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1. Introduction.

In 1954, H. Freudenthal [Fr] constructed the exceptional simple Lie algebras of
types E7 and E8 by means of the exceptional simple Jordan algebras. The construc-
tion of E8 has been extended in several ways to give 5-graded Lie algebras

g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2

starting with some nonassociative algebras or triple systems, which appear as the
component g1.

The concept of (ε, δ)-Freudenthal Kantor triple system covers many of these
systems:
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Definition 1.1 [YO] Let ε, δ = ±1. A vector space V over a field F , endowed with
a trilinear operation V ×V ×V → V , (x, y, z) 7→ xyz, is said to be a (ε, δ)-Freudenthal
Kantor triple system ((ε, δ)-FKTS for short) if the following two conditions are sat-
isfied
(i) [la,b, lc,d] = lla,bc,d + εlc,lb,ad,
(ii) ld,cka,b − εka,blc,d = kka,bc,d

for any a, b, c, d ∈ V , where la,b, ka,b : V → V are given by la,bc = abc, ka,bc =
acb− δbca.

Thus a (−1, 1)-FKTS is exactly a generalized Jordan triple system of second
order in the sense of Kantor [K] (if k = 0 this is just a Jordan triple system), while a
(1,−1)-FKTS with k = 0 is an anti-Jordan triple system (see [FF1] for the definition
of anti-Jordan pair (U+, U−); when U+ = U− one gets an anti-Jordan triple system).

An (ε, δ)-FKTS V is said to be balanced ((ε, δ)-BFKTS for short) if there exists
a nonzero bilinear form ( | ) : V × V → F such that ka,b = (a | b)Id for any a, b ∈ V .
Since ka,b = −δkb,a by its own definition, ( | ) is either symmetric (δ = −1) or skew-
symmetric (δ = 1). On the other hand, condition (ii) in Definition 1.1 gives here
that ( | ) is either symmetric or skew-symmetric according to ε being −1 or 1, so that
ε = δ in case V is balanced.

Any (1, 1)-BFKTS becomes, by means of minor modifications of its triple prod-
uct, a symplectic ternary algebra [FF2], a symplectic triple system [YA] or a Freuden-
thal triple system [M], and conversely. The simple finite dimensional Freudenthal
triple systems were classified by [M], with some restrictions which are satisfied if the
ground field is algebraically closed, and this amounts to a classification of the simple
(1, 1)-BFKTS (and of the symplectic ternary algebras [FF2]). The related 5-graded
Lie algebras satisfy that g±2 is one dimensional.

Further properties of (ε, δ)-FKTS’s can be found in [Ka1-6, KaO, OKa1] and
the references therein.

Our aim in this paper is to obtain the classification of the finite dimensional
simple (−1,−1)-BFKTS’s over fields of characteristic 0. To achieve this, the classi-
fication [Kac] of the finite dimensional simple Lie superalgebras over algebraically
closed fields of characteristic 0 will be used, but we will have to look at the known re-
lationship between (−1,−1)-FKTS’s and 5-graded Lie superalgebras [Y] in a different
way, suitable to our needs. This will be done in Section 2. The relevant examples of
(−1,−1)-BFKTS’s will be given in Section 3 and, finally, Section 4 will provide the
promised classification (Theorem 4.3), which asserts that the simple finite dimen-
sional (−1,−1)-BFKTS’s fall into six classes, three of them with arbitrarily large
dimension: orthogonal, unitarian and symplectic types; and another three classes
of four dimensional (Dµ-type), seven dimensional (G-type) and eight dimensional
systems (F-type).

Using Definition 1.1, the defining relations for a (−1,−1)-BFKTS are

ab(xyz) = (abx)yz − x(bay)z + xy(abz), (1.1)
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abx+ bax = (a | b)x = axb+ bxa, (1.2)

for any a, b, x, y, z ∈ V , where ( | ) is a nonzero symmetric bilinear form. Over fields
of characteristic 6= 2, put 〈 | 〉 = 1

2 ( | ) and then (1.2) is equivalent to

xxy = 〈x | x〉y = xyx (1.3)

for any x, y ∈ V .

The main motivation for the classification of the simple (−1,−1)-BFKTS’s was
provided by the recent paper [OKa2] by two of the authors, where the exceptional
simple classical Lie superalgebras were constructed by using the last three classes
mentioned above (D, G and F types). These triple systems are closely related to
quaternion and octonion algebras. A different construction of the exceptional simple
classical Lie superalgebras has been given in [BE] by means of a generalized Tits’
construction (which also uses quaternion and octonion algebras).

2. (−1, −1) balanced Freudenthal Kantor triple systems and
Lie superalgebras.

The relationship between (−1,−1)-BFKTS and Lie superalgebras has been stud-
ied in [OKa2]. A more useful approach for us is obtained as indicated by the next
Theorem.

Theorem 2.1 Let g be a finite dimensional Lie superalgebra over a field F of
characteristic 6= 2 such that g0̄ = sl2(F )⊕ d (direct sum of ideals) and g1̄ = U ⊗F V ,
where U is the two dimensional module for sl2(F ) and V is a module for d. Let ϕ
be a nonzero skew symmetric form on U , so that we may identify sl2(F ) = sp(U,ϕ)
and for any a, b ∈ U consider the map ϕa,b ∈ sl2(F ) given by

ϕa,b(c) = ϕ(c, a)b+ ϕ(c, b)a

for any c ∈ U . Then the product of odd elements in g is given by

[a⊗ u, b⊗ v] = 〈u | v〉ϕa,b + ϕ(a, b)du,v (2.1)

for any a, b ∈ U and u, v ∈ V , where 〈 | 〉 is a symmetric bilinear form and d : V ×V →
d is a skew symmetric bilinear map that satisfy

〈d(x) | y〉+ 〈x | d(y)〉 = 0, (2.2a)
[d, dx,y] = dd(x),y + dx,d(y), (2.2b)
dx,y(y) = 〈y | x〉y − 〈y | y〉x, (2.2c)

for any x, y ∈ V and d ∈ d.
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Conversely, let V be a vector space endowed with a symmetric bilinear form
〈 | 〉 : V × V → F and a skew symmetric bilinear map d : V × V → EndF (V )
((u, v) 7→ du,v). Assume that:

〈du,v(x) | y〉+ 〈x | du,v(y)〉 = 0, (2.3a)
[du,v, dx,y] = ddu,v(x),y + dx,du,v(y), (2.3b)
dx,y(y) = 〈y | x〉y − 〈y | y〉x, (2.3c)

for any u, v, x, y ∈ V . Let d be span {du,v : u, v ∈ V } (a Lie subalgebra of EndF (V )
by (2.3b)) and let g = g0̄ ⊕ g1̄ be the superalgebra where g0̄ is the Lie algebra
sl2(F )⊕ d = sp(U,ϕ)⊕ d, g1̄ is the g0̄-module U ⊗F V and where the product of odd
elements is given by (2.1). Then g is a Lie superalgebra.

Proof: Since Homsp(U,ϕ)(U⊗F U,F ) is spanned by the form ϕ and Homsp(U,ϕ)

(
U⊗F

U, sp(U,ϕ)
)

is spanned by the symmetric map a ⊗ b 7→ ϕa,b, formula (2.1) follows.
Formulae (2.2a) and (2.2b) follow from the Jacobi superidentity applied to the ele-
ments d ∈ d and a⊗x, b⊗y ∈ U⊗F V and (2.2c) follows from the Jacobi superidentity
applied to three odd elements.

The converse is a straightforward computation.

