Cubic and symmetric compositions over rings

Ottmar Loos
Föhrenweg 10, A-6094 Axams, Austria
email: ottmar.loos@uibk.ac.at

Abstract

We consider generalized symmetric compositions over a ring k on the one hand, and unital algebras with multiplicative cubic forms on the other. Given a primitive sixth root of unity in k, we construct functors between these categories which are equivalences if 3 is a unit in k. This extends to arbitrary base rings, and with new proofs, results of Elduque and Myung on non-degenerate symmetric compositions and separable alternative algebras of degree 3 over fields. It also answers a problem posed in "The Book of Involutions" [boi, 34.26].

Introduction

Consider a finite-dimensional separable alternative algebra A of degree 3 over a field k of characteristic not 3 , containing a primitive third root of unity. Okubo [ok] and later Faulkner [foa] found on the space A^{0} of trace zero elements a remarkable multiplication \star which has the composition and associativity property

$$
\begin{equation*}
q(x \star y)=q(x) q(y), \quad b(x \star y, z)=b(x, y \star z) \tag{1}
\end{equation*}
$$

where q is $-1 / 3$ times the quadratic trace of A and b is the polar form of q. In [boi, $\S 34]$, the terminology "symmetric compositions" was coined for non-associative algebras over a field with a non-degenerate quadratic form satisfying (1). There is also a construction in the opposite direction: Given a symmetric composition on a k-vector space M of dimension $\geqslant 2$, there is a naturally defined multiplication \bullet and a cubic form N on $A=k \oplus M$ making A a separable alternative algebra of degree 3 with generic norm N. Thus one obtains an equivalence between the categories of separable alternative algebras of degree 3 , and symmetric compositions of dimension $\geqslant 2$, always under the restrictions on k mentioned earlier. This result is due to Elduque-Myung [elmy], see also [boi, Theorem 34.23]. Results of Schafer [schafer:n] show that separable alternative algebras of degree 3 are the same as unital algebras of dimension $\geqslant 3$ with non-degenerate multiplicative cubic forms. By this detour, the symmetric composition property (1) is equivalent to the multiplicativity of N with respect to \bullet. As remarked in [boi, 34.26], it would be nice to have a direct proof of this fact. Such a proof was attempted by Tschupp [tsch]. While his construction of a symmetric composition from A and N works well, the opposite direction - from symmetric compositions to algebras with multiplicative cubic forms - contains errors.

The object of this paper is to give a direct proof of this correspondence without making any non-degeneracy assumptions, and at the same time to extend the theory as far as possible to arbitrary base rings.

Specifically, we work in the following setting. Let k be an arbitrary commutative ring. On the one hand, we consider unital cubic compositions, that is, pairs (A, N) consisting of a unital k-algebra A and a multiplicative cubic form N on A. Apart from assuming that the unit element of A be a unimodular vector, there are no restrictions on the k-module structure of A. Hence, the cubic form N must be
interpreted as a polynomial law in the sense of Roby [roby]. With an obvious definition of morphism, unital cubic compositions over k form a category uccomp ${ }_{k}$.

On the other hand, there is the category scomp_{k} of (generalized) symmetric compositions (M, q, \star), where M is a k-module with a quadratic form q and a multiplication \star satisfying (1). We make no assumptions on the structure of M as a k-module or on non-degeneracy of q. Let $\boldsymbol{\pi}_{6}(k)=\left\{\alpha \in k: \alpha^{2}-\alpha+1=0\right\}$ denote the set of primitive sixth roots of unity in k (sixth and third primitive roots of unity are in bijection via $\alpha \mapsto-\alpha$; formulas tend to become simpler using sixth roots of unity). Given $\alpha \in \boldsymbol{\pi}_{6}(k)$, we define functors

$$
\mathbf{C}_{\alpha}: \mathbf{u c c o m p}_{k} \rightarrow \mathbf{s c o m p}_{k}, \quad \mathbf{A}_{\alpha}: \mathbf{s c o m p}_{k} \rightarrow \mathbf{u c c o m p}_{k}
$$

and show that there are natural transformations

$$
\begin{equation*}
\mathbf{A}_{\alpha^{-1}} \circ \mathbf{C}_{\alpha} \rightarrow \mathrm{Id}_{\mathbf{u c c o m p}_{k}}, \quad \mathbf{C}_{\alpha} \circ \mathbf{A}_{\alpha^{-1}} \rightarrow \mathrm{Id}_{\mathbf{s c o m p}_{k}} \tag{2}
\end{equation*}
$$

which are isomorphisms if 3 is a unit in k. This yields the desired correspondence.
Here is a more detailed description of the contents. In §1, we establish notation and collect some facts on polynomial laws. In particular, we introduce the kernel of a polynomial law, a notion only implicitly contained in [roby].

It is useful to develop the above-mentioned correspondence first on a level not involving any multiplications and, hence, not requiring the existence of $\alpha \in \boldsymbol{\pi}_{6}(k)$. Accordingly, we consider the category $\mathbf{u c f o r m}_{k}$ of unital cubic forms (instead of unital cubic compositions) on the one hand, and the category $\mathbf{q c f o r m}_{k}$ of modules with a quadratic and a cubic form (instead of symmetric compositions) on the other. In $\S 2$ we show that there are functors \mathbf{C} : $\mathbf{u c f o r m}_{k} \rightarrow \mathbf{q c f o r m}_{k}$ and $\mathbf{A}: \mathbf{q c f o r m}_{k} \rightarrow$ ucform $_{k}$ which are equivalences provided $3 \in k^{\times}$.
$\S 3$ contains, after some auxiliary results on unital compositions, the construction of the functor \mathbf{C}_{α}. Let (A, N) be a unital cubic composition. Since we do not assume 3 invertible in k, there is no direct sum decomposition of A into $k \cdot 1_{A}$ and the space of trace zero elements. But there is a naturally induced quadratic form q on the quotient $\dot{A}=A / k \cdot 1_{A}$, as well as a family of multiplications depending on a scalar parameter α. Theorem 3.6 shows that \dot{A} becomes a symmetric composition if either $\alpha \in \boldsymbol{\pi}_{6}(k)$ or A is commutative.

In $\S 4$, we construct the algebra $\mathbf{A}_{\alpha}(M, q, \star)$ of a symmetric composition (Theorem 4.1) and prove the existence of the natural transformations (2) (Proposition 4.10). On $k \oplus M$ we consider the cubic form $N(\lambda \oplus x)=\lambda^{3}-\lambda q(x)+b(x, x \star x)$ and a family of multiplications, depending on a parameter $\alpha \in k$. There is an explicit formula for the lack of multiplicativity of N (Lemma 4.8) which shows that $\alpha \in \boldsymbol{\pi}_{6}(k)$ or commutativity of M is sufficient for N to be multiplicative. The proof is purely computational but not at all straightforward.

The previous constructions hinge on the existence of a primitive sixth root of unity in k. Since this is in general not the case, we introduce in $\S 5$ the quadratic k-algebra $K=k[\mathbf{t}] /\left(\mathbf{t}^{2}-\mathbf{t}+1\right)$ (the affine algebra of the scheme $\boldsymbol{\pi}_{6}$) and define the category $\operatorname{uccomp}_{K / k}^{(2)}$ of unital cubic compositions of the second kind. The algebra K is étale if and only if $3 \in k^{\times}$but it always has surjective trace form. This allows us to develop a sufficient part of Galois descent theory and to show that there are functors $\tilde{\mathbf{C}}$ and $\tilde{\mathbf{A}}$ between $\mathbf{u c c o m p}{ }_{K / k}^{(2)}$ and $\mathbf{s c o m p}_{k}$ which are isomorphisms if $3 \in k^{\times}$(Proposition 5.10).

The final $\S 6$ discusses the transfer of regularity conditions, such as non-degeneracy, separability or strictness, by the functors \mathbf{C}_{α} and \mathbf{A}_{α}.

Throughout, k denotes an arbitrary unital commutative ring and k-alg the category of commutative associative unital k-algebras. Unsubscripted tensor products
are understood over k. For a k-module X and $R \in k$-alg, the base change $X \otimes R$ is often abbreviated to X_{R}. Similarly, the base extension of a linear map $f: X \rightarrow Y$ is denoted f_{R}. The symbol \mathbb{N} denotes the natural numbers including zero.

Acknowledgements. The research on this paper was started during a stay at the ETH Zürich in May 2006 and continued at the FernUniversität in Hagen in June 2006. The hospitality of these institutions is gratefully acknowledged. I am indebted to M.-A. Knus for pointing out the problem and for providing me with a copy of Tschupp's Thesis [tsch]. H. P. Petersson and U. Stenger have listened patiently to expositions of preliminary results and made valuable comments. I am particularly grateful to H. P. Petersson who discovered the counterexample mentioned at the beginning of $\S 4$, carefully read a first draft of the paper and suggested many improvements.

1. Generalities

1.1. Polynomial laws [roby]. For any k-module X, define the functor $X_{\mathbf{a}}$ on k-alg with values in sets by $X_{\mathbf{a}}(R)=X \otimes R$ for all $R \in k$-alg, and by $X_{\mathbf{a}}(\varphi)=\operatorname{Id}_{X} \otimes$ $\varphi: X_{\mathbf{a}}(R) \rightarrow X_{\mathbf{a}}(S)$, for all k-algebra homomorphisms $\varphi: R \rightarrow S$. A polynomial law f on X with values in a k-module V is a natural transformation $f: X_{\mathbf{a}} \rightarrow V_{\mathbf{a}}$ of functors. Thus for every $R \in k$-alg, $f_{R}: X_{R}=X \otimes R \rightarrow V_{R}$ is a map, and for every k-algebra homomorphism $\varphi: R \rightarrow S$, the diagram

is commutative. As long as this does not cause confusion, we often write simply $f(x)$ instead of $f_{R}(x)$, for an element $x \in X_{R}$. Denote by $\mathcal{P}(X, V)$ the set (actually, a k-module) of V-valued polynomial laws on X.

A polynomial law $f \in \mathcal{P}(X, V)$ is said to be homogeneous of degree d if $f(r x)=$ $r^{d} f(x)$, for all $r \in R, x \in X_{R}, R \in k$-alg. Traditionally, homogeneous polynomial laws of degree $\geqslant 1$ with values in $V=k$ are called forms.

For example, polynomial laws of degree zero are in bijection with elements of V, and those of degree 1 are naturally identified with linear maps from X to V [roby, Corollary of Prop. I.6]. A polynomial law of degree 2 is the same as a quadratic map $q: X \rightarrow V$ in the usual sense [roby, Prop. II.1].

