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Introduction

Moufang sets were first introduced by J. Tits [10] in the context of twin buildings
and have since become the object of intense study. De Medts and Weiss [8] have
initiated a description of Moufang sets in terms of pairs (U, τ) where U is a group
and τ is a bijection of the set of non-trivial elements of U onto itself. The pair
(U, τ) has to satisfy suitable conditions (the so-called Hua maps have to be group
homomorphisms) for the construction to yield a Moufang set, denoted M(U, τ).

This is simple and elegant but there remains a vexing problem: the Moufang
set M(U, τ) does not determine the data (U, τ) uniquely, see, e.g., [5, Section 1],
[6, Remark 3.1]. Therefore, it seems that (U, τ) contains a “hidden variable” which
is responsible for this non-uniqueness. One of the aims of the present note is to
uncover this hidden variable, and at the same time give a construction of Moufang
sets which does not suffer from this indeterminacy.

The solution offered here describes Moufang sets in terms of algebraic objects
called division pairs. A division pair is a pair V = (V +, V −) of groups, not neces-
sarily abelian but written additively, together with a pair j = (j+, j−) of bijective
maps jσ: V σ {0} → V −σ {0} (for σ ∈ {+,−}) which are inverses of each other
(j− = j−1+ ) and satisfy the condition that the R-operators (an analogue of the Hua
maps) be group homomorphisms. At first glance, this seems more complicated than
the approach via (U, τ) inasmuch as the single group U is replaced by two groups
V + and V −. However, it achieves the goal of modeling Moufang sets more closely:
there is a categorical equivalence between division pairs and based Moufang sets
(Theorem 3.5), that is, Moufang sets in which a pair of base points has been chosen.
(The choice of two base points seems quite natural in view of the fact that Mou-
fang sets can be considered as generalized projective lines and a basis of projective
n-space consists of n+ 1 points.)

The indeterminacy of (U, τ) is now explained as follows. Pairs (U, τ) which
yield a Moufang set are categorically equivalent to triples (V, j, λ) where (V, j) is
a division pair and λ: V + → V − is an arbitrary group isomorphism, not in any
way connected to j (Theorem 4.4). Thus λ appears to be the searched-for hidden
variable.

The pair approach taken here is inspired by the theory of Jordan pairs [3] and
in fact, Jordan division pairs are examples of division pairs in the present sense
(Proposition 1.11).

A second aim of the present paper is to develop the theory in a categorical
framework; in particular, to stress the role of morphisms throughout. This topic
does not seem to have attracted much attention so far in the literature, although
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sub-Moufang sets have appeared in [9] and there is an unpublished note by De
Medts [5]. We adopt De Medts’ first “bad” definition of morphism [5, (2.1)] and
show that it is equivalent to his second “better” definition [5, Definition 3.1].

Here is a more detailed description of the contents. Section 1 introduces the
concept of pre-division pairs and division pairs, the latter being characterized by the
condition that the R-operators, defined in analogy to the theory of Jordan division
pairs by a Hua-type formula (Lemma 1.5), be group homomorphisms. This follows,
in the pair context, the idea of De Medts and Weiss. We also give a short and
simple proof, using the quasi-inverse in Jordan pairs, that a Jordan division pair is
a division pair in the present sense (Lemma 1.9 and Proposition 1.11).

In Section 2, we first consider pre-Moufang sets, defined by satisfying the first
of Tits’ axioms. Thus a pre-Moufang set is a set X together with a map U from X
to the set of subgroups of the symmetric group of X with the property that U (p)
is simply transitive on X {p} for all p ∈ X. The groups U (p) need not be in
any way related; in fact, there are examples where these groups are pairwise non-
isomorphic. Nevertheless, pre-Moufang sets are useful, not least because morphisms
between them make sense. These are defined as injective maps f : X → X ′ satisfying
f ◦U (p) ⊂ U ′(f(p)) ◦ f , for all p ∈ X. Moufang sets are are then singled out by
the condition that all U (p) consist of automorphisms. It is natural that morphisms
should be injective maps since Moufang sets are parametrized by “division objects”
(skew fields, Jordan division algebras, division pairs) and there, too, morphisms are
either trivial or injective.

It is helpful to introduce an intermediate stage between pre-Moufang and Mou-
fang sets, called half-Moufang sets. Here we consider based pre-Moufang sets with
base points b+ and b−, and define a half-Moufang set of type + (resp. −) by re-
quiring that U (b+) (resp. U (b−)) consist of automorphisms. Then Moufang sets
are characterized by being half-Moufang of both types (2.6).

In Section 3, we define functors D from half-Moufang sets to pre-division pairs
(Lemma 3.1) and P from pre-division pairs to half-Moufang sets (Lemma 3.3) and
show in Proposition 3.4 that D and P are, up to natural isomorphism, inverses
of each other. By restricting these functors to division pairs and Moufang sets,
respectively, we obtain our main result (Theorem 3.5), the categorical equivalence
of Moufang sets and division pairs.

In the last Section 4, we relate our approach with the construction of Moufang
sets from pairs (U, τ), as outlined above. We also discuss the opposite and mirror
Moufang set of [7] as well as the Hua maps and µ-maps in our setting, and show
that the two concepts of morphism introduced by De Medts agree.

Notation. The inner automorphism determined by an element g of a group G
is Int(g): h 7→ ghg−1. The set of non-trivial elements of G is denoted Ġ and the set
of subgroups of G is sbgr(G). The symmetric group of a set X is denoted Sym(X),
it acts on X on the left. The index σ takes values in {+,−} where we regard +
and − as abbreviations for +1 and −1, respectively. The meaning of −σ is then
the obvious one.

§1. Division pairs

1.1. Pre-division pairs. Let V = (V +, V −) be a pair of groups. Even though
the V σ are not assumed to be abelian, we denote the group law by +, the neutral
elements by 0 or 0σ and put V̇ σ = V σ {0}.

A pre-division pair is a pair V as above together with a pair of maps jσ: V̇ σ →
V̇ −σ which are inverses of each other:

j−σ ◦ jσ = IdV σ (σ ∈ {+,−}). (1)

By abuse of language, we often speak of V as of a pre-division pair, the maps jσ
being understood from the context.
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It is clear that the groups V + and V − of a pre-division pair have the same
cardinality; however, they need not be isomorphic: just take two non-isomorphic
groups V + and V − of the same cardinality and let j+: V̇ + → V̇ − be a bijection
with inverse j−.

Let V andW be pre-division pairs. A homomorphism h = (h+, h−): V →W is a
pair of injective group homomorphisms hσ: V σ →Wσ such that, for all σ ∈ {+,−}
and all x ∈ V̇ σ, hσ(x) ∈ Ẇσ and

h−σ(jσ(x)) = jσ(hσ(x)). (2)

With these definitions, pre-division pairs form a category, denoted pre-div. We
remark that a homomorphism h is uniquely determined by h+ (or h−), since
h−(0) = 0 and h−(y) = j+(h+(j−(y))) for all y ∈ V̇ −. By the same argument,
it suffices to require (2) for σ = + or σ = −.

The opposite of (V, j) is the pre-division pair (V, j)op = ((V −, V +), (j−, j+)).
For a morphism h = (h+, h−): V →W of pre-division pairs, let hop = (h−, h+): V op

→W op. Then ( )op is a functor from pre-div to itself whose square is the identity.
This definition is modeled on the analogous one for Jordan pairs [3, 1.5].

1.2. The functor X. Let V be a pre-division pair. Denote by

Γ = {(x, y) ∈ V̇ + × V̇ − : y = j+(x)}

the graph of j+, and let πσ: Γ → V̇ σ ⊂ V σ be the projections followed by the
inclusions. Let

X = X(V ) = V + tΓ V −

be the amalgamated sum (pushout) of V + and V − over Γ , with canonical maps
ισ: V σ → X. Thus ι+◦π+ = ι−◦π−, and (X, ι+, ι−) has the following property: for
every pair of set maps f+: V + → Y and f−: V − → Y satisfying f+ ◦π+ = f− ◦π−,
there exists a unique map f : X → Y such that f ◦ ισ = fσ:

V +
ι+

%%LLLLLL
f+

$$
Γ

π+ 99ssssss

π− %%KKKKKK X ∃!f // Y

V −
ι−

99rrrrrr

f−

:: (1)

The triple (X, ι+, ι−) is uniquely determined up to unique isomorphism by this
property. The construction is well-known: X is the quotient of the disjoint union
of V + and V − by the equivalence relation which is trivial on V σ and identifies
x ∈ V̇ + with j+(x) ∈ V̇ −. The maps ισ are then the inclusions of V σ into the
disjoint union followed by the canonical map into the quotient. They are injective
and satisfy

ισ(x) = ι−σ(y) ⇐⇒ x 6= 0 and y = jσ(x) ⇐⇒ y 6= 0 and x = j−σ(y). (2)

We put

oσ = ι−σ(0V −σ ) (3)

(note the change of sign), called the base points of X. Then

X = ι+(V +) ∪̇ {o+} = ι−(V −) ∪̇ {o−}. (4)

Thus oσ could be interpreted as a point at infinity added to ισ(V σ).
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Let h: V → W be a morphism of pre-division pairs and let Y = X(W ). Then
the maps fσ = ισ◦hσ: V σ →Wσ → Y make the outer diagram in (1) commutative,
because for (x, y) ∈ Γ , we have

(f+ ◦ π+)(x, y) = ι+(h+(x)) = ι−(j+(h+(x)))

= ι−(h−(j+(x))) = ι−(h−(y)) = (f− ◦ π−)(x, y).