With V , d : V × V → EndF (V ) and 〈 | 〉 as before, consider the triple product
in V given by

xyz = dx,yz + 〈x | y〉z (2.4)

for any x, y, z ∈ V . Conditions (2.3a–c) translate into:

xxy = 〈x | x〉y = xyx (2.5a)
uv(xyz) = (uvx)yz − x(vuy)z + xy(uvz) (2.5b)
〈uvx | y〉 = 〈x | vuy〉 (2.5c)

for any u, v, x, y, z ∈ V . Let us check (2.5b) for instance. For this, denote by lx,y the
map z 7→ xyz for any x, y, z ∈ V , then for any u, v, x, y ∈ V

[lu,v, lx,y] = [du,v, dx,y] (since lu,v − du,v is scalar)
= ddu,v(x),y + dx,du,v(y)

= ldu,v(x),y − 〈du,v(x) | y〉+ lx,du,v(y) − 〈x | du,v(y)〉
= ldu,v(x),y − lx,dv,u(y)

= luvx,y − 〈u | v〉lx,y − lx,vuy + 〈v | u〉lx,y
= luvx,y − lx,vuy

and this is equivalent to (2.5b). Conversely, conditions (2.5a–c) give conditions (2.3a–
c), if (2.4) is used to define dx,y for x, y ∈ V .
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Conditions (2.5a) and (2.5b) are just the defining conditions (1.3) and (1.1) of
a (−1,−1)-BFKTS, while condition (2.5c) is a consequence of (2.5a-b) [Ka2]. We
include a proof of this fact by completeness:

Take x = y in (2.5b) and use (2.5a) to get

〈x | x〉uvz = (uvx)xz − x(vux)z + 〈x | x〉uvz

= (uvx)xz +
(
(vux)xz − 2〈x | vux〉z

)
+ 〈x | x〉uvz

= 2〈u | v〉xxz − 2〈x | vux〉z + 〈x | x〉uvz

and this shows that 〈x | vux〉 = 〈u | v〉〈x | x〉 for any x, u, v ∈ V . Linearizing this
one obtains that 〈x | vuy〉+ 〈y | vux〉 = 2〈u | v〉〈x | y〉 for any x, y, u, v ∈ V , whence

〈x | vuy〉 = 〈2〈u | v〉x− vux | y〉 = 〈uvx | y〉 ,

as desired. In the same way, (2.3a) follows from (2.3b) and (2.3c).
Because of (2.3a-b), d = dV,V is a Lie algebra of derivations of the (−1,−1)-

BFKTS, which will be said to be the Lie algebra of inner derivations of V .

Given a vector space V endowed with a nonzero symmetric bilinear form 〈 | 〉
and a skew symmetric map d : V × V → EndF (V ), (x, y) 7→ dx,y for any x, y ∈
V , satisfying conditions (2.3), denote by g(V ) the Lie superalgebra constructed in
Theorem 2.1. Also, consider the triple product xyz defined on V by (2.4) and the
triple product obtained directly from d: {xyz} = dx,y(z) for any x, y, z ∈ V .

Theorem 2.2 Under the hypotheses above, the following conditions are equivalent:

(i) 〈 | 〉 is nondegenerate,

(ii) (V, {xyz}) is a simple triple system,

(iii) (V, xyz) is a simple triple system,

(iv) g(V ) is a simple Lie superalgebra.

Proof: Assume that (i) is satisfied and let I be a nonzero ideal of the triple system
(V, {xyz}). Then for any x ∈ I and y ∈ V , {xyy} = dx,y(y) = −〈y | y〉x+〈x | y〉y ∈ I,
by (2.3c), and hence 〈x | y〉y ∈ I for any y ∈ I. Since 〈 | 〉 is nondegenerate, there
is a basis of V formed by elements y with 〈x | y〉 6= 0 and this shows that I = V .
Conversely, V ⊥ = {x ∈ V : 〈x | V 〉 = 0} is an ideal of (V, {xyz}) because of (2.3a)
and the linearization of (2.3c). Hence (ii) implies (i).

Similarly, condition (i) and the linearization of (2.5a) imply (iii), and conversely
(iii) implies (i) since V ⊥ is an ideal of (V, xyz) because of (2.5a) and (2.5c).

Now assume that (i) is satisfied and that 0 6= I = I 0̄ ⊕ I 1̄ is an ideal of the Lie
superalgebra g(V ). By sl2(F )-invariance, I 1̄ = U ⊗F W for a subspace W of V . Let
x ∈ V and y ∈W with 〈x | y〉 6= 0, then for any a ∈ U , [a⊗ x, a⊗ y] = −〈x | y〉ϕa,a,
so ϕa,a ∈ I 0̄ for any a and sl2(F ) ⊆ I 0̄. But then g1̄ = [sl2(F ), g1̄] ⊆ I and
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g0̄ = [g1̄, g1̄] ⊆ I, so I = g. Otherwise W = 0, so I 1̄ = 0, but then it is easy to show
that I = 0.

Conversely, the graded subspace dV,V⊥ ⊕
(
U ⊗F V ⊥

)
is an ideal of g(V ), so (iv)

implies (i).

Since the nondegeneracy of a bilinear form is preserved under scalar extensions,
it immediately follows that:

Corollary 2.3 With the same notation as above, if 〈 | 〉 is nondegenerate, then
(V, {xyz}), (V, xyz) and g(V ) are central simple.

3. Examples.

This section is devoted to constructing the examples of simple (−1,−1) balanced
Freudenthal Kantor triple systems that will appear in the classification. Throughout
this section, the ground field F will be assumed of characteristic 6= 2.

3.1 Hermitian type:
Let R be a unital separable associative algebra over F of degree ≤ 2. Therefore,

R is, up to isomorphism, either the ground field F , F × F , a quadratic separable
field extension K of F or a quaternion algebra Q over F . In any case, R is endowed
with an involution of the first kind, x 7→ x̄, such that x + x̄, xx̄ = x̄x ∈ F for any
x ∈ R. Let V be a left module over R endowed with a nondegenerate hermitian form
h : V × V → R. That is, h is F -bilinear and satisfies for any x, y ∈ V and r ∈ R:

h(rx, y) = rh(x, y),

h(x, y) = h(y, x),
h(x, V ) = 0 if and only if x = 0.

(3.1)

Then the symmetric bilinear form V × V → F defined by means of:

〈x | y〉 =
1
2

(
h(x, y) + h(y, x)

)
(3.2)

for any x, y ∈ V , is nondegenerate and determines h.
Define now the triple product on V by means of

xyz = h(z, x)y − h(z, y)x+ h(x, y)z (3.3)

for any x, y, z ∈ V .
It is clear that xxy = h(x, x)y = 〈x | x〉y = xyx for any x, y ∈ V and a straight-

forward computation shows that this triple product satisfies (2.5b) too. Therefore
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V is a (−1,−1)-BFKTS which will be said to be of hermitian type. Depending
on dimF R being either 1, 2 or 4, V will be said to be of orthogonal , unitarian or
symplectic type, respectively, for reasons that will become clear later on.

Let us compute the Lie algebra d = dV,V in this case. Assume first that R =
F , the ground field, then dx,y = 〈− | x〉y − 〈− | y〉x =: σx,y for any x, y ∈ V ,
and these maps span the orthogonal Lie algebra o(V ). From the construction in
[Kac, Supplement to 2.1.2], g(V ) is the orthosymplectic Lie superalgebra osp(V ⊕
U). A word of caution is needed here: the multiplication of odd elements in [Kac,
Supplement to 2.1.2] should read

[a⊗ c, b⊗ d] = −(a, b)0c ◦ d+ (c, d)1a ∧ b.

(A minus sign has been added.)
Now, in case R is a quadratic étale algebra, that is, either K = F ×F or K is a

quadratic field extension of F , then for any x, y ∈ V ,

dx,y = hx,y + h0(x, y)id, (3.4)

where
hx,y = h(−, x)y − h(−, y)x (3.5)

and
h0(x, y) = h(x, y)− 〈x | y〉 =

1
2
(
h(x, y)− h(y, x)

)
. (3.6)

Note that

hx,y ∈ u(V, h) = {f ∈ EndK(V ) : h(f(x), y) + h(x, f(y)) = 0 for any x, y ∈ V }.

Since h0(x, y) = −h0(x, y), it follows that d ⊆ u(V, h).
In the split case: K = F × F = Fe1 ⊕ Fe2, for orthogonal idempotents e1 and

e2 (ē1 = e2), let W = e1V and W̃ = e2V . Then h(W,W ) = 0 = h(W̃ , W̃ ) and
for any a ∈ W and u ∈ W̃ , h(a, u) ∈ Fe1. Hence there is a bilinear nondegenerate
form ( | ) : W × W̃ → F , such that h(a, u) = (a | u)e1 for any a ∈ W and u ∈ W̃ .
This bilinear form determines h and allows us to identify W̃ with the dual W ∗.
Therefore we may assume that V = W ×W ∗, with the natural structure of module
over K = F × F , and with

h
(
(a, α), (b, β)

)
= (β(a), α(b))

for any a, b ∈ W and α, β ∈ W ∗. Moreover, in this case u(V, h) is isomorphic to
gl(W ) by means of the isomorphism that takes any f ∈ EndF (W ) = gl(W ) to
the endomorphism of V = W × W ∗ given by (a, α) 7→ (f(a),−α ◦ f). Through
this isomorphism, h(a,0),(0,α) corresponds to the endomorphism of W given by c 7→
−α(c)a, and hence d(a,0),(0,α) corresponds to c 7→ −α(c)a+ 1

2α(a)c. If the dimension
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of W is not 2, this shows that d = u(V, h) ∼= gl(W ), while if the dimension is 2,
d = su(V, h) ∼= sl(W ).