Polynomial laws can be composed in the obvious way: If $f \in \mathcal{P}(X, Y)$ and $g \in \mathcal{P}(Y, V)$ then $g \circ f \in \mathcal{P}(X, V)$ is given by $(g \circ f)_{R}=g_{R} \circ f_{R}$, for all $R \in k$-alg. If f and g are homogeneous of degree m and n then $g \circ f$ is homogeneous of degree $m n$. In particular, composition with linear maps does not change the degree
1.2. Extension and restriction of scalars. Let $k^{\prime} \in k$-alg and denote by $\varphi: k \rightarrow k^{\prime}$ the ring homomorphism making k^{\prime} a k-algebra. For a k^{\prime}-module X^{\prime} let ${ }_{k} X^{\prime}$ be the k-module whose underlying abelian group is that of X^{\prime}, but with scalar operation of k given by $\lambda \cdot x:=\varphi(\lambda) x$, for all $\lambda \in k, x \in X^{\prime}$. In particular, if $S \in k^{\prime}$-alg then ${ }_{k} S \in k$-alg. Now let X and V be k-modules and $f \in \mathcal{P}(X, V)$. The base change of f from k to k^{\prime} is the polynomial law $f \otimes k^{\prime} \in \mathcal{P}\left(X \otimes k^{\prime}, V \otimes k^{\prime}\right)$ given as follows. There is a canonical isomorphism $\left(X \otimes_{k} k^{\prime}\right) \otimes_{k^{\prime}} S \cong X \otimes_{k}\left({ }_{k} S\right)$. Treating this as in identification, we put

$$
\begin{equation*}
\left(f \otimes k^{\prime}\right)_{S}(x)=f_{\left(k_{k} S\right)}(x), \tag{1.2.1}
\end{equation*}
$$

for all $x \in\left(X \otimes_{k} k^{\prime}\right) \otimes_{k^{\prime}} S, S \in k^{\prime}$-alg.
There is also restriction of scalars for polynomial laws. Let X^{\prime} and V^{\prime} be k^{\prime} modules and let $f^{\prime} \in \mathcal{P}\left(X^{\prime}, V^{\prime}\right)$ be a polynomial law. For any $R \in k$-alg there is a canonical isomorphism ${ }_{k} X^{\prime} \otimes_{k} R \cong X^{\prime} \otimes_{k^{\prime}}\left(k^{\prime} \otimes_{k} R\right)$. Treating this as an identification, ${ }_{k} f^{\prime} \in \mathcal{P}\left({ }_{k} X^{\prime},{ }_{k} V^{\prime}\right)$ is given by the formula

$$
\begin{equation*}
\left({ }_{k} f^{\prime}\right)_{R}(x)=f_{k^{\prime} \otimes_{k} R}^{\prime}(x) \tag{1.2.2}
\end{equation*}
$$

for all $x \in{ }_{k} X^{\prime} \otimes_{k} R, R \in k$-alg.
1.3. Homogeneous components. An arbitrary $f \in \mathcal{P}(X, V)$ determines a family $\left(f_{d}\right)_{d \in \mathbb{N}}$ of homogeneous polynomial laws such that

$$
\begin{equation*}
f(x)=\sum_{d \geqslant 0} f_{d}(x), \tag{1.3.1}
\end{equation*}
$$

for all $x \in X_{R}$ and $R \in k$-alg (for every x, only finitely many $f_{d}(x)$ are different from zero, but there may be infinitely many non-zero f_{d}).

More generally, for all $\left(i_{1}, \ldots, i_{n}\right) \in \mathbb{N}^{n}$ there are unique polynomial laws $f_{i_{1} \ldots i_{n}}$ on X^{n}, multi-homogeneous of multi-degree $\left(i_{1}, \ldots, i_{n}\right)$, such that

$$
\begin{equation*}
f\left(x_{1}+\cdots+x_{n}\right)=\sum_{\left(i_{1}, \ldots, i_{n}\right) \in \mathbb{N}^{n}} f_{i_{1} \ldots i_{n}}\left(x_{1}, \ldots, x_{n}\right) \tag{1.3.2}
\end{equation*}
$$

for all $x_{j} \in X_{R}$ and $R \in k$-alg. The $f_{i_{1} \ldots i_{n}}$ are called polarizations of f. If f is homogeneous of degree d then $f_{i_{1} \ldots i_{n}}=0$ unless $i_{1}+\cdots+i_{n}=d$. If $i_{j}=0$ then $f_{i_{1} \ldots i_{n}}$ does not depend on the j-th variable, which then may be omitted in the notation. The polarizations satisfy the symmetry property

$$
f_{i_{1} \ldots i_{n}}\left(x_{1}, \ldots, x_{n}\right)=f_{i_{\sigma(1)} \ldots i_{\sigma(n)}}\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)
$$

for σ in the symmetric group. For example, if $f=f_{3}$ is a cubic form, we have the expansions

$$
\begin{aligned}
f(x+y)=f(x) & +f_{21}(x, y)+f_{12}(x, y)+f(y), \\
f(x+y+z)=f(x) & +f(y)+f(z)+f_{21}(x, y)+f_{21}(x, z)+f_{21}(y, z) \\
& +f_{12}(x, y)+f_{12}(x, z)+f_{12}(y, z)+f_{111}(x, y, z)
\end{aligned}
$$

where $f_{21}(x, y)=f_{12}(y, x)$ is quadratic in x and linear in y, and $f_{111}(x, y, z)$ is trilinear and symmetric.

Let $z \in X$ and $i \in \mathbb{N}$. There is a unique polynomial law $\partial_{z}^{[i]} f \in \mathcal{P}(X, V)$, called the i-th divided directional derivative of f in direction z, satisfying

$$
\begin{equation*}
f(x+z \otimes r)=\sum_{i \geqslant 0}\left(\partial_{z}^{[i]} f\right)(x) r^{i} \tag{1.3.3}
\end{equation*}
$$

for all $r \in R, x \in X_{R}, R \in k$-alg. For $i=1$, this is the usual directional derivative $\partial_{z} f$ of f in direction z. In general, $\left(\partial_{z}\right)^{i}=i!\partial_{z}^{[i]}$ which explains the terminology "divided derivative". In terms of the polarizations $f_{i j}$, we have

$$
\left(\partial_{z}^{[i]} f\right)(x)=\sum_{j \geqslant 0} f_{i j}\left(z \otimes 1_{R}, x\right),
$$

for all $x \in X_{R}, R \in k$-alg. If f is homogeneous of degree d then $f_{i j}=0$ for $i+j \neq d$, and hence

$$
\left(\partial_{z}^{[i]} f\right)(x)=f_{i, d-i}\left(z \otimes 1_{R}, x\right)
$$

is homogeneous of degree $d-i$ (in $x)$ if $i \leqslant d$, and zero if $i>d$.
1.4. Definition. Let $f \in \mathcal{P}(X, V)$. The kernel of f, denoted $\operatorname{Ker}(f)$, is the set of all $z \in X$ such that

$$
\begin{equation*}
f(x+z \otimes r)=f(x) \tag{1.4.1}
\end{equation*}
$$

for all $x \in X_{R}, R \in k$-alg. We say f is non-degenerate if $\operatorname{Ker}(f)=\{0\}$. Condition (1.4.1) can be reformulated as follows:

$$
\begin{equation*}
z \in \operatorname{Ker}(f) \quad \Longleftrightarrow \quad \partial_{z}^{[i]} f=0 \quad \text { for all } i \geqslant 1 . \tag{1.4.2}
\end{equation*}
$$

Indeed, \Longleftarrow is clear from (1.3.3), and \Longrightarrow follows also from (1.3.3) by replacing R with $R[\mathbf{t}]$, the polynomial ring in one variable, putting $r=\mathbf{t}$ and comparing coefficients at powers of \mathbf{t}. If f_{d} denotes as before the homogeneous component of degree d of f, then

$$
\begin{equation*}
\operatorname{Ker}(f)=\bigcap_{d \geqslant 0} \operatorname{Ker}\left(f_{d}\right) \tag{1.4.3}
\end{equation*}
$$

Indeed, the homogeneous component of degree d of $\partial_{z}^{[i]} f$ is $\partial_{z}^{[i]} f_{d+i}$, and a polynomial law is zero if and only if all its homogeneous components vanish (by uniqueness of homogeneous components).

Examples. (a) The kernel of a polynomial law of degree 1, i.e., a linear map, is the usual kernel of the linear map.
(b) Let q be a polynomial law of degree 2, i.e., a quadratic map. Denoting by b the polar form of q, we have

$$
\begin{equation*}
z \in \operatorname{Ker}(q) \quad \Longleftrightarrow \quad q(z)=b(x, z)=0 \tag{1.4.4}
\end{equation*}
$$

for all $x \in X$.
(c) Let $f \in \mathcal{P}(X, V)$ be cubic, i.e., of degree 3. Then $\left(\partial_{z}^{[1]} f\right)(x)=f_{21}(x, z)$ and $\left(\partial_{z}^{[2]} f\right)(x)=f_{21}(z, x)$. Since these polynomial laws are of degree 2 and 1 (in $\left.x\right)$, they vanish if and only if they vanish on X. Thus

$$
\begin{equation*}
z \in \operatorname{Ker}(f) \quad \Longleftrightarrow \quad f(z)=f_{21}(z, x)=f_{21}(x, z)=0, \tag{1.4.5}
\end{equation*}
$$

for all $x \in X$.
1.5. Lemma. Let $f \in \mathcal{P}(X, V)$. Then:
(a) $\operatorname{Ker}(f)$ is a submodule of X.
(b) For every $R \in k$-alg, define

$$
\operatorname{Ker}(f)(R):=\operatorname{Ker}(f \otimes R) \subset X \otimes R,
$$

where $f \otimes R$ is the base change of f from k to R as in 1.2. Then $\operatorname{Ker}(f)$ is a sub-functor of $X_{\mathbf{a}}$; i.e., for every k-algebra homomorphism $\varphi: R \rightarrow S$, we have $X_{\mathbf{a}}(\varphi)(\operatorname{Ker}(f)(R)) \subset \operatorname{Ker}(f)(S)$.
(c) Let $j: \operatorname{Ker}(f) \rightarrow X$ be the inclusion map and, for $R \in k$-alg, let $j_{R}: \operatorname{Ker}(f) \otimes$ $R \rightarrow X \otimes R$ be its R-linear extension. Then

$$
\begin{equation*}
j_{R}(\operatorname{Ker}(f) \otimes R) \subset \operatorname{Ker}(f \otimes R) \tag{1.5.1}
\end{equation*}
$$

for all $R \in k$-alg.
(d) If $R \in k$-alg is faithfully flat and $f \otimes R$ is non-degenerate then f is nondegenerate.

Remark. In general, the map j_{R} of (c) is not injective nor is its image equal to $\operatorname{Ker}(f \otimes R)$. Also, non-degeneracy is in general not preserved under base change, even in case of fields.

Proof. (a) This follows easily from the definition (1.4.1).
(b) Let $z \in \operatorname{Ker}(f)(R)=\operatorname{Ker}(f \otimes R)$. Then $X_{\mathbf{a}}(\varphi)(z)=z \otimes 1_{S}$, where we canonically identify $X_{R} \otimes_{R} S \cong X \otimes_{k} S=X_{\mathbf{a}}(S)$. Now let T be an S-algebra, $t \in T$ and $x \in X_{\mathbf{a}}(T)$. We must show that

$$
f\left(x+\left(z \otimes 1_{S}\right) \otimes t\right)=f(x) .
$$

Under the canonical identification $\left(X_{R} \otimes_{R} S\right) \otimes_{S} T \cong X_{R} \otimes_{R} T$, we have $\left(z \otimes 1_{S}\right) \otimes t=$ $z \otimes t$, where we consider T as an R-algebra by means of $R \rightarrow S \rightarrow T$. Since $z \in \operatorname{Ker}(f \otimes R)$, it follows that $f(x+z \otimes t)=f(x)$, as desired.
(c) By (b), the canonical homomorphism $\varphi: k \rightarrow R$ making R a k-algebra induces a map $\operatorname{Ker}(f) \rightarrow \operatorname{Ker}(f \otimes R)$ given by $z \mapsto j(z) \otimes 1_{R}$. Since $\operatorname{Ker}(f \otimes R)$ is an R-submodule of $X \otimes R$ by (a), it follows that $j_{R}\left(\sum z_{i} \otimes r_{i}\right)=\sum\left(j\left(z_{i}\right) \otimes 1_{R}\right) r_{i} \in$ $\operatorname{Ker}(f \otimes R)$ for all $z_{i} \in \operatorname{Ker}(f)$ and $r_{i} \in R$, which proves (1.5.1).
(d) Since R is flat, the map $j_{R}: \operatorname{Ker}(f) \otimes R \rightarrow \operatorname{Ker}(f \otimes R) \subset X \otimes R$ is injective. Thus non-degeneracy of $f \otimes R$ implies $\operatorname{Ker}(f) \otimes R=\{0\}$ and therefore also $\operatorname{Ker}(f)=$ $\{0\}$, since R is faithfully flat.
1.6. Proposition. Let X and V be k-modules, let $Z \subset X$ be a submodule and denote by $\pi: X \rightarrow X / Z$ the canonical map. For $g \in \mathcal{P}(X / Z, V)$, let $\pi^{*}(g):=g \circ \pi$ be the pullback of g to a polynomial law on X as in 1.1. Then the map $g \mapsto \pi^{*}(g)$ is a bijection

$$
\pi^{*}: \mathcal{P}(X / Z, V) \xrightarrow{\cong}\{f \in \mathcal{P}(X, V): Z \subset \operatorname{Ker}(f)\} .
$$