Hence there exists a unique map f = X(h): X(V ) → X(W ) making (1) commuta-
tive, given by

f(ισ(z)) = ισ(hσ(z)),

for all z ∈ V σ, σ = ±. It is clear that f preserves the base points. Also, since
hσ is injective, it follows from (4) that so is f . One sees immediately that these
assignments define a functor X from pre-division pairs to sets.

Let V op = (V −, V +) be the opposite of V as in 1.1. Then X(V ) = X(V op) as
sets. However, the base points of X(V ) and X(V op) are interchanged.

1.3. Lemma. There is a unique homomorphism tσ: V σ → Sym(X) such that

tσ(u) · oσ = oσ, tσ(u) · ισ(x) = ισ(u+ x), (1)

for all u, x ∈ V σ. The homomorphism tσ is injective, and the group

Tσ := tσ(V σ) ⊂ Sym(X)

acts simply transitively on X {oσ}. The tσ are compatible with morphisms in the
following sense: if h: V → W is a morphism of pre-division pairs and f = X(h)
then

f ◦ tσ(u) = tσ(hσ(u)) ◦ f (2)

for all u ∈ V σ.

Proof. From (1.2.4) it is clear that tσ is uniquely determined by (1). To prove
existence of t+, define f+: V + → X and f−: V − → X by

f+(x) = ι+(u+ x), f−(y) =

{
o+ if y = 0
ι+(u+ j−(y)) if y 6= 0

}
.

Then the outer square of (1.2.1) is commutative: for (x, y) ∈ Γ we have f+(π+(x, y))
= ι+(u+ x) and, since y = j+(x) and hence x = j−(y),

f−(π−(x, y)) = f−(y) = ι+(u+ j−(y)) = ι+(u+ x).

Hence there exists a unique map t+(u): X → X satisfying (1) for σ = +. Since
ι+: V + → X {o+} is bijective, it is clear that t+ is injective and that t+(V +) acts
simply transitively on X {o+}. By interchanging the roles of + and −, we obtain
the result for σ = −. Finally, (2) follows easily from the fact that the hσ are group
homomorphisms.

1.4. Definition. Let V be a pre-division pair. We denote the group inverse
in V σ by i(x) = −x. For an element x ∈ V̇ σ, we often write simply j(x) instead
jσ(x), so that formally j(j(x)) = x. We also define

∨x = i(j(x)) = −j(x), x∨ = j(i(x)) = j(−x).

Thus both ∨x and x∨ belong to V̇ −σ, and we have

∨(x∨) = −j(j(−x)) = x = j(−(−j(x))) = (∨x)∨.
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Following a terminology introduced by Baumeister and Grüninger [1], an element
x ∈ V σ is called special if ij(x) = ji(x), equivalently, if ∨x = x∨.

We define wσ(x) ∈ Sym(X) by

wσ(x) = t−σ(∨x) ◦ tσ(x) ◦ t−σ(x∨). (1)

It follows easily from the definitions that

wσ(x)−1 = wσ(−x). (2)

If h: V → V ′ is a homomorphism of pre-division pairs, then

h−σ(∨x) = ∨hσ(x), h−σ(x∨) = hσ(x)∨. (3)

Hence (1.3.2) implies that the induced map f : X(V )→ X(V ′) makes the diagram

X(V )
f //

wσ(x)

��

X(V ′)

wσ(hσ(x))

��
X(V )

f
// X(V ′)

(4)

commutative.

1.5. Lemma. Let V be a pre-division pair. We use the notations introduced
in 1.3 and 1.4.

(a) wσ(x) interchanges oσ and o−σ.

(b) There exists a unique bijection Rx: V −σ → V σ making the diagram

V −σ
Rx //

ι−σ

��

V σ

ισ

��
X

wσ(x)
// X

(1)

commutative. Explicitly, Rxy is given as follows. If y = 0 then Rxy = 0. If
x∨ + y = 0 then

Rxy = j(i(j(x))) = j(x)∨ = j(∨x). (2)

If y 6= 0 and x∨+ y 6= 0 then also x+ j(x∨+ y) 6= 0 and ∨x+ j(x+ j(x∨+ y)) 6= 0,
and

Rxy = j
(
∨x+ j

(
x+ j(x∨ + y)

))
. (3)

(c) If h: V → W is a morphism of pre-division pairs, then the R-maps are
compatible with h in the sense that

hσ(Rx(y)) = Rhσ(x)(h−σ(y)). (4)

Proof. (a) We have x+j(x∨) = x+j(j(−x)) = x−x = 0. Hence by Lemma 1.3
and (1.2.2),

wσ(x) · oσ = t−σ(∨x) · (tσ(x) · (t−σ(x∨) · ι−σ(0))) = t−σ(∨x) · (tσ(x) · ι−σ(x∨))

= t−σ(∨x) · (tσ(x) · ισ(j(x∨))) = t−σ(∨x) · ισ(x+ j(x∨))

= t−σ(∨x) · ισ(0) = t−σ(∨x) · o−σ = o−σ.
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This implies wσ(−x) · o−σ = wσ(x)−1 · o−σ = oσ by (1.4.2), so replacing x by −x
shows wσ(x) · o−σ = oσ.

(b) By (a), wσ(x) maps ι−σ(V̇ −σ) = X {o+, o−} = ισ(V̇ σ) bijectively onto
itself. Hence there exists a unique bijection Rx making the diagram commutative
and mapping 0V −σ to 0V σ . To prove (2) and (3), let first x∨ + y = 0. Then

wσ(x) · ι−σ(y) = t−σ(∨x) · (tσ(x) · ι−σ(x∨ + y)

= t−σ(∨x) · (tσ(x) · oσ) = t−σ(∨x) · oσ = ι−σ(∨x)

= ισ(j(∨x)) = ισ(j(i(j(x)))) = ισ(Rxy).

Now let ∨x+ y 6= 0 and assume, for a contradiction, that x+ j(x∨ + y) = 0. Then
−x = j(x∨ + y), whence x∨ = j(−x) = x∨ + y and therefore y = 0, which is
impossible. We also have ∨x+ j(x+ j(x∨ + y)) 6= 0, else −(∨x) = j(x+ j(x∨ + y))
which implies, by applying j, that j(−(∨x)) = (∨x)∨ = x = x + j(x∨ + y) and
therefore j(x∨ + y) = 0, contradiction. Now we compute, using (1.2.2) repeatedly:

wσ(x) · ι−σ(y) = t−σ(∨x) ·
(
tσ(x) · (ι−σ(x∨ + y))

)
= t−σ(∨x) ·

(
tσ(x) · ισ(j(x∨ + y))

)
= t−σ(∨x) · ισ(x+ j(x∨ + y))

= t−σ(∨x) · ι−σ(j(x+ j(x∨ + y))) = ι−σ(∨x+ j(x+ j(x∨ + y)))

= ισ(j(∨x+ j(x+ j(x∨ + y)))) = ισ(Rxy).

(c) This follows easily from (1.3.2) and (1.4.4).

1.6. Lemma. We keep the notation introduced earlier. For an element x ∈ V̇ σ
the following conditions are equivalent:

Rx: V −σ → V σ is a group homomorphism, (1)

wσ(x) ◦ t−σ(v) ◦ wσ(x)−1 = tσ(Rxv) for all v ∈ V −σ, (2)

Int(wσ(x))T−σ = Tσ, (3)

Int(tσ(x))T−σ = Int(t−σ(j(x)))Tσ. (4)

Proof. (1) =⇒ (2): We prove (2) in the equivalent form

wσ(x) ◦ t−σ(v) = tσ(Rxv) ◦ wσ(x).

This is an equation in Sym(X), so we must show that both sides yield the same
result when applied to an arbitrary point p ∈ X. As X = {o−σ} ∪̇ ι−σ(V −σ) by
(1.2.4), there are two cases: if p = o−σ then

wσ(x) · (t−σ(v) · o−σ) = wσ(x) · o−σ = oσ

since T−σ fixes o−σ and wσ(x) switches the base points by Lemma 1.5(a). On the
other hand,

tσ(Rxv) · (wσ(x) · o−σ) = tσ(Rxv) · oσ = oσ

since Rxv ∈ V σ and Tσ fixes oσ. If p = ι−σ(y) for y ∈ V −σ then again by
Lemma 1.5,

wσ(x) · (t−σ(v) · ι−σ(y)) = wσ(x) · ι−σ(v + y) = ισ(Rx(v + y)),

tσ(Rxv) · (wσ(x) · ι−σ(y)) = tσ(Rxv) · ισ(Rxy) = ισ(Rxv +Rxy).

(2) =⇒ (1) is clear from the fact that tσ: V σ → Tσ and conjugation by wσ(x)
are group isomorphisms.

(2) =⇒ (3) holds because Rx: V −σ → V σ is a bijection by Lemma 1.5.
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(3) =⇒ (2): For v ∈ V −σ we have wσ(x) ◦ t−σ(v) ◦ wσ(x)−1 = tσ(u) ∈ Tσ. To
determine u, we evaluate both sides at o−σ. Then by Lemma 1.5,

ισ(u) = tσ(u) · o−σ = (wσ(x) ◦ t−σ(v) ◦ wσ(x)−1) · o−σ

= wσ(x) · (t−σ(v) · oσ) = wσ(x) · ι−σ(v) = ισ(Rxv),

whence u = Rxv. Finally, (3) ⇐⇒ (4) follows from

Int(wσ(x))T−σ = Tσ ⇐⇒ Int(t−σ(∨x)) Int(tσ(x)) Int(t−σ(x∨))T−σ = Tσ

⇐⇒ Int(t−σ(∨x)) Int(tσ(x))T−σ = Tσ

⇐⇒ Int(tσ(x))T−σ = Int(t−σ(∨x)−1)Tσ

⇐⇒ Int(tσ(x))T−σ = Int(t−σ(j(x)))Tσ,

since t−σ(∨x)−1 = t−σ(−(∨x)) = t−σ(−(−j(x))) = t−σ(j(x)).

