# SIMPLE $(-1,-1)$ BALANCED FREUDENTHAL KANTOR TRIPLE SYSTEMS 

Alberto Elduque*<br>Departamento de Matemáticas, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain e-mail address: elduque@posta.unizar.es<br>Noriaki Kamiya**<br>Center for Mathematical Sciences, The University of Aizu<br>965-8580 Aizu-Wakamatsu, Japan e-mail address: kamiya@u-aizu.ac.jp<br>Susumu Okubo***<br>Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA<br>e-mail address: okubo@pas.rochester.edu


#### Abstract

The simple finite dimensional $(-1,-1)$ balanced Freudenthal Kantor triple systems over fields of characteristic zero are classified.


## 1. Introduction.

In 1954, H. Freudenthal [Fr] constructed the exceptional simple Lie algebras of types $E_{7}$ and $E_{8}$ by means of the exceptional simple Jordan algebras. The construction of $E_{8}$ has been extended in several ways to give 5 -graded Lie algebras

$$
\mathfrak{g}=\mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{1} \oplus \mathfrak{g}_{2}
$$

starting with some nonassociative algebras or triple systems, which appear as the component $\mathfrak{g}_{1}$.

The concept of $(\varepsilon, \delta)$-Freudenthal Kantor triple system covers many of these systems:

[^0]Definition 1.1[YO] Let $\varepsilon, \delta= \pm 1$. A vector space $V$ over a field $F$, endowed with a trilinear operation $V \times V \times V \rightarrow V,(x, y, z) \mapsto x y z$, is said to be a $(\varepsilon, \delta)$-Freudenthal Kantor triple system $((\varepsilon, \delta)$-FKTS for short) if the following two conditions are satisfied
(i) $\left[l_{a, b}, l_{c, d}\right]=l_{l_{a, b} c, d}+\varepsilon l_{c, l_{b, a} d}$,
(ii) $l_{d, c} k_{a, b}-\varepsilon k_{a, b} l_{c, d}=k_{k_{a, b} c, d}$
for any $a, b, c, d \in V$, where $l_{a, b}, k_{a, b}: V \rightarrow V$ are given by $l_{a, b} c=a b c, k_{a, b} c=$ $a c b-\delta b c a$.

Thus a $(-1,1)$-FKTS is exactly a generalized Jordan triple system of second order in the sense of Kantor [K] (if $k=0$ this is just a Jordan triple system), while a $(1,-1)$-FKTS with $k=0$ is an anti-Jordan triple system (see [FF1] for the definition of anti-Jordan pair ( $U^{+}, U^{-}$); when $U^{+}=U^{-}$one gets an anti-Jordan triple system).

An $(\varepsilon, \delta)$-FKTS $V$ is said to be balanced $((\varepsilon, \delta)$-BFKTS for short) if there exists a nonzero bilinear form $(\mid): V \times V \rightarrow F$ such that $k_{a, b}=(a \mid b) I d$ for any $a, b \in V$. Since $k_{a, b}=-\delta k_{b, a}$ by its own definition, $(\mid)$ is either symmetric $(\delta=-1)$ or skewsymmetric $(\delta=1)$. On the other hand, condition (ii) in Definition 1.1 gives here that $(\mid)$ is either symmetric or skew-symmetric according to $\varepsilon$ being -1 or 1 , so that $\varepsilon=\delta$ in case $V$ is balanced.

Any ( 1,1 )-BFKTS becomes, by means of minor modifications of its triple product, a symplectic ternary algebra [FF2], a symplectic triple system [YA] or a Freudenthal triple system $[\mathrm{M}]$, and conversely. The simple finite dimensional Freudenthal triple systems were classified by $[\mathrm{M}]$, with some restrictions which are satisfied if the ground field is algebraically closed, and this amounts to a classification of the simple (1,1)-BFKTS (and of the symplectic ternary algebras [FF2]). The related 5 -graded Lie algebras satisfy that $\mathfrak{g}_{ \pm 2}$ is one dimensional.

Further properties of $(\varepsilon, \delta)$-FKTS's can be found in [KA1-6, KAO, OKA1] and the references therein.

Our aim in this paper is to obtain the classification of the finite dimensional simple $(-1,-1)$-BFKTS's over fields of characteristic 0 . To achieve this, the classification [KAC] of the finite dimensional simple Lie superalgebras over algebraically closed fields of characteristic 0 will be used, but we will have to look at the known relationship between $(-1,-1)$-FKTS's and 5 -graded Lie superalgebras $[\mathrm{Y}]$ in a different way, suitable to our needs. This will be done in Section 2. The relevant examples of $(-1,-1)$-BFKTS's will be given in Section 3 and, finally, Section 4 will provide the promised classification (Theorem 4.3), which asserts that the simple finite dimensional $(-1,-1)$-BFKTS's fall into six classes, three of them with arbitrarily large dimension: orthogonal, unitarian and symplectic types; and another three classes of four dimensional ( $\mathrm{D}_{\mu}$-type), seven dimensional (G-type) and eight dimensional systems (F-type).

Using Definition 1.1, the defining relations for a $(-1,-1)$-BFKTS are

$$
\begin{equation*}
a b(x y z)=(a b x) y z-x(b a y) z+x y(a b z), \tag{1.1}
\end{equation*}
$$

$$
\begin{equation*}
a b x+b a x=(a \mid b) x=a x b+b x a, \tag{1.2}
\end{equation*}
$$

for any $a, b, x, y, z \in V$, where $(\mid)$ is a nonzero symmetric bilinear form. Over fields of characteristic $\neq 2$, put $\langle\mid\rangle=\frac{1}{2}(\mid)$ and then (1.2) is equivalent to

$$
\begin{equation*}
x x y=\langle x \mid x\rangle y=x y x \tag{1.3}
\end{equation*}
$$

for any $x, y \in V$.
The main motivation for the classification of the simple $(-1,-1)$-BFKTS's was provided by the recent paper [OKA2] by two of the authors, where the exceptional simple classical Lie superalgebras were constructed by using the last three classes mentioned above ( $\mathrm{D}, \mathrm{G}$ and F types). These triple systems are closely related to quaternion and octonion algebras. A different construction of the exceptional simple classical Lie superalgebras has been given in [BE] by means of a generalized Tits' construction (which also uses quaternion and octonion algebras).

## 2. ( $-1,-1$ ) balanced Freudenthal Kantor triple systems and Lie superalgebras.

The relationship between $(-1,-1)$-BFKTS and Lie superalgebras has been studied in [OKa2]. A more useful approach for us is obtained as indicated by the next Theorem.

Theorem 2.1 Let $\mathfrak{g}$ be a finite dimensional Lie superalgebra over a field $F$ of characteristic $\neq 2$ such that $\mathfrak{g}_{\overline{0}}=\mathfrak{s l}_{2}(F) \oplus \mathfrak{d}$ (direct sum of ideals) and $\mathfrak{g}_{\overline{1}}=U \otimes_{F} V$, where $U$ is the two dimensional module for $\mathfrak{s l}_{2}(F)$ and $V$ is a module for $\mathfrak{d}$. Let $\varphi$ be a nonzero skew symmetric form on $U$, so that we may identify $\mathfrak{s l}_{2}(F)=\mathfrak{s p}(U, \varphi)$ and for any $a, b \in U$ consider the map $\varphi_{a, b} \in \mathfrak{s l}_{2}(F)$ given by

$$
\varphi_{a, b}(c)=\varphi(c, a) b+\varphi(c, b) a
$$

for any $c \in U$. Then the product of odd elements in $\mathfrak{g}$ is given by

$$
\begin{equation*}
[a \otimes u, b \otimes v]=\langle u \mid v\rangle \varphi_{a, b}+\varphi(a, b) d_{u, v} \tag{2.1}
\end{equation*}
$$

for any $a, b \in U$ and $u, v \in V$, where $\langle\mid\rangle$ is a symmetric bilinear form and $d: V \times V \rightarrow$ $\mathfrak{d}$ is a skew symmetric bilinear map that satisfy

$$
\begin{align*}
& \langle d(x) \mid y\rangle+\langle x \mid d(y)\rangle=0,  \tag{2.2a}\\
& {\left[d, d_{x, y}\right]=d_{d(x), y}+d_{x, d(y)},}  \tag{2.2b}\\
& d_{x, y}(y)=\langle y \mid x\rangle y-\langle y \mid y\rangle x, \tag{2.2c}
\end{align*}
$$

for any $x, y \in V$ and $d \in \mathfrak{d}$.

Conversely, let $V$ be a vector space endowed with a symmetric bilinear form $\langle\mid\rangle: V \times V \rightarrow F$ and a skew symmetric bilinear map $d: V \times V \rightarrow \operatorname{End}_{F}(V)$ $\left((u, v) \mapsto d_{u, v}\right)$. Assume that:

$$
\begin{align*}
& \left\langle d_{u, v}(x) \mid y\right\rangle+\left\langle x \mid d_{u, v}(y)\right\rangle=0,  \tag{2.3a}\\
& {\left[d_{u, v}, d_{x, y}\right]=d_{d_{u, v}(x), y}+d_{x, d_{u, v}(y)}}  \tag{2.3b}\\
& d_{x, y}(y)=\langle y \mid x\rangle y-\langle y \mid y\rangle x \tag{2.3c}
\end{align*}
$$

for any $u, v, x, y \in V$. Let $\mathfrak{d}$ be span $\left\{d_{u, v}: u, v \in V\right\}$ (a Lie subalgebra of $\operatorname{End}_{F}(V)$ by (2.3b)) and let $\mathfrak{g}=\mathfrak{g}_{\overline{0}} \oplus \mathfrak{g}_{\overline{1}}$ be the superalgebra where $\mathfrak{g}_{\overline{0}}$ is the Lie algebra $\mathfrak{s l}_{2}(F) \oplus \mathfrak{d}=\mathfrak{s p}(U, \varphi) \oplus \mathfrak{d}, \mathfrak{g}_{\overline{1}}$ is the $\mathfrak{g}_{\overline{0}}$-module $U \otimes_{F} V$ and where the product of odd elements is given by (2.1). Then $\mathfrak{g}$ is a Lie superalgebra.

Proof: Since $\operatorname{Hom}_{\mathfrak{s p}(U, \varphi)}\left(U \otimes_{F} U, F\right)$ is spanned by the form $\varphi$ and $\operatorname{Hom}_{\mathfrak{s p}(U, \varphi)}\left(U \otimes_{F}\right.$ $U, \mathfrak{s p}(U, \varphi))$ is spanned by the symmetric map $a \otimes b \mapsto \varphi_{a, b}$, formula (2.1) follows. Formulae (2.2a) and (2.2b) follow from the Jacobi superidentity applied to the elements $d \in \mathfrak{d}$ and $a \otimes x, b \otimes y \in U \otimes_{F} V$ and (2.2c) follows from the Jacobi superidentity applied to three odd elements.

The converse is a straightforward computation.

With $V, d: V \times V \rightarrow \operatorname{End}_{F}(V)$ and $\langle\mid\rangle$ as before, consider the triple product in $V$ given by

$$
\begin{equation*}
x y z=d_{x, y} z+\langle x \mid y\rangle z \tag{2.4}
\end{equation*}
$$

for any $x, y, z \in V$. Conditions (2.3a-c) translate into:

$$
\begin{align*}
& x x y=\langle x \mid x\rangle y=x y x  \tag{2.5a}\\
& u v(x y z)=(u v x) y z-x(v u y) z+x y(u v z)  \tag{2.5b}\\
& \langle u v x \mid y\rangle=\langle x \mid v u y\rangle \tag{2.5c}
\end{align*}
$$

for any $u, v, x, y, z \in V$. Let us check (2.5b) for instance. For this, denote by $l_{x, y}$ the map $z \mapsto x y z$ for any $x, y, z \in V$, then for any $u, v, x, y \in V$

$$
\begin{aligned}
{\left[l_{u, v}, l_{x, y}\right] } & =\left[d_{u, v}, d_{x, y}\right] \quad\left(\text { since } l_{u, v}-d_{u, v}\right. \text { is scalar) } \\
& =d_{d_{u, v}(x), y}+d_{x, d_{u, v}(y)} \\
& =l_{d_{u, v}(x), y}-\left\langle d_{u, v}(x) \mid y\right\rangle+l_{x, d_{u, v}(y)}-\left\langle x \mid d_{u, v}(y)\right\rangle \\
& =l_{d_{u, v}(x), y}-l_{x, d_{v, u}(y)} \\
& =l_{u v x, y}-\langle u \mid v\rangle l_{x, y}-l_{x, v u y}+\langle v \mid u\rangle l_{x, y} \\
& =l_{u v x, y}-l_{x, v u y}
\end{aligned}
$$

and this is equivalent to (2.5b). Conversely, conditions (2.5a-c) give conditions (2.3ac), if (2.4) is used to define $d_{x, y}$ for $x, y \in V$.