By scalar extension, we have that d = u(V, h) if dimK V 6= 2 (dimF V 6= 4) and
d = su(V, h) if dimK V = 2.

Finally, assume that R is a quaternion algebra Q. Again dx,y = hx,y+h0(x, y)id,
but now hx,y is Q-linear, while h0(x, y)id is not in general, since the center of Q is
F . It is easily checked here that

[hx,y, hu,v] = hhx,y(u),v + hu,hx,y(v)

for any x, y, u, v ∈ V , and thus hV,V = span {hx,y : x, y ∈ V } is a Lie algebra con-
tained in

sp(V, h) = {f ∈ EndQ(V ) : h(f(x), y) + h(x, f(y)) = 0 for any x, y ∈ V },

and d = dV,V is contained in sp(V, h) ⊕ Q0id, where Q0 = [Q,Q] is the set of skew
symmetric elements in Q relative to its involution, which form a three dimensional
simple Lie algebra.

Again, consider the split case: Q = EndF (U) for a two dimensional vector
space U endowed with a nonzero skew symmetric bilinear map ϕ which induces the
involution in Q. Standard arguments of complete reducibility as a module over Q
show that V = U ⊗F W for some vector space W over F . For any q ∈ Q0 = sl(U) =
sp(U,ϕ) and for any x, y ∈ V ,

〈qx | y〉 =
1
2
(
h(qx, y) + h(y, qx)

)
=

1
2
(
qh(x, y) + qh(x, y)

)
=

1
2
(
h(x, y)q + h(x, y)q

)
= −〈x | qy〉,

so Q0 embeds into the orthogonal Lie algebra o(V, 〈 | 〉) and, therefore, 〈 | 〉 is invariant
under the action of sl(U) = sp(U,ϕ). But, up to scalars, ϕ is the unique bilinear
form on U which is sp(U,ϕ)-invariant, so

〈a⊗ u | b⊗ v〉 =
1
2
ϕ(a, b)ψ(u, v)

for any a, b ∈ U , u, v ∈ W , for a skew-symmetric nondegenerate bilinear form ψ :
W ×W → F .

Since the hermitian form h is completely determined by 〈 | 〉, it turns out that
h : V × V → Q = EndF (U) is given by

h(a⊗ u, b⊗ v) = ψ(u, v)ϕ(−, b)a
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for any a, b ∈ U and u, v ∈W . Note that h thus defined is hermitian and

1
2
(
h(a⊗ u, b⊗ v) + h(b⊗ v, a⊗ u)

)
=

1
2
ψ(u, v)

(
ϕ(−, b)a− ϕ(−, a)b

)
.

But ϕ(a, b)c+ ϕ(b, c)a+ ϕ(c, a)b = 0 for any a, b, c ∈ U , so

1
2
(
h(a⊗ u, b⊗ v) + h(b⊗ v, a⊗ u)

)
=

1
2
ψ(u, v)ϕ(a, b)id.

Hence, for any a, b ∈ U and u, v ∈W :

h0(a⊗ u, b⊗ v) =
1
2
(
h(a⊗ u, b⊗ v)− h(b⊗ v, a⊗ u)

)
(see (3.6))

=
1
2
ψ(u, v)

(
ϕ(−, b)a+ ϕ(−, a)b

)
=

1
2
ψ(u, v)ϕa,b,

and thus, for any a, b, c ∈ U and u, v, w ∈W :

ha⊗u,b⊗v(c⊗ w) = ψ(w, u)ϕ(b, a)c⊗ v − ψ(w, v)ϕ(a, b)c⊗ u

= −ϕ(a, b)c⊗
(
ψ(w, u)v + ψ(w, v)u

)
= −ϕ(a, b)c⊗ ψu,v(w).

Therefore, hV,V = sp(V, h) := {f ∈ EndQ(V ) : h(f(x), y) + h(x, f(y)) = 0 for any
x, y ∈ V } ∼= sp(W,ψ) (which acts on V = U ⊗F W in a natural way: on the second
factor). Moreover, from (3.4),

da⊗u,b⊗v = ha⊗u,b⊗v + h0(a⊗ u, b⊗ v)id

=
1
2
ϕa,b ⊗ ψ(u, v)id− ϕ(a, b)id⊗ ψu,v,

so d = dV,V = sp(U,ϕ)⊕ sp(W,ψ) = sl(U)⊕ sp(W,ψ).
For general Q, again extending scalars we arrive at hV,V = sp(V, h) (which is a

simple Lie algebra of type C) and d is the direct sum of the three dimensional simple
Lie algebra Q0 and of the simple Lie algebra sp(V, h).

Summarizing the above discussion:

Proposition 3.1. Let R be a unital separable associative algebra of degree ≤ 2
over a field F of characteristic 6= 2, and let V be a left module over R endowed with
a nondegenerate hermitian form h : V × V → R. Endow V with the structure of a
simple (−1,−1)-BFKTS of hermitian type (with associated symmetric bilinear form
given by 〈x | y〉 = 1

2

(
h(x, y) + h(y, x)

)
for any x, y ∈ V ) and let d = dV,V be the

associated Lie algebra of inner derivations. Then:
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(i) If R = F , then d = o(V, 〈 | 〉).
(ii) If R = K is a quadratic étale algebra, then d = u(V, h) unless dimF (V ) = 4. In

this latter case, d = su(V, h).
(iii) If R is a quaternion algebra Q, then d ∼= Q0 ⊕ sp(V, h), where sp(V, h) acts

naturally on V , and the simple three dimensional Lie algebra Q0 acts by left
multiplication on the Q module V .

3.2 Dµ-type
Let V be a four dimensional vector space, endowed with a nondegenerate sym-

metric bilinear form 〈|〉. Let Φ be a nonzero skew symmetric multilinear form:
Φ : V × V × V × V → F . Define a skew symmetric triple product [xyz] on V
by means of:

Φ(x, y, z, t) = 〈[xyz] | t〉, (3.7)

for any x, y, z, t ∈ V .

Lemma 3.2. With the hypotheses above, there exists a nonzero scalar µ ∈ F such
that

〈[a1a2a3] | [b1b2b3]〉 = µdet
(
〈ai | bj〉

)
, (3.8)

for any ai, bi ∈ V (i = 1, 2, 3).

Proof: By extending scalars to an algebraic closure it may be assumed that F is
algebraically closed. Then take an orthonormal basis {e1, e2, e3, e4} of V . By skew
symmetry of Φ, [e1e2e3] = νe4 for some 0 6= ν ∈ F . Let µ = ν2. Scale Φ by ν−1 so
that we may assume [e1e2e3] = e4. Then it is enough to prove that (3.8) is satisfied
with µ = 1.

The skew symmetry of Φ forces [eσ(1)eσ(2)eσ(3)] = (−1)σeσ(4) for any permuta-
tion σ, where (−1)σ denotes the corresponding signature. But then, for any permu-
tations σ and τ ,

〈[eσ(1)eσ(2)eσ(3)] | [eτ(1)eτ(2)eτ(3)]〉 = (−1)σ(−1)τ 〈eσ(4) | eτ(4)〉
= det

(
〈eσ(i) | eτ(j)〉

)
i,j=1,2,3

,

as required.

Now, for any such V and Φ, and for any x, y ∈ V , consider the endomorphism
dx,y ∈ EndF (V ) by means of

dx,yz = [xyz] + 〈z | x〉y − 〈z | y〉x . (3.9)

As shown in [O1, §5], conditions (2.3a-b) are satisfied, so if the triple product xyz
on V is defined by means of

xyz = [xyz] + 〈z | x〉y − 〈z | y〉x+ 〈x | y〉z . (3.10)
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for any x, y, z ∈ V , then V becomes a (−1,−1)-BFKTS, which will be said to be of
Dµ-type.