Denoting by π_{*} its inverse, we have

$$
\begin{align*}
& \operatorname{Ker}\left(\pi^{*}(g)\right)=\pi^{-1}(\operatorname{Ker}(g)) \tag{1.6.1}\\
& \operatorname{Ker}\left(\pi_{*}(f)\right)=\pi(\operatorname{Ker}(f)) \tag{1.6.2}
\end{align*}
$$

Proof. Let $i: Z \rightarrow X$ be the inclusion map and define $\alpha_{1}=\mathrm{pr}_{1}: X \times Z \rightarrow X$ and $\alpha_{2}: X \times Z \rightarrow X,(x, z) \mapsto x+i(z)$. Then the sequence of sets

$$
X \times Z \underset{\alpha_{2}}{\stackrel{\alpha_{1}}{\longrightarrow}} X \xrightarrow{\pi} X / Z
$$

is exact in the sense of [roby, IV, No. 8]. Hence by [roby, Theorem IV.4], the map π^{*} is a bijection between $\mathcal{P}(X / Z, V)$ and the set of all $f \in \mathcal{P}(X, V)$ for which $f \circ \alpha_{1}=f \circ \alpha_{2}$. This condition means that

$$
\begin{equation*}
f(x)=f\left(x+i_{R}(y)\right) \tag{1.6.3}
\end{equation*}
$$

all $R \in k$-alg, $x \in X_{R}, y \in Z_{R}$. Thus we must show that (1.6.3) holds if and only if $Z \subset \operatorname{Ker}(f)$.
(a) Suppose (1.6.3) is true and let $z \in Z$. Also let $R \in k$-alg, $r \in R$ and $x \in X_{R}$. Then $z \otimes r \in Z_{R}$, so $f(x+i(z) \otimes r)=f\left(x+i_{R}(z \otimes r)\right)=f(x)$, showing that $i(z)=z \in \operatorname{Ker}(f)$.
(b) Conversely, let $Z \subset \operatorname{Ker}(f)$. This means that the inclusion map $i: Z \rightarrow X$ factors via $\operatorname{Ker}(f)$, i.e., $i=j \circ i^{\prime}$ where $i^{\prime}: Z \rightarrow \operatorname{Ker}(f)$ and $j: \operatorname{Ker}(f) \rightarrow X$ are the inclusions. Tensoring with R yields $i_{R}=j_{R} \circ i_{R}^{\prime}$, and by Lemma 1.5(c), j_{R} takes values in $\operatorname{Ker}(f \otimes R)$. Hence $i_{R}(y) \in \operatorname{Ker}(f \otimes R)$, which in particular implies that (1.6.3) holds.

To complete the proof, let $f=\pi^{*}(g)$. Then we have $f(x+y \otimes r)=g\left(\left(\pi_{R}(x)+\right.\right.$ $\pi(y) \otimes r)$ for all $y \in X, x \in X_{R}, R \in k$-alg. Using the fact that $\pi_{R}: X_{R} \rightarrow(X / Z)_{R}$ is surjective, it is now easy to verify that (1.6.1) and (1.6.2) hold. The details are left to the reader.
1.7. Corollary. Any $f \in \mathcal{P}(X, V)$ induces a non-degenerate polynomial law $\pi_{*}(f)$ on $X / \operatorname{Ker}(f)$.

Proof. Put $Z=\operatorname{Ker}(f)$. Then (1.6.2) shows $\operatorname{Ker}\left(\pi_{*}(f)\right)=\pi(\operatorname{Ker}(f))=$ $\pi(Z)=\{0\}$.

2. Unital forms

2.1. Definition. A unital form of degree d over k or a unital d-form is a triple $\mathfrak{X}=\left(X, N, 1_{X}\right)$ consisting of a k-module X, a form (i.e., a k-valued homogeneous polynomial law) N of degree d, and a unimodular vector $1_{X} \in X$ satisfying $N\left(1_{X}\right)=1$. Here an element $u \in X$ is called unimodular if $\alpha(u)=1$ for some linear form α on X. In case $d=2$ these are the unital quadratic forms studied in [uqf], and for $d=3$ they are called unital cubic forms. As in loc. cit., one shows that a vector $1_{X} \in X$ with $N\left(1_{X}\right)=1$ is automatically unimodular if either X is finitely generated and projective or $d \in k^{\times}$.

A morphism $\varphi: \mathfrak{X} \rightarrow \mathfrak{X}^{\prime}$ of unital d-forms is a linear map $\varphi: X \rightarrow X^{\prime}$ satisfying $\varphi\left(1_{X}\right)=1_{X^{\prime}}$ and $N^{\prime} \circ \varphi=N$. Unless this leads to confusion, we will often write 1 instead of 1_{X}. We put $\dot{X}:=X / k \cdot 1_{X}$ and denote the canonical map $\kappa: X \rightarrow \dot{X}$ by $x \mapsto \dot{x}$. Then the fact that 1_{X} is unimodular is equivalent to the sequence $0 \rightarrow k \rightarrow X \rightarrow \dot{X} \rightarrow 0$ being split-exact. Note that the property of being a unital d-form is stable under base change and descends from faithfully flat base extensions.
2.2. The trace forms. Let \mathfrak{X} be a unital d-form. The trace forms of \mathfrak{X} are the forms T_{i} of degree i defined by

$$
\begin{equation*}
T_{i}=\partial_{1_{X}}^{[d-i]} N \tag{2.2.1}
\end{equation*}
$$

cf. (1.3.3). Since N has degree d, we have the expansion

$$
\begin{equation*}
N\left(1_{X} \otimes r+x\right)=\sum_{i=0}^{d} T_{i}(x) r^{d-i} \tag{2.2.2}
\end{equation*}
$$

for all $r \in R, x \in X_{R}, R \in k$-alg. Clearly $T_{0}=1_{k}, T_{d}=N$ and $T_{i}=0$ for $i>d$. Morphisms $\varphi: \mathfrak{X} \rightarrow \mathfrak{X}^{\prime}$ of unital d-forms are compatible with the trace forms in the sense that $T_{i}^{\prime} \circ \varphi=T_{i}$. The linear and quadratic trace forms are the linear and quadratic forms

$$
T:=T_{1}, \quad Q:=T_{2} .
$$

For indices $\left(i_{1}, \ldots, i_{p}\right) \in \mathbb{N}^{p}$ with $i_{1}+\cdots+i_{p}=i$, let $T_{i_{1} \ldots i_{p}}$ denotes the corresponding polarization of T_{i}, cf. 1.3. In particular,

$$
B:=T_{11} \quad \text { and } \quad \Phi:=T_{111}
$$

denote the polar form of the quadratic trace form Q and the total linearization of the cubic form T_{3}, respectively.

From (2.2.2) we see that $\sum_{i=0}^{d} T_{i}(1) \mathbf{t}^{i}=N\left(1_{X} \otimes \mathbf{t}+1_{X}\right)=N\left((1+\mathbf{t}) 1_{X}\right)=$ $(1+\mathbf{t})^{d}$, and hence

$$
\begin{equation*}
T_{i}\left(1_{X}\right)=\binom{d}{i} \tag{2.2.3}
\end{equation*}
$$

Similarly, expand $N\left((\mathbf{s}+\mathbf{t}) 1_{X}+x\right)=N(\mathbf{t} 1+(x+\mathbf{s} 1))$ and compare coefficients of $\mathbf{s}^{m} \mathbf{t}^{n}$ to see that

$$
\begin{equation*}
T_{i j}\left(x, 1_{X}\right)=\binom{d-i}{j} T_{i}(x) \tag{2.2.4}
\end{equation*}
$$

2.3. The characteristic polynomial and the discriminant. Let $\mathfrak{X}=(X, N, 1)$ be a unital form of degree d and let $\mathcal{P}(X):=\mathcal{P}(X, k)$ be the algebra of polynomial laws on X with values in k [roby, V.4]. Then $T_{i} \in \mathcal{P}(X)$, and we introduce the monic polynomial

$$
\chi(\mathbf{t})=\sum_{i=0}^{d}(-1)^{i} T_{i} \mathbf{t}^{d-i} \in \mathcal{P}(X)[\mathbf{t}]
$$

called the characteristic polynomial of \mathfrak{X}. Evaluation of a polynomial law at $x \in X_{R}$ $(R \in k$-alg $)$ yields a homomorphism $\mathcal{P}(X) \rightarrow R$. Writing $\chi(\mathbf{t} ; x) \in R[\mathbf{t}]$ for the polynomial obtained by evaluating the coefficients of χ at x, we have

$$
\chi(\mathbf{t} ; x)=N\left(\mathbf{t} 1_{X}-x\right)
$$

The discriminant $\Delta \in \mathcal{P}(X)$ of $\chi(\mathbf{t})$ will also be called the discriminant of \mathfrak{X}. For $d=2$, this is the quadratic form $\Delta=T^{2}-4 Q$ while for $d=3$, it is the sextic form

$$
\Delta=-4 T^{3} N+T^{2} Q^{2}+18 T Q N-4 Q^{3}-27 N^{2}
$$

To shorten notation, we will often write T_{x} instead of $T(x)=T_{1}(x)$, as long as this is not in conflict with the notation T_{i} for the trace form of degree i.
2.4. Lemma. Let $\mathfrak{X}=(X, N, 1)$ be a unital cubic form. Define quadratic and cubic forms H_{2} and H_{3} on X by

$$
\begin{align*}
H_{2}(x) & =T(x)^{2}-3 Q(x), \tag{2.4.1}\\
H_{3}(x) & =2 T(x)^{3}-9 T(x) Q(x)+27 N(x) \tag{2.4.2}\\
& =-T(x)^{3}+3 T(x) H_{2}(x)+27 N(x) .
\end{align*}
$$

(a) Then $1_{X} \in \operatorname{Ker}\left(H_{2}\right) \cap \operatorname{Ker}\left(H_{3}\right)$. Hence by Prop. 1.6, H_{2} and H_{3} induce quadratic and cubic forms q and h on $\dot{X}=X / k \cdot 1$, given by

$$
q(\dot{x})=H_{2}(x), \quad h(\dot{x})=H_{3}(x),
$$

for all $x \in X_{R}, R \in k$-alg. The polar forms H_{11} and H_{21} of H_{2} and H_{3} are

$$
\begin{align*}
H_{11}(x, y) & =2 T(x) T(y)-3 B(x, y) \tag{2.4.3}\\
H_{21}(x, y) & =6 T_{x}^{2} T_{y}-9 T_{y} Q(x)-9 T_{x} B(x, y)+27 N_{21}(x, y) \tag{2.4.4}\\
& =-3 T_{x}^{2} T_{y}+3 T_{y} H_{2}(x)+3 T_{x} H_{11}(x, y)+27 N_{21}(x, y) .
\end{align*}
$$

(b) 27 times the discriminant of \mathfrak{X} is expressible by H_{2} and H_{3} :

$$
\begin{equation*}
-27 \Delta=H_{3}^{2}-4 H_{2}^{3} \tag{2.4.5}
\end{equation*}
$$

Proof. (a) By (2.2.3) and (2.2.4) we have $T(1)=3=Q(1)$ and $B(x, 1)=$ $T_{11}(x, 1)=\binom{3-1}{1} T_{1}(x)=2 T(x)$. Hence for all $r \in R, x \in X_{R}$,

$$
\begin{aligned}
H_{2}\left(x+1_{X} \otimes r\right) & =\{T(x)+r T(1)\}^{2}-3\left\{Q(x)+B(x, 1) r+Q(1) r^{2}\right\} \\
& =T_{x}^{2}+6 r T_{x}+9 r^{2}-3 Q(x)-6 r T_{x}-9 r^{2}=H_{2}(x)
\end{aligned}
$$

Similarly, using (2.2.2),

$$
\begin{aligned}
H_{3}(x+1 \otimes r)= & -\left\{T_{x}+3 r\right\}^{3}+3\left(T_{x}+3 r\right) H_{2}(x+1 \otimes r)+27 N(x+1 \otimes r) \\
=- & \left\{T_{x}^{3}+9 r T_{x}^{2}+27 r^{2} T_{x}+27 r^{3}\right\}+3 T_{x} H_{2}(x)+9 r H_{2}(x) \\
& +27\left\{r^{3}+r^{2} T_{x}+r Q(x)+N(x)\right\}=H_{3}(x) .
\end{aligned}
$$

Formulas (2.4.3) and (2.4.4) follow easily from (2.4.1) and (2.4.2).
(b) This follows by a lengthy but straightforward computation.