1.7. Definition. A division pair is a pre-division pair V = (V +, V −) with the
property that, for every σ ∈ {+,−} and all x ∈ V̇ σ the equivalent conditions of
Lemma 1.6 hold. Since (1.6.4) is invariant under the substitution x→ j(x) and σ →
−σ, it is sufficient for V to be a division pair that Rx be a group homomorphism,
for all x ∈ V̇ +. We denote the full sub-category of pre-div whose objects are
division pairs by div. Clearly, V is a division pair if and only if V op is a division
pair, so ( )op induces an isomorphism of the full subcategory div of pre-div onto
itself.

1.8. Jordan pairs. We recall from [3] the notion of a Jordan pair. Let V =
(V +, V −) be a pair of modules over a commutative ring k and let Qσ: V σ →
Hom(V −σ, V σ) be quadratic maps. Depending on context, we write Qσx or Qσ(x).
Define bilinear maps Dσ: V σ × V −σ → End(V σ) by

Dσ(x, y) · z = Qσx+zy −Qσxy −Qσz y.

Then V (together with the quadratic maps (Q+, Q−)) is called a Jordan pair if the
following identities hold in all scalar extensions:

Dσ(x, y)Qσx = QσxD
−σ(y, x),(JP1)

Dσ(Qσxy, y) = Dσ(x,Q−σy x),(JP2)

Qσ(Qσxy) = Qσx Q
−σ
y Qσx .(JP3)

To simplify notation, we usually drop the index σ at Qσ and Dσ. A homomorphism
h: V → W of Jordan pairs is a pair of linear maps hσ: V σ → Wσ interacting
correctly with the Q-operators:

hσ(Qxy) = Qhσ(x)h−σ(y).

The category of Jordan pairs thus defined is denoted jp.
An element x ∈ V σ is called invertible if Qx: V −σ → V σ is a module isomor-

phism. In this case, the inverse of x ∈ V σ is defined by

x−1 = Q−1x x ∈ V −σ,

and we have Q−1x = Qx−1 , an easy consequence of (JP3). Hence x−1 ∈ V −σ is
invertible with inverse (x−1)−1 = x. We also note

(Qxy)−1 = Q(Qxy)−1 ·Qxy = Q−1x Q−1y y = Q−1x y−1, (1)

for invertible x ∈ V σ and y ∈ V −σ. With a view towards division pairs in the sense
of 1.7, we define

jσ(x) = −x−1 (2)

7



8 November 2012

for invertible x ∈ V σ. Then jσ maps the invertible elements of V σ bijectively onto
the invertible elements of V −σ, and j−σ ◦ jσ = Id. Also, since Qx = Q−x and Qx
is a group homomorphism, we have

jσ(−x) = −jσ(x). (3)

As before, we usually drop the index σ at jσ.
In general, a Jordan pair will not contain any invertible elements. As a sub-

stitute, one has the notion of quasi-inverse [3, Section 3]. The Bergmann operator
defined by (x, y) ∈ V σ × V −σ is B(x, y) := Id−D(x, y) +QxQy ∈ End(V σ). The
pair (x, y) is said to be quasi-invertible if B(x, y) is invertible. In this case, the
quasi-inverse of (x, y) is

xy = B(x, y)−1(x−Qxy) ∈ V σ.
Quasi-invertibility is preserved under homomorphisms h: V →W : if (x, y) ∈ V σ ×
V −σ is quasi-invertible then so is (hσ(x), h−σ(y)) ∈ Wσ × W−σ, and hσ(xy) =
hσ(x)h−σ(y).

We now give a proof of the Hua formula for Jordan pairs using the quasi-
inverse. Other proofs can be derived from the Hua formula for Jordan algebras,
see for example [4, Section 5] and [2, Prop. 1.7.10]. The Hua formula for Jordan
algebras was rediscovered in [8].

1.9. Lemma. Let V = (V +, V −) be a Jordan pair.

(a) Suppose (x, y) ∈ V σ × V −σ with x invertible. Then the pair (x, y) is quasi-
invertible if and only if x−1 − y is invertible, in which case

xy = (x−1 − y)−1. (1)

(b) Suppose x ∈ V σ and y ∈ V −σ are invertible and x−1 +y is invertible. Then
also x+ j(x−1 +y) and x−1 + j(x+ j(x−1 +y)) are invertible, and the Hua formula

Qxy = j
(
x−1 + j

(
x+ j(x−1 + y)

))
(2)

holds.

Proof. (a) (See also [3, 3.13]) By [3, 2.12(1)],

B(x, y) = QxQ(x−1 − y),

provided x is invertible. As Qx is invertible, we see that B(x, y) is invertible if
and only if Q(x−1 − y) is invertible, that is, if and only if x−1 − y is invertible.
Furthermore,

xy = B(x, y)−1(x−Qxy) = Q(x−1 − y)−1Q−1x (x−Qxy)

= Q(x−1 − y)−1(x−1 − y) = (x−1 − y)−1.

(b) We use the Symmetry Principle [3, Prop. 3.3]: a pair (u, v) ∈ V σ × V −σ is
quasi-invertible if and only if (v, u) is quasi-invertible, in which case

uv = u+Quv
u. (3)

We apply this to u = x−1 and v = (x−1 + y)−1. Here (v, u) is quasi-invertible with
quasi-inverse

vu = (v−1 − u)−1 = (x−1 + y − x−1)−1 = y−1. (4)

Hence (u, v) is quasi-invertible, so by (a), u−1−v = x−(x−1+y)−1 = x+j(x−1+y)
is invertible, and we have

uv =
(
x+ j(x−1 + y)

)−1
which implies

−u+ uv = −
{
x−1 + j

(
x+ j(x−1 + y)

)}
.

Then (3), (4) and (1.8.1) imply

Quv
u = Qx−1y−1 = Q−1x y−1 = (Qxy)−1 = −

{
x−1 + j

(
x+ j(x−1 + y)

)}
,

in particular, the right hand side is invertible. Now (2) follows by taking inverses
on both sides.

8
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Remark. The Hua formula is often formulated differently. Suppose x ∈ V σ
invertible, y ∈ V −σ invertible and x+j(y) invertible. Then also j(−x)+j(x+j(y))
is invertible, and the Hua formula reads

Qxy = x+ j
(
j(−x) + j

(
x+ j(y)

))
; (5)

see, e.g., [4, p. 214]. This is obtained from (2) by replacing x with x−1, y with j(y),
applying j to both sides and observing (1.8.1).

1.10. Jordan division pairs. A Jordan division pair is a Jordan pair V such
that every nonzero x ∈ V σ is invertible. In particular, the trivial Jordan pair (0, 0)
is counted as a Jordan division pair.

Morphisms from a Jordan division pair are either zero or injective (or both).
Indeed, let V be a Jordan division pair and let h: V → W a homomorphism of
Jordan pairs. Suppose hσ is not injective, so hσ(x) = 0 for some 0 6= x ∈
V σ. Since Qx: V −σ → V σ is bijective, it follows that hσ(V σ) = hσ(QxV

−σ) =
Qhσ(x)h−σ(V −σ) = 0, and

h−σ(V −σ) = h−σ(Qx−1QxV
−σ) = Qh−σ(x−1)Qhσ(x)h−σ(V −σ) = 0

as well. Hence, it makes sense to define the category of Jordan division pairs as
the (non-full) subcategory jdiv of jp whose objects are Jordan division pairs and
whose morphisms are injective Jordan pair morphisms.

1.11. Proposition. For V = (V +, V −) ∈ jdiv let E(V ) = (V, (j+, j−)) with
jσ defined in (1.8.2), and for a morphism h of jdiv let E(h) = h. Then E(V ) is
a division pair in the sense of 1.7 and every element of V̇ σ is special as defined in
1.4. These assignments define a functor E: jdiv → div which is a full embedding
of categories.

Proof. It is clear that E(V ) is a pre-division pair and by (1.8.3) all elements
are special. Let us show that the R-operators defined in (1.5.3) agree with the
Q-operators of the Jordan pair V . By Lemma 1.5(b), Rx(0) = 0 and Qx(0) = 0 as
well because Qx is a module homomorphism.

If y 6= 0 but ∨x+y = 0 then Rxy = jij(x) (by (1.5.2)) = −x (by (1.8.3)). On the
other hand, 0 = ∨x + y implies y = j(x) = −x−1 and therefore Qxy = −Qxx−1 =
−QxQ−1x x = −x as well. Finally, Rxy = Qxy for y 6= 0 and x−1 + y 6= 0 follows
from (1.5.3) and (1.9.2). Since the Jordan Q-operators are in particular additive,
E(V ) is a division pair.

Next, we show that a morphism h: V → W of Jordan division pairs is also
a morphism of the associated division pairs, i.e., that it satisfies (1.1.2). Thus
let 0 6= x ∈ V σ. Since hσ is injective by definition, hσ(x) 6= 0 in Wσ, and
since W is a Jordan division pair, it follows that hσ(x) is invertible. To prove
hσ(x)−1 = h−σ(x−1), it suffices to show that both sides yield the same result
when Qhσ(x) is applied. Now Qhσ(x)hσ(x)−1 = Qhσ(x)Q

−1
hσ(x)

hσ(x) = hσ(x), while

Qhσ(x)h−σ(x−1) = hσ(Qxx
−1) = hσ(x), as desired.