Assume for a while that the scalar µ in (3.8) is a square, µ = ν2, 0 6= ν ∈ F ,
and that 〈 | 〉 represents 1. Then, by [E2, Theorem 2], V is endowed with a binary
multiplication that makes it a quaternion algebra Q over F , with involution x 7→ x̄
such that xx̄ = 〈x | x〉 for any x ∈ V , satisfying

ν−1[xyz] = xȳz − 〈x | y〉z + 〈z | x〉y − 〈z | y〉x

for any x, y, z ∈ V . Therefore, for any x, y, z ∈ V , (3.9) shows that:

dx,y(z) = νxȳz + (1 + ν)
(
〈z | x〉y − 〈z | y〉x

)
− ν〈x | y〉z

= νxȳz +
1 + ν

2
(
(xz̄ + zx̄)y − x(ȳz + z̄y)

)
− ν

2
(xȳ + yx̄)z

=
(
νxȳ − 1 + ν

2
xȳ − ν

2
(xȳ + yx̄)

)
z +

1 + ν

2
zx̄y

=
(
−1

2
xȳ − ν

2
yx̄

)
z +

1 + ν

2
zx̄y

=
ν − 1

4
(xȳ − yx̄)z +

1 + ν

4
z(x̄y − ȳx),

because x̄y+ ȳx = xȳ+ yx̄ = 2〈x | y〉 ∈ F , so x̄y− ȳx = 2x̄y− (xȳ+ yx̄). Hence, for
any x, y ∈ V ,

dx,y = Lp −Rq, with p =
ν − 1

4
(xȳ − yx̄), q = −ν + 1

4
(x̄y − ȳx) ∈ Q0,

where L and R denote left and right multiplications in V = Q. Therefore, if µ = 1
(ν = ±1), d = dV,V is isomorphic to the three dimensional simple Lie algebra Q0.
However, if µ 6= 0, 1 (ν 6= 0,±1), then d = LQ0 ⊕RQ0 , a direct sum of two copies of
the three dimensional Lie algebra Q0, which coincides with the orthogonal Lie algebra
o(V, 〈 | 〉). Moreover, in this latter case, [BE, Lemma 3.1 and its proof], g(V ) is a
form of the simple Lie superalgebra Γ(− 1

2 ,
1−ν
4 , 1+ν

4 ) (notation as in [Sc, pp. 16-17]).
That is, it is a form of D(2, 1; ν−1

2 ) (see [OKa2]).
Simply by extending scalars, we obtain:

Proposition 3.3. Let V be a four dimensional vector space over a field F of
characteristic 6= 2 with a nondegenerate symmetric bilinear form 〈 | 〉. Let Φ be a
nonzero skew symmetric 4-linear form and let the triple product [xyz] be defined by
means of 〈[xyz] | t〉 = Φ(x, y, z, t) for any x, y, z, t ∈ V . Let 0 6= µ ∈ F be given by
(3.8). Endow V with the structure of a simple (−1,−1)-BFKTS by means of (3.10)
and let d = dV,V be the corresponding Lie algebra of inner derivations. Then:

(i) If µ = 1, then d is a three dimensional simple ideal of the orthogonal Lie algebra
o(V, 〈 | 〉).
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(ii) If µ 6= 0, 1, then d coincides with the orthogonal Lie algebra o(V, 〈 | 〉).

There is some overlapping in the types considered up to now.
To begin with, let V be any four dimensional simple (−1,−1)-BFKTS and let

[xyz] be defined by

[xyz] = xyz − 〈z | x〉y + 〈z | y〉x− 〈x | y〉z

for any x, y, z ∈ V . Because of (2.5a), [xyz] is skew symmetric on its arguments.
In case [xyz] is identically zero, we are in presence of a system of orthogonal type.
Otherwise, this is a system of D-type. This means that the systems of hermitian type
with R = K or Q and with dimF V = 4 are systems of D-type. Let us check which
µ’s are involved in these cases. To do so, it is enough to consider the split cases.

Assume K = F × F and V = W ×W ∗ with h
(
(a, α), (b, β)

)
= (β(a), α(b)) for

any a, b ∈ W and α, β ∈ W and with dimF W = 2. Take a, b ∈ W and α, β ∈ W ∗

with α(a) = 1 = β(b), α(b) = 0 = β(a). Then with (a1, α1) = (a, 0), (a2, α2) = (0, α)
and (a3, α3) = (b, β),

det
(
〈(ai, αi) | (aj , αj)〉

)
=

∣∣∣∣∣∣
0 1

2 0
1
2 0 0
0 0 1

∣∣∣∣∣∣ = −1
4
,

while [(a, 0)(0, α)(b, β)] = 1
2 (b, β) and

〈[(a, 0)(0, α)(b, β)] | [(a, 0)(0, α)(b, β)]〉 =
1
4
〈(b,−β) | (b,−β)〉 = −1

4
.

Hence, µ = 1 in this case. (This can also be deduced directly from the size of the Lie
algebras d.)

Assume now that R = Q is a quaternion algebra and dimF V = 4, then V is a free
Q-module of rank 1 and hence we may assume that V = Q and that h(x, y) = αxȳ
for any x, y ∈ Q, where 0 6= α = h(1, 1) ∈ F . Then for any x1, x2, x3 ∈ Q,

[x1x2x3] = h0(x3, x1)x2 − h0(x3, x2)x1 + h0(x1, x2)x3

where h0(x, y) = 1
2

(
h(x, y)− h(y, x)

)
= α(xȳ − yx̄) ∈ Q0. By skew symmetry of h0,

[x1x2x3] =
1
2

∑
σ

h0(xσ(1), xσ(2))xσ(3) =
α

2
(−1)σxσ(1)x̄σ(2)xσ(3)

where the sum is over all the permutations of 1, 2, 3. Take x1 = 1, x2, and x3 mutually
orthogonal to get (〈1 | 1〉 = h(1, 1) = α):

det
(
〈xi | xj〉

)
= α〈x2 | x2〉〈x3 | x3〉,
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while
[x1x2x3] = −3αx2x3

since x2x3 = −x3x2 and x̄i = −xi for i = 2, 3 while 1̄ = 1. Thus,

〈[x1x2x3] | [x1x2x3]〉 = 9α3(x2x3)(x2x3) = 9α〈x2 | x2〉〈x3 | x3〉.

Thus, µ = 9 in this case.

A final overlap occurs if V is of hermitian type with R = K quadratic and with
dimF V = 2. As above,

[x1x2x3] =
1
2

∑
σ

h0(xσ(1), xσ(2))xσ(3)

for any x1, x2, x3 ∈ V . By skew symmetry and dimension, this is zero, and therefore
we are in the situation of R = F . We summarize the above arguments in the follow-
ing remark, whose last part follows from the structure of the Lie algebras of inner
derivations.

Remark 3.4:
- The simple (−1,−1)-BFKTS V of unitarian type and dimF V = 2 are also of

orthogonal type.
- The simple (−1,−1)-BFKTS V of unitarian type and dimF V = 4 are of D1-type.
- The simple (−1,−1)-BFKTS V of symplectic type and dimF V = 4 are of D9-

type.
- There are no more overlaps among different types.

3.3 G-type:
Let C be an eight-dimensional Cayley-Dickson (or octonion) algebra over F with

norm n and trace t. Let C0 be the set of trace zero elements. For any x, y ∈ C, the
linear map

Dx,y = [Lx, Ly] + [Lx, Ry] + [Rx, Ry] (3.11)

(where Lx and Rx denote the left and right multiplication by x) is known to be a
derivation of C [S, Ch. III.8], and hence it leaves C0 invariant. Consider then, for
any 0 6= α ∈ F , the nondegenerate symmetric bilinear form and the triple product
on V = C0 given by

〈x | y〉 = −2αt(xy)
xyz = α (Dx,y(z)− 2t(xy)z)

for any x, y, z ∈ V . Since Dx,y is a derivation and

Dx,y(y) = xy2 − y(xy) + xy2 − (xy)y + y2x− (yx)y,

= 4y2x− 2(xy + yx)y,
= −4n(y)x− 2t(xy)y = −〈y | y〉x+ 〈x | y〉y,
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where we have used that x2 = −n(x)1 = − 1
2 t(x

2)1 for any x ∈ V = C0; it follows
from (2.3) that V is a (−1,−1)-BFKTS (see also [OKa2] , which will be said to be
of G-type. It is clear here that the Lie algebra d is the span of the Dx,y’s, which
is precisely the Lie algebra of derivations of the Cayley-Dickson algebra C in case
the characteristic is 6= 3 [S, Ch. III.8], a simple Lie algebra of type G2. (If the
characteristic is 3, then this is a seven dimensional simple Lie algebra which is a form
of psl(7) [AEMN].)