Remark. It can be shown that H_{2} and H_{3} are the essentially unique (up to a scalar factor) quadratic (resp., cubic) forms on \dot{X} which are linear combinations of T^{2} and Q (resp., of $T^{3}, T Q$ and N) and for which 1_{X} lies in the kernel.
2.5. Definition. Let $\mathbf{u c f o r m}_{k}$ denote the category of unital cubic forms over k, with morphisms defined in 2.1. As suggested by Lemma 2.4, we consider also the following category $\mathbf{q c f o r m}_{k}$: Its objects are triples $\mathfrak{M}=\left(M, f_{2}, f_{3}\right)$ where M is a k-module and f_{2} and f_{3} is a quadratic and a cubic form on M, respectively. Morphisms are linear maps preserving these forms. From Lemma 2.4(a), it follows that there is a functor

$$
\mathbf{C}: \text { ucform }_{k} \rightarrow \text { qcform }_{k},
$$

given by $\mathbf{C}(\mathfrak{X})=(\dot{X}, q, h)$ on objects, while for a morphism $\varphi: \mathfrak{X} \rightarrow \mathfrak{X}^{\prime}$ of unital cubic forms, $\mathbf{C}(\varphi)$ is the induced map $\dot{\varphi}: \dot{X} \rightarrow \dot{X}^{\prime}$.

There is also a functor $\mathbf{A}: \mathbf{q c f o r m}_{k} \rightarrow \mathbf{u c f o r m}_{k}$ in the opposite direction: For $\mathfrak{M}=\left(M, f_{2}, f_{3}\right) \in \mathbf{q c f o r m}_{k}$, let $\mathbf{A}(\mathfrak{M})=\left(k \oplus M, N_{\mathfrak{M}}, 1_{k} \oplus 0\right)$, where $N_{\mathfrak{M}}$ is the cubic form on $k \oplus M$ given by

$$
\begin{equation*}
N_{\mathfrak{M}}(\lambda \oplus x)=\lambda^{3}-3 \lambda f_{2}(x)+f_{3}(x), \tag{2.5.1}
\end{equation*}
$$

for all $\lambda \in R, x \in M_{R}, R \in k$-alg. For a morphism $\psi: \mathfrak{M} \rightarrow \mathfrak{M}^{\prime}$, define $\mathbf{A}(\psi)$ by

$$
\mathbf{A}(\psi)(\lambda \oplus x)=\lambda \oplus \psi(x) \quad(\lambda \in k, x \in M)
$$

Note that the linear and quadratic trace of $N_{\mathfrak{M}}$ are

$$
\begin{align*}
T_{\mathfrak{M}}(\lambda \oplus x) & =3 \lambda, \tag{2.5.2}\\
Q_{\mathfrak{M}}(\lambda \oplus x) & =3\left(\lambda^{2}-f_{2}(x)\right), \tag{2.5.3}
\end{align*}
$$

as follows easily from the definition.
2.6. Proposition. Let \mathbf{C} and \mathbf{A} be the functors defined above.
(a) There is a natural transformation

$$
\zeta: \mathbf{A} \circ \mathbf{C} \rightarrow \mathrm{Id}_{\mathbf{u c f o r m}_{k}}
$$

as follows: Given $\mathfrak{X}=(X, N, 1) \in \mathbf{u c f o r m}_{k}$, define

$$
\begin{equation*}
\zeta_{\mathfrak{X}}:(\mathbf{A} \circ \mathbf{C})(X)=k \oplus \dot{X} \rightarrow X, \quad \zeta_{\mathfrak{X}}(\lambda \oplus \dot{x})=(\lambda-T(x)) 1_{X}+3 x, \tag{2.6.1}
\end{equation*}
$$

where T is the linear trace form of \mathfrak{X}, and $\dot{X}=X / k \cdot 1$ and $x \mapsto \dot{x}$ are as in 2.1.
(b) If $3 \in k^{\times}$then $\zeta_{\mathfrak{X}}$ is an isomorphism with inverse

$$
\zeta_{\mathfrak{X}}^{-1}(x)=\frac{1}{3}(T(x) \oplus \dot{x}) .
$$

In general, denoting by ${ }_{3} \dot{X}$ the 3-torsion elements of \dot{X}, there is an exact sequence

where $p(x)=\dot{x}+3 \dot{X}$ and i is given as follows: Choose a linear form α on X with $\alpha\left(1_{X}\right)=1$. Then $i(\dot{x})=(T(x)-\alpha(3 x)) \oplus \dot{x}$.
(c) There is a natural transformation

$$
\vartheta: \mathbf{C} \circ \mathbf{A} \rightarrow \operatorname{Id}_{\mathbf{q c f o r m}_{k}}
$$

given as follows: For $\mathfrak{M}=\left(M, f_{2}, f_{3}\right) \in \mathbf{q c f o r m}_{k}$, the k-module underlying $(\mathbf{C} \circ$ $\mathbf{A})(\mathfrak{M})$ is $(k \oplus M) / k \cdot(1 \oplus 0)$ which is canonically identified with M. Then define

$$
\begin{equation*}
\vartheta_{\mathfrak{M}}:(\mathbf{C} \circ \mathbf{A})(M)=M \rightarrow M, \quad \vartheta_{\mathfrak{M}}(x):=3 x . \tag{2.6.2}
\end{equation*}
$$

If $3 \in k^{\times}$then $\vartheta_{\mathfrak{M}}$ is an isomorphism, while in general we have the exact sequence

$$
0 \longrightarrow{ }_{3} M \xrightarrow{\mathrm{inc}} M \xrightarrow{\vartheta_{\mathfrak{M}}}>M \xrightarrow{\mathrm{can}} M / 3 M \longrightarrow
$$

Proof. (a) From $T\left(1_{X}\right)=3$ one sees easily that $\zeta_{\mathfrak{X}}$ is a well-defined map. Clearly $\zeta_{\mathfrak{X}}(1 \oplus 0)=1_{X}$, so it remains to check that $\zeta_{\mathfrak{X}}$ preserves cubic forms. Using (2.2.2) in case $d=3$, we compute, in any base ring extension,

$$
\begin{aligned}
N\left(\zeta_{\mathfrak{X}}(\lambda \oplus \dot{x})\right) & =N\left(\left(\lambda-T_{x}\right) 1_{X}+3 x\right) \\
& =\left(\lambda-T_{x}\right)^{3}+\left(\lambda-T_{x}\right)^{2} T(3 x)+\left(\lambda-T_{x}\right) Q(3 x)+N(3 x) \\
& =\lambda^{3}-3 \lambda\left(T_{x}^{2}-3 Q_{x}\right)+\left\{2 T_{x}^{3}-9 T_{x} Q_{x}+27 N(x)\right\} \\
& =\lambda^{3}-3 \lambda H_{2}(x)+H_{3}(x) \\
& =\lambda^{3}-3 \lambda q(\dot{x})+h(\dot{x})=N_{\mathfrak{M}}(\lambda \oplus \dot{x}) .
\end{aligned}
$$

Finally, naturality of ζ means that, for a morphism $\varphi: \mathfrak{X} \rightarrow \mathfrak{X}^{\prime}$ of unital cubic forms, the diagram

commutes, which is straightforward to check.
(b) It is easily verified that $\zeta_{\mathfrak{X}}^{-1}$ is given by the indicated formula if $3 \in k^{\times}$. To prove the remaining statements, we show first that i is well-defined. Indeed,
$T-3 \alpha$ vanishes on 1_{X} because $T(1)=3$ and $\alpha(1)=1$, and thus induces a linear form α^{\prime} on \dot{X}. Moreover, if also $\beta(1)=1$ and $\dot{x} \in{ }_{3} \dot{X}$, then $\left(\beta^{\prime}-\alpha^{\prime}\right)(\dot{x})=$ $(T(x)-3 \beta(x))-(T(x)-3 \alpha(x))=(\alpha-\beta)(3 x)=0$ because $3 \dot{x}=0$ implies $3 x \in k \cdot 1_{X}$.

Next, injectivity of i is clear (project onto the second factor), and $\operatorname{Im}(i) \subset$ $\operatorname{Ker}\left(\zeta_{\mathfrak{X}}\right)$ follows from $\left(\zeta_{\mathfrak{X}} \circ i\right)(\dot{x})=\zeta_{\mathfrak{X}}((T(x)-\alpha(3 x)) \oplus \dot{x})=3(x-\alpha(x) 1)=0$, because $3 \dot{x}=0$ implies $3 x=\mu 1$ where $\mu=\alpha(3 x)$. Conversely, let $\lambda \oplus \dot{x} \in \operatorname{Ker}\left(\zeta_{\mathfrak{X}}\right)$. Then $(\lambda-T(x)) 1_{X}+3 x=0$, i.e., $3 x=(T(x)-\lambda) 1_{X}$. Hence $\alpha(3 x)=T(x)-\lambda$ and therefore $\lambda \oplus \dot{x}=(T(x)-\alpha(3 x)) \oplus \dot{x}=i(\dot{x})$.
(c) We check that $\vartheta_{\mathfrak{M}}$ preserves quadratic and cubic forms. Note that $T_{\mathfrak{M}}(0 \oplus$ $x)=0, Q_{\mathfrak{M}}(0 \oplus x)=-3 f_{2}(x)$ and $N_{\mathfrak{M}}(0 \oplus x)=f_{3}(x)$, for $x \in M_{R}, R \in k$-alg, by (2.5.2), (2.5.3) and (2.5.1). Since we identify $x \in M$ with $\operatorname{can}(0 \oplus x) \in(k \oplus M) / k$. $(1 \oplus 0)$, it follows from Lemma 2.4 that $q(x)=H_{2}(0 \oplus x)=(-3)\left(-3 f_{2}(x)\right)=$ $9 f_{2}(x)=f_{2}\left(\vartheta_{\mathfrak{M}}(x)\right)$, and $h(x)=H_{3}(0 \oplus x)=27 f_{3}(x)=f_{3}\left(\vartheta_{\mathfrak{M}}(x)\right)$, as required. It is easily checked that $\vartheta_{\mathfrak{M}}$ depends functorially on \mathfrak{M}, so ϑ is indeed a natural transformation of functors. The final statement is evident.
2.7. Corollary. If $3 \in k^{\times}$, then the categories $\mathbf{u c f o r m}_{k}$ and $\mathbf{q c f o r m}_{k}$ are equivalent.