Conditions (2.5a) and (2.5b) are just the defining conditions (1.3) and (1.1) of a $(-1,-1)$-BFKTS, while condition (2.5c) is a consequence of (2.5a-b) [KA2]. We include a proof of this fact by completeness:

Take $x=y$ in (2.5b) and use (2.5a) to get

$$
\begin{aligned}
\langle x \mid x\rangle u v z & =(u v x) x z-x(v u x) z+\langle x \mid x\rangle u v z \\
& =(u v x) x z+((v u x) x z-2\langle x \mid v u x\rangle z)+\langle x \mid x\rangle u v z \\
& =2\langle u \mid v\rangle x x z-2\langle x \mid v u x\rangle z+\langle x \mid x\rangle u v z
\end{aligned}
$$

and this shows that $\langle x \mid v u x\rangle=\langle u \mid v\rangle\langle x \mid x\rangle$ for any $x, u, v \in V$. Linearizing this one obtains that $\langle x \mid v u y\rangle+\langle y \mid v u x\rangle=2\langle u \mid v\rangle\langle x \mid y\rangle$ for any $x, y, u, v \in V$, whence

$$
\langle x \mid v u y\rangle=\langle 2\langle u \mid v\rangle x-v u x \mid y\rangle=\langle u v x \mid y\rangle,
$$

as desired. In the same way, (2.3a) follows from (2.3b) and (2.3c).
Because of $(2.3 \mathrm{a}-\mathrm{b}), \mathfrak{d}=d_{V, V}$ is a Lie algebra of derivations of the $(-1,-1)$ BFKTS, which will be said to be the Lie algebra of inner derivations of $V$.

Given a vector space $V$ endowed with a nonzero symmetric bilinear form $\langle\mid\rangle$ and a skew symmetric map $d: V \times V \rightarrow \operatorname{End}_{F}(V),(x, y) \mapsto d_{x, y}$ for any $x, y \in$ $V$, satisfying conditions (2.3), denote by $\mathfrak{g}(V)$ the Lie superalgebra constructed in Theorem 2.1. Also, consider the triple product $x y z$ defined on $V$ by (2.4) and the triple product obtained directly from $d:\{x y z\}=d_{x, y}(z)$ for any $x, y, z \in V$.

Theorem 2.2 Under the hypotheses above, the following conditions are equivalent:
(i) $\langle\mid\rangle$ is nondegenerate,
(ii) $(V,\{x y z\})$ is a simple triple system,
(iii) $(V, x y z)$ is a simple triple system,
(iv) $\mathfrak{g}(V)$ is a simple Lie superalgebra.

Proof: Assume that (i) is satisfied and let $I$ be a nonzero ideal of the triple system $(V,\{x y z\})$. Then for any $x \in I$ and $y \in V,\{x y y\}=d_{x, y}(y)=-\langle y \mid y\rangle x+\langle x \mid y\rangle y \in I$, by (2.3c), and hence $\langle x \mid y\rangle y \in I$ for any $y \in I$. Since $\langle\mid\rangle$ is nondegenerate, there is a basis of $V$ formed by elements $y$ with $\langle x \mid y\rangle \neq 0$ and this shows that $I=V$. Conversely, $V^{\perp}=\{x \in V:\langle x \mid V\rangle=0\}$ is an ideal of ( $V,\{x y z\}$ ) because of (2.3a) and the linearization of (2.3c). Hence (ii) implies (i).

Similarly, condition (i) and the linearization of (2.5a) imply (iii), and conversely (iii) implies (i) since $V^{\perp}$ is an ideal of ( $V, x y z$ ) because of (2.5a) and (2.5c).

Now assume that (i) is satisfied and that $0 \neq I=I_{\overline{0}} \oplus I_{\overline{1}}$ is an ideal of the Lie superalgebra $\mathfrak{g}(V)$. By $\mathfrak{s l}_{2}(F)$-invariance, $I_{\overline{1}}=U \otimes_{F} W$ for a subspace $W$ of $V$. Let $x \in V$ and $y \in W$ with $\langle x \mid y\rangle \neq 0$, then for any $a \in U,[a \otimes x, a \otimes y]=-\langle x \mid y\rangle \varphi_{a, a}$, so $\varphi_{a, a} \in I_{\overline{0}}$ for any $a$ and $\mathfrak{s l}_{2}(F) \subseteq I_{\overline{0}}$. But then $\mathfrak{g}_{\overline{1}}=\left[\mathfrak{s l}_{2}(F), \mathfrak{g}_{\overline{1}}\right] \subseteq I$ and
$\mathfrak{g}_{\overline{0}}=\left[\mathfrak{g}_{\overline{1}}, \mathfrak{g}_{\overline{1}}\right] \subseteq I$, so $I=\mathfrak{g}$. Otherwise $W=0$, so $I_{\overline{1}}=0$, but then it is easy to show that $I=0$.

Conversely, the graded subspace $d_{V, V} \perp \oplus\left(U \otimes_{F} V^{\perp}\right)$ is an ideal of $\mathfrak{g}(V)$, so (iv) implies (i).

Since the nondegeneracy of a bilinear form is preserved under scalar extensions, it immediately follows that:

Corollary 2.3 With the same notation as above, if $\langle\mid\rangle$ is nondegenerate, then $(V,\{x y z\}),(V, x y z)$ and $\mathfrak{g}(V)$ are central simple.

## 3. Examples.

This section is devoted to constructing the examples of simple $(-1,-1)$ balanced Freudenthal Kantor triple systems that will appear in the classification. Throughout this section, the ground field $F$ will be assumed of characteristic $\neq 2$.

### 3.1 Hermitian type:

Let $R$ be a unital separable associative algebra over $F$ of degree $\leq 2$. Therefore, $R$ is, up to isomorphism, either the ground field $F, F \times F$, a quadratic separable field extension $K$ of $F$ or a quaternion algebra $Q$ over $F$. In any case, $R$ is endowed with an involution of the first kind, $x \mapsto \bar{x}$, such that $x+\bar{x}, x \bar{x}=\bar{x} x \in F$ for any $x \in R$. Let $V$ be a left module over $R$ endowed with a nondegenerate hermitian form $h: V \times V \rightarrow R$. That is, $h$ is $F$-bilinear and satisfies for any $x, y \in V$ and $r \in R$ :

$$
\begin{align*}
& h(r x, y)=r h(x, y) \\
& h(x, y)=\overline{h(y, x)},  \tag{3.1}\\
& h(x, V)=0 \text { if and only if } x=0 .
\end{align*}
$$

Then the symmetric bilinear form $V \times V \rightarrow F$ defined by means of:

$$
\begin{equation*}
\langle x \mid y\rangle=\frac{1}{2}(h(x, y)+h(y, x)) \tag{3.2}
\end{equation*}
$$

for any $x, y \in V$, is nondegenerate and determines $h$.
Define now the triple product on $V$ by means of

$$
\begin{equation*}
x y z=h(z, x) y-h(z, y) x+h(x, y) z \tag{3.3}
\end{equation*}
$$

for any $x, y, z \in V$.
It is clear that $x x y=h(x, x) y=\langle x \mid x\rangle y=x y x$ for any $x, y \in V$ and a straightforward computation shows that this triple product satisfies (2.5b) too. Therefore
$V$ is a $(-1,-1)$-BFKTS which will be said to be of hermitian type. Depending on $\operatorname{dim}_{F} R$ being either 1,2 or $4, V$ will be said to be of orthogonal, unitarian or symplectic type, respectively, for reasons that will become clear later on.

Let us compute the Lie algebra $\mathfrak{d}=d_{V, V}$ in this case. Assume first that $R=$ $F$, the ground field, then $d_{x, y}=\langle-\mid x\rangle y-\langle-\mid y\rangle x=: \sigma_{x, y}$ for any $x, y \in V$, and these maps span the orthogonal Lie algebra $\mathfrak{o}(V)$. From the construction in [KAc, Supplement to 2.1.2], $\mathfrak{g}(V)$ is the orthosymplectic Lie superalgebra $\mathfrak{o s p}(V \oplus$ $U)$. A word of caution is needed here: the multiplication of odd elements in [KAC, Supplement to 2.1.2] should read

$$
[a \otimes c, b \otimes d]=-(a, b)_{0} c \circ d+(c, d)_{1} a \wedge b .
$$

(A minus sign has been added.)
Now, in case $R$ is a quadratic étale algebra, that is, either $K=F \times F$ or $K$ is a quadratic field extension of $F$, then for any $x, y \in V$,

$$
\begin{equation*}
d_{x, y}=h_{x, y}+h_{0}(x, y) i d \tag{3.4}
\end{equation*}
$$

where

$$
\begin{equation*}
h_{x, y}=h(-, x) y-h(-, y) x \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
h_{0}(x, y)=h(x, y)-\langle x \mid y\rangle=\frac{1}{2}(h(x, y)-h(y, x)) . \tag{3.6}
\end{equation*}
$$

Note that

$$
h_{x, y} \in \mathfrak{u}(V, h)=\left\{f \in \operatorname{End}_{K}(V): h(f(x), y)+h(x, f(y))=0 \text { for any } x, y \in V\right\} .
$$

Since $\overline{h_{0}(x, y)}=-h_{0}(x, y)$, it follows that $\mathfrak{d} \subseteq \mathfrak{u}(V, h)$.
In the split case: $K=F \times F=F e_{1} \oplus F e_{2}$, for orthogonal idempotents $e_{1}$ and $e_{2}\left(\bar{e}_{1}=e_{2}\right)$, let $W=e_{1} V$ and $\tilde{W}=e_{2} V$. Then $h(W, W)=0=h(\tilde{W}, \tilde{W})$ and for any $a \in W$ and $u \in \tilde{W}, h(a, u) \in F e_{1}$. Hence there is a bilinear nondegenerate form $(\mid): W \times \tilde{W} \rightarrow F$, such that $h(a, u)=(a \mid u) e_{1}$ for any $a \in W$ and $u \in \tilde{W}$. This bilinear form determines $h$ and allows us to identify $\tilde{W}$ with the dual $W^{*}$. Therefore we may assume that $V=W \times W^{*}$, with the natural structure of module over $K=F \times F$, and with

$$
h((a, \alpha),(b, \beta))=(\beta(a), \alpha(b))
$$

for any $a, b \in W$ and $\alpha, \beta \in W^{*}$. Moreover, in this case $\mathfrak{u}(V, h)$ is isomorphic to $\mathfrak{g l}(W)$ by means of the isomorphism that takes any $f \in \operatorname{End}_{F}(W)=\mathfrak{g l}(W)$ to the endomorphism of $V=W \times W^{*}$ given by $(a, \alpha) \mapsto(f(a),-\alpha \circ f)$. Through this isomorphism, $h_{(a, 0),(0, \alpha)}$ corresponds to the endomorphism of $W$ given by $c \mapsto$ $-\alpha(c) a$, and hence $d_{(a, 0),(0, \alpha)}$ corresponds to $c \mapsto-\alpha(c) a+\frac{1}{2} \alpha(a) c$. If the dimension
of $W$ is not 2 , this shows that $\mathfrak{d}=\mathfrak{u}(V, h) \cong \mathfrak{g l}(W)$, while if the dimension is 2 , $\mathfrak{d}=\mathfrak{s u}(V, h) \cong \mathfrak{s l}(W)$.

By scalar extension, we have that $\mathfrak{d}=\mathfrak{u}(V, h)$ if $\operatorname{dim}_{K} V \neq 2\left(\operatorname{dim}_{F} V \neq 4\right)$ and $\mathfrak{d}=\mathfrak{s u}(V, h)$ if $\operatorname{dim}_{K} V=2$.

Finally, assume that $R$ is a quaternion algebra $Q$. Again $d_{x, y}=h_{x, y}+h_{0}(x, y) i d$, but now $h_{x, y}$ is $Q$-linear, while $h_{0}(x, y) i d$ is not in general, since the center of $Q$ is $F$. It is easily checked here that

$$
\left[h_{x, y}, h_{u, v}\right]=h_{h_{x, y}(u), v}+h_{u, h_{x, y}(v)}
$$

for any $x, y, u, v \in V$, and thus $h_{V, V}=\operatorname{span}\left\{h_{x, y}: x, y \in V\right\}$ is a Lie algebra contained in

$$
\mathfrak{s p}(V, h)=\left\{f \in \operatorname{End}_{Q}(V): h(f(x), y)+h(x, f(y))=0 \text { for any } x, y \in V\right\}
$$

and $\mathfrak{d}=d_{V, V}$ is contained in $\mathfrak{s p}(V, h) \oplus Q_{0} i d$, where $Q_{0}=[Q, Q]$ is the set of skew symmetric elements in $Q$ relative to its involution, which form a three dimensional simple Lie algebra.