3.4 F-type:
Let X be a 3-fold vector cross product on a vector space V of dimension 8,

endowed with a nondegenerate symmetric bilinear form 〈 | 〉 . That is, X is a three
linear map X : V ×V ×V → V , (a, b, c) 7→ X(a, b, c), satisfying (see [E2], [O2, Ch. 8]
and the references therein):

〈X(a1, a2, a3) | ai〉 = 0 for any i = 1, 2, 3,

〈X(a1, a2, a3) | X(a1, a2, a3)〉 = det
(
〈ai | aj〉

)
,

(3.12)

for any a1, a2, a3 ∈ V .
It is known that (3.12) implies the skew symmetry of X. Moreover, X satisfies:

〈X(a1, a2, a3) | X(b1, b2, b3)〉

= det
(
〈ai | bj〉

)
+ ε

∑
σ even

∑
τ even

〈aσ(1) | bτ(1)〉Φ(aσ(2), aσ(3), bτ(2), bτ(3))
(3.13)

for any ai, bi ∈ V (i = 1, 2, 3), where Φ(a, b, c, d) = 〈a | X(b, c, d)〉 for any a, b, c, d ∈
V , and ε = ±1. In case ε = 1 (resp. −1), X is said to be of type I (resp. II). Also, if
dimF V = 8 and X is of type I, then −X is of type II, and conversely.

Assume now that the characteristic of the ground field F is 6= 2, 3. Given a
3-fold vector cross product X of type I, define dx,y ∈ EndF (V ), x, y ∈ V , by means
of:

dx,yz =
1
3
X(x, y, z) + 〈z | x〉y − 〈z | y〉x . (3.14)

As shown in [O1, §5], condition (2.3b) is satisfied, so if the triple product xyz on V
is defined by means of

xyz =
1
3
X(x, y, z) + 〈z | x〉y − 〈z | y〉x+ 〈x | y〉z . (3.15)

for any x, y, z ∈ V , then V becomes a (−1,−1)-BFKTS, which will be said to be of
F-type.

Since dx,y is a derivation of the triple system and it is skew symmetric relative
to 〈 | 〉, it follows that dx,y is a derivation of the 3-fold vector cross product X.
According to [E2, Theorem 12], if e is an element of V with 〈e | e〉 6= 0, W =
{v ∈ V : 〈e | x〉 = 0}, and q is the nondegenerate quadratic form on V defined by
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q(v) = −〈e | e〉−1〈v | v〉, then the Lie algebra of derivations of X is isomorphic to the
orthogonal Lie algebra o(W, q). Actually, V has the structure of an eight dimensional
Cayley-Dickson algebra C with unit 1 = e, so that there is an scalar 0 6= α ∈ F such
that for any a, b, c ∈ V = C:

X(a, b, c) = α
(
(ab̄)c+ (a | c)b− (b | c)a− (a | b)c

)
〈a | b〉 = α(a | b)

where x 7→ x̄ denotes the involution and (a | a) = aā is the norm of C. Actually,
α = 〈e | e〉. Hence for any x, y ∈ V , dx,y is a derivation of the 3C-product given by
(ab̄)c (see [E2]). But for any x, y, z ∈ V = C,

3
α
dx,y(z) = (xȳ)z + 4(z | x)y − 4(z | x)x− (x | y)z,

in particular, for a traceless x (x̄ = −x):

3
α
de,x(y) = −xy + 2x(y + ȳ)− 2(xȳ − yx) = xy + 2yx = (L+ 2R)x(y),

that is, de,x = (L+ 2R)x, where L and R denote the left and right multiplications in
C. But these operators generate the Lie algebra of derivations of the triple product
given by (ab̄)c [EM,E2] (see also [E3]), so we conclude that d is isomorphic to o(W, q).

Note that in [OKa2] it is already proved that, after scalar extension, d is iso-
morphic to o(7), by an explicit computation.

4. Classification.

Given a (−1,−1)-BFKTS V over a field of characteristic 6= 2, in Section 2 a
simple Lie superalgebra g = g(V ) has been defined that contains a copy s = s(V ) of
sl2(F ), which is an ideal of g0̄ that is complemented by the ideal d = d(V ) = dV,V . In
this situation d = {d ∈ g0̄ : [d, s] = 0} is completely determined by g and s. Moreover,
as a module for g0̄, g1̄ is the tensor product of the two dimensional irreducible module
for s and the module V for d.

Consider a ground field F of characteristic 6= 2 and the pairs (g, s), where g is
a Lie superalgebra over F and s is a complemented ideal of g0̄ isomorphic to sl2(F ).
Two such pairs (g1, s1), (g2, s2) are said to be isomorphic if there is an isomorphism
of Lie superalgebras φ : g1 → g2 such that φ(s1) = s2.

Given a Lie superalgebra g = g0̄⊕ g1̄ and a nonzero scalar α, the new Lie super-
algebra defined over g with the new product [ , ]α given, for homogeneous elements,
by {

[x, y]α = α[x, y] if both x and y are odd
[x, y]α = [x, y] otherwise
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will be denoted by gα. Also, given a (−1,−1)-BFKTS V , we will denote by Vα the new
(−1,−1)-BFKTS defined on V but with the new product given by (xyz)α = αxyz,
and new symmetric bilinear form given by 〈x | y〉α = α〈x | y〉, for any x, y, z ∈ V .
From the definitions, it is clear that g(Vα) = g(V )α. Two (−1,−1)-BFKTS V 1 and
V 2 will be said to be equivalent in case there is a nonzero scalar α such that V 1 and
V 2
α are isomorphic.

Theorem 4.1 Let V 1 and V 2 be two (−1,−1)-BFKTS’s. Then V 1 is equivalent to
V 2 if and only if (g(V 1), s(V 1)) is isomorphic to (g(V 2), s(V 2)).

Proof: Let gi = g(V i) and di = d(V i) = dV i,V i for i = 1, 2. Also, s(V 1) = s(V 2) =
sp(U,ϕ) as in Section 2. Thus

gi0̄ = sp(U,ϕ)⊕ di,

gi1̄ = U ⊗F V i,

for i = 1, 2. Let Φ : g1 → g2 be an isomorphism such that it restricts to an au-
tomorphism of sp(U,ϕ). But any automorphism ξ of sp(U,ϕ) can be extended as
in [E4, proof of Lemma 2.1] to an isomorphism from g2 onto g2

α for some nonzero
scalar α and, therefore, we may (and will) assume that Φ is the identity on sp(U,ϕ).
Since di is the centralizer of sp(U,ϕ) in gi0̄, i = 1, 2, Φ restricts to an isomor-
phism Ψ : d1 → d2. Also, Φ restricts then to an isomorphism of sp(U,ϕ)-modules
Φ1̄ : U ⊗F V 1 → U ⊗F V 2. Since U is absolutely irreducible as a module for sp(U,ϕ),
there is an isomorphism of vector spaces ψ : V 1 → V 2 such that Φ(a⊗x) = a⊗ψ(x)
for any a ∈ U and x ∈ V 1.

