idempotent orthogonal to e := eα (such an idempotent always

exists because X is infinite-dimensional). Since R is simple, we can

take a ∈ R such that eaf 6= 0. Then eaf − fa∗e ∈ K and hence

z(eaf + fa∗e) = [ze, eaf − fa∗e] belongs to [K, K] = L and satisfies

ad3
ze z(eaf +fa∗e) = z4(eaf−fa∗e) 6= 0, a contradiction, since ad3

b = 0

for all b because B is an abelian inner ideal, which proves the claims.

Therefore, every abelian inner ideals of L is as in (i), (ii) or (iii).

To prove the final assertions of the theorem, note first that if L

contains a nonzero point space, then it contains a one-dimensional point

space by 5.7, and hence, by [DFGG1, 4.14], (, ) is either symmetric or

skew-symmetric. Let B = [S, S] be as in (i), a nonzero point space. If

(, ) is symmetric, then we have by 5.16 that S has dimension 2 or 3,

while if (, ) is skew-symmetric, then S is necessarily one-dimensional,

i.e, [S, S] = Fx∗x for a nonzero x ∈ X. Suppose on the contrary that

x, y ∈ S are linearly independent, and set a = [x, y] = x∗y + y∗x. Since

a has zero square, [[a, b], a] = 2aba for any b ∈ L. Then

aba = (x∗y + y∗x)b(x∗y + y∗x) = (by, x)[x, y] + (bx, x)y∗y + (by, y)x∗x.

Taking b = z∗z, with z ∈ X satisfying (z, x) = 1, and therefore,

(bx, x) = (z, x) = 1, we get that [[a, b], a] and a are linearly indepen-

dent, which is a contradiction. This completes the proof. ¤

Remarks 6.7. The point spaces in (ii) of Theorem 6.6 were missing

from the original description of the inner ideals of the finitary simple Lie

algebras in [FGG2, Prop. 3.6 (iv)] and in its later extension in [FGG3,

Prop. 4.7] to the Lie algebras L = [Skew(F(X), ∗), Skew(F(X), ∗)],
where X is an infinite-dimensional vector space with a nondegenerate

symmetric or skew-Hermitian form over a division algebra with involu-

tion (∆,−) of characteristic 6= 2, 3 (see also [FGGN, Prop. 6.7] where

[FGG3] was quoted). This does not affect the main results of [FGG3] or

[FGGN]. The reason for the omission was that a direct limit approach

based on the incomplete statement of the finite-dimensional case [B1,

Thm. 5.5] was used in the proof. We have now remedied the situation
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by providing a corrected version of finite-dimensional case in Theorem

6.1 above and of the finitary case in Theorem 6.6.
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