Again, consider the split case: $Q=\operatorname{End}_{F}(U)$ for a two dimensional vector space $U$ endowed with a nonzero skew symmetric bilinear map $\varphi$ which induces the involution in $Q$. Standard arguments of complete reducibility as a module over $Q$ show that $V=U \otimes_{F} W$ for some vector space $W$ over $F$. For any $q \in Q_{0}=\mathfrak{s l}(U)=$ $\mathfrak{s p}(U, \varphi)$ and for any $x, y \in V$,

$$
\begin{aligned}
\langle q x \mid y\rangle & =\frac{1}{2}(h(q x, y)+h(y, q x)) \\
& =\frac{1}{2}(q h(x, y)+\overline{q h(x, y)}) \\
& =\frac{1}{2}(h(x, y) q+\overline{h(x, y) q}) \\
& =-\langle x \mid q y\rangle,
\end{aligned}
$$

so $Q_{0}$ embeds into the orthogonal Lie algebra $\mathfrak{o}(V,\langle\mid\rangle)$ and, therefore, $\langle\mid\rangle$ is invariant under the action of $\mathfrak{s l}(U)=\mathfrak{s p}(U, \varphi)$. But, up to scalars, $\varphi$ is the unique bilinear form on $U$ which is $\mathfrak{s p}(U, \varphi)$-invariant, so

$$
\langle a \otimes u \mid b \otimes v\rangle=\frac{1}{2} \varphi(a, b) \psi(u, v)
$$

for any $a, b \in U, u, v \in W$, for a skew-symmetric nondegenerate bilinear form $\psi$ : $W \times W \rightarrow F$.

Since the hermitian form $h$ is completely determined by $\langle\mid\rangle$, it turns out that $h: V \times V \rightarrow Q=\operatorname{End}_{F}(U)$ is given by

$$
h(a \otimes u, b \otimes v)=\psi(u, v) \varphi(-, b) a
$$

for any $a, b \in U$ and $u, v \in W$. Note that $h$ thus defined is hermitian and

$$
\frac{1}{2}(h(a \otimes u, b \otimes v)+h(b \otimes v, a \otimes u))=\frac{1}{2} \psi(u, v)(\varphi(-, b) a-\varphi(-, a) b) .
$$

But $\varphi(a, b) c+\varphi(b, c) a+\varphi(c, a) b=0$ for any $a, b, c \in U$, so

$$
\frac{1}{2}(h(a \otimes u, b \otimes v)+h(b \otimes v, a \otimes u))=\frac{1}{2} \psi(u, v) \varphi(a, b) i d .
$$

Hence, for any $a, b \in U$ and $u, v \in W$ :

$$
\begin{aligned}
h_{0}(a \otimes u, b \otimes v) & =\frac{1}{2}(h(a \otimes u, b \otimes v)-h(b \otimes v, a \otimes u)) \quad(\text { see }(3.6)) \\
& =\frac{1}{2} \psi(u, v)(\varphi(-, b) a+\varphi(-, a) b) \\
& =\frac{1}{2} \psi(u, v) \varphi_{a, b},
\end{aligned}
$$

and thus, for any $a, b, c \in U$ and $u, v, w \in W$ :

$$
\begin{aligned}
h_{a \otimes u, b \otimes v}(c \otimes w) & =\psi(w, u) \varphi(b, a) c \otimes v-\psi(w, v) \varphi(a, b) c \otimes u \\
& =-\varphi(a, b) c \otimes(\psi(w, u) v+\psi(w, v) u) \\
& =-\varphi(a, b) c \otimes \psi_{u, v}(w)
\end{aligned}
$$

Therefore, $h_{V, V}=\mathfrak{s p}(V, h):=\left\{f \in \operatorname{End}_{Q}(V): h(f(x), y)+h(x, f(y))=0\right.$ for any $x, y \in V\} \cong \mathfrak{s p}(W, \psi)$ (which acts on $V=U \otimes_{F} W$ in a natural way: on the second factor). Moreover, from (3.4),

$$
\begin{aligned}
d_{a \otimes u, b \otimes v} & =h_{a \otimes u, b \otimes v}+h_{0}(a \otimes u, b \otimes v) i d \\
& =\frac{1}{2} \varphi_{a, b} \otimes \psi(u, v) i d-\varphi(a, b) i d \otimes \psi_{u, v},
\end{aligned}
$$

so $\mathfrak{d}=d_{V, V}=\mathfrak{s p}(U, \varphi) \oplus \mathfrak{s p}(W, \psi)=\mathfrak{s l}(U) \oplus \mathfrak{s p}(W, \psi)$.
For general $Q$, again extending scalars we arrive at $h_{V, V}=\mathfrak{s p}(V, h)$ (which is a simple Lie algebra of type $C$ ) and $\mathfrak{d}$ is the direct sum of the three dimensional simple Lie algebra $Q_{0}$ and of the simple Lie algebra $\mathfrak{s p}(V, h)$.

Summarizing the above discussion:
Proposition 3.1. Let $R$ be a unital separable associative algebra of degree $\leq 2$ over a field $F$ of characteristic $\neq 2$, and let $V$ be a left module over $R$ endowed with a nondegenerate hermitian form $h: V \times V \rightarrow R$. Endow $V$ with the structure of a simple $(-1,-1)$-BFKTS of hermitian type (with associated symmetric bilinear form given by $\langle x \mid y\rangle=\frac{1}{2}(h(x, y)+h(y, x))$ for any $\left.x, y \in V\right)$ and let $\mathfrak{d}=d_{V, V}$ be the associated Lie algebra of inner derivations. Then:
(i) If $R=F$, then $\mathfrak{d}=\mathfrak{o}(V,\langle\mid\rangle)$.
(ii) If $R=K$ is a quadratic étale algebra, then $\mathfrak{d}=\mathfrak{u}(V, h)$ unless $\operatorname{dim}_{F}(V)=4$. In this latter case, $\mathfrak{d}=\mathfrak{s u}(V, h)$.
(iii) If $R$ is a quaternion algebra $Q$, then $\mathfrak{d} \cong Q_{0} \oplus \mathfrak{s p}(V, h)$, where $\mathfrak{s p}(V, h)$ acts naturally on $V$, and the simple three dimensional Lie algebra $Q_{0}$ acts by left multiplication on the $Q$ module $V$.

## $3.2 \mathrm{D}_{\mu}$-type

Let $V$ be a four dimensional vector space, endowed with a nondegenerate symmetric bilinear form $\langle\mid\rangle$. Let $\Phi$ be a nonzero skew symmetric multilinear form: $\Phi: V \times V \times V \times V \rightarrow F$. Define a skew symmetric triple product $[x y z]$ on $V$ by means of:

$$
\begin{equation*}
\Phi(x, y, z, t)=\langle[x y z] \mid t\rangle \tag{3.7}
\end{equation*}
$$

for any $x, y, z, t \in V$.

Lemma 3.2. With the hypotheses above, there exists a nonzero scalar $\mu \in F$ such that

$$
\begin{equation*}
\left\langle\left[a_{1} a_{2} a_{3}\right] \mid\left[b_{1} b_{2} b_{3}\right]\right\rangle=\mu \operatorname{det}\left(\left\langle a_{i} \mid b_{j}\right\rangle\right), \tag{3.8}
\end{equation*}
$$

for any $a_{i}, b_{i} \in V(i=1,2,3)$.
Proof: By extending scalars to an algebraic closure it may be assumed that $F$ is algebraically closed. Then take an orthonormal basis $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ of $V$. By skew symmetry of $\Phi,\left[e_{1} e_{2} e_{3}\right]=\nu e_{4}$ for some $0 \neq \nu \in F$. Let $\mu=\nu^{2}$. Scale $\Phi$ by $\nu^{-1}$ so that we may assume $\left[e_{1} e_{2} e_{3}\right]=e_{4}$. Then it is enough to prove that (3.8) is satisfied with $\mu=1$.

The skew symmetry of $\Phi$ forces $\left[e_{\sigma(1)} e_{\sigma(2)} e_{\sigma(3)}\right]=(-1)^{\sigma} e_{\sigma(4)}$ for any permutation $\sigma$, where $(-1)^{\sigma}$ denotes the corresponding signature. But then, for any permutations $\sigma$ and $\tau$,

$$
\begin{aligned}
\left\langle\left[e_{\sigma(1)} e_{\sigma(2)} e_{\sigma(3)}\right] \mid\left[e_{\tau(1)} e_{\tau(2)} e_{\tau(3)}\right]\right\rangle & =(-1)^{\sigma}(-1)^{\tau}\left\langle e_{\sigma(4)} \mid e_{\tau(4)}\right\rangle \\
& =\operatorname{det}\left(\left\langle e_{\sigma(i)} \mid e_{\tau(j)}\right\rangle\right)_{i, j=1,2,3}
\end{aligned}
$$

as required.
Now, for any such $V$ and $\Phi$, and for any $x, y \in V$, consider the endomorphism $d_{x, y} \in \operatorname{End}_{F}(V)$ by means of

$$
\begin{equation*}
d_{x, y} z=[x y z]+\langle z \mid x\rangle y-\langle z \mid y\rangle x . \tag{3.9}
\end{equation*}
$$

As shown in [O1, §5], conditions (2.3a-b) are satisfied, so if the triple product $x y z$ on $V$ is defined by means of

$$
\begin{equation*}
x y z=[x y z]+\langle z \mid x\rangle y-\langle z \mid y\rangle x+\langle x \mid y\rangle z \tag{3.10}
\end{equation*}
$$

for any $x, y, z \in V$, then $V$ becomes a $(-1,-1)$-BFKTS, which will be said to be of $\mathrm{D}_{\mu}$-type.

Assume for a while that the scalar $\mu$ in (3.8) is a square, $\mu=\nu^{2}, 0 \neq \nu \in F$, and that $\langle\mid\rangle$ represents 1 . Then, by [E2, Theorem 2], $V$ is endowed with a binary multiplication that makes it a quaternion algebra $Q$ over $F$, with involution $x \mapsto \bar{x}$ such that $x \bar{x}=\langle x \mid x\rangle$ for any $x \in V$, satisfying

$$
\nu^{-1}[x y z]=x \bar{y} z-\langle x \mid y\rangle z+\langle z \mid x\rangle y-\langle z \mid y\rangle x
$$

for any $x, y, z \in V$. Therefore, for any $x, y, z \in V,(3.9)$ shows that:

$$
\begin{aligned}
d_{x, y}(z) & =\nu x \bar{y} z+(1+\nu)(\langle z \mid x\rangle y-\langle z \mid y\rangle x)-\nu\langle x \mid y\rangle z \\
& =\nu x \bar{y} z+\frac{1+\nu}{2}((x \bar{z}+z \bar{x}) y-x(\bar{y} z+\bar{z} y))-\frac{\nu}{2}(x \bar{y}+y \bar{x}) z \\
& =\left(\nu x \bar{y}-\frac{1+\nu}{2} x \bar{y}-\frac{\nu}{2}(x \bar{y}+y \bar{x})\right) z+\frac{1+\nu}{2} z \bar{x} y \\
& =\left(-\frac{1}{2} x \bar{y}-\frac{\nu}{2} y \bar{x}\right) z+\frac{1+\nu}{2} z \bar{x} y \\
& =\frac{\nu-1}{4}(x \bar{y}-y \bar{x}) z+\frac{1+\nu}{4} z(\bar{x} y-\bar{y} x),
\end{aligned}
$$

because $\bar{x} y+\bar{y} x=x \bar{y}+y \bar{x}=2\langle x \mid y\rangle \in F$, so $\bar{x} y-\bar{y} x=2 \bar{x} y-(x \bar{y}+y \bar{x})$. Hence, for any $x, y \in V$,

$$
d_{x, y}=L_{p}-R_{q}, \quad \text { with } \quad p=\frac{\nu-1}{4}(x \bar{y}-y \bar{x}), q=-\frac{\nu+1}{4}(\bar{x} y-\bar{y} x) \in Q_{0}
$$

where $L$ and $R$ denote left and right multiplications in $V=Q$. Therefore, if $\mu=1$ $(\nu= \pm 1), \mathfrak{d}=d_{V, V}$ is isomorphic to the three dimensional simple Lie algebra $Q_{0}$. However, if $\mu \neq 0,1(\nu \neq 0, \pm 1)$, then $\mathfrak{d}=L_{Q_{0}} \oplus R_{Q_{0}}$, a direct sum of two copies of the three dimensional Lie algebra $Q_{0}$, which coincides with the orthogonal Lie algebra $\mathfrak{o}(V,\langle\mid\rangle)$. Moreover, in this latter case, [BE, Lemma 3.1 and its proof], $\mathfrak{g}(V)$ is a form of the simple Lie superalgebra $\Gamma\left(-\frac{1}{2}, \frac{1-\nu}{4}, \frac{1+\nu}{4}\right)$ (notation as in [Sc, pp. 16-17]). That is, it is a form of $D\left(2,1 ; \frac{\nu-1}{2}\right)$ (see [OKA2]).

Simply by extending scalars, we obtain:

Proposition 3.3. Let $V$ be a four dimensional vector space over a field $F$ of characteristic $\neq 2$ with a nondegenerate symmetric bilinear form $\langle\mid\rangle$. Let $\Phi$ be a nonzero skew symmetric 4-linear form and let the triple product [xyz] be defined by means of $\langle[x y z] \mid t\rangle=\Phi(x, y, z, t)$ for any $x, y, z, t \in V$. Let $0 \neq \mu \in F$ be given by (3.8). Endow $V$ with the structure of a simple $(-1,-1)$-BFKTS by means of (3.10) and let $\mathfrak{d}=d_{V, V}$ be the corresponding Lie algebra of inner derivations. Then:
(i) If $\mu=1$, then $\mathfrak{d}$ is a three dimensional simple ideal of the orthogonal Lie algebra $\mathfrak{o}(V,\langle\mid\rangle)$.
(ii) If $\mu \neq 0,1$, then $\mathfrak{d}$ coincides with the orthogonal Lie algebra $\mathfrak{o}(V,\langle\mid\rangle)$.