Now, for any x, y, z ∈ V 1 and any a ∈ U :

a⊗ ψ
(
dx,y(z)

)
= Φ

(
[dx,y, a⊗ z]

)
=

[
Ψ(dx,y), a⊗ ψ(z)

]
= a⊗Ψ(dx,y)

(
ψ(z)

)
so

ψ
(
dx,y(z)

)
= Ψ(dx,y)

(
ψ(z)

)
, (4.1)

for any x, y, z ∈ V 1. Also, for any a, b ∈ U and x, y ∈ V 1:

Φ
(
[a⊗ x, b⊗ y]

)
= [a⊗ ψ(x), b⊗ ψ(y)]

= 〈ψ(x) | ψ(y)〉ϕa,b + ϕ(a, b)dψ(x),ψ(y),

but also
Φ

(
[a⊗ x, b⊗ y]

)
= Φ

(
〈x | y〉ϕa,b + ϕ(a, b)dx,y

)
= 〈x | y〉ϕa,b + ϕ(a, b)Ψ(dx,y);

so {
Ψ(dx,y) = dψ(x),ψ(y),

〈ψ(x) | ψ(y)〉 = 〈x | y〉,
(4.2)
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for any x, y ∈ V 1, which, together with (4.1), shows that ψ is an isomorphism between
the triple systems V 1 and V 2.

For the converse, if V 1 and V 2 are equivalent, there is a 0 6= α ∈ F such that V 1

and V 2
α are isomorphic. From here it is easy to deduce that the pairs (g(V 1), s(V 1))

and (g(V 2
α ), s(V 2)) are isomorphic. But g(V 2

α ) is isomorphic to g(V 2) by means of
an isomorphism taking s(V 2) into itself (see [E4, proof of Lemma 2.1]).

In order to classify the simple (−1,−1)-BFKTS of finite dimension over a field
of characteristic zero, we will first assume that the ground field F is algebraically
closed. Following Theorems 2.1, 2.2 and 4.1, we will determine, up to isomorphism,
the pairs (g, s), where g is a simple finite dimensional Lie superalgebra and s is an
ideal of g0̄ isomorphic to sl(2):

Theorem 4.2 Let F be an algebraically closed field of characteristic zero. The
following list exhausts, up to isomorphism, the pairs (g, s), where g is a simple finite
dimensional Lie superalgebra over F (g1̄ 6= 0) and s is a three dimensional simple
ideal of g0̄:

(i) g = sl(m, 2), m ≥ 3, and s is the (unique) ideal of g0̄ isomorphic to sl(2).
(ii) g = psl(2, 2) and s is any of the two simple ideals of g0̄.

(iii) g = osp(m, 2), m ≥ 1, m 6= 4, so that g0̄ = o(m) ⊕ sp(2), and s is the copy of
sp(2).

(iv) g = osp(4, 2r), r ≥ 2, so that g = o(4) ⊕ sp(2r) and s is any of the two simple
simple ideals of o(4) ∼= sl(2)⊕ sl(2).

(v) g = D(2, 1;α), α 6= 0,−1, so that g0̄ = sp(U,ϕ)⊕ sp(U,ϕ)⊕ sp(U,ϕ), U being a
two dimensional vector space and ϕ a nonzero skew symmetric bilinear form on
U , g1̄ = U ⊗F U ⊗F U , with the natural multiplication in g0̄ and natural action
of g0̄ on g1̄ in which the ith copy of sp(U,ϕ) acts on the ith factor of U , and with
the multiplication of odd elements given by:

[u1 ⊗ u2 ⊗ u3, v1 ⊗ v2 ⊗ v3] = ϕ(u2, v2)ϕ(u3, v3)ϕu1,v1

+ αϕ(u1, v1)ϕ(u3, v3)ϕu2,v2 − (1 + α)ϕ(u1, v1)ϕ(u2, v2)ϕu3,v3

for any ui, vi ∈ U , i = 1, 2, 3. Here s is the first copy of sp(U,ϕ).
(vi) g = G(3) and s is the (unique) ideal of g0̄ isomorphic to sl(2).
(vii) g = F (4) and s is the (unique) ideal of g0̄ isomorphic to sl(2).
(viii) g = osp(3, 2r), r ≥ 1, and s is the copy of o(3) in g0̄.

Moreover, different election of the simple ideal s in (ii) or (iv) give isomorphic
pairs and two pairs in (v) corresponding to the values α1 and α2 are isomorphic if
and only if either α1 = α2 or α1 + α2 = −1.

Proof: A careful look at the list of simple Lie superalgebras in [Kac, Theorem 5]
shows that the semisimple part of W(n)0̄ (n ≥ 2), of S(n) (n ≥ 3) and of S̃(n)
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(n ≥ 3), is isomorphic to sl(n) [Kac, Propositions 3.1.1 and 3.3.1], while W(2) is
isomorphic to sl(1, 2). Also, the semisimple part of H(n) (n ≥ 4) is isomorphic to
o(n) [Kac, Proposition 3.3.6], while H(4) is isomorphic to psl(2, 2). Hence, it is
enough to deal with the classical algebras. One checks easily that the simple classical
Lie superalgebras with g0̄ containing a three dimensional simple ideal are those listed
above. Since osp(4, 2) is isomorphic to D(2, 1; 1), this has been excluded from (iii)
and included in (v), and since sl(1, 2) is isomorphic to osp(2, 2), this has been included
in (iii).

The last assertion about cases (ii) and (iv) is clear. Also, the Lie algebras in
(v) are the ones denoted by Γ(1, α,−(1 + α)) in [Sc, pp. 16-17]. Here we have three
copies of sl(2) in g0̄, but there are isomorphisms preserving the three copies from
Γ(σ1, σ2, σ3) (σ1 + σ2 + σ3 = 0) onto Γ(ησ1, ησ2, ησ3) for any 0 6= η ∈ F , and also
natural isomorphisms permuting the three copies of sl(2) (and the corresponding
σi’s). Therefore, the distinguished copy of sl(2) can always be taken to be the first
one. Finally, if there is an isomorphism from Γ(1, α,−1−α) onto Γ(1, β,−1−β) that
takes the first copy of sl(2) in Γ(1, α,−1−α) to the first copy of sl(2) in Γ(1, β,−1−β),
then it takes the second copy of sl(2) in Γ(1, α,−1 − α) to either the second or the
third copy of sl(2) in Γ(1, β,−1− β), whence the last assertion of the Theorem.

Now we are ready for our main Theorem, it asserts that the examples in Section
3 exhaust all the simple (−1,−1)-BFKTS’s:

Theorem 4.3 Let V be a finite dimensional simple (−1,−1)-BFKTS over a field
F of characteristic zero with associated symmetric bilinear form 〈 | 〉. Then either:

(i) The multiplication in V is given by

xyz = 〈z | x〉y − 〈z | y〉x+ 〈x | y〉z

for any x, y, z ∈ V (orthogonal type).

(ii) There is a quadratic étale algebra K over F such that V is a free K-module of
rank ≥ 3, endowed with a hermitian form h : V × V → K such that{

〈x | y〉 = 1
2

(
h(x, y) + h(y, x)

)
xyz = h(z, x)y − h(z, y)x+ h(x, y)z

for any x, y, z ∈ V (unitarian type).

(iii) There is a quaternion algebra Q over F such that V is a free left Q-module of
rank ≥ 2, endowed with a hermitian form h : V × V → Q such that{

〈x | y〉 = 1
2

(
h(x, y) + h(y, x)

)
xyz = h(z, x)y − h(z, y)x+ h(x, y)z

for any x, y, z ∈ V (symplectic type).
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(iv) dimF V = 4 and there is a nonzero skew symmetric multilinear form Φ : V ×
V × V × V → F such that for any x, y, z ∈ V :

xyz = [xyz] + 〈z | x〉y − 〈z | y〉x+ 〈x | y〉z,

where [xyz] is defined by means of Φ(x, y, z, t) = 〈[xyz] | t〉 for any x, y, z, t ∈ V .
In this case, there is a nonzero scalar µ ∈ F such that (3.8) holds (Dµ-type).

(v) dimF V = 7 and there is an eight dimensional Cayley-dickson algebra C over F
with trace t and a nonzero scalar α ∈ F such that V = C0 = {x ∈ C : t(x) = 0},
and for any x, y, z ∈ V :{ 〈x | y〉 = −2αt(xy)

xyz = α
(
Dx,y(z)− 2t(xy)z

)
where Dx,y is the inner derivation of C given by (3.11) (G-type).

(vi) dimF V = 8 and (V, 〈 | 〉) is endowed with a 3-fold vector cross product X of type
I such that

xyz =
1
3
X(x, y, z) + 〈z | x〉y − 〈z | y〉x+ 〈x | y〉z

for any x, y, z ∈ V . (F-type.)