Clearly, E is a functor which is injective on objects and morphisms. It is also
full: given a morphism h: E(V ) → E(W ) of division pairs, it follows from (1.5.4)
that h is a morphism of Jordan pairs.

§2. Moufang sets

2.1. Pre-Moufang sets. A pre-Moufang set is a pair M = (X,U ) consisting
of a non-empty set X and a map U : X → sbgr(Sym(X)) satisfying Tits’s first
axiom [10, 4.4]:

(M1) for all p ∈ X, U (p) acts simply transitively on X {p} (and therefore
fixes p).

9
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Even though the groups U (p) need not be abelian, we will write the group law
additively and accordingly denote the neutral element of U (p) by 0. This makes
for more readable formulas.

Since a group has at least one element, (M1) shows that X has at least two
elements. On the other hand, it is clear that any two-element set has a canonical
structure of a pre-Moufang set.

Let p and q be points of X and let ζq,p: U (p) → X be the orbit map of U (p)
through the point q:

ζq,p(u) = u · q, (1)

for all u ∈ U (p). Then (M1) shows

ζq,p: U (p)→ X {p} is bijective for q 6= p. (2)

We denote by G(M) the subgroup of Sym(X) generated by all U (p), p ∈ X.
It is easy to see that G(M) acts doubly transitively on X provided X has at least
three elements.

A morphism f : (X,U ) → (X ′,U ′) of pre-Moufang sets is an injective map
f : X → X ′ such that, for all p ∈ X,

f ◦U (p) ⊂ U ′(f(p)) ◦ f (3)

(as subsets of all maps from X to X ′). With these definitions, pre-Moufang sets
form a category, denoted pre-mou. Isomorphisms and automorphisms of pre-
Moufang sets are now defined as in any category, and we denote by Aut(M) ⊂
Sym(X) the automorphism group of M .

In more detail, (3) says: for all p ∈ X and all u ∈ U (p), there exists u′ ∈
U ′(f(p)) such that, for all q ∈ X,

f(u · q) = u′ · f(q). (4)

The condition that f be injective may seem unnecessarily restrictive but it only
excludes constant maps. Indeed, suppose f satisfies (3) and is not injective. Then
there exist p 6= q in X with f(p) = f(q). Let s ∈ X {p}. By (M1), there exists
u ∈ U (p) such that s = u · q and by (3), there exists u′ ∈ U ′(f(p)) such that (4)
holds. Hence f(s) = f(u · q) = u′ · f(q) = u′ · f(p) = f(p) since u′ fixes f(p).

For Moufang sets, this definition of morphism as well as the fact that a non-
constant map satisfying (3) must be injective are due to De Medts [5, Section 2].
Although called there “a bad attempt”, it turns out to be the good definition. It
is also equivalent to De Medts’ second definition [5, Section 3], see 4.8.

2.2. Lemma. Let f : (X,U ) → (X ′,U ′) be a morphism of pre-Moufang sets
and let p ∈ X. Then there exists a unique injective group homomorphism ∂pf : U (p)
→ U ′(f(p)) such that, for all u ∈ U (p) and all q ∈ X,

f(u · q) = (∂pf)(u) · f(q), (1)

equivalently, that the diagrams

U (p)
∂pf //

ζq,p ∼=
��

U ′(f(p))

ζ′f(q),f(p)∼=
��

X {p}
f

// X ′ {f(p)}

(2)

are commutative for all q 6= p in X. If g: (X ′,U ′) → (X ′′,U ′′) is a second
morphism then the “chain rule”

∂p(g ◦ f) = ∂f(p)(g) ◦ ∂pf (3)

10
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holds.

Proof. For u ∈ U (p) let u′ as in (2.1.4). We claim that u′ is uniquely deter-
mined. Indeed, choose q 6= p. As f is injective, f(p) 6= f(q), so uniqueness of u′

follows from (2.1.4) and the fact that the orbit map ζf(q),f(p) is injective by (2.1.2).
Now put ∂pf(u) = u′. Then it is clear that (2) is commutative, and since f is
injective, so is ∂pf . It remains to show that ∂pf is a group homomorphism. Let
u, v ∈ U (p). Then (1) implies

∂pf(u+ v) · f(q) = f((u+ v) · q) = f(u · (v · q)) = ∂pf(u) · f(v · q)
= ∂pf(u) · (∂pf(v) · f(q)) =

(
∂pf(u) + ∂pf(v)

)
· f(q),

so the assertion follows again from the injectivity of ζ ′f(q),f(p). The chain rule is
easily verified.

Remark. For any injective map f : X → X ′, we can always define maps
fq,p: U (p) → U ′(f(p)) by the commutativity of (2) (with ∂pf replaced by fq,p).
Then f is a morphism if and only if the fq,p thus defined are independent of q. I
am indebted to H. P. Petersson for this remark.

The following criterion for isomorphisms will be useful.

2.3. Lemma. Let (X,U ) and (X ′,U ′) be pre-Moufang sets. For a map f : X
→ X ′, the following conditions are equivalent:

(i) f is an isomorphism,
(ii) f is a bijective morphism,

(iii) f is bijective and U ′(f(p)) = f ◦U (p) ◦ f−1, for all p ∈ X.

Proof. (i) =⇒ (ii): f is an isomorphism if and only if there exists a morphism
in the opposite direction such that the respective compositions are the identity. In
particular, f is a bijective map.

(ii) =⇒ (iii): If f is a bijective morphism then (2.2.1) implies that ∂pf(u) =
f ◦ u ◦ f−1 for all p ∈ X and u ∈ U (p), and by (2.2.2), ∂pf : U (p)→ U ′(f(p)) is a
group isomorphism, so we have (iii).

(iii) =⇒ (i): The condition U ′(f(p)) = f ◦U (p) ◦ f−1 implies that f and f−1

are morphisms, as desired.

2.4. Moufang sets. A pre-Moufang set M = (X,U ) is called a Moufang set
[10, 4.4] if it satisfies in addition to (M1) the axiom

(M2) for each p ∈ X, U (p) normalizes the set U (X) ⊂ sbgr(Sym(X)).

The full subcategory of pre-mou whose objects are Moufang sets is denoted mou.
In more detail, (M2) says that for all p, q ∈ X and all u ∈ U (p), there exists

x ∈ X such that u ◦ U (q) ◦ u−1 = U (x). Then necessarily x = u · q, since x is
the only fixed point of U (x), and the only fixed point of u ◦ U (q) ◦ u−1 is u · q.
Since G(M) is generated by all U (p), this shows that (M2) is equivalent to the
equivariance of U with respect to G(M):

U (g · p) = g ◦U (p) ◦ g−1, (1)

for all p ∈ X and all g ∈ G(M). By Lemma 2.3, (1) is also equivalent to

G(M) ⊂ Aut(M). (2)

In fact, G(M) is a normal subgroup of Aut(M), customarily called the little projec-
tive group. As a consequence, the automorphism group of a Moufang set is doubly
transitive on X. Indeed, if X has more than two elements, even G(M) is doubly
transitive. If X has two elements, G(M) = {Id} but Aut(M) = Sym(X).

11
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For a pre-Moufang set to be Moufang it suffices that it satisfy the following
weakening of (2):

there exist p 6= q in X such that U (p) ∪U (q) ⊂ Aut(M). (3)

Indeed, (3) implies U (x) ⊂ Aut(M) for all x ∈ X. If x = p this is clear, otherwise
x = u · q for u ∈ U (p) by (M1). Since u is an automorphism of M , we have
U (x) = u ◦U (q) ◦ u−1 ⊂ Aut(M)

2.5. Moufang sets vs. pre-Moufang sets. Trivially, any two-element set is
Moufang since all U (p) = IdX for all p ∈ X. A Moufang set with at least three ele-
ments always has a large automorphism group by (2.4.2). In a general pre-Moufang
set the groups U (p) are in no way related, so there may be no automorphisms dif-
ferent from the identity. For example, let X be a countable set and let Gp (p ∈ X)
be a family of pairwise non-isomorphic countable groups. (For instance, let X be
the set of prime numbers and let Gp = Z[p−1] (additive subgroup of Q) for all
p ∈ X. The groups Gp are pairwise non-isomorphic because Gp is divisible by p
and no other prime.) Since X {p} is still countable, we can choose a free and
transitive action of Gp on X {p}, and extend this action to all of X by declaring
p a fixed point of Gp. Let U (p) be the subgroup of Sym(X) defined by this action
of Gp. Then M = (X,U ) is a pre-Moufang set, and U (p) ∼= U (q) only for p = q.
Hence M has trivial automorphism group.

2.6. Bases, half Moufang sets and the functor ( )op. A basis of a pre-
Moufang set is an ordered pair b = (b+, b−) of distinct points, called the base
points. A based pre-Moufang set is a pair (M, b) = (X,U , b+, b−) consisting of a
pre-Moufang set M = (X,U ) and a basis b. Morphisms of based pre-Moufang sets
are morphisms preserving the base points. We denote the category of based pre-
Moufang sets by pre-moub and let moub denote the full subcategory of all (M, b)
where M is a Moufang set. There are obvious forgetful functors pre-moub →
pre-mou and moub →mou omitting the basis.