There is some overlapping in the types considered up to now.
To begin with, let $V$ be any four dimensional simple $(-1,-1)$-BFKTS and let [ $x y z]$ be defined by

$$
[x y z]=x y z-\langle z \mid x\rangle y+\langle z \mid y\rangle x-\langle x \mid y\rangle z
$$

for any $x, y, z \in V$. Because of (2.5a), $[x y z]$ is skew symmetric on its arguments. In case $[x y z]$ is identically zero, we are in presence of a system of orthogonal type. Otherwise, this is a system of D-type. This means that the systems of hermitian type with $R=K$ or $Q$ and with $\operatorname{dim}_{F} V=4$ are systems of D-type. Let us check which $\mu$ 's are involved in these cases. To do so, it is enough to consider the split cases.

Assume $K=F \times F$ and $V=W \times W^{*}$ with $h((a, \alpha),(b, \beta))=(\beta(a), \alpha(b))$ for any $a, b \in W$ and $\alpha, \beta \in W$ and with $\operatorname{dim}_{F} W=2$. Take $a, b \in W$ and $\alpha, \beta \in W^{*}$ with $\alpha(a)=1=\beta(b), \alpha(b)=0=\beta(a)$. Then with $\left(a_{1}, \alpha_{1}\right)=(a, 0),\left(a_{2}, \alpha_{2}\right)=(0, \alpha)$ and $\left(a_{3}, \alpha_{3}\right)=(b, \beta)$,

$$
\operatorname{det}\left(\left\langle\left(a_{i}, \alpha_{i}\right) \mid\left(a_{j}, \alpha_{j}\right)\right\rangle\right)=\left|\begin{array}{ccc}
0 & \frac{1}{2} & 0 \\
\frac{1}{2} & 0 & 0 \\
0 & 0 & 1
\end{array}\right|=-\frac{1}{4},
$$

while $[(a, 0)(0, \alpha)(b, \beta)]=\frac{1}{2}(b, \beta)$ and

$$
\langle[(a, 0)(0, \alpha)(b, \beta)] \mid[(a, 0)(0, \alpha)(b, \beta)]\rangle=\frac{1}{4}\langle(b,-\beta) \mid(b,-\beta)\rangle=-\frac{1}{4} .
$$

Hence, $\mu=1$ in this case. (This can also be deduced directly from the size of the Lie algebras $\mathfrak{d}$.)

Assume now that $R=Q$ is a quaternion algebra and $\operatorname{dim}_{F} V=4$, then $V$ is a free $Q$-module of rank 1 and hence we may assume that $V=Q$ and that $h(x, y)=\alpha x \bar{y}$ for any $x, y \in Q$, where $0 \neq \alpha=h(1,1) \in F$. Then for any $x_{1}, x_{2}, x_{3} \in Q$,

$$
\left[x_{1} x_{2} x_{3}\right]=h_{0}\left(x_{3}, x_{1}\right) x_{2}-h_{0}\left(x_{3}, x_{2}\right) x_{1}+h_{0}\left(x_{1}, x_{2}\right) x_{3}
$$

where $h_{0}(x, y)=\frac{1}{2}(h(x, y)-h(y, x))=\alpha(x \bar{y}-y \bar{x}) \in Q_{0}$. By skew symmetry of $h_{0}$,

$$
\left[x_{1} x_{2} x_{3}\right]=\frac{1}{2} \sum_{\sigma} h_{0}\left(x_{\sigma(1)}, x_{\sigma(2)}\right) x_{\sigma(3)}=\frac{\alpha}{2}(-1)^{\sigma} x_{\sigma(1)} \bar{x}_{\sigma(2)} x_{\sigma(3)}
$$

where the sum is over all the permutations of $1,2,3$. Take $x_{1}=1, x_{2}$, and $x_{3}$ mutually orthogonal to get $(\langle 1 \mid 1\rangle=h(1,1)=\alpha)$ :

$$
\operatorname{det}\left(\left\langle x_{i} \mid x_{j}\right\rangle\right)=\alpha\left\langle x_{2} \mid x_{2}\right\rangle\left\langle x_{3} \mid x_{3}\right\rangle,
$$

while

$$
\left[x_{1} x_{2} x_{3}\right]=-3 \alpha x_{2} x_{3}
$$

since $x_{2} x_{3}=-x_{3} x_{2}$ and $\bar{x}_{i}=-x_{i}$ for $i=2,3$ while $\overline{1}=1$. Thus,

$$
\left\langle\left[x_{1} x_{2} x_{3}\right] \mid\left[x_{1} x_{2} x_{3}\right]\right\rangle=9 \alpha^{3}\left(x_{2} x_{3}\right) \overline{\left(x_{2} x_{3}\right)}=9 \alpha\left\langle x_{2} \mid x_{2}\right\rangle\left\langle x_{3} \mid x_{3}\right\rangle .
$$

Thus, $\mu=9$ in this case.
A final overlap occurs if $V$ is of hermitian type with $R=K$ quadratic and with $\operatorname{dim}_{F} V=2$. As above,

$$
\left[x_{1} x_{2} x_{3}\right]=\frac{1}{2} \sum_{\sigma} h_{0}\left(x_{\sigma(1)}, x_{\sigma(2)}\right) x_{\sigma(3)}
$$

for any $x_{1}, x_{2}, x_{3} \in V$. By skew symmetry and dimension, this is zero, and therefore we are in the situation of $R=F$. We summarize the above arguments in the following remark, whose last part follows from the structure of the Lie algebras of inner derivations.

## Remark 3.4:

- The simple $(-1,-1)$-BFKTS $V$ of unitarian type and $\operatorname{dim}_{F} V=2$ are also of orthogonal type.
- The simple $(-1,-1)$-BFKTS $V$ of unitarian type and $\operatorname{dim}_{F} V=4$ are of $\mathrm{D}_{1}$-type.
- The simple $(-1,-1)$-BFKTS $V$ of symplectic type and $\operatorname{dim}_{F} V=4$ are of $\mathrm{D}_{9^{-}}$ type.
- There are no more overlaps among different types.


### 3.3 G-type:

Let $C$ be an eight-dimensional Cayley-Dickson (or octonion) algebra over $F$ with norm $n$ and trace $t$. Let $C_{0}$ be the set of trace zero elements. For any $x, y \in C$, the linear map

$$
\begin{equation*}
D_{x, y}=\left[L_{x}, L_{y}\right]+\left[L_{x}, R_{y}\right]+\left[R_{x}, R_{y}\right] \tag{3.11}
\end{equation*}
$$

(where $L_{x}$ and $R_{x}$ denote the left and right multiplication by $x$ ) is known to be a derivation of $C$ [S, Ch. III.8], and hence it leaves $C_{0}$ invariant. Consider then, for any $0 \neq \alpha \in F$, the nondegenerate symmetric bilinear form and the triple product on $V=C_{0}$ given by

$$
\begin{aligned}
& \langle x \mid y\rangle=-2 \alpha t(x y) \\
& x y z=\alpha\left(D_{x, y}(z)-2 t(x y) z\right)
\end{aligned}
$$

for any $x, y, z \in V$. Since $D_{x, y}$ is a derivation and

$$
\begin{aligned}
D_{x, y}(y) & =x y^{2}-y(x y)+x y^{2}-(x y) y+y^{2} x-(y x) y \\
& =4 y^{2} x-2(x y+y x) y \\
& =-4 n(y) x-2 t(x y) y=-\langle y \mid y\rangle x+\langle x \mid y\rangle y
\end{aligned}
$$

where we have used that $x^{2}=-n(x) 1=-\frac{1}{2} t\left(x^{2}\right) 1$ for any $x \in V=C_{0}$; it follows from (2.3) that $V$ is a $(-1,-1)$-BFKTS (see also [OKA2], which will be said to be of G-type. It is clear here that the Lie algebra $\mathfrak{d}$ is the span of the $D_{x, y}$ 's, which is precisely the Lie algebra of derivations of the Cayley-Dickson algebra $C$ in case the characteristic is $\neq 3$ [S, Ch. III.8], a simple Lie algebra of type $G_{2}$. (If the characteristic is 3 , then this is a seven dimensional simple Lie algebra which is a form of $\mathfrak{p s l}(7)$ [AEMN].)

### 3.4 F-type:

Let $X$ be a 3 -fold vector cross product on a vector space $V$ of dimension 8, endowed with a nondegenerate symmetric bilinear form $\langle\mid\rangle$. That is, $X$ is a three linear map $X: V \times V \times V \rightarrow V,(a, b, c) \mapsto X(a, b, c)$, satisfying (see [E2], [O2, Ch. 8] and the references therein):

$$
\begin{align*}
& \left\langle X\left(a_{1}, a_{2}, a_{3}\right) \mid a_{i}\right\rangle=0 \text { for any } i=1,2,3,  \tag{3.12}\\
& \left\langle X\left(a_{1}, a_{2}, a_{3}\right) \mid X\left(a_{1}, a_{2}, a_{3}\right)\right\rangle=\operatorname{det}\left(\left\langle a_{i} \mid a_{j}\right\rangle\right),
\end{align*}
$$

for any $a_{1}, a_{2}, a_{3} \in V$.
It is known that (3.12) implies the skew symmetry of $X$. Moreover, $X$ satisfies:

$$
\begin{align*}
& \left\langle X\left(a_{1}, a_{2}, a_{3}\right) \mid X\left(b_{1}, b_{2}, b_{3}\right)\right\rangle \\
& \quad=\operatorname{det}\left(\left\langle a_{i} \mid b_{j}\right\rangle\right)+\epsilon \sum_{\sigma \text { even }} \sum_{\tau \text { even }}\left\langle a_{\sigma(1)} \mid b_{\tau(1)}\right\rangle \Phi\left(a_{\sigma(2)}, a_{\sigma(3)}, b_{\tau(2)}, b_{\tau(3)}\right) \tag{3.13}
\end{align*}
$$

for any $a_{i}, b_{i} \in V(i=1,2,3)$, where $\Phi(a, b, c, d)=\langle a \mid X(b, c, d)\rangle$ for any $a, b, c, d \in$ $V$, and $\epsilon= \pm 1$. In case $\epsilon=1$ (resp. -1), $X$ is said to be of type I (resp. II). Also, if $\operatorname{dim}_{F} V=8$ and $X$ is of type I, then $-X$ is of type II, and conversely.

Assume now that the characteristic of the ground field $F$ is $\neq 2,3$. Given a 3 -fold vector cross product $X$ of type I, define $d_{x, y} \in \operatorname{End}_{F}(V), x, y \in V$, by means of:

$$
\begin{equation*}
d_{x, y} z=\frac{1}{3} X(x, y, z)+\langle z \mid x\rangle y-\langle z \mid y\rangle x . \tag{3.14}
\end{equation*}
$$

As shown in $[\mathrm{O} 1, \S 5]$, condition $(2.3 \mathrm{~b})$ is satisfied, so if the triple product $x y z$ on $V$ is defined by means of

$$
\begin{equation*}
x y z=\frac{1}{3} X(x, y, z)+\langle z \mid x\rangle y-\langle z \mid y\rangle x+\langle x \mid y\rangle z . \tag{3.15}
\end{equation*}
$$

for any $x, y, z \in V$, then $V$ becomes a $(-1,-1)$-BFKTS, which will be said to be of F-type.

Since $d_{x, y}$ is a derivation of the triple system and it is skew symmetric relative to $\langle\mid\rangle$, it follows that $d_{x, y}$ is a derivation of the 3 -fold vector cross product $X$. According to [E2, Theorem 12], if $e$ is an element of $V$ with $\langle e \mid e\rangle \neq 0, W=$ $\{v \in V:\langle e \mid x\rangle=0\}$, and $q$ is the nondegenerate quadratic form on $V$ defined by
$q(v)=-\langle e \mid e\rangle^{-1}\langle v \mid v\rangle$, then the Lie algebra of derivations of $X$ is isomorphic to the orthogonal Lie algebra $\mathfrak{o}(W, q)$. Actually, $V$ has the structure of an eight dimensional Cayley-Dickson algebra $C$ with unit $1=e$, so that there is an scalar $0 \neq \alpha \in F$ such that for any $a, b, c \in V=C$ :

$$
\begin{aligned}
& X(a, b, c)=\alpha((a \bar{b}) c+(a \mid c) b-(b \mid c) a-(a \mid b) c) \\
& \langle a \mid b\rangle=\alpha(a \mid b)
\end{aligned}
$$

where $x \mapsto \bar{x}$ denotes the involution and $(a \mid a)=a \bar{a}$ is the norm of $C$. Actually, $\alpha=\langle e \mid e\rangle$. Hence for any $x, y \in V, d_{x, y}$ is a derivation of the $3 C$-product given by $(a \bar{b}) c$ (see [E2]). But for any $x, y, z \in V=C$,

$$
\frac{3}{\alpha} d_{x, y}(z)=(x \bar{y}) z+4(z \mid x) y-4(z \mid x) x-(x \mid y) z
$$

in particular, for a traceless $x(\bar{x}=-x)$ :

$$
\frac{3}{\alpha} d_{e, x}(y)=-x y+2 x(y+\bar{y})-2(x \bar{y}-y x)=x y+2 y x=(L+2 R)_{x}(y)
$$

that is, $d_{e, x}=(L+2 R)_{x}$, where $L$ and $R$ denote the left and right multiplications in $C$. But these operators generate the Lie algebra of derivations of the triple product given by $(a \bar{b}) c$ [EM,E2] (see also [E3]), so we conclude that $\mathfrak{d}$ is isomorphic to $\mathfrak{o}(W, q)$.