Moreover, two triple systems in different items cannot be isomorphic and:

(i’) Two triple systems of orthogonal type are isomorphic if and only if the corre-
sponding symmetric bilinear forms are isometric.

(ii’) Two triple systems of unitarian type V1 and V2, with associated quadratic étale
algebras K1 and K2 and hermitian forms h1 and h2, are isomorphic if and only
if the hermitian pairs (V1, h1) and (V2, h2) are isomorphic; that is, there is an
isomorphism of F -algebras σ : K1 → K2 and a linear bijection ϕ : V1 → V2 such
that h2(ϕ(x), ϕ(y)) = σ

(
h1(x, y)

)
for any x, y ∈ V1.

(iii’) Two triple systems of symplectic type V1 and V2, with associated quaternion
algebras Q1 and Q2 and hermitian forms h1 and h2, are isomorphic if and only
if the hermitian pairs (V1, h1) and (V2, h2) are isomorphic.

(iv’) Two triple systems of Dµ-type, with associated scalars µ1 and µ2, are isomorphic
if and only if the corresponding symmetric bilinear forms are isometric and
µ1 = µ2.

(v’) Two triple systems of G-type, with associated Cayley-Dickson algebras C1 and
C2 and scalars α1 and α2, are isomorphic if and only if so are C1 and C2 and
α1 = α2γ

2 for some 0 6= γ ∈ F .

(vi’) Two triple systems of F-type V1 and V2, with associated type I 3-fold vector
cross products X1 and X2, are isomorphic if and only if so are the triple systems
(V1, X1) and (V2, X2).

Proof: First, the new triple product defined on V by [xyz] = xyz − 〈z | x〉y + 〈z |
y〉x − 〈x | y〉z for any x, y, z ∈ V is skew symmetric because of (2.5a). If this is
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identically zero, V is of orthogonal type. Otherwise, if the dimension of V is 4, V is
of Dµ-type.

Hence, in what follows, assume that dimF V 6= 4. Then, after extending scalars
to an algebraic closure F̄ of F , if V̄ = F̄ ⊗F V , (g(V̄ ), s(V̄ )) is one of the pairs
considered in cases (i), (iii), (iv), (vi) or (vii) in Theorem 4.2. Note that case (viii)
does not appear since there g1̄ is a direct sum of adjoint modules for s instead of a
direct sum of two dimensional irreducible modules.

Because of Theorem 4.1 and the computations in Section 3, and since the classical
Lie superalgebras other than D(2, 1;α)’s are determined by its even part and the
structure of g1̄ as a g0̄-module [Kac, Proposition 2.1.4], it follows that case (i) in
Theorem 4.2 corresponds to the unitarian type with K̄ = F̄ × F̄ and dimF V ≥ 6,
case (iii) in 4.2 corresponds to the orthogonal type, case (iv) to the symplectic type
and dimF V ≥ 8 and cases (vi) and (vii) to G and F types.

Therefore, it is enough to deal with the forms over F of the simple (−1,−1)-
BFKTS’s over F̄ considered in Section 3 with dimension 6= 4.

It is clear that if V̄ is of orthogonal type, so is V . If V̄ is of unitarian type with
dimF V ≥ 6, then since K̄ = Endd̄(V̄ ) = F̄⊗F Endd(V ), K = Endd(V ) is a quadratic
étale algebra over F ; besides, there is a K̄-hermitian form h̄ : V̄ × V̄ → K̄ such that
xyz = h̄(z, x)y − h̄(z, y)x + h̄(x, y)z for any x, y, z ∈ V̄ . But if {1, i} is an F -basis
of K with i2 = α ∈ F , then h̄(x, y) = 〈x | y〉 − α−1〈x | iy〉i for any x, y ∈ V̄ . Since
both 〈x | y〉 and 〈x | iy〉 are in F in case x, y ∈ V , it follows that h̄ restricts to an
hermitian form h : V × V → K and V is the corresponding simple (−1,−1)-BFKTS
of unitarian type. A similar argument works in case V̄ is of symplectic type and
dimF V ≥ 8. In this case d̄ = b̄ ⊕ s̄ with s̄ ∼= sl(2, F̄ ) 6∼= b̄, so that d = b ⊕ s for a
suitable unique ideal b and Q̄ = Endb̄(V̄ ) = F̄ ⊗F Endb(V ). Hence Endb(V ) = Q
is a quaternion algebra and V is a free Q-module. Now one takes a suitable F -basis
{1, i, j, k} of Q and argues as above.

If V̄ is of G-type, then d is a form of G2, so there is an eight-dimensional Cayley-
Dickson algebra C over F such that d ∼= DerC and V is, up to isomorphism, its seven
dimensional irreducible module for d, that is C0, the set of traceless elements in C.
Since Homd(V ⊗F V, d) is one-dimensional, after identifying V with C0 there exists
a nonzero α ∈ F such that dx,y = αDx,y for any x, y ∈ C0 = V . From here, using
(2.3c), it follows that V is of G-type.

Finally, if V̄ is of F -type, define X : V × V × V → F by

X(x, y, z) = 3
(
xyz − 〈z | x〉y + 〈z | y〉x− 〈x | y〉z

)
for any x, y, z ∈ V . Then X is a 3-fold vector cross product of type I (because it is
so after extending scalars) and hence V is of F-type.

Moreover, two simple (−1,−1)-BFKTS’s of different types cannot be isomorphic
because the corresponding Lie algebras of inner derivations are not. Also note that,
because of (2.5a), any isomorphism among two (−1,−1)-BFKTS’s is an isometry of
the corresponding symmetric bilinear forms. Now (i’) is clear and (ii’) (respectively
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(iii’)) follows from the fact that K1 and K2 (resp. Q1 and Q2) are determined as
centralizers of the action of a suitable ideal of the Lie algebra of inner derivations.

Let us check (iv’), so let (Vi, (xyz)i) be two simple (−1,−1)-BFKTS’s of Dµi
-

type (i = 1, 2). If ϕ : V1 → V2 is an isomorphism, then it is an isometry and thus
ϕ([xyz]1) = [ϕ(x)ϕ(y)ϕ(z)]2 for any x, y, z ∈ V1. Hence

〈ϕ([x1x2x3]1) | ϕ([x1x2x3]1)〉2 = 〈[x1x2x3]1 | [x1x2x3]1〉1

= µ1 det
(
〈xi | xj〉1

)
,

but also

〈ϕ([x1x2x3]1) | ϕ([x1x2x3]1)〉2 = 〈[ϕ(x1)ϕ(x2)ϕ(x3)]2 | [ϕ(x1)ϕ(x2)ϕ(x3)]2〉2

= µ2 det
(
〈ϕ(xi) | ϕ(xj)〉2

)
= µ2 det

(
〈xi | xj〉1

)
.

Therefore, µ1 = µ2. Conversely, assume that ϕ : V1 → V2 is an isometry and
that µ1 = µ2 = µ. Consider Φi : V 4

i → F (i = 1, 2) given by Φi(x1, x2, x3, x4) =
〈[x1x2x3]i | x4〉i. Also, let Φ̃1 : V 4

1 → F be defined by

Φ̃1(x1, x2, x3, x4) = Φ2(ϕ(x1), ϕ(x2), ϕ(x3), ϕ(x4))

for any x1, x2, x3, x4 ∈ F . Since dimF V1 = 4 and both Φ1 and Φ̃1 are skew symmetric,
they are proportional, and hence there is a nonzero scalar α ∈ F such that Φ̃1 = αΦ1.
For any x1, x2, x3, y1, y2, y3 ∈ F :

Φ2(ϕ(x1), ϕ(x2), ϕ(x3),ϕ([y1y2y3]1)) = Φ̃1(x1, x2, x3, [y1y2y3]1)
= αΦ1(x1, x2, x3, [y1y2y3]1)

= αµdet
(
〈xi | yj〉1

)
= αµdet

(
〈ϕ(xi) | ϕ(yj)〉2

)
= Φ2(ϕ(x1), ϕ(x2)ϕ(x3), α[ϕ(y1)ϕ(y2)ϕ(y3)]2),

where we have used (3.8) and the fact that ϕ is an isometry. Thus ϕ([y1y2y3]1) =
α[ϕ(y1)ϕ(y2)ϕ(y3)]2 for any y1, y2, y3 ∈ V1. But now, again by (3.8), this shows
that µdet

(
〈yi | yj〉1

)
= α2µdet

(
〈yi | yj〉1

)
for any yi’s, so that α2 = 1. If α = 1

we are done, otherwise α = −1. In this latter case, choose any isometry σ of 〈 | 〉1
with detσ = −1 and consider ϕ̂ = ϕσ : V1 → V2. Then if Φ̂1(x1, x2, x3, x4) =
Φ2(ϕ̂(x1), ϕ̂(x2), ϕ̂(x3), ϕ̂(x4)) for any xi ∈ V1 (i = 1, 2, 3, 4), we have:

Φ̂1(x1, x2, x3, x4) = Φ2(ϕ̂(x1), ϕ̂(x2), ϕ̂(x3), ϕ̂(x4))

Φ̃1(σ(x1), σ(x2), σ(x3), σ(x4)) = α(detσ)Φ1(x1, x2, x3, x4)
= Φ1(x1, x2, x3, x4),
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because α = −1 = detσ and Φ1 is multilinear and alternating. The same argument
as above, with Φ̃1 replaced by Φ̂1 shows that ϕ̂ is an isomorphism between the two
triple systems.