Let h-mouσb ⊂ pre-moub be the full subcategory whose objects (M, b) satisfy

U (bσ) ⊂ Aut(M). (1)

The objects of h-mouσb are called half Moufang sets of type σ, those of h-mou+
b ∪

h-mou−b simply half-Moufang sets. From (2.4.3) we see that

moub = h-mou+
b ∩ h-mou−b , (2)

so the epithet “half” refers to the fact that half Moufang sets satisfy only half of
the requirements for a Moufang set, not that they constitute half of all Moufang
sets.

The opposite of a basis b = (b+, b−) is bop = (b−, b+), and the opposite of a based
pre-Moufang set (M, b) = (X,U , b+, b−) is (M, b)op = (M, bop) = (X,U , b−, b+).
It is clear that ( )op is a functor from pre-moub to itself whose square is the
identity, maps h-mou+

b isomorphically onto h-mou−b and therefore leaves moub
stable.

2.7. Lemma. A based pre-Moufang set (M, b) = (X,U , b+, b−) belongs to
h-mouσb if and only if

U (u · b−σ) = u ◦U (b−σ) ◦ u−1, (1)

for all u ∈ U (bσ).

Proof. By Lemma 2.3(iii), a permutation g of X is an automorphism of M if
and only if

g ◦U (p) ◦ g−1 = U (g · p) (2)

12
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for all p ∈ X. For g = u and p = b−σ, this shows that an (M, b) ∈ h-mouσb satisfies
(1). Conversely, suppose (1) holds, let g ∈ U (bσ) and p ∈ X. If p = bσ then g ·p = p
and g ◦U (bσ) ◦ g−1 = U (bσ), so we have (2). If p ∈ X {bσ} then p = u · b−σ for
a unique u ∈ U (bσ) by (M1). Hence (1) implies

g ◦U (p) ◦ g−1 = g ◦ u ◦U (b−σ) ◦ u−1 ◦ g−1 = (g + u) ◦U (b−σ) ◦ (g + u)−1

= U ((g + u) · b−σ) = U (g · (u · b−σ)) = U (g · p),

so g ∈ Aut(M).

2.8. Lemma. Let (M, b) = (X,U , b) and (M ′, b′) = (X ′,U ′, b′) be half-Mou-
fang sets of the same type, and let f : X → X ′ be an injective map preserving the
base points. Suppose that

f ◦U (bσ) ⊂ U ′(o′σ) ◦ f (1)

for σ ∈ {+,−}. Then f is a morphism.

Proof. By symmetry, we may assume (M, b) and (M ′, b′) of type +. We have
to verify (2.1.3). For p = o+ this holds by assumption. Otherwise, p = u · o− where
u ∈ U (o+), by (M1). Then (1) implies that f ◦ u = u′ ◦ f for some u′ ∈ U ′(o′+).
Hence

f(p) = f(u · o−) = u′ · f(o−) = u′ · o′−.

Since (M, b) and (M ′, b′) belong to h-mou+
b , we have u ∈ Aut(M) and u′ ∈

Aut(M ′). This implies U (p) = u◦U (o−)◦u−1 and U ′(f(p))◦u′ = U ′(u′·o′−)◦u′ =
u′ ◦U ′(o′−). Therefore,

f ◦U (p) = f ◦ u ◦U (o−) ◦ u−1 = u′ ◦ f ◦U (o−) ◦ u−1

⊂ u′ ◦U ′(o′−) ◦ f ◦ u−1 = U ′(f(p)) ◦ u′ ◦ f ◦ u−1

= U ′(f(p)) ◦ f ◦ u ◦ u−1 = U ′(f(p)) ◦ f.

§3. The correspondence between division pairs and Moufang sets

3.1. Lemma. Let M = (X,U ) be a pre-Moufang set and let b = (b+, b−) be a
basis of M .

(a) Put V σ = U (bσ) for σ ∈ {+,−}. Then for all x ∈ V̇ σ, there exists a
unique y = jσ(x) ∈ V̇ −σ such that

x · b−σ = jσ(x) · bσ. (1)

The map j+: V̇ + → V̇ − is bijective with inverse j−. Hence the pair V = (V +, V −)
together with the maps j± is a pre-division pair, denoted D(M, b).

(b) Let f : (M, b) → (M ′, b′) be a morphism of based pre-Moufang sets and let
∂σ(f) := ∂bσ (f) : V σ = U (bσ) → V ′σ = U ′(o′σ) be as in Lemma 2.2. Then the
pair of group homomorphisms D(f) = (∂+(f), ∂−(f)): D(M, b) → D(M ′, b′) is a
morphism of pre-division pairs. These assignments define a functor

D: pre-moub → pre-div

which commutes with the functors ( )op defined in 2.4 and 1.1.

(c) If M is a Moufang set then the isomorphism class of D(M, b) is independent
of the choice of basis.

13
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Proof. (a) Let us write X {b} = X {b+, b−}. Recall the maps ζq,p of (2.1.1)
and put ζσ = ζb−σ,bσ for short, so ζσ(x) = x · b−σ. Then the definition of jσ is
equivalent to the commutativity of the diagram

V̇ σ
jσ //

ζσ

∼=

  @
@@

@@
@@

@@
@@

V̇ −σ

ζ−σ

∼=

}}{{
{{

{{
{{

{{
{j−σ

oo

X {b}

(2)

By (2.1.2), the maps ζσ are bijective, so the assertion follows.

(b) Combining (2) with (2.2.2) yields the diagram

V̇ σ
∂σ(f) //

jσ

��

ζσ

$$I
IIIIIIII V̇ ′σ

j′σ

��

ζ′σ

yyttttttttt

X {b}
f // X ′ {b′}

V̇ −σ
∂−σ(f)

//
ζ−σ

::uuuuuuuuu
V̇ ′−σ

ζ′−σ

eeJJJJJJJJJ

where the four subdiagrams are commutative. Hence the outer square is commuta-
tive as well, showing j′σ ◦∂σ(f) = ∂−σ(f)◦jσ, so D(f) is a morphism of pre-division
pairs. The functorial properties are easily checked, and the last statement is obvi-
ous.

(c) As remarked in 2.4, the automorphism group of a Moufang set is doubly
transitive on X, hence transitive on the set of bases. Since D is a functor, the
assertion follows.

Remark. The map ϕσ := ζ−1σ : X {bσ} → V σ is a bijection, and the triple
cσ = (X {bσ}, ϕσ, V σ) can be considered as a “chart” for the set X. The domains
X {bσ} of these charts cover X, and their intersection is X {b}. Then (2) says
that jσ = ϕ−σ ◦ ϕ−1σ : V̇ σ → V̇ −σ is the map describing the change of coordinates.

3.2. Example. Let K be a division ring and let X = P1(K) be the projective
line over K, that is, the quotient of K2 {0} (column vectors) by the action of
K× on the right. Let (s : t) denote the equivalence class of

(
s
t

)
and put b+ = (1 : 0)

and b− = (0 : 1). Then X is a Moufang set with the U (p) the conjugates of the
translation group V + = U (b+) induced from

(
1
0
K
1

)
acting by matrix multiplication

on K2 on the left, see [10, 4.4, Example (i)]. If we identify V + and V − with K by
x 7→

(
1
0
x
1

)
and y 7→

(
1
−y

0
1

)
, respectively, then jσ(x) = −x−1.

3.3. Lemma. Let (V, j) be a pre-division pair. Recall the set X = X(V ) and
the isomorphisms tσ: V σ → Tσ ⊂ Sym(X) introduced in 1.2 and Lemma 1.3.

(a) Define T : X → sbgr(Sym(X)) by

T (p) =

{
T+ if p = o+ = ι−(0)
t+(x) ◦ T− ◦ t+(x)−1 if p = ι+(x) for x ∈ V +

}
. (1)

Then
P(V ) := (X, T , o+, o−) ∈ h-mou+

b

is a half-Moufang set of type +.

14
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(b) For a morphism h = (h+, h−): V → V ′ of pre-division pairs, let f =
X(h): X = X(V ) → X ′ = X(V ′) as in 1.2. Then f : P(V ) → P(V ′) is a morphism
of based pre-Moufang sets. Putting P(h) = f , we obtain a functor

P: pre-div→ h-mou+
b .

Proof. (a) We verify axiom (M1) of a pre-Moufang set. By Lemma 1.3, T+

fixes o+ and acts simply transitively on X {o+} while T− fixes o− and is simply
transitive on X {o−}. This together with the definition of T (p) easily implies
that axiom (M1) is satisfied. From (1) it follows immediately that (2.7.1) holds for
σ = +, so P(V ) ∈ h-mou+

b .

(b) Let P(V ′) = (X ′,T ′, o′+, o′−) where T ′: X ′ → sbgr(Sym(X ′)) is defined,
mutatis mutandis, as in (1) and o′σ are the base points of P+(V ′). As noted in 1.2,
f = X(h) is injective and preserves base points. By Lemma 2.8, f is a morphism
of pre-Moufang sets if and only if

f ◦T (oσ) ⊂ T ′(f(oσ)) ◦ f (2)

for all σ = ±. This follows immediately from (1.3.2) and the definition of T and
T ′ at the base points. Hence f is a morphism. The functorial properties are easily
checked.

3.4. Proposition. (a) Let V be a pre-division pair and recall that D(P(V )) =(
T (o+) = T+,T (o−) = T−

)
by (3.3.1) and Lemma 3.1(a). Then ηV = (t+, t−): V

→ D(P(V )) is an isomorphism of pre-division pairs, natural in V .