Note that in [OKA2] it is already proved that, after scalar extension, $\mathfrak{d}$ is isomorphic to $\mathfrak{o}(7)$, by an explicit computation.

## 4. Classification.

Given a $(-1,-1)$-BFKTS $V$ over a field of characteristic $\neq 2$, in Section 2 a simple Lie superalgebra $\mathfrak{g}=\mathfrak{g}(V)$ has been defined that contains a copy $\mathfrak{s}=\mathfrak{s}(V)$ of $\mathfrak{s l}_{2}(F)$, which is an ideal of $\mathfrak{g}_{\overline{0}}$ that is complemented by the ideal $\mathfrak{d}=\mathfrak{d}(V)=d_{V, V}$. In this situation $\mathfrak{d}=\left\{d \in \mathfrak{g}_{\overline{0}}:[d, \mathfrak{s}]=0\right\}$ is completely determined by $\mathfrak{g}$ and $\mathfrak{s}$. Moreover, as a module for $\mathfrak{g}_{\overline{0}}, \mathfrak{g}_{\overline{1}}$ is the tensor product of the two dimensional irreducible module for $\mathfrak{s}$ and the module $V$ for $\mathfrak{d}$.

Consider a ground field $F$ of characteristic $\neq 2$ and the pairs ( $\mathfrak{g}, \mathfrak{s}$ ), where $\mathfrak{g}$ is a Lie superalgebra over $F$ and $\mathfrak{s}$ is a complemented ideal of $\mathfrak{g}_{0}$ isomorphic to $\mathfrak{s l}_{2}(F)$. Two such pairs $\left(\mathfrak{g}^{1}, \mathfrak{s}^{1}\right)$, $\left(\mathfrak{g}^{2}, \mathfrak{s}^{2}\right)$ are said to be isomorphic if there is an isomorphism of Lie superalgebras $\phi: \mathfrak{g}^{1} \rightarrow \mathfrak{g}^{2}$ such that $\phi\left(\mathfrak{s}^{1}\right)=\mathfrak{s}^{2}$.

Given a Lie superalgebra $\mathfrak{g}=\mathfrak{g}_{\overline{0}} \oplus \mathfrak{g}_{\overline{1}}$ and a nonzero scalar $\alpha$, the new Lie superalgebra defined over $\mathfrak{g}$ with the new product $[,]_{\alpha}$ given, for homogeneous elements, by

$$
\begin{cases}{[x, y]_{\alpha}=\alpha[x, y]} & \text { if both } x \text { and } y \text { are odd } \\ {[x, y]_{\alpha}=[x, y]} & \text { otherwise }\end{cases}
$$

will be denoted by $\mathfrak{g}_{\alpha}$. Also, given a $(-1,-1)$-BFKTS $V$, we will denote by $V_{\alpha}$ the new $(-1,-1)$-BFKTS defined on $V$ but with the new product given by $(x y z)_{\alpha}=\alpha x y z$, and new symmetric bilinear form given by $\langle x \mid y\rangle_{\alpha}=\alpha\langle x \mid y\rangle$, for any $x, y, z \in V$. From the definitions, it is clear that $\mathfrak{g}\left(V_{\alpha}\right)=\mathfrak{g}(V)_{\alpha}$. Two $(-1,-1)$-BFKTS $V^{1}$ and $V^{2}$ will be said to be equivalent in case there is a nonzero scalar $\alpha$ such that $V^{1}$ and $V_{\alpha}^{2}$ are isomorphic.

Theorem 4.1 Let $V^{1}$ and $V^{2}$ be two $(-1,-1)$-BFKTS's. Then $V^{1}$ is equivalent to $V^{2}$ if and only if $\left(\mathfrak{g}\left(V^{1}\right), \mathfrak{s}\left(V^{1}\right)\right)$ is isomorphic to $\left(\mathfrak{g}\left(V^{2}\right), \mathfrak{s}\left(V^{2}\right)\right)$.

Proof: Let $\mathfrak{g}^{i}=\mathfrak{g}\left(V^{i}\right)$ and $\mathfrak{d}^{i}=\mathfrak{d}\left(V^{i}\right)=d_{V^{i}, V^{i}}$ for $i=1,2$. Also, $\mathfrak{s}\left(V^{1}\right)=\mathfrak{s}\left(V^{2}\right)=$ $\mathfrak{s p}(U, \varphi)$ as in Section 2. Thus

$$
\begin{aligned}
& \mathfrak{g}_{\overline{0}}^{i}=\mathfrak{s p}(U, \varphi) \oplus \mathfrak{d}^{i}, \\
& \mathfrak{g}_{\overline{1}}^{i}=U \otimes_{F} V^{i},
\end{aligned}
$$

for $i=1,2$. Let $\Phi: \mathfrak{g}^{1} \rightarrow \mathfrak{g}^{2}$ be an isomorphism such that it restricts to an automorphism of $\mathfrak{s p}(U, \varphi)$. But any automorphism $\xi$ of $\mathfrak{s p}(U, \varphi)$ can be extended as in [E4, proof of Lemma 2.1] to an isomorphism from $\mathfrak{g}^{2}$ onto $\mathfrak{g}_{\alpha}^{2}$ for some nonzero scalar $\alpha$ and, therefore, we may (and will) assume that $\Phi$ is the identity on $\mathfrak{s p}(U, \varphi)$. Since $\mathfrak{d}^{i}$ is the centralizer of $\mathfrak{s p}(U, \varphi)$ in $\mathfrak{g}^{i} \overline{0}, i=1,2, \Phi$ restricts to an isomorphism $\Psi: \mathfrak{d}^{1} \rightarrow \mathfrak{d}^{2}$. Also, $\Phi$ restricts then to an isomorphism of $\mathfrak{s p}(U, \varphi)$-modules $\Phi_{\overline{1}}: U \otimes_{F} V^{1} \rightarrow U \otimes_{F} V^{2}$. Since $U$ is absolutely irreducible as a module for $\mathfrak{s p}(U, \varphi)$, there is an isomorphism of vector spaces $\psi: V^{1} \rightarrow V^{2}$ such that $\Phi(a \otimes x)=a \otimes \psi(x)$ for any $a \in U$ and $x \in V^{1}$.

Now, for any $x, y, z \in V^{1}$ and any $a \in U$ :

$$
\begin{aligned}
a \otimes \psi\left(d_{x, y}(z)\right) & =\Phi\left(\left[d_{x, y}, a \otimes z\right]\right) \\
& =\left[\Psi\left(d_{x, y}\right), a \otimes \psi(z)\right] \\
& =a \otimes \Psi\left(d_{x, y}\right)(\psi(z))
\end{aligned}
$$

so

$$
\begin{equation*}
\psi\left(d_{x, y}(z)\right)=\Psi\left(d_{x, y}\right)(\psi(z)), \tag{4.1}
\end{equation*}
$$

for any $x, y, z \in V^{1}$. Also, for any $a, b \in U$ and $x, y \in V^{1}$ :

$$
\begin{aligned}
\Phi([a \otimes x, b \otimes y]) & =[a \otimes \psi(x), b \otimes \psi(y)] \\
& =\langle\psi(x) \mid \psi(y)\rangle \varphi_{a, b}+\varphi(a, b) d_{\psi(x), \psi(y)},
\end{aligned}
$$

but also

$$
\begin{aligned}
\Phi([a \otimes x, b \otimes y]) & =\Phi\left(\langle x \mid y\rangle \varphi_{a, b}+\varphi(a, b) d_{x, y}\right) \\
& =\langle x \mid y\rangle \varphi_{a, b}+\varphi(a, b) \Psi\left(d_{x, y}\right)
\end{aligned}
$$

so

$$
\left\{\begin{array}{l}
\Psi\left(d_{x, y}\right)=d_{\psi(x), \psi(y)},  \tag{4.2}\\
\langle\psi(x) \mid \psi(y)\rangle=\langle x \mid y\rangle
\end{array}\right.
$$

for any $x, y \in V^{1}$, which, together with (4.1), shows that $\psi$ is an isomorphism between the triple systems $V^{1}$ and $V^{2}$.

For the converse, if $V^{1}$ and $V^{2}$ are equivalent, there is a $0 \neq \alpha \in F$ such that $V^{1}$ and $V_{\alpha}^{2}$ are isomorphic. From here it is easy to deduce that the pairs $\left(\mathfrak{g}\left(V^{1}\right), \mathfrak{s}\left(V^{1}\right)\right)$ and $\left(\mathfrak{g}\left(V_{\alpha}^{2}\right), \mathfrak{s}\left(V^{2}\right)\right)$ are isomorphic. But $\mathfrak{g}\left(V_{\alpha}^{2}\right)$ is isomorphic to $\mathfrak{g}\left(V^{2}\right)$ by means of an isomorphism taking $\mathfrak{s}\left(V^{2}\right)$ into itself (see [E4, proof of Lemma 2.1]).

In order to classify the simple $(-1,-1)$-BFKTS of finite dimension over a field of characteristic zero, we will first assume that the ground field $F$ is algebraically closed. Following Theorems 2.1, 2.2 and 4.1, we will determine, up to isomorphism, the pairs $(\mathfrak{g}, \mathfrak{s})$, where $\mathfrak{g}$ is a simple finite dimensional Lie superalgebra and $\mathfrak{s}$ is an ideal of $\mathfrak{g}_{\overline{0}}$ isomorphic to $\mathfrak{s l}(2)$ :

Theorem 4.2 Let $F$ be an algebraically closed field of characteristic zero. The following list exhausts, up to isomorphism, the pairs ( $\mathfrak{g}, \mathfrak{s}$ ), where $\mathfrak{g}$ is a simple finite dimensional Lie superalgebra over $F\left(\mathfrak{g}_{\overline{1}} \neq 0\right)$ and $\mathfrak{s}$ is a three dimensional simple ideal of $\mathfrak{g}_{\overline{0}}$ :
(i) $\mathfrak{g}=\mathfrak{s l}(m, 2), m \geq 3$, and $\mathfrak{s}$ is the (unique) ideal of $\mathfrak{g}_{\overline{0}}$ isomorphic to $\mathfrak{s l}(2)$.
(ii) $\mathfrak{g}=\mathfrak{p s l}(2,2)$ and $\mathfrak{s}$ is any of the two simple ideals of $\mathfrak{g}_{\overline{0}}$.
(iii) $\mathfrak{g}=\mathfrak{o s p}(m, 2), m \geq 1, m \neq 4$, so that $\mathfrak{g}_{\overline{0}}=\mathfrak{o}(m) \oplus \mathfrak{s p}(2)$, and $\mathfrak{s}$ is the copy of $\mathfrak{s p}(2)$.
(iv) $\mathfrak{g}=\mathfrak{o s p}(4,2 r), r \geq 2$, so that $\mathfrak{g}=\mathfrak{o}(4) \oplus \mathfrak{s p}(2 r)$ and $\mathfrak{s}$ is any of the two simple simple ideals of $\mathfrak{o}(4) \cong \mathfrak{s l}(2) \oplus \mathfrak{s l}(2)$.
(v) $\mathfrak{g}=D(2,1 ; \alpha), \alpha \neq 0,-1$, so that $\mathfrak{g}_{\overline{0}}=\mathfrak{s p}(U, \varphi) \oplus \mathfrak{s p}(U, \varphi) \oplus \mathfrak{s p}(U, \varphi), U$ being a two dimensional vector space and $\varphi$ a nonzero skew symmetric bilinear form on $U, \mathfrak{g}_{\overline{1}}=U \otimes_{F} U \otimes_{F} U$, with the natural multiplication in $\mathfrak{g}_{\overline{0}}$ and natural action of $\mathfrak{g}_{\overline{0}}$ on $\mathfrak{g}_{\overline{1}}$ in which the $i^{\text {th }}$ copy of $\mathfrak{s p}(U, \varphi)$ acts on the $i^{\text {th }}$ factor of $U$, and with the multiplication of odd elements given by:

$$
\begin{aligned}
& {\left[u_{1} \otimes u_{2} \otimes u_{3}, v_{1} \otimes v_{2} \otimes v_{3}\right]=\varphi\left(u_{2}, v_{2}\right) \varphi\left(u_{3}, v_{3}\right) \varphi_{u_{1}, v_{1}}} \\
& \quad+\alpha \varphi\left(u_{1}, v_{1}\right) \varphi\left(u_{3}, v_{3}\right) \varphi_{u_{2}, v_{2}}-(1+\alpha) \varphi\left(u_{1}, v_{1}\right) \varphi\left(u_{2}, v_{2}\right) \varphi_{u_{3}, v_{3}}
\end{aligned}
$$

for any $u_{i}, v_{i} \in U, i=1,2,3$. Here $\mathfrak{s}$ is the first copy of $\mathfrak{s p}(U, \varphi)$.
(vi) $\mathfrak{g}=G(3)$ and $\mathfrak{s}$ is the (unique) ideal of $\mathfrak{g}_{0}$ isomorphic to $\mathfrak{s l}(2)$.
(vii) $\mathfrak{g}=F(4)$ and $\mathfrak{s}$ is the (unique) ideal of $\mathfrak{g}_{\overline{0}}$ isomorphic to $\mathfrak{s l}(2)$.
(viii) $\mathfrak{g}=\mathfrak{o s p}(3,2 r), r \geq 1$, and $\mathfrak{s}$ is the copy of $\mathfrak{o}(3)$ in $\mathfrak{g}_{\overline{0}}$.