3. From unital cubic to symmetric compositions

3.1. Definition. Let k be a commutative ring. A unital composition of degree d is a quadruple $\mathfrak{A}=(X, N, 1, \cdot)$ such that $\mathfrak{X}=(X, N, 1)$ is a unital form of degree d as in 2.1, $A=(X, \cdot, 1)$ is a unital k-algebra, and both structures are related by the requirement that N be multiplicative:

$$
\begin{equation*}
N(x y)=N(x) N(y) \quad \text { for all } x, y \in X \otimes R, R \in k \text {-alg. } \tag{3.1.1}
\end{equation*}
$$

Depending on context, we will write $\mathfrak{A}=(\mathfrak{X}, \cdot)$ or $\mathfrak{A}=(A, N)$. This definition is the special case where the values of the form N lie in k and A is unital, of the more general definition of Roby [roby2]. Note that we assume neither associativity conditions on A nor non-degeneracy conditions on N. In case $d=2$ or $d=3$, we speak of a unital quadratic or cubic composition.

It is tempting to call \mathfrak{A} a "composition algebra of degree d ", and indeed this terminology is used in [bb] (except for a different definition of form). However, this may be in conflict with the notion of degree of an algebra in cases where such a degree is well-defined, e.g., when A is associative or alternative and finitedimensional over a field. In these cases, the degree of A will in general be different from the degree d of N. For example, $A=k$ (as a k-algebra) has degree 1 , but for any d, the form $N(x)=x^{d}$ makes the pair (k, N) a unital composition of degree d. Also, $A=k \times k$ with component-wise operations is an algebra of degree 2 , but the form $N\left(x_{1}, x_{2}\right)=x_{1}$ makes $(k \times k, N)$ a unital composition of degree 1 .

By a morphism $\varphi: \mathfrak{A} \rightarrow \mathfrak{A}^{\prime}$ of unital compositions of degree d we mean a linear map of the underlying modules preserving forms, units and multiplications. Unital compositions of degree d form a category, and there is an obvious forgetful functor Ω from unital compositions to unital forms omitting the product. Note that ($A^{\text {op }}, N$) is a unital composition of degree d along with (A, N).
3.2. Lemma. Let (A, N) be a unital composition of degree d. With the notations introduced in 2.2, the following formulas hold for all $x, y, z \in A$:

$$
\begin{equation*}
T(x y)=T(x) T(y)-B(x, y)=T(y x) \tag{3.2.1}
\end{equation*}
$$

$$
\begin{align*}
T(x(y z)) & =T(x) T(y) T(z)-B(x, y z)-B(y, x z)-B(z, x y)-\Phi(x, y, z) \tag{3.2.2}\\
& =T((x y) z), \tag{3.2.3}\\
B(x, 1) & =(d-1) T(x), \tag{3.2.4}\\
\Phi(x, y, 1) & =(d-2) B(x, y) . \tag{3.2.5}
\end{align*}
$$

Proof. Consider the algebra $R=k(\varepsilon, \delta, \eta)$ with relations $\varepsilon^{2}=\delta^{2}=\eta^{2}=0$. Then, since N is multiplicative and R is associative,

$$
\begin{align*}
N((1+\varepsilon x)[(1+\delta y)(1+\eta z)]) & =N(1+\varepsilon x) N(1+\delta y) N(1+\eta z) \\
& =N([(1+\varepsilon x)(1+\delta y)](1+\eta z)) . \tag{3.2.6}
\end{align*}
$$

Using (2.2.2) and the relations in R, we have

$$
\begin{aligned}
N(1+\varepsilon x) & N(1+\delta y) N(1+\eta z)=1+\varepsilon T(x)+\delta T(y)+\eta T(z) \\
& +\varepsilon \delta T(x) T(y)+\varepsilon \eta T(x) T(z)+\delta \eta T(y) T(z)+\varepsilon \delta \eta T(x) T(y) T(z)
\end{aligned}
$$

For easier notation, let us put

$$
\begin{aligned}
& x_{1}=x, \quad x_{2}=y, \quad x_{3}=z \\
& x_{4}=x_{1} x_{2}, \quad x_{5}=x_{1} x_{3}, \quad x_{6}=x_{2} x_{3}, \quad x_{7}=x_{1}\left(x_{2} x_{3}\right) \\
& \varepsilon_{1}=\varepsilon, \quad \varepsilon_{2}=\delta, \quad \varepsilon_{3}=\eta \\
& \varepsilon_{4}=\varepsilon_{1} \varepsilon_{2}, \quad \varepsilon_{5}=\varepsilon_{1} \varepsilon_{3}, \quad \varepsilon_{6}=\varepsilon_{2} \varepsilon_{3}, \quad \varepsilon_{7}=\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}
\end{aligned}
$$

Then

$$
(1+\varepsilon x)[(1+\delta y)(1+\eta z)]=1+\sum_{i=1}^{7} \varepsilon_{i} x_{i}=1+u
$$

where $u:=\sum_{i=1}^{7} \varepsilon_{i} x_{i}$. By the general expansion formula (2.2.2), $N(1+u)=$ $\sum_{i=0}^{d} T_{i}(u)$. We show first that $T_{p}(u)=0$ for $p \geqslant 4$. Indeed,

$$
\begin{aligned}
T_{p}(u) & =\sum_{i=1}^{7} T_{p}\left(x_{i}\right) \varepsilon_{i}^{p} \\
& +\sum_{1 \leqslant i<j \leqslant 7} \sum_{l+m=p} T_{l m}\left(x_{i}, x_{j}\right) \varepsilon_{i}^{l} \varepsilon_{j}^{m} \\
& +\sum_{1 \leqslant i<j<k \leqslant 7} \sum_{l+m+n=p} T_{l m n}\left(x_{i}, x_{j}, x_{k}\right) \varepsilon_{i}^{l} \varepsilon_{j}^{m} \varepsilon_{k}^{n} \\
& +\sum_{1 \leqslant i_{1}<i_{2}<i_{3}<i_{4} \leqslant 7} \sum_{l_{1}+\cdots+l_{4}=p} T_{l_{1} \ldots l_{4}}\left(x_{i_{1}}, \ldots, x_{i_{4}}\right) \varepsilon_{i_{1}}^{l_{1}} \cdots \varepsilon_{i_{4}}^{l_{4}} \\
& +\cdots \quad+\sum_{l_{1}+\cdots+l_{7}=p} T_{l_{1} \ldots l_{7}}\left(x_{1}, \ldots, x_{7}\right) \varepsilon_{1}^{l_{1}} \cdots \varepsilon_{7}^{l_{7}} .
\end{aligned}
$$

(The summation runs over all partitions of p in at most 7 parts). Now consider the products of powers of the ε_{i}. Since $\varepsilon_{i}^{2}=0$, the first sum vanishes as soon as $p \geqslant 2$. Likewise, the second sum vanishes for $p \geqslant 3$, because then either $l \geqslant 2$ or $m \geqslant 2$. In the third sum, the only product of type $\varepsilon_{i}^{l} \varepsilon_{j}^{m} \varepsilon_{k}^{n}$ which is non-zero is $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$, as follows from the definition of the $\varepsilon_{4}, \ldots, \varepsilon_{7}$ above. Hence the third sum vanishes for $p \geqslant 4$, and yields only the term $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3} \Phi(x, y, z)$ for $p=3$. Furthermore, again by definition of the ε_{i}, any product of more than three different ε_{i} vanishes, so the remaining sums vanish as well. This yields

$$
\begin{aligned}
T_{1}(u) & =\varepsilon T(x)+\delta T(y)+\eta T(z)+\varepsilon \delta T(x y)+\varepsilon \eta T(x z)+\delta \eta T(y z) \\
& +\varepsilon \delta \eta T(x(y z)), \\
T_{2}(u) & =\varepsilon \delta B(x, y)+\varepsilon \eta B(x, z)+\delta \eta B(y, z), \\
& +\varepsilon \delta \eta\{B(x, y z)+B(y, x z)+B(z, x y)\}, \\
T_{3}(u) & =\varepsilon \delta \eta \Phi(x, y, z) .
\end{aligned}
$$

Adding everything up and comparing the coefficients of $\varepsilon \delta$ shows (3.2.1). Comparing the coefficients of $\varepsilon \delta \eta$ yields (3.2.2), and (3.2.3) follows by passing to the opposite algebra. Formula (3.2.4) is a special case of (2.2.4). Finally, put $z=1$ in (3.2.2) and use (3.2.1) and (3.2.4):

$$
\begin{aligned}
\Phi(x, y, 1) & =T(x) T(y) T(1)-B(x, y)-B(y, x)-B(x y, 1)-T(x y) \\
& =d T(x) T(y)-2 B(x, y)-(d-1) T(x y)-T(x y) \\
& =d\{T(x) T(y)-T(x y)\}-2 B(x, y)=(d-2) B(x, y) .
\end{aligned}
$$

Remark. The formulas $T(x y)=T(y x)$ and $T((x y) z)=T(x(y z))$ are expressed by saying that T is commutative and associative. To save parentheses, we will often write T_{x} instead of $T(x)$ and $x y \cdot z$ instead of $(x y) z$. Because of commutativity and associativity of T we have $T_{x y \cdot x}=T_{x \cdot y x}=T_{y x \cdot x}$ for which we simply write $T_{x y x}$. In particular, $T\left(x^{3}\right):=T\left(x \cdot x^{2}\right)=T\left(x^{2} \cdot x\right)$ is well-defined although $x \cdot x^{2}$ may be different from $x^{2} \cdot x$.
3.3. Corollary. Let (A, N) be a unital composition of degree d. Then Φ is given by the following formula involving only the linear trace form T and the multiplication in A :

$$
\begin{equation*}
\Phi(x, y, z)=T_{x y z}+T_{z y x}-T_{x} T_{y z}-T_{y} T_{z x}-T_{z} T_{x y}+T_{x} T_{y} T_{z} . \tag{3.3.1}
\end{equation*}
$$

Proof. Substitute (3.2.1) into (3.2.2) and use commutativity and associativity of T.

The first five formulas of the following lemma are also found in [bb, Lemma 1].
3.4. Lemma. Let (A, N) be a unital cubic composition and use the notations of 2.2 and 3.2. Then the following formulas hold for all u, x, y, z in all base extensions of A :

$$
\begin{align*}
T(u) N(x) & =N_{21}(x, u x)=N_{21}(x, x u), \tag{3.4.1}\\
T(u) N_{21}(x, y) & =\Phi(x, y, u x)+N_{21}(x, u y) \tag{3.4.2}\\
& =\Phi(x, y, x u)+N_{21}(x, y u), \tag{3.4.3}\\
T(u) \Phi(x, y, z) & =\Phi(u x, y, z)+\Phi(x, u y, z)+\Phi(x, y, u z) \tag{3.4.4}\\
& =\Phi(x u, y, z)+\Phi(x, y u, z)+\Phi(x, y, z u), \tag{3.4.5}\\
Q(x) T(y) & =B(x, x y)+N_{21}(x, y), \tag{3.4.6}\\
Q(x y) & =Q(y x)=Q(x) Q(y)-\Phi(x, y, x y), \tag{3.4.7}\\
B(x y, x) & =B(y x, x)=T_{x y} T_{x}-T_{x y x}, \tag{3.4.8}\\
Q(x) Q(y)+Q(x y) & =T(x y \cdot y x)-T_{x} T_{y x y}-T_{y} T_{x y x}+T_{x} T_{y} T_{x y}, \tag{3.4.9}\\
3 N(x)-T(x) Q(x) & =T\left(x^{3}\right)-T(x) T\left(x^{2}\right) . \tag{3.4.10}
\end{align*}
$$

Proof. Let $u, x \in A \otimes R, R \in k$-alg. Then we have in $A \otimes R(\varepsilon)$, where $R(\varepsilon)$ is the algebra of dual numbers:

$$
N(x+\varepsilon u x)=N((1+\varepsilon u) x)=N(1+\varepsilon u) N(x)=N(x) N(1+\varepsilon u)=N(x+\varepsilon x u),
$$

since $R(\varepsilon)$ is commutative. Expanding both sides and comparing terms at ε yields (3.4.1), since $N(1+\varepsilon u)=1+\varepsilon T(u)$. Linearizing (3.4.1) with respect to x in direction y and then in direction z shows that (3.4.2) - (3.4.5) hold.