(b) Let (M, b) = (X,U , b+, b−) be a based half-Moufang set of type + and
V = D(M, b) = (U (b+),U (b−)) the associated pre-division pair as in Lemma 3.1.
Then the maps ζσ = ζb−σ,bσ : U (bσ) → X of (2.1.1) induce, by of the universal
property of X(V ), a map f : X(V ) → X, and f = ε(M,b): P(D(M, b)) → (M, b) is
an isomorphism of based pre-Moufang sets, natural in (M, b).

(c) The isomorphisms η: Idpre-div

∼=−→ D ◦ P of (a) and ε: P ◦ D
∼=−→ Idh-mou+

b

of (b) are the unit and co-unit of an adjoint equivalence

Morh-mou+
b

(
P(V ), (M, b)

) ∼= Morpre-div
(
V, D(M, b)

)
.

In particular, the categories h-mou+
b and pre-div are equivalent.

Proof. (a) By Lemma 3.3 and Lemma 3.1,

D(P(V )) =
(
(T+, T−), (j′+, j

′
−)

)
with j′σ defined by

tσ(x) · o−σ = j′σ(tσ(x)) · oσ,

for x ∈ V̇ σ. By Lemma 1.3, tσ: V σ → T (oσ) is a group isomorphism. Moreover,

tσ(x) · o−σ = tσ(x) · ισ(0) = ισ(x+ 0) = ισ(x)

and, by (1.2.2),

t−σ(j(x)) · oσ = t−σ(jσ(x)) · ι−σ(0) = ι−σ(jσ(x) + 0) = ι−σ(jσ(x)) = ισ(x).

Hence j′σ(tσ(x)) = t−σ(j(x)). Thus ηV is an isomorphism of pre-division pairs and
it is easily verified that ηV is natural in V .
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(b) To prove the existence of f , we must show that the outer square of the
diagram

U (b+)
ι+

''OOOOOO
ζ+

&&
Γ

π+ 88rrrrrrr

π− &&LLLLLLL X(V ) f // X

U (b−)
ι−

77oooooo

ζ−

88

is commutative. Thus let (x, y) ∈ Γ , so x ∈ U (b+), y ∈ U (b−) and y = j(x) as in
(3.1.1). Hence

ζ+(π+(x, y)) = ζ+(x) = x · b− = j+(x) · b+ = y · b+ = ζ−(y) = ζ−(π−(x, y)),

as desired. From f(oσ) = ζ−σ(0) = bσ we see that f preserves base points. Since
ζσ: U (bσ) → X {bσ} is bijective by (2.1.2), f is bijective. We use Lemma 2.8
to show that f is a morphism (and hence by Lemma 2.3 an isomorphism) of pre-
Moufang sets. Thus we have to show that

f ◦T (oσ) ⊂ U (bσ) ◦ f (1)

for σ ∈ {+,−}. This will follow from the relation

f ◦ tσ(u) = u ◦ f : X(V )→ X, (2)

for all u ∈ V σ = U (bσ). By (1.2.4), X(V ) is the union of ισ(V σ) and oσ = ι−σ(0).
Since T (oσ) fixes oσ and U (bσ) fixes bσ and f preserves base points, (2) holds
when applied to oσ. For the remaining points ισ(x), x ∈ V σ = U (bσ), we compute

(f ◦ tσ(u))(ισ(x)) = f(tσ(u) · ισ(x)) = f(ισ(u+ x)) = ζσ(u+ x) = (u+ x) · b−σ

= u · (x · b−σ) = u · ζσ(x) = u · f(ισ(x)) = (u ◦ f)(ισ(x)).

Hence f is an isomorphism of based Moufang sets. Again, it is easily seen that
f = ε(M,b) depends functorially on (M, b), i.e., defines an isomorphism ε: P ◦ D →
Idh-mou+

b
of functors.

(c) We show that there are natural inverse bijections

Morh-mou+
b

(
P(V ), (M, b)

) α // Morpre-div
(
V,D(M, b)

)
β

oo (3)

given by
α(f) = D(f) ◦ ηV : V → D(M, b),

β(h) = ε(M,b) ◦ P(h): P(V )→ (M, b),

for morphisms f : P(V )→ (M, b) and h: V → D(M, b).

First we make α(f) and β(h) explicit. Let ∂σ(f): T (oσ) → U (bσ) be the
induced group homomorphisms as in Lemma 2.2, characterized by the commutative
diagram

T (oσ)
∂σ(f) //

ζσ

��

U (bσ)

ζσ

��
X(V ) {oσ}

f
// X {bσ}

(4)

Since ηV = (t+, t−), and α(f) = (α(f)+, α(f)−) is a pair of homomorphisms
α(f)σ: V σ → U (bσ), we have

α(f)σ = ∂σ(f) ◦ tσ: V σ → T (oσ)→ U (bσ). (5)
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The homomorphism h: V → D(M, b) has components hσ: V σ → U (bσ), and β(h)
is given, by what we proved in (b), on an element ισ(x) ∈ X(V ) by

ισ(x) 7→ X(h)(ισ(x)) = ισ(hσ(x)) 7→ ε(M,b)(ισ(hσ(x))) = ζσ(hσ(x)).

So we have

β(h) ◦ ισ = ζσ ◦ hσ, (6)

that is, the commutative diagram

V σ
hσ //

ισ

��

U (bσ)

ζσ

��
X(V ) {oσ}

β(h)
// X {bσ}

(7)

Now we show α(β(h)) = h. Let us put f = β(h) in (5). Then α(β(h))σ =
∂σ(β(h)) ◦ tσ, so we must show

hσ = ∂σ(β(h)) ◦ tσ. (8)

Combining (4) and (7), we obtain the diagram

U (bσ)

ζσ

''NNNNNNNNNNN

V σ
tσ //

hσ

99ssssssssss

ισ %%KKKKKKKKKK T (oσ)

∂σ(β(h))

OO

ζσ

��

X {bσ}

X(V ) {oσ}
β(h)

77ppppppppppp

(9)

so (8) is equivalent to the commutativity of the upper left hand triangle of (9).
The outer square and the inner (right hand) square is commutative by (7) and (4),
and the lower triangle is commutative as well because ζσ(tσ(x)) = tσ(x) · o−σ =
tσ(x) · ισ(0) = ισ(x) for all x ∈ V σ. By chasing the diagram we obtain

ζσ ◦ ∂σ(β(h)) ◦ tσ = β(h) ◦ ζσ ◦ tσ = β(h) ◦ ισ = ζσ ◦ hσ.

Since ζσ is bijective, it follows that hσ = ∂σ(β(h)) ◦ tσ = α(β(h))σ, as desired.
Next, we show β(α(f)) = f . Putting h = α(f) in (6), we obtain, by (5), (2.2.2)

and (9),

β(α(f)) ◦ ισ = ζσ ◦ α(f)σ = ζσ ◦ ∂σ(f) ◦ tσ = f ◦ ζσ ◦ tσ = f ◦ ισ.

As X(V ) is the union of ι+(V +) and ι−(V −), this implies β(α(f)) = f .
Since ε and η are natural transformations and D and P are functors, it is clear

that α and β are natural in V and (M, b), more precisely, bifunctors of V and
(M, b) Finally, it remains to show that η and ε are indeed the unit and co-unit of
the adjunction (3), i.e., that

ηV = α(IdP(V )), ε(M,b) = β(IdD(M,b)).

By (5), α(IdP(V ))σ = ∂σ(IdP(V )) ◦ tσ = tσ = (ηV )σ for σ = ±, showing the first
formula. For the second, we have, by (6), β(IdD(M,b)) ◦ ισ = ζσ = ε(M,b) ◦ ισ.
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3.5. Theorem. For a pre-division pair V , the following conditions are equiv-
alent:

(i) V is a division pair,
(ii) P(V op) = P(V )op,

(iii) P(V ) is a Moufang set.

Hence the functors D of Lemma 3.1 and P of Lemma 3.3 restrict to functors
D: moub → div and P: div → moub commuting with the opposition functors
( )op. The natural isomorphisms η and ε of Proposition 3.4 induce natural isomor-
phisms

η: Iddiv

∼=−→ (D
∣∣moub) ◦ (P

∣∣div) and ε: (P
∣∣moub) ◦ (D

∣∣div)
∼=−→ Idmoub

which are the unit and co-unit of an adjoint equivalence

Mormoub

(
P(V ), (M, b)

) ∼= Mordiv
(
V,D(M, b)

)
.

In particular, the categories moub of based Moufang sets and div of division pairs
are equivalent.

Proof. (i) =⇒ (ii): Let V op = Ṽ = (Ṽ +, Ṽ −) where Ṽ σ = V −σ. Then P(V op) =
(X̃, T̃ , õ+, õ−) where X̃ = X(V op), T̃ is defined in analogy to (3.3.1) by

T̃ (p) =

{
T̃+ if p = õ+

t̃+(y) ◦ T̃− ◦ t̃+(y)−1 if p = ι̃+(y) for y ∈ Ṽ +

}
, (1)

and õσ are the base points. We have X̃ = X by 1.2, but the base points are
õσ = o−σ. Moreover, T̃σ = T−σ and t̃+(y) = t−(y) as well as ι̃+(y) = ι−(y). On
the other hand, passing from P(V ) to P(V )op just switches the base points by 2.6,
so it remains to show that T (p) = T̃ (p), for all p ∈ X. If p = oσ, this is clear
by (3.3.1). For p ∈ X {o+, o−}, we have p = ι+(x) = ι−(y) where x ∈ V̇ +,
y = j(x) ∈ V̇ − and, by (3.3.1) and (1),

T (p) = t+(x) ◦ T− ◦ t+(x)−1, T̃ (p) = t−(y) ◦ T+ ◦ t−(y)−1.