Moreover, different election of the simple ideal $\mathfrak{s}$ in (ii) or (iv) give isomorphic pairs and two pairs in (v) corresponding to the values $\alpha_{1}$ and $\alpha_{2}$ are isomorphic if and only if either $\alpha_{1}=\alpha_{2}$ or $\alpha_{1}+\alpha_{2}=-1$.

Proof: A careful look at the list of simple Lie superalgebras in [KAc, Theorem 5] shows that the semisimple part of $\mathbf{W}(n)_{\overline{0}}(n \geq 2)$, of $\mathbf{S}(n)(n \geq 3)$ and of $\tilde{\mathbf{S}}(n)$
( $n \geq 3$ ), is isomorphic to $\mathfrak{s l}(n)$ [KAc, Propositions 3.1.1 and 3.3.1], while $\mathbf{W}(2)$ is isomorphic to $\mathfrak{s l}(1,2)$. Also, the semisimple part of $\mathbf{H}(n)(n \geq 4)$ is isomorphic to $\mathfrak{o}(n)$ [Kac, Proposition 3.3.6], while $\mathbf{H}(4)$ is isomorphic to $\mathfrak{p s l}(2,2)$. Hence, it is enough to deal with the classical algebras. One checks easily that the simple classical Lie superalgebras with $\mathfrak{g}_{\overline{0}}$ containing a three dimensional simple ideal are those listed above. Since $\mathfrak{o s p}(4,2)$ is isomorphic to $D(2,1 ; 1)$, this has been excluded from (iii) and included in (v), and since $\mathfrak{s l}(1,2)$ is isomorphic to $\mathfrak{o s p}(2,2)$, this has been included in (iii).

The last assertion about cases (ii) and (iv) is clear. Also, the Lie algebras in (v) are the ones denoted by $\Gamma(1, \alpha,-(1+\alpha))$ in [Sc, pp. 16-17]. Here we have three copies of $\mathfrak{s l}(2)$ in $\mathfrak{g}_{\overline{0}}$, but there are isomorphisms preserving the three copies from $\Gamma\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)\left(\sigma_{1}+\sigma_{2}+\sigma_{3}=0\right)$ onto $\Gamma\left(\eta \sigma_{1}, \eta \sigma_{2}, \eta \sigma_{3}\right)$ for any $0 \neq \eta \in F$, and also natural isomorphisms permuting the three copies of $\mathfrak{s l}(2)$ (and the corresponding $\sigma_{i}$ 's). Therefore, the distinguished copy of $\mathfrak{s l}(2)$ can always be taken to be the first one. Finally, if there is an isomorphism from $\Gamma(1, \alpha,-1-\alpha)$ onto $\Gamma(1, \beta,-1-\beta)$ that takes the first copy of $\mathfrak{s l}(2)$ in $\Gamma(1, \alpha,-1-\alpha)$ to the first copy of $\mathfrak{s l}(2)$ in $\Gamma(1, \beta,-1-\beta)$, then it takes the second copy of $\mathfrak{s l}(2)$ in $\Gamma(1, \alpha,-1-\alpha)$ to either the second or the third copy of $\mathfrak{s l}(2)$ in $\Gamma(1, \beta,-1-\beta)$, whence the last assertion of the Theorem.

Now we are ready for our main Theorem, it asserts that the examples in Section 3 exhaust all the simple ( $-1,-1$ )-BFKTS's:

Theorem 4.3 Let $V$ be a finite dimensional simple $(-1,-1)$-BFKTS over a field $F$ of characteristic zero with associated symmetric bilinear form $\langle\mid\rangle$. Then either:
(i) The multiplication in $V$ is given by

$$
x y z=\langle z \mid x\rangle y-\langle z \mid y\rangle x+\langle x \mid y\rangle z
$$

for any $x, y, z \in V$ (orthogonal type).
(ii) There is a quadratic étale algebra $K$ over $F$ such that $V$ is a free $K$-module of rank $\geq 3$, endowed with a hermitian form $h: V \times V \rightarrow K$ such that

$$
\left\{\begin{array}{l}
\langle x \mid y\rangle=\frac{1}{2}(h(x, y)+h(y, x)) \\
x y z=h(z, x) y-h(z, y) x+h(x, y) z
\end{array}\right.
$$

for any $x, y, z \in V$ (unitarian type).
(iii) There is a quaternion algebra $Q$ over $F$ such that $V$ is a free left $Q$-module of rank $\geq 2$, endowed with a hermitian form $h: V \times V \rightarrow Q$ such that

$$
\left\{\begin{array}{l}
\langle x \mid y\rangle=\frac{1}{2}(h(x, y)+h(y, x)) \\
x y z=h(z, x) y-h(z, y) x+h(x, y) z
\end{array}\right.
$$

for any $x, y, z \in V$ (symplectic type).
(iv) $\operatorname{dim}_{F} V=4$ and there is a nonzero skew symmetric multilinear form $\Phi: V \times$ $V \times V \times V \rightarrow F$ such that for any $x, y, z \in V$ :

$$
x y z=[x y z]+\langle z \mid x\rangle y-\langle z \mid y\rangle x+\langle x \mid y\rangle z,
$$

where $[x y z]$ is defined by means of $\Phi(x, y, z, t)=\langle[x y z] \mid t\rangle$ for any $x, y, z, t \in V$. In this case, there is a nonzero scalar $\mu \in F$ such that (3.8) holds ( $D_{\mu}$-type).
(v) $\operatorname{dim}_{F} V=7$ and there is an eight dimensional Cayley-dickson algebra $C$ over $F$ with trace $t$ and a nonzero scalar $\alpha \in F$ such that $V=C_{0}=\{x \in C: t(x)=0\}$, and for any $x, y, z \in V$ :

$$
\left\{\begin{array}{l}
\langle x \mid y\rangle=-2 \alpha t(x y) \\
x y z=\alpha\left(D_{x, y}(z)-2 t(x y) z\right)
\end{array}\right.
$$

where $D_{x, y}$ is the inner derivation of $C$ given by (3.11) ( $G$-type).
(vi) $\operatorname{dim}_{F} V=8$ and $(V,\langle\mid\rangle)$ is endowed with a 3 -fold vector cross product $X$ of type $I$ such that

$$
x y z=\frac{1}{3} X(x, y, z)+\langle z \mid x\rangle y-\langle z \mid y\rangle x+\langle x \mid y\rangle z
$$

for any $x, y, z \in V$. (F-type.)
Moreover, two triple systems in different items cannot be isomorphic and:
(i') Two triple systems of orthogonal type are isomorphic if and only if the corresponding symmetric bilinear forms are isometric.
(ii') Two triple systems of unitarian type $V_{1}$ and $V_{2}$, with associated quadratic étale algebras $K_{1}$ and $K_{2}$ and hermitian forms $h_{1}$ and $h_{2}$, are isomorphic if and only if the hermitian pairs $\left(V_{1}, h_{1}\right)$ and $\left(V_{2}, h_{2}\right)$ are isomorphic; that is, there is an isomorphism of $F$-algebras $\sigma: K_{1} \rightarrow K_{2}$ and a linear bijection $\varphi: V_{1} \rightarrow V_{2}$ such that $h_{2}(\varphi(x), \varphi(y))=\sigma\left(h_{1}(x, y)\right)$ for any $x, y \in V_{1}$.
(iii') Two triple systems of symplectic type $V_{1}$ and $V_{2}$, with associated quaternion algebras $Q_{1}$ and $Q_{2}$ and hermitian forms $h_{1}$ and $h_{2}$, are isomorphic if and only if the hermitian pairs $\left(V_{1}, h_{1}\right)$ and ( $V_{2}, h_{2}$ ) are isomorphic.
(iv') Two triple systems of $D_{\mu}$-type, with associated scalars $\mu_{1}$ and $\mu_{2}$, are isomorphic if and only if the corresponding symmetric bilinear forms are isometric and $\mu_{1}=\mu_{2}$.
(v') Two triple systems of G-type, with associated Cayley-Dickson algebras $C_{1}$ and $C_{2}$ and scalars $\alpha_{1}$ and $\alpha_{2}$, are isomorphic if and only if so are $C_{1}$ and $C_{2}$ and $\alpha_{1}=\alpha_{2} \gamma^{2}$ for some $0 \neq \gamma \in F$.
(vi') Two triple systems of $F$-type $V_{1}$ and $V_{2}$, with associated type $I$ 3-fold vector cross products $X_{1}$ and $X_{2}$, are isomorphic if and only if so are the triple systems $\left(V_{1}, X_{1}\right)$ and $\left(V_{2}, X_{2}\right)$.

Proof: First, the new triple product defined on $V$ by $[x y z]=x y z-\langle z \mid x\rangle y+\langle z|$ $y\rangle x-\langle x \mid y\rangle z$ for any $x, y, z \in V$ is skew symmetric because of (2.5a). If this is
identically zero, $V$ is of orthogonal type. Otherwise, if the dimension of $V$ is $4, V$ is of $\mathrm{D}_{\mu}$-type.

Hence, in what follows, assume that $\operatorname{dim}_{F} V \neq 4$. Then, after extending scalars to an algebraic closure $\bar{F}$ of $F$, if $\bar{V}=\bar{F} \otimes_{F} V,(\mathfrak{g}(\bar{V}), \mathfrak{s}(\bar{V}))$ is one of the pairs considered in cases (i), (iii), (iv), (vi) or (vii) in Theorem 4.2. Note that case (viii) does not appear since there $\mathfrak{g}_{\overline{1}}$ is a direct sum of adjoint modules for $\mathfrak{s}$ instead of a direct sum of two dimensional irreducible modules.

Because of Theorem 4.1 and the computations in Section 3, and since the classical Lie superalgebras other than $D(2,1 ; \alpha)$ 's are determined by its even part and the structure of $\mathfrak{g}_{\overline{1}}$ as a $\mathfrak{g}_{\overline{0}}$-module [KAc, Proposition 2.1.4], it follows that case (i) in Theorem 4.2 corresponds to the unitarian type with $\bar{K}=\bar{F} \times \bar{F}$ and $\operatorname{dim}_{F} V \geq 6$, case (iii) in 4.2 corresponds to the orthogonal type, case (iv) to the symplectic type and $\operatorname{dim}_{F} V \geq 8$ and cases (vi) and (vii) to G and F types.

Therefore, it is enough to deal with the forms over $F$ of the simple $(-1,-1)$ BFKTS's over $\bar{F}$ considered in Section 3 with dimension $\neq 4$.

It is clear that if $\bar{V}$ is of orthogonal type, so is $V$. If $\bar{V}$ is of unitarian type with $\operatorname{dim}_{F} V \geq 6$, then since $\bar{K}=\operatorname{End}_{\overline{\mathfrak{d}}}(\bar{V})=\bar{F} \otimes_{F} \operatorname{End}_{\mathfrak{d}}(V), K=\operatorname{End}_{\mathfrak{d}}(V)$ is a quadratic étale algebra over $F$; besides, there is a $\bar{K}$-hermitian form $\bar{h}: \bar{V} \times \bar{V} \rightarrow \bar{K}$ such that $x y z=\bar{h}(z, x) y-\bar{h}(z, y) x+\bar{h}(x, y) z$ for any $x, y, z \in \bar{V}$. But if $\{1, i\}$ is an $F$-basis of $K$ with $i^{2}=\alpha \in F$, then $\bar{h}(x, y)=\langle x \mid y\rangle-\alpha^{-1}\langle x \mid i y\rangle i$ for any $x, y \in \bar{V}$. Since both $\langle x \mid y\rangle$ and $\langle x \mid i y\rangle$ are in $F$ in case $x, y \in V$, it follows that $\bar{h}$ restricts to an hermitian form $h: V \times V \rightarrow K$ and $V$ is the corresponding simple $(-1,-1)$-BFKTS of unitarian type. A similar argument works in case $\bar{V}$ is of symplectic type and $\operatorname{dim}_{F} V \geq 8$. In this case $\overline{\mathfrak{d}}=\overline{\mathfrak{b}} \oplus \overline{\mathfrak{s}}$ with $\overline{\mathfrak{s}} \cong \mathfrak{s l}(2, \bar{F}) \neq \overline{\mathfrak{b}}$, so that $\mathfrak{d}=\mathfrak{b} \oplus \mathfrak{s}$ for a suitable unique ideal $\mathfrak{b}$ and $\bar{Q}=\operatorname{End}_{\overline{\mathfrak{b}}}(\bar{V})=\bar{F} \otimes_{F} \operatorname{End}_{\mathfrak{b}}(V)$. Hence $\operatorname{End}_{\mathfrak{b}}(V)=Q$ is a quaternion algebra and $V$ is a free $Q$-module. Now one takes a suitable $F$-basis $\{1, i, j, k\}$ of $Q$ and argues as above.