Next, consider $R(\varepsilon, \delta)$ where $\varepsilon^{3}=\delta^{3}=0$. Then it follows by expanding

$$
N((1+\varepsilon x)(1+\delta y))=N(1+\varepsilon x) N(1+\delta y)
$$

and comparing terms at $\varepsilon^{2} \delta$ and $\varepsilon^{2} \delta^{2}$ that (3.4.6) holds, as well as

$$
\begin{equation*}
Q(x) Q(y)=Q(x y)+\Phi(x, y, x y) \tag{3.4.11}
\end{equation*}
$$

Putting $u=y$ in (3.4.2) and (3.4.3) yields

$$
\Phi(x, y, x y)=\Phi(x, y, y x)=T(y) N_{21}(x, y)-N_{21}\left(x, y^{2}\right) .
$$

Now (3.4.11) shows that (3.4.7) holds. Formula (3.4.8) is a consequence of (3.2.1) and commutativity and associativity of T (Lemma 3.2) while (3.4.9) follows by adding $Q(x y)$ to both sides of (3.4.11), using (3.3.1) to evaluate $\Phi(x, y, x y)$ and recalling that $2 Q(x y)=B(x y, x y)=T_{x y}^{2}-T(x y \cdot x y)$ by (3.2.1).

Finally, we prove (3.4.10). Put $x=y$ in (3.4.6). This shows $N_{21}(x, x)=$ $T(x) Q(x)-B\left(x, x^{2}\right)=T(x) Q(x)-T(x) T\left(x^{2}\right)+T\left(x \cdot x^{2}\right)$ (by (3.2.1)). On the other hand, $3 N(x)=N_{21}(x, x)$ since N is homogeneous of degree 3, whence (3.4.10).
3.5. Definition. A symmetric composition over k is a triple $\mathfrak{C}=(M, q, \star)$ consisting of a k-module M, a bilinear multiplication $\star: M \times M \rightarrow M$, and a quadratic form q on M such that q is multiplicative and the polar form b of q is associative with respect to \star, i.e.,

$$
\begin{align*}
q(x \star y) & =q(x) q(y), \tag{3.5.1}\\
b(x \star y, z) & =b(x, y \star z), \tag{3.5.2}
\end{align*}
$$

for all $x, y, z \in M$. This generalizes the usual definition [boi, §34] inasmuch as nondegeneracy assumptions on q are not imposed and k is an arbitrary ring instead of a field. Hence, \mathfrak{C} should perhaps be called a generalized symmetric composition, but we will drop the epithet "generalized" for brevity. In any case, non-degeneracy of q can be forced by dividing out the kernel of q, see Lemma 4.4. Note that passing to the opposite multiplication yields again a symmetric composition. - Given a symmetric composition, we introduce the cubic form

$$
\begin{equation*}
h(x)=b(x, x \star x) . \tag{3.5.3}
\end{equation*}
$$

We can now formulate the main result of this section.
3.6. Theorem. Let (A, N) be a unital cubic composition, and let $\alpha, \beta \in k$ satisfy $\alpha+\beta=1$.
(a) There is a well-defined multiplication \star on $\dot{A}=A / k \cdot 1$ such that

$$
\begin{equation*}
\kappa(x) \star \kappa(y)=\kappa\left((1+\alpha) x y+(1+\beta) y x-T_{x} y-T_{y} x\right) \tag{3.6.1}
\end{equation*}
$$

for all $x, y \in A$, where $\kappa: A \rightarrow \dot{A}$ is the canonical map.
(b) Denote by $q=\kappa_{*}\left(H_{2}\right)$ the quadratic form on \dot{A} as in 2.4 and assume that.

$$
\begin{equation*}
3(\alpha \beta-1)[A, A]=0 \tag{3.6.2}
\end{equation*}
$$

where $[x, y]=x y-y x$ denotes the commutator in A. Then the triple (\dot{A}, q, \star) is a symmetric composition, and its associated cubic form is $h=\kappa_{*}\left(H_{3}\right)$.
3.7. Remarks and special cases. (a) Switching α and β in (3.6.1) or replacing A by the opposite algebra A^{op} amounts to replacing \star by the opposite multiplication.
(b) Condition (3.6.2) holds if either $3=0$ in k or A is commutative or $\alpha \beta=1$. We discuss these cases in turn.
(i) Assume $3=0$ in k. Then we obtain a one-parameter family (because $\beta=1-\alpha$) of symmetric compositions on \dot{A}, all with the same quadratic form q. Note, however, that q is the square of a linear form, because $T\left(1_{A}\right)=3$, so T induces a linear form t on \dot{A}, and then $q=t^{2}$ by (2.4.1).
(ii) If A is commutative the symmetric composition (\dot{A}, q, \star) is commutative and independent of the choice of α.
(iii) Since $\beta=1-\alpha$, the condition $\alpha \beta=1$ is equivalent to $\alpha^{2}-\alpha+1=0$. Let $\Phi_{n}(\mathbf{t})$ be the n-th cyclomotic polynomial and define the functor of primitive n-th roots of unity $\boldsymbol{\pi}_{n}$ from k-alg to sets by

$$
\boldsymbol{\pi}_{n}(R)=\left\{r \in R: \Phi_{n}(r)=0\right\} \quad(R \in k \text {-alg })
$$

In particular, $\Phi_{3}(\mathbf{t})=\mathbf{t}^{2}+\mathbf{t}+1$ and $\Phi_{6}(\mathbf{t})=\mathbf{t}^{2}-\mathbf{t}+1$, so $\boldsymbol{\pi}_{6} \cong \boldsymbol{\pi}_{3}$ under $r \mapsto-r$. We have preferred to use primitive sixth rather than third roots of unity because the formulas become more natural and involve fewer minus signs. Formulas closer to [elmy, boi] are obtained by writing $\alpha=-\omega$ where $\omega \in \boldsymbol{\pi}_{3}(k)$. For easy reference, we formulate the following consequence of Theorem 3.6:
3.8. Corollary. Let (A, N) be a unital cubic composition and let $\alpha \in \boldsymbol{\pi}_{6}(k)$ be a primitive sixth root of unity. Then \dot{A} becomes a symmetric composition with quadratic form $q=\kappa_{*}\left(H_{3}\right)$, product

$$
\begin{equation*}
\kappa(x) \star \kappa(y)=\kappa\left((1+\alpha) x y+\left(1+\alpha^{-1}\right) y x-T_{x} y-T_{y} x\right) \tag{3.8.1}
\end{equation*}
$$

and associated cubic form $h=\kappa_{*}\left(H_{3}\right)$.
The proof of Theorem 3.6 rests on the following lemmas. We use the notations introduced in Lemma 2.4; in particular, H_{11} is the polar form of H_{2}.
3.9. Lemma. Let $\alpha, \beta \in k$ and consider the multiplication

$$
\begin{equation*}
x * y:=(1+\alpha) x y+(1+\beta) y x-T_{x} y-T_{y} x \tag{3.9.1}
\end{equation*}
$$

on A. Then

$$
\begin{align*}
x * 1=1 * x & =(\alpha+\beta-1) x-T_{x} \cdot 1 \tag{3.9.2}\\
H_{11}(x * y, z)-H_{11}(x, y * z) & =(\alpha+\beta-1)\left(T_{x} T_{y z}-T_{z} T_{x y}\right) \tag{3.9.3}
\end{align*}
$$

for all $x, y, z \in A$.
Proof. (3.9.2) is immediate from the definition and $T(1)=3$. By (2.4.3), $H_{11}(x, y)=2 T_{x} T_{y}-3 B(x, y)$. Now a simple computation using (3.2.1) and associativity of T shows that

$$
\begin{gather*}
H_{11}(x * y, z)=2 T_{x} T_{y} T_{z}-3 T_{x} T_{y z}-3 T_{y} T_{z x}-(2+\alpha+\beta) T_{z} T_{x y} \\
+3(1+\alpha) T_{x y z}+3(1+\beta) T_{z y x} \tag{3.9.4}
\end{gather*}
$$

Subtracting from (3.9.4) the formula obtained by cyclically permuting x, y, z yields (3.9.3).
3.10. Lemma. Let $\alpha, \beta \in k$ satisfy $\alpha+\beta=1$ and define $x * y$ as in (3.9.1). Then

$$
\begin{align*}
H_{2}(x) H_{2}(y)-H_{2}(x * y) & =3(\alpha \beta-1) T(x y \cdot[x, y]), \tag{3.10.1}\\
H_{2}(x)^{2} & =H_{2}(x * x) . \tag{3.10.2}
\end{align*}
$$

Proof. Put $\lambda=\alpha \beta-1$. Then

$$
(1+\alpha)^{2}+(1+\beta)^{2}=3-2 \lambda \quad \text { and } \quad(1+\alpha)(1+\beta)=3+\lambda .
$$

Hence, by the symmetry of $Q(x y)$ in x and $y((3.4 .7))$, the symmetry $B(x y, x)=$ $B(y x, x)((3.4 .8))$ and the standard formula $B(u, v)=T(u) T(v)-T(u v) \quad((3.2 .1))$ as well as $2 Q(u)=B(u, u)$,

$$
\begin{aligned}
Q(x * y)= & Q\left((1+\alpha) x y+(1+\beta) y x-\left(T_{x} y+T_{y} x\right)\right) \\
= & \left.(1+\alpha)^{2}+(1+\beta)^{2}\right) Q(x y)+(1+\alpha)(1+\beta) B(x y, y x)+Q\left(T_{x} y+T_{y} x\right) \\
& -B\left((1+\alpha) x y+(1+\beta) y x, T_{x} y+T_{y} x\right) \\
= & (3-2 \lambda) Q(x y)+(\lambda+3) B(x y, y x) \\
& +T_{x}^{2} Q(y)+T_{y}^{2} Q(x)+T_{x} T_{y} B(x, y) \\
& -3 B\left(x y, T_{x} y+T_{y} x\right) \\
= & \lambda\{B(x y, y x)-B(x y, x y)\}+3 Q(x y)+3 B(x y, y x) \\
& +T_{x}^{2} Q(y)+T_{y}^{2} Q(x)+T_{x} T_{y} B(x, y) \\
& -3 B\left(x y, T_{x} y+T_{y} x\right) .
\end{aligned}
$$

Here the coefficient of λ is, by commutativity of T and (3.2.1),

$$
B(x y, y x)-B(x y, x y)=T_{x y} T_{y x}-T(x y \cdot y x)-T_{x y}^{2}+T(x y \cdot x y)=T(x y \cdot[x, y])
$$

Replacing systematically $B(u, v)$ by $T_{u} T_{v}-T_{u v}$, we obtain

$$
\begin{align*}
Q(x * y)= & \lambda \\
& T(x y \cdot[x, y])+T_{x}^{2} T_{y}^{2}+3\left\{T_{x} T_{y x y}+T_{y} T_{x y x}+T_{x y}^{2}-T(x y \cdot y x)\right\} \tag{3.10.3}\\
& -7 T_{x} T_{y} T_{x y}+3 Q(x y)+T_{x}^{2} Q(y)+T_{y}^{2} Q(x) .
\end{align*}
$$

Again by commutativity of T and $\alpha+\beta=1$, we have $T(x * y)=3 T_{x y}-2 T_{x} T_{y}$. Hence,

$$
\begin{aligned}
H_{2}(x) H_{2}(y)-H_{2}(x * y)=\{ & \left.T_{x}^{2}-3 Q(x)\right\}\left\{T_{y}^{2}-3 Q(y)\right\} \\
& -\left\{3 T_{x y}-2 T_{x} T_{y}\right\}^{2}+3 Q(x * y) .
\end{aligned}
$$