With regard to (v’), if ϕ : V 1 → V 2 is an isomorphism of two triple systems
of G-type with associated Cayley-Dickson algebras C1 and C2 and scalars α1 and
α2, then ϕ is an isometry of the associated symmetric bilinear forms and for any
x, y, z ∈ V1

ϕ(dx,yz) = dϕ(x),ϕ(y)ϕ(z). (4.2)

Also, φ : d1 = dV 1,V 1 → d2: d 7→ ϕdϕ−1 is an isomorphism of Lie algebras and ϕ
becomes an isomorphism of d1-modules, where V 2 is a d1-module through φ. Since
Homd1(Λ2(V 1), V 1) is spanned by x ∧ y 7→ [x, y] = xy − yx (multiplication in C1),
there is a nonzero scalar µ ∈ F such that

ϕ([x, y]) = µ[ϕ(x), ϕ(y)] (4.3)

for any x, y ∈ V 1 = C1
0 = {z ∈ C1 : t(z) = 0}. In particular, µϕ : (C1

0 , [ , ]) →
(C2

0 , [ , ]) is an isomorphism of Malcev algebras and hence C1 and C2 are isomorphic
(see, for instance, [E1, (3.1)]). But the associator (x, y, z) = (xy)z − x(yz) in C1

is skew symmetric on its arguments, so for any x, y, z ∈ C1, (x, y, z) = −(x, z, y) =
(z, x, y) = (y, z, x), so that

Lxy − LxLy = [Lx, Ry] = RyRx −Rxy = [Rx, Ly],

hence adxy − LxLy + RyRx = 2[Lx, Ry] for any x, y ∈ C1, where adx y = [x, y] =
(Lx −Rx)(y). Permuting x and y and subtracting we get

ad[x,y] = [Lx, Ly] + [Rx, Ry] + 4[Lx, Ry] = Dx,y + 3[Lx, Ry].

On the other hand,

[adx, ady] = [Lx −Rx, Ly −Ry] = [Lx, Ly] + [Rx, Ry]− 2[Lx, Ry]
= Dx,y − 3[Lx, Ry],

and from here we conclude that

2Dx,y = ad[x,y] +[adx, ady]

for any x, y ∈ C1. Since dx,y = α1Dx,y and dϕ(x),ϕ(y) = α2Dϕ(x),ϕ(y) for any x, y ∈
V 1, equation (4.3) gives:

ϕdx,y =
α1

2
ϕ
(
ad[x,y] +[adx, ady]

)
=
α1

2
µ2

(
ad[ϕ(x),ϕ(y)] +[adϕ(x), adϕ(y)]

)
ϕ

=
α1

2
µ2Dϕ(x),ϕ(y)ϕ,

dϕ(x),ϕ(y) =
α2

2
Dϕ(x),ϕ(y),
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for any x, y ∈ V 1, so that equation (4.2) gives α1µ
2 = α2, as desired. Conversely, if

ψ : C1 → C2 is an isomorphism and α2 = α1µ
2, then the map ϕ : V 1 = C1

0 → V 2 =
C2

0 , given by ϕ(x) = µ−1ψ(x) for any x ∈ V 1, is an isomorphism of triple systems.

We are left with the isomorphism problem for the (−1,−1)-BFKTS’s of F-type.
For these we need some preliminaries, which have their own independent interest:

Lemma 4.4 LetX be a 3-fold vector cross product of type I on an eight dimensional
vector space V over a field F of characteristic 6= 2, and let 〈 | 〉 be the associated
nondegenerate symmetric bilinear form (so that (3.11) is satisfied). Then 〈 | 〉 is
determined by X.

Proof: Because of (3.12), for any a, b, c, d ∈ V :

−〈d | X(a, b,X(a, b, c))〉 = 〈X(a, b, c) | X(a, b, d)〉

= det

∣∣∣∣∣∣
〈a | a〉 〈a | b〉 〈a | d〉
〈b | a〉 〈b | b〉 〈b | d〉
〈c | a〉 〈c | b〉 〈c | d〉

∣∣∣∣∣∣
=

〈
〈a ∧ b | a ∧ b〉c− 〈a ∧ b | a ∧ c〉b+ 〈a ∧ b | b ∧ c〉a | d

〉
where 〈a ∧ b | u ∧ v〉 =

∣∣∣∣ 〈a | u〉 〈a | v〉
〈b | u〉 〈b | v〉

∣∣∣∣ for any a, b, u, v ∈ V . By nondegeneracy of

〈 | 〉, this gives:

X(a, b,X(a, b, c)) = 〈a ∧ b | c ∧ b〉a+ 〈a ∧ b | a ∧ c〉b− 〈a ∧ b | a ∧ b〉c. (4.4)

Hence, for any a, b, c ∈ V , if d = X(a, b, c), then X(a, b, d) ∈ Fa + Fb + Fc and,
similarly (since d = X(b, c, a) = X(c, a, b)), X(b, c, d), X(a, c, d) ∈ Fa + Fb + Fc, so
that W = Fa + Fb + Fc + Fd is closed under X. Let us prove now that for any
0 6= v ∈ V :

X(v, V, V ) = {x ∈ V : 〈v | x〉 = 0}. (4.5)
Because of (3.12), X(v, V, V ) ⊆ {x ∈ V : 〈x | v〉 = 0}. Now, take a = v and let b ∈ V
linearly independent with a and such that 〈 | 〉 is nondegenerate on Wb = Fa + Fb.
By (4.4) c ∈ X(a, b, V ) ⊆ X(v, V, V ) for any c ∈ W⊥

b = {x ∈ V : 〈x | a〉 = 0 =
〈x | b〉}. Take any two such b’s with different Wb’s, then the sum of the W⊥

b ’s is
{x ∈ V : 〈x | v〉 = 0} , so (4.5) follows.

Thus, assume that X is also a 3-fold vector cross product of type I relative to
another nondegenerate symmetric bilinear form ( | ) on V . Then for any 0 6= u, v ∈ V ,
if 〈u | v〉 = 0, then u ∈ X(v, V, V ) by (4.5), so by (3.12), also (u | v) = 0. The only
possibility then is that ( | ) = α〈 | 〉 for some nonzero scalar α ∈ F . But then (3.12)
implies that α3 = α, so α = ±1 and (3.13) that α = 1.

Note that if X is a 3-fold vector cross product of type I on an eight dimensional
vector space V relative to the nondegenerate symmetric bilinear form 〈 | 〉, then X
is a 3-fold vector cross product of type II relative to −〈 | 〉. Also note that 〈 | 〉 does
not determine X, since not every orthogonal transformation relative to 〈 | 〉 is an
automorphism of X ([E2]).
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Corollary 4.5 Let Xi be a 3-fold vector cross product on an eight dimensional
vector space Vi over a field F of characteristic 6= 2 with associated nondegenerate
symmetric bilinear form 〈 | 〉i (i = 1, 2). Then if ϕ : (V1, X1) → (V2, X2) is an
isomorphism, then it is also an isometry ϕ : (V1, 〈 | 〉1) → (V2, 〈 | 〉2).

Now, the proof of item (vi’) in Theorem 4.3 follows immediately from the Corol-
lary above and this finishes its proof.
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