If $\bar{V}$ is of G-type, then $\mathfrak{d}$ is a form of $G_{2}$, so there is an eight-dimensional CayleyDickson algebra $C$ over $F$ such that $\mathfrak{d} \cong \operatorname{Der} C$ and $V$ is, up to isomorphism, its seven dimensional irreducible module for $\mathfrak{d}$, that is $C_{0}$, the set of traceless elements in $C$. Since $\operatorname{Hom}_{\mathfrak{d}}\left(V \otimes_{F} V, \mathfrak{d}\right)$ is one-dimensional, after identifying $V$ with $C_{0}$ there exists a nonzero $\alpha \in F$ such that $d_{x, y}=\alpha D_{x, y}$ for any $x, y \in C_{0}=V$. From here, using (2.3c), it follows that $V$ is of G-type.

Finally, if $\bar{V}$ is of $F$-type, define $X: V \times V \times V \rightarrow F$ by

$$
X(x, y, z)=3(x y z-\langle z \mid x\rangle y+\langle z \mid y\rangle x-\langle x \mid y\rangle z)
$$

for any $x, y, z \in V$. Then $X$ is a 3 -fold vector cross product of type I (because it is so after extending scalars) and hence $V$ is of F-type.

Moreover, two simple ( $-1,-1$ )-BFKTS's of different types cannot be isomorphic because the corresponding Lie algebras of inner derivations are not. Also note that, because of (2.5a), any isomorphism among two ( $-1,-1$ )-BFKTS's is an isometry of the corresponding symmetric bilinear forms. Now ( $\mathrm{i}^{\prime}$ ) is clear and (ii') (respectively
(iii')) follows from the fact that $K_{1}$ and $K_{2}$ (resp. $Q_{1}$ and $Q_{2}$ ) are determined as centralizers of the action of a suitable ideal of the Lie algebra of inner derivations.

Let us check (iv'), so let $\left(V_{i},(x y z)_{i}\right)$ be two simple $(-1,-1)$-BFKTS's of $\mathrm{D}_{\mu_{i}}$ type $(i=1,2)$. If $\varphi: V_{1} \rightarrow V_{2}$ is an isomorphism, then it is an isometry and thus $\varphi\left([x y z]_{1}\right)=[\varphi(x) \varphi(y) \varphi(z)]_{2}$ for any $x, y, z \in V_{1}$. Hence

$$
\begin{aligned}
\left\langle\varphi\left(\left[x_{1} x_{2} x_{3}\right]_{1}\right) \mid \varphi\left(\left[x_{1} x_{2} x_{3}\right]_{1}\right)\right\rangle_{2} & =\left\langle\left[x_{1} x_{2} x_{3}\right]_{1} \mid\left[x_{1} x_{2} x_{3}\right]_{1}\right\rangle_{1} \\
& =\mu_{1} \operatorname{det}\left(\left\langle x_{i} \mid x_{j}\right\rangle_{1}\right),
\end{aligned}
$$

but also

$$
\begin{aligned}
\left\langle\varphi\left(\left[x_{1} x_{2} x_{3}\right]_{1}\right) \mid \varphi\left(\left[x_{1} x_{2} x_{3}\right]_{1}\right)\right\rangle_{2} & =\left\langle\left[\varphi\left(x_{1}\right) \varphi\left(x_{2}\right) \varphi\left(x_{3}\right)\right]_{2} \mid\left[\varphi\left(x_{1}\right) \varphi\left(x_{2}\right) \varphi\left(x_{3}\right)\right]_{2}\right\rangle_{2} \\
& =\mu_{2} \operatorname{det}\left(\left\langle\varphi\left(x_{i}\right) \mid \varphi\left(x_{j}\right)\right\rangle_{2}\right) \\
& =\mu_{2} \operatorname{det}\left(\left\langle x_{i} \mid x_{j}\right\rangle_{1}\right) .
\end{aligned}
$$

Therefore, $\mu_{1}=\mu_{2}$. Conversely, assume that $\varphi: V_{1} \rightarrow V_{2}$ is an isometry and that $\mu_{1}=\mu_{2}=\mu$. Consider $\Phi_{i}: V_{i}^{4} \rightarrow F(i=1,2)$ given by $\Phi_{i}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=$ $\left\langle\left[x_{1} x_{2} x_{3}\right]_{i} \mid x_{4}\right\rangle_{i}$. Also, let $\tilde{\Phi}_{1}: V_{1}^{4} \rightarrow F$ be defined by

$$
\tilde{\Phi}_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\Phi_{2}\left(\varphi\left(x_{1}\right), \varphi\left(x_{2}\right), \varphi\left(x_{3}\right), \varphi\left(x_{4}\right)\right)
$$

for any $x_{1}, x_{2}, x_{3}, x_{4} \in F$. Since $\operatorname{dim}_{F} V_{1}=4$ and both $\Phi_{1}$ and $\tilde{\Phi}_{1}$ are skew symmetric, they are proportional, and hence there is a nonzero scalar $\alpha \in F$ such that $\tilde{\Phi}_{1}=\alpha \Phi_{1}$. For any $x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3} \in F$ :

$$
\begin{aligned}
\Phi_{2}\left(\varphi\left(x_{1}\right), \varphi\left(x_{2}\right), \varphi\left(x_{3}\right),\right. & \left.\varphi\left(\left[y_{1} y_{2} y_{3}\right]_{1}\right)\right)=\tilde{\Phi}_{1}\left(x_{1}, x_{2}, x_{3},\left[y_{1} y_{2} y_{3}\right]_{1}\right) \\
& =\alpha \Phi_{1}\left(x_{1}, x_{2}, x_{3},\left[y_{1} y_{2} y_{3}\right]_{1}\right) \\
& =\alpha \mu \operatorname{det}\left(\left\langle x_{i} \mid y_{j}\right\rangle_{1}\right) \\
& =\alpha \mu \operatorname{det}\left(\left\langle\varphi\left(x_{i}\right) \mid \varphi\left(y_{j}\right)\right\rangle_{2}\right) \\
& =\Phi_{2}\left(\varphi\left(x_{1}\right), \varphi\left(x_{2}\right) \varphi\left(x_{3}\right), \alpha\left[\varphi\left(y_{1}\right) \varphi\left(y_{2}\right) \varphi\left(y_{3}\right)\right]_{2}\right),
\end{aligned}
$$

where we have used (3.8) and the fact that $\varphi$ is an isometry. Thus $\varphi\left(\left[y_{1} y_{2} y_{3}\right]_{1}\right)=$ $\alpha\left[\varphi\left(y_{1}\right) \varphi\left(y_{2}\right) \varphi\left(y_{3}\right)\right]_{2}$ for any $y_{1}, y_{2}, y_{3} \in V_{1}$. But now, again by (3.8), this shows that $\mu \operatorname{det}\left(\left\langle y_{i} \mid y_{j}\right\rangle_{1}\right)=\alpha^{2} \mu \operatorname{det}\left(\left\langle y_{i} \mid y_{j}\right\rangle_{1}\right)$ for any $y_{i}$ 's, so that $\alpha^{2}=1$. If $\alpha=1$ we are done, otherwise $\alpha=-1$. In this latter case, choose any isometry $\sigma$ of $\langle\mid\rangle_{1}$ with $\operatorname{det} \sigma=-1$ and consider $\hat{\varphi}=\varphi \sigma: V_{1} \rightarrow V_{2}$. Then if $\hat{\Phi}_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=$ $\Phi_{2}\left(\hat{\varphi}\left(x_{1}\right), \hat{\varphi}\left(x_{2}\right), \hat{\varphi}\left(x_{3}\right), \hat{\varphi}\left(x_{4}\right)\right)$ for any $x_{i} \in V_{1}(i=1,2,3,4)$, we have:

$$
\begin{aligned}
\hat{\Phi}_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) & =\Phi_{2}\left(\hat{\varphi}\left(x_{1}\right), \hat{\varphi}\left(x_{2}\right), \hat{\varphi}\left(x_{3}\right), \hat{\varphi}\left(x_{4}\right)\right) \\
\tilde{\Phi}_{1}\left(\sigma\left(x_{1}\right), \sigma\left(x_{2}\right), \sigma\left(x_{3}\right), \sigma\left(x_{4}\right)\right) & =\alpha(\operatorname{det} \sigma) \Phi_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
& =\Phi_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right),
\end{aligned}
$$

because $\alpha=-1=\operatorname{det} \sigma$ and $\Phi_{1}$ is multilinear and alternating. The same argument as above, with $\tilde{\Phi}_{1}$ replaced by $\hat{\Phi}_{1}$ shows that $\hat{\varphi}$ is an isomorphism between the two triple systems.

With regard to ( $\mathrm{v}^{\prime}$ ), if $\varphi: V^{1} \rightarrow V^{2}$ is an isomorphism of two triple systems of G-type with associated Cayley-Dickson algebras $C^{1}$ and $C^{2}$ and scalars $\alpha_{1}$ and $\alpha_{2}$, then $\varphi$ is an isometry of the associated symmetric bilinear forms and for any $x, y, z \in V_{1}$

$$
\begin{equation*}
\varphi\left(d_{x, y} z\right)=d_{\varphi(x), \varphi(y)} \varphi(z) \tag{4.2}
\end{equation*}
$$

Also, $\phi: \mathfrak{d}^{1}=d_{V^{1}, V^{1}} \rightarrow \mathfrak{d}^{2}: d \mapsto \varphi d \varphi^{-1}$ is an isomorphism of Lie algebras and $\varphi$ becomes an isomorphism of $\mathfrak{d}^{1}$-modules, where $V^{2}$ is a $\mathfrak{d}^{1}$-module through $\phi$. Since $\operatorname{Hom}_{\mathfrak{J}^{1}}\left(\Lambda^{2}\left(V^{1}\right), V^{1}\right)$ is spanned by $x \wedge y \mapsto[x, y]=x y-y x$ (multiplication in $C^{1}$ ), there is a nonzero scalar $\mu \in F$ such that

$$
\begin{equation*}
\varphi([x, y])=\mu[\varphi(x), \varphi(y)] \tag{4.3}
\end{equation*}
$$

for any $x, y \in V^{1}=C_{0}^{1}=\left\{z \in C^{1}: t(z)=0\right\}$. In particular, $\mu \varphi:\left(C_{0}^{1},[],\right) \rightarrow$ $\left(C_{0}^{2},[],\right)$ is an isomorphism of Malcev algebras and hence $C^{1}$ and $C^{2}$ are isomorphic (see, for instance, [E1, (3.1)]). But the associator $(x, y, z)=(x y) z-x(y z)$ in $C^{1}$ is skew symmetric on its arguments, so for any $x, y, z \in C^{1},(x, y, z)=-(x, z, y)=$ $(z, x, y)=(y, z, x)$, so that

$$
L_{x y}-L_{x} L_{y}=\left[L_{x}, R_{y}\right]=R_{y} R_{x}-R_{x y}=\left[R_{x}, L_{y}\right],
$$

hence $a d_{x y}-L_{x} L_{y}+R_{y} R_{x}=2\left[L_{x}, R_{y}\right]$ for any $x, y \in C^{1}$, where $\operatorname{ad}_{x} y=[x, y]=$ $\left(L_{x}-R_{x}\right)(y)$. Permuting $x$ and $y$ and subtracting we get

$$
\operatorname{ad}_{[x, y]}=\left[L_{x}, L_{y}\right]+\left[R_{x}, R_{y}\right]+4\left[L_{x}, R_{y}\right]=D_{x, y}+3\left[L_{x}, R_{y}\right] .
$$

On the other hand,

$$
\begin{aligned}
{\left[\operatorname{ad}_{x}, \operatorname{ad}_{y}\right] } & =\left[L_{x}-R_{x}, L_{y}-R_{y}\right]=\left[L_{x}, L_{y}\right]+\left[R_{x}, R_{y}\right]-2\left[L_{x}, R_{y}\right] \\
& =D_{x, y}-3\left[L_{x}, R_{y}\right],
\end{aligned}
$$

and from here we conclude that

$$
2 D_{x, y}=\operatorname{ad}_{[x, y]}+\left[\operatorname{ad}_{x}, \operatorname{ad}_{y}\right]
$$

for any $x, y \in C^{1}$. Since $d_{x, y}=\alpha_{1} D_{x, y}$ and $d_{\varphi(x), \varphi(y)}=\alpha_{2} D_{\varphi(x), \varphi(y)}$ for any $x, y \in$ $V^{1}$, equation (4.3) gives:

$$
\begin{aligned}
\varphi d_{x, y} & =\frac{\alpha_{1}}{2} \varphi\left(\operatorname{ad}_{[x, y]}+\left[\operatorname{ad}_{x}, \operatorname{ad}_{y}\right]\right) \\
& =\frac{\alpha_{1}}{2} \mu^{2}\left(\operatorname{ad}_{[\varphi(x), \varphi(y)]}+\left[\operatorname{ad}_{\varphi(x)}, \operatorname{ad}_{\varphi(y)}\right]\right) \varphi \\
& =\frac{\alpha_{1}}{2} \mu^{2} D_{\varphi(x), \varphi(y)} \varphi, \\
d_{\varphi(x), \varphi(y)} & =\frac{\alpha_{2}}{2} D_{\varphi(x), \varphi(y)},
\end{aligned}
$$

for any $x, y \in V^{1}$, so that equation (4.2) gives $\alpha_{1} \mu^{2}=\alpha_{2}$, as desired. Conversely, if $\psi: C^{1} \rightarrow C^{2}$ is an isomorphism and $\alpha_{2}=\alpha_{1} \mu^{2}$, then the map $\varphi: V^{1}=C_{0}^{1} \rightarrow V^{2}=$ $C_{0}^{2}$, given by $\varphi(x)=\mu^{-1} \psi(x)$ for any $x \in V^{1}$, is an isomorphism of triple systems.