Since V is a division pair, (1.6.4) holds for all x ∈ V̇ +. Hence T (p) = T̃ (p), as
required.

(ii) =⇒ (iii): By Lemma 3.3, P(V ) and P(V op) are half-Moufang sets of type +
while P(V )op ∈ h-mou−b by 2.6. Hence (ii) implies that P(V )op ∈moub by (2.6.2)
and therefore also P(V ) ∈moub, again by 2.6.

(iii) =⇒ (i): Let M = (X,T ) be the un-based Moufang set underlying P(V ).
Then all tσ(v), where v ∈ V σ, are automorphisms of M , hence so is wσ(x), for any
x ∈ V̇ σ. Since wσ(x) interchanges the base points o+ and o− by Lemma 1.5(a),
this implies Int(wσ(x))T−σ = Tσ, so (1.6.3) of Lemma 1.6 holds for all x ∈ V̇ σ,
and therefore V is a division pair.

The remaining assertions follow now from Proposition 3.4.

3.6. Corollary. Let M be a pre-Moufang set and b a basis of M . Then the
following conditions are equivalent:

(i) M is a Moufang set,
(ii) (M, b) is a half-Moufang set and D(M, b) is a division pair.

Proof. This follows easily from Theorem 3.5 and Proposition 3.4(b).

18



8 November 2012

3.7. Corollary. The functors D and P induce inverse bijections between the
set of isomorphism classes of Moufang sets and division pairs.

Proof. This follows from Lemma 3.1(c) and Theorem 3.5.

§4. Moufang sets from pairs (U, τ)

4.1. The categories grpτ and pre-divλ. In this section, we relate the con-
struction of Moufang sets from pairs (U, τ) [8, 7, 6] with our approach via division
pairs. Let grpτ be the category whose objects are pairs (U, τ) where U is a group,
written additively, and τ : U̇ → U̇ is a bijective map. A morphism f : (U, τ) →
(U ′, τ ′) of grpτ is an injective group homomorphism satisfying f(τ(x)) = τ ′(f(x))
for all x ∈ U̇ . Injectivity of f is necessary for this condition to make sense.

Given (U, τ) ∈ grpτ , we obtain a pre-division pair (V, j) by setting V + = V − =
U , j+ = τ−1, j− = τ . Trivially, IdU : V + → V − is a group isomorphism. To
model this situation more closely on the side of pre-division pairs, we introduce the
category pre-divλ whose objects are triples (V, j, λ) where (V, j) is a pre-division
pair and λ: V + → V − is a group isomorphism. We do not require any relation
between λ and the maps j±. A morphism h: (V, j, λ) → (V ′, j′, λ′) of pre-divλ is
a morphism h = (h+, h−): (V, j) → (V ′, j′) of pre-division pairs compatible with
the maps λ and λ′ in the sense that λ′ ◦ h+ = h− ◦ λ. There is an obvious forgetful
functor F : pre-divλ → pre-div omitting λ.

4.2. Lemma. The assignments Φ(U, τ) = ((U,U), (τ−1, τ), IdU ) on objects and
Φ(f) = (f, f) on morphisms define a functor Φ: grpτ → pre-divλ which is an
equivalence of categories. An inverse of Φ (up to isomorphism) is the functor
Ψ : pre-divλ → grpτ , defined by

Ψ(V, j, λ) = (V +, j− ◦ λ)

on objects, and by Ψ(h) = h+ on morphisms.

Proof. It follows easily from the definitions that Ψ ◦ Φ is the identity on grpτ .
On the other hand, for (V, j, λ) ∈ pre-divλ, we have

(Φ ◦ Ψ)(V, j, λ) = Φ(V +, j− ◦ λ) =
(
(V +, V +), (λ−1 ◦ j+, j− ◦ λ), IdV +

)
and a straightforward verification shows that

(IdV + , λ−1): (V, j, λ)→ (Φ ◦ Ψ)(V, j, λ)

is an isomorphism which depends functorially on (V, j, λ). The details are left to
the reader.

4.3. The functor M. Let (U, τ) ∈ grpτ . Following De Medts and Weiss [8],
we define a based pre-Moufang set

M(U, τ) = (X, (Ux)x∈X , b
+, b−) (1)

as follows. Put X = U ∪̇ {∞}, the disjoint union of U and a new symbol ∞, let
b+ = ∞, b− = 0. For x ∈ U let α(x): U → U be the left translation u 7→ x + u,
and extend α(x) to X by fixing the point ∞. Also extend τ to a map from X to
itself by τ(0) = ∞ and τ(∞) = 0. Now define a map U : X → sbgr(Sym(X)),
x 7→ U (x) = Ux, by

U∞ = α(U), U0 = τ ◦ U∞ ◦ τ−1, Ux = α(x) ◦ U0 ◦ α(x)−1 for x ∈ U̇ . (2)

Apart from the base points and the fact that we write maps on the left of their
arguments and accordingly let U act on itself by left translations, this is the defi-
nition given in [8]. It is also easily seen that M(U, τ) is a half-Moufang set of type
+ depending functorially on (U, τ), so we have a functor M: grpτ → h-mou+

b .
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On the other hand, starting again from (U, τ), we have the pre-division pair
V = F (Φ(U, τ)) with V ± = U and j+ = τ−1 as in 4.1 and Lemma 4.2, so by
applying the functor P of Lemma 3.3 to V , we obtain a based half-Moufang set
P(V ) = P(F (Φ(U, τ))). This is essentially the same as M(U, τ), more precisely:
there is an isomorphism

κ : P ◦ F ◦ Φ
∼=−→M (3)

of functors as follows. First, there is a unique bijection β: X(V ) → X = U ∪̇ {∞}
making the diagram

U
ι+

&&LLLLLL
β+

''
Γ

π1
::vvvvvv

π2 $$H
HHHHH X(V ) ∃!β // U ∪̇ {∞}

U
ι−

88rrrrrr
β−

77

commutative, where πi: Γ → U are the projections of the graph Γ of τ−1 onto the
first and second factor, and β± is defined by

β+(x) = x, β−(y) =

{
∞ if y = 0
τ(y) if y 6= 0

}
. (4)

Indeed, it is immediately verified that β+ ◦ π+ = β− ◦ π−, so the existence of
β follows from the universal property of X(V ), and from (1.2.4) we see that β
is bijective. The images of the base points oσ of X are β(o+) = β(ι−(0)) = ∞
and β(o−) = β(ι+(0)) = 0. It is straightforward to check that β is equivariant
with respect to the actions t+ of U = V + and t− of U = V − on X(V ) defined in
Lemma 1.3 and the action α of U on X defined earlier in the following sense:

β ◦ t+(x) = α(x) ◦ β, β ◦ t−(y) = τ ◦ α(y) ◦ τ−1 ◦ β, (5)

for x ∈ U = V + and y ∈ U = V −. This implies, again by an easy verification,
that β = κ(U,τ): P(V ) → M(U, τ) is an isomorphism of based pre-Moufang sets,
depending functorially on (U, τ). Hence, we have the diagram

grpτ
Φ //

M
��

pre-divλ

F

��
h-mou+

b pre-div
P

oo

(6)

of functors, commutative up to the natural isomorphism κ.
Let us call a pair (U, τ) ∈ grpτ Moufang-admissible if M(U, τ) is a based Mou-

fang set, and let m-grpτ be the full subcategory of grpτ whose objects are Moufang-
admissible. Analogously, let divλ be the full subcategory of pre-divλ whose objects
are all (V, j, λ) such that F (V, j, λ) = (V, j) ∈ div is a division pair.

4.4. Theorem. The diagram (4.3.6) restricts to the diagram

m-grpτ
Φ
∼

//

M
��

divλ

F

��
moub divP

∼oo

(1)

commutative up to natural isomorphism, where the horizontal arrows are equiva-
lences of categories.
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Proof. We first show that

(U, τ) ∈m-grpτ ⇐⇒ F (Φ(U, τ)) ∈ div ⇐⇒ Φ(U, τ) ∈ divλ. (2)

Indeed, let V = F (Φ(U, τ)). Then

(U, τ) ∈m-grpτ ⇐⇒ M(U, τ) ∈moub (by definition of m-grpτ )

⇐⇒ P(V ) ∈moub (by (4.3.3))

⇐⇒ V ∈ div (by Theorem 3.5)

⇐⇒ Φ(U, τ) ∈ divλ (by definition of divλ).

Now (2) (together with Lemma 4.2) implies that the top arrow in (1) is an equiva-
lence of categories, and the bottom arrow is an equivalence by Theorem 3.5.

This result is our explanation of the hidden variable involved in describing
Moufang sets in terms of (U, τ): it corresponds to the arbitrary isomorphism
λ: V + → V − in an object (V, j, λ) of divλ.