Let us put $\delta=H_{2}(x) H_{2}(y)-H_{2}(x * y)-3 \lambda T(x y \cdot[x, y])$. Then by (3.10.3),

$$
\begin{aligned}
& \delta=T_{x}^{2} T_{y}^{2}-3 Q(x) T_{y}^{2}-3 Q(y) T_{x}^{2}+9 Q(x) Q(y) \\
&-9 T_{x y}^{2}+12 T_{x} T_{y} T_{x y}-4 T_{x}^{2} T_{y}^{2} \\
&+3 T_{x}^{2} T_{y}^{2}+9\left\{T_{x} T_{y x y}+T_{y} T_{x y x}+T_{x y}^{2}-T(x y \cdot y x)\right\} \\
&-21 T_{x} T_{y} T_{x y}+9 Q(x y)+3 T_{x}^{2} Q(y)+3 T_{y}^{2} Q(x) \\
&=9\left.Q(x) Q(y)+Q(x y)+T_{x} T_{y x y}+T_{y} T_{x y x}-T_{x} T_{y} T_{x y}-T(x y \cdot y x)\right\}
\end{aligned}
$$

and the expression in braces vanishes by (3.4.9). This proves (3.10.1), and (3.10.2) is an immediate consequence.
3.11. Proof of Theorem 3.6. It only remains to show that the cubic form h associated with (\dot{A}, q, \star) is indeed $\kappa_{*}\left(H_{3}\right)$. By (3.9.4), (3.4.10), and the definition of H_{3} in 2.4,

$$
\begin{aligned}
h(\kappa(x))=b(\kappa(x), \kappa(x) \star \kappa(x)) & =H_{11}(x, x * x)=2 T_{x}^{3}-9 T_{x} T\left(x^{2}\right)+9 T\left(x^{3}\right) \\
& =2 T_{x}^{3}+9\left(3 N(x)-T_{x} Q(x)\right)=H_{3}(x),
\end{aligned}
$$

as desired.
3.12. Definition. Let scomp_{k} denote the category of symmetric compositions over k, where morphisms are k-linear maps preserving products and quadratic forms, and recall the category $\mathbf{q c f o r m}_{k}$ of 2.5 . Then there is a functor

$$
\begin{equation*}
\Upsilon: \operatorname{scomp}_{k} \rightarrow \mathbf{q c f o r m}_{k}, \quad(M, q, \star) \mapsto(M, q, h) . \tag{3.12.1}
\end{equation*}
$$

Let $\mathbf{u c c o m p}_{k}$ denote the category of unital cubic compositions over k, and let $\alpha \in \boldsymbol{\pi}_{6}(k)$. We define a functor

$$
\mathbf{C}_{\alpha}: \mathbf{u c c o m p}_{k} \rightarrow \mathbf{s c o m p}_{k}
$$

as follows. For a unital cubic composition $\mathfrak{A}=(A, N)$ and a primitive sixth root of unity α, let $\mathbf{C}_{\alpha}(\mathfrak{A})=(\dot{A}, q, \star)$ be the symmetric composition defined in Cor. 3.8. For a morphism $\varphi: \mathfrak{A} \rightarrow \mathfrak{A}^{\prime}$ let $\mathbf{C}_{\alpha}(\varphi): \mathbf{C}_{\alpha}(\mathfrak{A}) \rightarrow \mathbf{C}_{\alpha}\left(\mathfrak{A}^{\prime}\right)$ be the induced map $\dot{\varphi}: \dot{A} \rightarrow \dot{A}^{\prime}$. Then $\mathbf{C}_{\alpha}: \mathbf{u c c o m p}_{k} \rightarrow \mathbf{s c o m p}_{k}$ is compatible with the functor \mathbf{C} of 2.5 in the sense that the diagram

is commutative, where Ω is the functor forgetting the multiplication, cf. 3.1.
3.13. The connection with [tsch]. Let (A, N) be a unital cubic composition and suppose $3 \in k^{\times}$. Then $A=k \cdot 1_{A} \oplus A^{0}$ where $A^{0}=\operatorname{Ker}(T)$. Let $\omega \in \boldsymbol{\pi}_{3}(k)$ be a primitive third root of unity, and define a multiplication \circledast on A^{0} by

$$
\begin{equation*}
x \circledast y=\frac{1-\omega}{3} x y+\frac{1-\omega^{-1}}{3} y x-\frac{1}{3} T(x y) 1_{A}, \tag{3.13.1}
\end{equation*}
$$

see [tsch]. The last term serves to make $x \circledast y$ lie in A^{0}. Also, define a quadratic form n on A^{0} by

$$
\begin{equation*}
n(x)=-\frac{1}{3} Q(x) \tag{3.13.2}
\end{equation*}
$$

It is proved in [tsch, 3.1], for k a field of characteristic not 2 or 3 , that n is multiplicative and the polar form b_{n} of n is associative with respect to \circledast. This result, without assuming characteristic $\neq 2$, can now be recovered in our setting as follows. Let $\alpha=-\omega \in \boldsymbol{\pi}_{6}(k)$ and let $(\dot{A}, q, \star)=\mathbf{C}_{\alpha}(A, N)$. Then the map

$$
\varphi=\kappa \circ \text { inc }: A^{0} \rightarrow A \rightarrow \dot{A}, \quad x \mapsto \frac{1}{3} \dot{x},
$$

is an isomorphism $\varphi:\left(A^{0}, n, \circledast\right) \xrightarrow{\cong}(\dot{A}, q, \star)$. Indeed, φ is clearly an isomorphism of k-modules. From (3.13.1) and (3.8.1) we see that φ preserves products, and from (3.13.2) and Lemma 2.4(a) it follows that φ preserves quadratic forms. Since (\dot{A}, q, \star) is a symmetric composition, so is $\left(A^{0}, n, \circledast\right)$.

4. From symmetric to unital cubic compositions

4.1. Theorem. Let (M, q, \star) be a symmetric composition over k and let $\alpha, \beta \in k$ with $\alpha+\beta=1$. On the k-module $A:=k \oplus M$ consider the unital cubic form

$$
\begin{equation*}
N(\lambda \oplus x)=\lambda^{3}-3 \lambda q(x)+b(x, x \star x) \tag{4.1.1}
\end{equation*}
$$

and define a multiplication \bullet with unit element $1_{A}:=1 \oplus 0$ and

$$
\begin{equation*}
(0 \oplus x) \bullet(0 \oplus y)=b(x, y) \oplus(\alpha x \star y+\beta y \star x) \tag{4.1.2}
\end{equation*}
$$

for $x, y \in M$. Assume that

$$
\begin{equation*}
(\alpha \beta-1)[M, M]=0 \tag{4.1.3}
\end{equation*}
$$

where $[x, y]=x \star y-y \star x$ denotes the commutator. Then $\left(A, N, 1_{A}, \bullet\right)$ is a unital cubic composition.
4.2. Remarks. (a) The cubic form N is of course the cubic form $N_{\mathfrak{M}}$ defined in (2.5.1), for $\mathfrak{M}=\Upsilon(\mathfrak{C})=(M, q, h)$ as in (3.12.1) and $h(x)=b(x, x \star x)$ as in (3.5.3).
(b) Interchanging α and β in (4.1.2) or replacing \mathfrak{C} by $\mathfrak{C}^{\text {op }}$ amounts to replacing the multiplication \bullet by its opposite.
(c) If \mathfrak{C} is commutative then (4.1.3) is satisfied for any choice of α, and the product \bullet is again commutative and independent of α.
(d) As in 3.7(b)(iii), the conditions $\alpha+\beta=\alpha \beta=1$ are equivalent to $\alpha \in \boldsymbol{\pi}_{6}(k)$. Hence we have the following corollary.
4.3. Corollary. Let (M, q, \star) be a symmetric composition and let $\alpha \in \boldsymbol{\pi}_{6}(k)$ be a primitive sixth root of unity. Then $k \oplus M$ becomes a unital cubic composition with unit element $1 \oplus 0$, cubic form (4.1.1) and product

$$
\begin{equation*}
(0 \oplus x) \bullet(0 \oplus y)=b(x, y) \oplus\left(\alpha x \star y+\alpha^{-1} y \star x\right) \tag{4.3.1}
\end{equation*}
$$

Remark. For the case where k is a field of characteristic different from 2 and 3 and q is non-degenerate, Tschupp [tsch, 3.2] attempted to prove this result, but his proof contains errors. Specifically, it is claimed in [tsch, Lemma 3.10] that, in our notation, $h(x \star y)=b((x \star y) \star(x \star y), y \star x)$, and in [tsch, Lemma 3.11] that $b(y \star(y \star x),(y \star x) \star x)=q(x) q(y) b(x, y)$. The following example, due to H. P. Petersson, disproves these formulas: Let $M=\operatorname{Mat}_{2}(k)$ with $q(x)=\operatorname{det}(x)$ and $x \star y=\bar{x} \bar{y}$, where $\bar{x}=\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$ for $x=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. Then it suffices to put $x=e_{12}$ and $y=e_{21}$ (matrix units).

Theorem 4.1 will be a consequence of the following Lemmas $4.6-4.8$. We note that P. Alberca and C. Martín [ident] have recently proved and extended these lemmas with the aid of a computer.

In the interest of readability, we denote in this section the multiplication in a symmetric composition simply by juxtaposition; thus $x y=x \star y$, and in particular, $x^{2}=x \star x$. Also, to save parentheses, we will often write $x \cdot y z$ instead of $x(y z)$ etc.
4.4. Lemma. With the above notations, the polar forms h_{21} and h_{111} of h are given by

$$
\begin{equation*}
h_{21}(x, y)=3 b\left(x^{2}, y\right), \quad h_{111}(x, y, z)=3 b(x y+y x, z) . \tag{4.4.1}
\end{equation*}
$$

Writing $Z:=\operatorname{Ker}(q)$, we have

$$
\begin{equation*}
Z \subset \operatorname{Ker}(h), \quad Z \star M+M \star Z \subset Z \tag{4.4.2}
\end{equation*}
$$

Hence there is a symmetric composition $\mathfrak{C} / \operatorname{Ker}(q):=(M / Z, \bar{q}, \bar{\star})$ whose quadratic form \bar{q} (induced from q) is non-degenerate.