We are left with the isomorphism problem for the $(-1,-1)$-BFKTS's of F-type. For these we need some preliminaries, which have their own independent interest:

Lemma 4.4 Let $X$ be a 3-fold vector cross product of type $I$ on an eight dimensional vector space $V$ over a field $F$ of characteristic $\neq 2$, and let $\langle\mid\rangle$ be the associated nondegenerate symmetric bilinear form (so that (3.11) is satisfied). Then $\langle\mid\rangle$ is determined by $X$.

Proof: Because of (3.12), for any $a, b, c, d \in V$ :

$$
\begin{aligned}
-\langle d \mid X(a, b, X(a, b, c))\rangle & =\langle X(a, b, c) \mid X(a, b, d)\rangle \\
& =\operatorname{det}\left|\begin{array}{lll}
\langle a \mid a\rangle & \langle a \mid b\rangle & \langle a \mid d\rangle \\
\langle b \mid a\rangle & \langle b \mid b\rangle & \langle b \mid d\rangle \\
\langle c \mid a\rangle & \langle c \mid b\rangle & \langle c \mid d\rangle
\end{array}\right| \\
& =\langle\langle a \wedge b \mid a \wedge b\rangle c-\langle a \wedge b \mid a \wedge c\rangle b+\langle a \wedge b \mid b \wedge c\rangle a \mid d\rangle
\end{aligned}
$$

where $\langle a \wedge b \mid u \wedge v\rangle=\left|\begin{array}{cc}\langle a \mid u\rangle & \langle a \mid v\rangle \\ \langle b \mid u\rangle & \langle b \mid v\rangle\end{array}\right|$ for any $a, b, u, v \in V$. By nondegeneracy of $\langle\mid\rangle$, this gives:

$$
\begin{equation*}
X(a, b, X(a, b, c))=\langle a \wedge b \mid c \wedge b\rangle a+\langle a \wedge b \mid a \wedge c\rangle b-\langle a \wedge b \mid a \wedge b\rangle c \tag{4.4}
\end{equation*}
$$

Hence, for any $a, b, c \in V$, if $d=X(a, b, c)$, then $X(a, b, d) \in F a+F b+F c$ and, similarly (since $d=X(b, c, a)=X(c, a, b)), X(b, c, d), X(a, c, d) \in F a+F b+F c$, so that $W=F a+F b+F c+F d$ is closed under $X$. Let us prove now that for any $0 \neq v \in V$ :

$$
\begin{equation*}
X(v, V, V)=\{x \in V:\langle v \mid x\rangle=0\} . \tag{4.5}
\end{equation*}
$$

Because of (3.12), $X(v, V, V) \subseteq\{x \in V:\langle x \mid v\rangle=0\}$. Now, take $a=v$ and let $b \in V$ linearly independent with $a$ and such that $\langle\mid\rangle$ is nondegenerate on $W_{b}=F a+F b$. By (4.4) $c \in X(a, b, V) \subseteq X(v, V, V)$ for any $c \in W_{b}^{\perp}=\{x \in V:\langle x \mid a\rangle=0=$ $\langle x \mid b\rangle\}$. Take any two such $b$ 's with different $W_{b}$ 's, then the sum of the $W_{b}^{\perp}$ 's is $\{x \in V:\langle x \mid v\rangle=0\}$, so (4.5) follows.

Thus, assume that $X$ is also a 3 -fold vector cross product of type I relative to another nondegenerate symmetric bilinear form ( $\mid$ ) on $V$. Then for any $0 \neq u, v \in V$, if $\langle u \mid v\rangle=0$, then $u \in X(v, V, V)$ by (4.5), so by (3.12), also $(u \mid v)=0$. The only possibility then is that $(\mid)=\alpha\langle\mid\rangle$ for some nonzero scalar $\alpha \in F$. But then (3.12) implies that $\alpha^{3}=\alpha$, so $\alpha= \pm 1$ and (3.13) that $\alpha=1$.

Note that if $X$ is a 3 -fold vector cross product of type I on an eight dimensional vector space $V$ relative to the nondegenerate symmetric bilinear form $\langle\mid\rangle$, then $X$ is a 3 -fold vector cross product of type II relative to $-\langle\mid\rangle$. Also note that $\langle\mid\rangle$ does not determine $X$, since not every orthogonal transformation relative to $\langle\mid\rangle$ is an automorphism of $X$ ([E2]).

Corollary 4.5 Let $X_{i}$ be a 3 -fold vector cross product on an eight dimensional vector space $V_{i}$ over a field $F$ of characteristic $\neq 2$ with associated nondegenerate symmetric bilinear form $\langle\mid\rangle_{i}(i=1,2)$. Then if $\varphi:\left(V_{1}, X_{1}\right) \rightarrow\left(V_{2}, X_{2}\right)$ is an isomorphism, then it is also an isometry $\varphi:\left(V_{1},\langle\mid\rangle_{1}\right) \rightarrow\left(V_{2},\langle\mid\rangle_{2}\right)$.

Now, the proof of item (vi') in Theorem 4.3 follows immediately from the Corollary above and this finishes its proof.

## REFERENCES

[AEMN] P. Alberca Bjerregaard, A. Elduque, C. Martín González and F.J. Navarro Márquez, " On the Cartan-Jacobson Theorem", to appear in J. Algebra.
[BE] G. Benkart and A. Elduque, "The Tits construction and the exceptional simple classical Lie superalgebras", submitted. Jordan Theory Preprint Archives: http://mathematik.uibk. ac.at/jordan/ (paper no. 105).
[E1] A. Elduque, "On maximal subalgebras of central simple Mal'cev algebras", J. Algebra 103 (1986), no. 1, 216-227.
[E2] A. Elduque, "On a class of ternary composition algebras", J. Korean Math. Soc. 33 (1996), no. 1, 183-203.
[E3] A. Elduque, "On triality and automorphisms and derivations of composition algebras", Linear Algebra Appl. 314 (2000), no. 1-3, 49-74.
[E4] A. Elduque, "Quaternion, octonions, and the forms of the exceptional simple classical Lie superalgebras", submitted. Jordan Theory Preprint Archives: http://mathematik.uibk. ac.at/jordan/ (paper no. 116).
[EM] A. Elduque and H.C. Myung, "The reductive pair $\left(B_{3}, G_{2}\right)$ and affine connections on $S^{7}$ ", J. Pure Appl. Algebra 86 (1993), no. 2, 155-171.
[FF1] J.R. Faulkner and J.C. Ferrar, "On the structure of symplectic ternary algebras", Nederl. Akad. Wetensch. Proc. Ser. A 75 = Indag. Math. 34 (1972), 247-256.
[FF2] J.R. Faulkner and J.C. Ferrar, "Simple anti-Jordan pairs", Commun. Algebra 8 (1980), no. 11, 993-1013.
$[\mathrm{Fr}] \quad \mathrm{H}$. Freudenthal, "Beziehungen der $E_{7}$ und $E_{8}$ zur Oktavenebene. I, II" (German), Nederl. Akad. Wetensch. Proc. Ser. A. 57 = Indag. Math. 16 (1954), 218-230 and 363-380.
[Kac] V.G. Kac, "Lie superalgebras" Advances in Math. 26 (1977), no. 1, 8-96.
[KA1] N. Kamiya, "A structure theory of Freudenthal-Kantor triple systems", J. Algebra 110 (1987), no. 1, 108-123.
[KA2] N. Kamiya, "A structure theory of Freudenthal-Kantor triple systems. II", Comment. Math. Univ. St. Paul. 38 (1989), no. 1, 41-60.
[Ka3] N. Kamiya, "A structure theory of Freudenthal-Kantor triple systems. III", Mem. Fac. Sci. Shimane Univ. 23 (1989), 33-51.
[KA4] N. Kamiya, "The construction of all simple Lie algebras over C from balanced FreudenthalKantor triple systems", Contributions to general algebra, 7 (Vienna, 1990), 205-213, Hölder-Pichler-Tempsky, Vienna, 1991.
[KA5] N. Kamiya, "On Freudenthal-Kantor triple systems and generalized structurable algebras. Non-associative algebra and its applications (Oviedo, 1993), 198-203, Math. Appl., 303, Kluwer Acad. Publ., Dordrecht, 1994.
[Ka6] N. Kamiya, "On the Peirce decompositions for Freudenthal-Kantor triple systems. Commun. Algebra 25 (1997), no. 6, 1833-1844.
[KAO] N. Kamiya and S. Okubo, "On $\delta$-Lie supertriple systems associated with $(\epsilon, \delta)$-FreudenthalKantor supertriple systems. Proc. Edinburgh Math. Soc. (2) 43 (2000), no. 2, 243-260.
[K] I.L. Kantor, "Models of the exceptional Lie algebras" (Russian), Dokl. Akad. Nauk SSSR 208 (1973), no. 6, 1276-1279. English translation in Soviet Math. Dokl. 14, no. 1, 254-258.
[KMRT] M.A. Knus, A.S Merkurjev, M. Rost and J.P. Tignol, The Book of Involutions, American Mathematical Society Colloq. Publ. 44, Providence, 1998.
[M] K. Meyberg, "Eine Theorie der Freudenthalschen Tripelsysteme. I, II" (German), Nederl. Akad. Wetensch. Proc. Ser. A 71=Indag. Math. 30 (1968) 162-174 and 175-190.
[O1] S. Okubo, "Triple products and Yang-Baxter equation. I. Octonionic and quaternionic triple systems" J. Math. Phys. 34 (1993), no. 7, 3273-3291.
[O2] S. Okubo Introduction to octonion and other non-associative algebras in physics. Montroll Memorial Lecture Series in Mathematical Physics, 2. Cambridge University Press, Cambridge, 1995.
[OKA1] S. Okubo and N. Kamiya, "Quasi-classical Lie superalgebras and Lie super triple systems", to appear in Commun. Algebra.
[OKA2] S. Okubo and N. Kamiya, "Construction of Lie superalgebras $D(2,1 ; \alpha), G(3)$ and $F(4)$ from some triple systems", preprint.
[S] R.D. Schafer, An introduction to nonassociative algebras, Pure and Applied Mathematics, Vol. 22, Academic Press, New York-London, 1966.
[Sc] M. Scheunert, The theory of Lie superalgebras. An introduction, Lecture Notes in Mathematics 716. Springer, Berlin, 1979.
[Y] K. Yamaguti, "Constructions of Lie (super)algebras from Freudenthal-Kantor triple system $U(\epsilon, \delta)$ ", Proceedings of the 14th ICGTMP (Seoul, 1985), 222-225, World Sci. Publishing, Singapore, 1986.
[YA] K. Yamaguti and H. Asano, "On the Freudenthal's construction of exceptional Lie algebras", Proc. Japan Acad. 51 (1975), no. 4, 253-258.
[YO] K. Yamaguti and A. Ono, "On representations of Freudenthal-Kantor triple systems $U(\epsilon, \delta) "$, Bull. Fac. School Ed. Hiroshima Univ. Part II 7 (1984), 43-51.


[^0]:    * Supported by the Spanish DGI (BFM 2001-3239-C03-03).
    ** Supported in part by a Ministry of Education of Japan grant (no. 10640024).
    *** Supported in part by U.S. Department of Energy Grant no. DE-F402-ER 40685.