4.5. The functor ( )in. By an easy verification, the assignments (U, τ)in =
(U, τ−1) on objects and f in = f on morphisms define a functor ( )in: grpτ → grpτ
of period two. On the other hand, we extend the functor ( )op on pre-division pairs
(as in 1.1) to the category pre-divλ by defining (V, j, λ)op =

(
(V, j)op, λ−1) on

objects and hop = (h+, h−)op = (h−, h+) on morphisms. Then these functors cor-
respond to each other under the categorical equivalence of Lemma 4.2 and commute
with F ; i.e., the diagram

grpτ
Φ
∼

//

( )in

��

pre-divλ

( )op

��

F // pre-div

( )op

��
grpτ

Φ

∼ // pre-divλ
F

// pre-div

(1)

is commutative. By 1.7, V is a division pair if and only if V op is a division pair,
so ( )op induces an automorphism of the full subcategory div of pre-div and the
same holds for the subcategory divλ of pre-divλ. Now it follows from (4.4.2) and
(1) that (U, τ) is Moufang-admissible if and only if (U, τ−1) is, a result due to De
Medts and Segev [6, Lemma 3.6]. So we have a commutative diagram

m-grpτ
Φ
∼

//

( )in

��

divλ

( )op

��

F // div

( )op

��
m-grpτ

Φ

∼ // divλ
F

// div

(2)

We claim that there is a natural isomorphism of functors

( )op ◦M ∼= M ◦ ( )in. (3)

Indeed,

( )op ◦M ∼= ( )op ◦ (P ◦ F ◦ Φ) (by (4.3.3))

= P ◦ ( )op ◦ F ◦ Φ (by Theorem 3.5)

= P ◦ F ◦ Φ ◦ ( )in (by (2))
∼= M ◦ ( )in (by (4.3.3))
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4.6. The relation with the opposite and the mirror Moufang set of
[7]. In [7, Section 2, Section 3], the notions of opposite and mirror Moufang set
are introduced in terms of the construction M(U, τ). We now discuss these in our
framework.

(a) For (U, τ) ∈ grpτ , let U◦ be the opposite group, with group operation
xuy = y+x, and let τ◦ = iτ i where i is inversion in the group U . Then i: U → U◦

is an isomorphism, and (U, τ)◦ := (U◦, τ◦) ∈ grpτ . If f : (U, τ) → (U ′, τ ′) is a
morphism of grpτ , then f◦ = f : (U, τ)◦ → (U ′, τ ′)◦ is a morphism as well. Hence
this defines a functor ( )◦: grpτ → grpτ of period two, and there is a natural
isomorphism ν: Idgrpτ → ( )◦ given by

ν(U,τ) = i: (U, τ)→ (U, τ)◦. (1)

By applying the functor M, we obtain an isomorphism

M(ν(U,τ)): M(U, τ)
∼=−→M((U, τ)◦), (2)

natural in (U, τ). In particular, this shows that (U, τ) is Moufang-admissible if and
only if (U, τ)◦ is.

In [7, Section 2], M((U, τ)◦) is called “the opposite Moufang set”. This seems to
suggest that it is the opposite (in some sense) of the Moufang set M(U, τ). However,
M((U, τ)◦) is not a function of the based Moufang set M(U, τ) but rather results
from a construction on the level of (U, τ). Evidently, the “opposite Moufang set”
in this sense has nothing to do with our notion of the opposite of a based Moufang
set defined in 2.6. The latter, however, is closely related to the mirror Moufang set
discussed next.

(b) For (U, τ) ∈ grpτ , let U t =
(
U {0}

)
∪̇ {∞} as a set and make it into a

group with neutral element ∞ and group operation x ⊕ y = τ
(
τ−1(x) + τ−1(y)

)
where τ is extended from U̇ to U ∪̇{∞} as in 4.3 by τ(0) =∞ and τ(∞) = 0. Then
(U, τ)t := (U t, τ−1) ∈ grpτ . For a morphism f : (U, τ)→ (U ′, τ ′), let f t: U t → U ′t

be defined by f t(x) = f(x) for x 6=∞ and f t(∞) =∞. Then f t: (U, τ)t → (U ′, τ ′)t

is a morphism of grpτ , and ( )t is an endofunctor of grpτ of period two, isomorphic

to the functor ( )in of 4.5: there is a natural isomorphism ϑ: ( )in
∼=−→ ( )t given by

ϑ(U,τ) = τ : (U, τ)in
∼=−→ (U, τ)t. (3)

Indeed, it follows from the definition of the group structure of U t that τ : U → U t

is a group isomorphism, and the commutative diagram

U̇
τ //

τ−1

��

U̇ t

τ−1

��
U̇ τ

// U̇ t

shows that it commutes with the respective τ -maps.
By applying the functor M to (3), we obtain an isomorphism

M(ϑ(U,τ)): M((U, τ)in)
∼=−→M((U, τ)t), (4)

natural in (U, τ). From 4.5 we know that (U, τ) is Moufang-admissible if and only
if (U, τ)in is so. Hence the same is true of (U, τ)t. Combining (4) with (4.5.3), we
obtain a natural isomorphism

( )op ◦M ∼= M ◦ ( )t. (5)

In [7, Section 3], M((U, τ)t) is called the “mirror Moufang set”. Again, this refers
to a construction on the level of (U, τ) and not on the level of the Moufang set
M(U, τ). However, (5) shows that the mirror Moufang set M((U, τ)t) is canonically
isomorphic to the opposite in our sense of the based Moufang set M(U, τ). In the
framework of pairs (U, τ), the elaborate construction of U t is required to switch the
roles of U0 and U∞, whereas in our setting it suffices to switch V + and V −.
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4.7. Hua maps, R-operators and µ-maps. Let (U, τ) ∈ m-grpτ . We use
the notations introduced in 4.3. In [8, Definition 3.1], De Medts and Weiss define,
for x ∈ U̇ , the µ-map µx ∈ Sym(X) by

µx = τ ◦ α(τ−1(x))−1 ◦ τ−1 ◦ α(x) ◦ τ ◦ α(τ−1(−x)) ◦ τ−1.

By (1.4.1) and (4.3.5), this corresponds to w+(x) under the bijection β: X(V )→ X,
i.e., the right hand side of the diagram

V −
ι− //

Rx

��

X(V )

w+(x)

��

β // X

µx

��
V +

ι+
// X(V )

β
// X

(1)

is commutative. Since the left hand side is commutative by definition of Rx in
(1.5.1), the entire diagram is commutative. Let y ∈ V̇ − = U̇ . Then

β(ι+(Rxy)) = µx · β(ι−(y)) = µx · β(ι+(j−(y))) = µx · β(ι+(τ(y))).

By (4.3.4), β ◦ ι+ = β+ is the embedding a 7→ a of U into X = U ∪̇ {∞}. Hence
Rxy = µx · τ(y) for all y ∈ V̇ − = U̇ . We claim that the R-operators are just the
Hua maps hx:

Rx = hx. (2)

Indeed, by [8, Lemma 3.8(ii)] (where the order of the factors has to be reversed
because we write maps on the left), µ(a) = τ ◦ h−a. By putting a = −x, taking
inverses and observing µ(−x) = µ−1x we obtain µx = hx ◦ τ−1, or hx = µx ◦ τ = Rx.

4.8. Comparison of De Medts’ definitions of morphism. Let (U, τ) and
(U ′, τ ′) be Moufang-admissible. In [5, Def. 3.1], De Medts defines a morphism from
M(U, τ) to M(U ′, τ ′) as a group homomorphism ϕ: U → U ′ satisfying

ϕ ◦ µx = µϕ(x) ◦ ϕ, (1)

for all x ∈ U̇ . Since the µ-maps are only defined for non-zero elements x, this
requires ϕ to be injective. We show that this concept is equivalent to the definition
of a morphism of Moufang sets in (2.1.3) and hence to De Medts’ first definition in
[5, (2.1)].

Let (V, j) = F (Φ(U, τ)) and (V ′, j′) = F (Φ(U ′, τ ′)) be the associated division
pairs as in Theorem 4.4. In view of the categorical equivalence of based Moufang
sets and division pairs (Theorem 3.5), it suffices to show that group homomorphisms
ϕ satisfying (1) correspond bijectively to homomorphisms h: V → V ′ of division
pairs.

Thus let ϕ satisfy (1). Setting h+ := ϕ, we claim that there is a unique map
h−: V − → V ′− making h = (h+, h−): V → V ′ a morphism of division pairs.
Uniqueness is clear since h− is uniquely determined by h+, as remarked in 1.1. To
show existence, pick an element a ∈ U̇ , let b = ϕ(a) ∈ U̇ ′, and define h−: V − =
U → V ′− = U ′ by the commutative diagram

V +
h+ // V ′+

V −

∼=Ra

OO

h−

// V ′−

∼= Rb

OO
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Since the R-operators are group homomorphisms so is h−. We claim that (h+, h−)
is a homomorphism of division pairs. As remarked in 2.1, it suffices to show that
h−(j+(x)) = j′+(h+(x)) for all x ∈ V̇ + = U̇ . Now by (1) and (4.7.2),

h−(j+(x)) = R−1b
(
ϕ(Ra(τ−1(x)))

)
= R−1b

(
ϕ(µa(x))

)
= R−1b

(
µϕ(a)(ϕ(x))

)
= R−1b

(
Rϕ(a)(τ

′−1(ϕ(x)))
)

= R−1b
(
Rb(τ

′−1(ϕ(x)))
)

= j′+(ϕ(x)) = j′+(h+(x)).

Conversely, if h: V → V ′ is a homomorphism of division pairs then ϕ = h+ satisfies
(1). Indeed, since j+ = τ−1, we have µx = Rx ◦ j+, so by (1.5.4), for all x, z ∈ U =
V +,

ϕ(µx(z)) = h+
(
Rx(j+(z))

)
= Rh+(x)h−(j+(z))

= Rh+(x)j
′
+(h+(z)) = µϕ(x)(ϕ(z)).

Acknowledgments. My special thanks go to H. P. Petersson for patiently lis-
tening to my ramblings, carefully reading a first draft of the manuscript and making
many remarks and suggestions which improved this paper. I am also grateful to
R. Börger for his help with exotic pre-Moufang sets and to R. Weiss for his valuable
comments.

Bibliography
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