Proof. The formulas (4.4.1) follow easily from associativity of b ((3.5.2)). If $z \in Z$ and $x \in M$ then $h(z)=b\left(z, z^{2}\right)=0$ and $h_{21}(z, x)=3 b\left(z^{2}, x\right)=3 b(z, z x)=0$ as well as $h_{21}(x, z)=3 b\left(z, x^{2}\right)=0$, which shows $Z \subset \operatorname{Ker}(h)$. Finally, $q(z x)=$ $q(z) q(x)=0$ and $b(z x, y)=b(z, x y)=0$ so $Z M \subset Z$, and similarly $M Z \subset Z$. The last statement follows from Cor. 1.7.
4.5. Formulas in symmetric compositions. There is a number of formulas which are known for non-degenerate symmetric compositions [boi, §34] but which hold only modulo $\operatorname{Ker}(q)$ in general. Therefore, we introduce the notation

$$
x \equiv y \quad: \Longleftrightarrow \quad x-y \in \operatorname{Ker}(q)
$$

First of all, linearization of $q(x y)=q(x) q(y)((3.5 .1))$ yields

$$
\begin{align*}
b(x y, x z) & =b(y x, z x)=q(x) b(y, z), \tag{4.5.1}\\
b\left(x_{1}, x_{2}\right) b\left(x_{3}, x_{4}\right) & =b\left(x_{1} x_{3}, x_{2} x_{4}\right)+b\left(x_{1} x_{4}, x_{2} x_{3}\right) . \tag{4.5.2}
\end{align*}
$$

Associativity of b is equivalent to the fact that $b(x y, z)$ is invariant under cyclic permutation of x, y, z. As before, let $[x, y]:=x y-y x$ denote the commutator. Then:

$$
\begin{equation*}
\text { The trilinear form }(x, y, z) \mapsto b([x, y], z) \text { is alternating. } \tag{4.5.3}
\end{equation*}
$$

Next, we have flexibility modulo $\operatorname{Ker}(q)$:

$$
\begin{equation*}
x y \cdot x \equiv x \cdot y x \equiv q(x) y, \tag{4.5.4}
\end{equation*}
$$

Indeed, for all $v \in M, b(x y \cdot x, v)=b(x y, x v)=q(x) b(y, v)=b(q(x) y, v)$ by associativity and (4.5.1), and

$$
\begin{aligned}
q(x y \cdot x-q(x) y) & =q(x y \cdot x)-q(x) b(x y \cdot x, y)+q(q(x) y) \\
& =q(x)^{2} q(y)-q(x)^{2} b(y, y)+q(x)^{2} q(y)=0 .
\end{aligned}
$$

This proves $x y \cdot x \equiv q(x) y$, and the second formula follows by passing to the opposite multiplication. An immediate consequence is

$$
\begin{equation*}
\left(x x^{2}\right) x \equiv\left(x^{2} x\right) x \equiv x\left(x x^{2}\right) \equiv x\left(x^{2} x\right) \equiv q(x) x^{2} . \tag{4.5.5}
\end{equation*}
$$

Since $\operatorname{Ker}(q)$ is a submodule, (4.5.4) can be linearized:

$$
\begin{equation*}
x y \cdot z+z y \cdot x \equiv x \cdot y z+z \cdot y x \equiv b(x, z) y . \tag{4.5.6}
\end{equation*}
$$

Specializing z to y in (4.5.6) and also interchanging x and y yields

$$
\begin{align*}
x y \cdot y+y^{2} x & \equiv x y^{2}+y \cdot y x
\end{aligned} \begin{aligned}
& \tag{4.5.7}\\
& \left.x^{2} y+y x \cdot y\right) y \tag{4.5.8}\\
&
\end{align*}
$$

These imply the commutator formulas

$$
\begin{align*}
{\left[x, y^{2}\right] } & \equiv x y \cdot y-y \cdot y x, \tag{4.5.9}\\
{\left[x^{2}, y\right] } & \equiv x \cdot x y-y x \cdot x \tag{4.5.10}\\
{\left[x^{2}, y^{2}\right] } & \equiv\left(x^{2} y\right) y-y\left(y x^{2}\right) \equiv x\left(x y^{2}\right)-\left(y^{2} x\right) x \tag{4.5.11}
\end{align*}
$$

4.6. Lemma. Let $x, y \in M$. We introduce the abbreviations

$$
s:=x y, \quad t:=y x, \quad a:=b\left(x, y^{2}\right) b\left(y, x^{2}\right), \quad c:=b_{x, y} q_{x} q_{y}, \quad e:=b_{x, y} b_{s, t} .
$$

Then the following identities hold:

$$
\begin{align*}
h(x) h(y) & =b\left(s, x^{2} y^{2}\right)+b\left(x y^{2}, x^{2} y\right), \tag{4.6.1}\\
b\left(s^{2}, t\right) & =b\left(t^{2}, s\right)=b\left(s, y^{2} x^{2}\right)=b\left(t, x^{2} y^{2}\right)=a-c, \tag{4.6.2}\\
h(s)-h(t) & =h([x, y]), \tag{4.6.3}\\
h(s) & =a-b(s y, x s), \tag{4.6.4}\\
h(t) & =a-b(t x, y t), \tag{4.6.5}\\
b(x s, y t) & =e-c, \tag{4.6.6}\\
b(x, y)^{3} & =b\left(x y^{2}, y x^{2}\right)+c+e . \tag{4.6.7}
\end{align*}
$$

Proof. Formula (4.6.1) follows by applying (4.5.2) to $h(x) h(y)=b\left(x, x^{2}\right) b\left(y, y^{2}\right)$. For (4.6.2), we use again (4.5.2), applied to $x_{1}=x, x_{2}=y^{2}, x_{3}=y, x_{4}=x^{2}$, and then (4.5.5) and the definition of c :

$$
a=b\left(x, y^{2}\right) b\left(y, x^{2}\right)=b\left(x y, y^{2} x^{2}\right)+b\left(x x^{2}, y^{2} y\right)=b\left(x y, y^{2} x^{2}\right)+c .
$$

Since $a-c$ is symmetric in x and y, we also have $b\left(y x, x^{2} y^{2}\right)=a-c$. Next, by associativity of b and again (4.5.2), as well as (4.5.4) and (4.5.1),

$$
\begin{aligned}
a & =b(x y, y) b(y x, x)=b(x y \cdot y x, y x)+b(x y \cdot x, y \cdot y x) \\
& =b(s t, t)+q(x) b(y, y \cdot y x)=b\left(s, t^{2}\right)+q(x) b(y y, y x)=b\left(s, t^{2}\right)+c .
\end{aligned}
$$

Interchanging x and y switches s and t and leaves $a-c$ fixed. Hence this proves (4.6.2). Now expand and use (4.4.1) and (4.6.2) to obtain (4.6.3):

$$
\begin{aligned}
h([x, y]) & =h(s-t)=h(s)-h_{21}(s, t)+h_{21}(t, s)-h(t) \\
& =h_{s}-3 b\left(s^{2}, t\right)+3 b\left(t^{2}, s\right)-h_{t}=h_{s}-h_{t} .
\end{aligned}
$$

Next, we rewrite a in a third form, using associativity of b and again the linearized composition formula (4.5.2):

$$
a=b(x y, x) b(x y, y)=b(s, x) b(s, y)=b\left(s^{2}, x y\right)+b(s y, x s)=h(s)+b(s y, x s) .
$$

This is (4.6.4), and (4.6.5) follows by interchanging x and y.
By (4.5.4), $x t \equiv q(x) y$ and $y s \equiv q(y) x$. Hence, again by (4.5.2),

$$
e=b(x, y) b(s, t)=b(x s, y t)+b(x t, y s)=b(x s, y t)+c,
$$

which proves (4.6.6).
For (4.6.7), observe first that $b_{x, y}^{2}=b\left(x^{2}, y^{2}\right)+b_{s, t}$ follows from (4.5.2). Now multiply this by $b_{x, y}$ and obtain

$$
\begin{aligned}
b_{x, y}^{3} & =b_{x, y} b\left(x^{2}, y^{2}\right)+e=b\left(x x^{2}, y y^{2}\right)+b\left(x y^{2}, y x^{2}\right)+e \quad(\text { by }(4.5 .2)) \\
& =b\left(x y^{2}, y x^{2}\right)+c+e \quad(\text { by }(4.5 .4))
\end{aligned}
$$

This completes the proof.
4.7. Lemma. We use the abbreviations introduced in Lemma 4.6. Then for all $x, y \in M$,

$$
\begin{align*}
b(s,[x, y]) & =2 q_{x} q_{y}-b_{s, t} \tag{4.7.1}\\
b(s y,[x, y]) & =q_{y} b\left(y, x^{2}\right)-b(s y, t), \tag{4.7.2}\\
b(s y, t) & =b(x, y) b\left(x, y^{2}\right)-q_{x} h_{y}, \tag{4.7.3}\\
b\left(x s,\left[x, y^{2}\right]\right) & =a+c-e-h_{s} \tag{4.7.4}\\
h_{x} h_{y} & =b_{x, y}^{3}+3(a-e)-h_{s}-h_{t} . \tag{4.7.5}
\end{align*}
$$

Proof. Formula (4.7.1) is easy: $b(s,[x, y])=b(x y, x y)-b(x y, y x)=2 q_{x} q_{y}-b_{s, t}$ by (4.5.1). Similarly, (4.7.2) follows from $b(s y,[x, y])=b(s y, x y)-b(s y, y x)=$ $q_{y} b(s, x)-b(s y, t)$. Next, associativity of b and (4.5.2) as well as (4.5.4) imply

$$
\begin{aligned}
b(x, y) b\left(x, y^{2}\right) & =b(x, y) b(t, y)=b\left(x t, y^{2}\right)+b(x y, y t) \\
& =b\left(x \cdot y x, y^{2}\right)+b(s, y t)=q(x) b\left(y, y^{2}\right)+b(s y, t)
\end{aligned}
$$

which is (4.7.3).
To prove (4.7.4), we have $a-h_{s}=b(x s, s y)$ by (4.6.4) and $e-c=-b(x s, y t)$ by (4.6.6). Adding these two formulas yields

$$
a-c+e-h_{s}=b(x s, s y-y t)=b\left(x s,\left[x, y^{2}\right]\right)
$$

because of (4.5.9).
For (4.7.5), we begin by rewriting the right hand side, substituting from (4.6.7), (4.6.4) and (4.6.5):

$$
\begin{aligned}
\text { rhs } & =\left\{b\left(x y^{2}, y x^{2}\right)+c+e\right\}+3(a-e)+\{b(s y, x s)-a\}+\{b(t x, y t)-a\} \\
& =b\left(x y^{2}, y x^{2}\right)+(a-c)-2(e-c)+b(s y, x s)+b(t x, y t) .
\end{aligned}
$$

Replace here $a-c$ by $b\left(s, y^{2} x^{2}\right)$ (using (4.6.2)) and $e-c$ by $b(x s, y t)$ (using (4.6.6)). Then

$$
\begin{aligned}
\text { rhs } & =b\left(x y^{2}, y x^{2}\right)+b\left(x y, y^{2} x^{2}\right)-2 b(x s, y t)+b(s y, x s)+b(t x, y t) \\
& =b\left(x y^{2}, y x^{2}\right)+b\left(x y, y^{2} x^{2}\right)+b(x s, s y-y t)+b(y t, t x-x s)
\end{aligned}
$$

Now use (4.6.1) to expand the left hand side of (4.7.5) and form the difference δ of the left and right hand side:

$$
\delta=b\left(s,\left[x^{2}, y^{2}\right]\right)+b\left(x y^{2},\left[x^{2}, y\right]\right)+b(x s, y t-s y)+b(y t, x s-t x) .
$$

By (4.5.10), $x s-t x \equiv\left[x^{2}, y\right]$ so

$$
\delta=b\left(s,\left[x^{2}, y^{2}\right]\right)+b\left(x y^{2}+y t,\left[x^{2}, y\right]\right)+b(x s, y t-s y) .
$$

Furthermore, by (4.5.7), $x y^{2}+y t \equiv b(x, y) y$, and therefore the middle term is

$$
b\left(x y^{2}+y t,\left[x^{2}, y\right]\right)=b(x, y) b\left(y,\left[x^{2}, y\right]\right)=0
$$

because of (4.5.3). It follows from (4.5.11) and (4.5.9) and associativity of b that

$$
\begin{aligned}
\delta & =b\left(s,\left[x^{2}, y^{2}\right]\right)+b(x s, y t-s y)=b\left(s, x\left(x y^{2}\right)-\left(y^{2} x\right) x\right)+b\left(x s, y^{2} x-x y^{2}\right) \\
& =b\left(s x, x y^{2}\right)-b\left(x s, y^{2} x\right)+b\left(x s, y^{2} x-x y^{2}\right)=b\left(s x-x s, x y^{2}\right) .
\end{aligned}
$$

Here $s x=(x y) x \equiv q_{x} y$ by (4.5.4), and $b\left(x s, x y^{2}\right)=q_{x} b\left(s, y^{2}\right)$ by (4.5.1). Thus

$$
\begin{aligned}
\delta & =q_{x}\left\{b\left(y, x y^{2}\right)-b\left(s, y^{2}\right)\right\}=q_{x}\left\{b\left(y x, y^{2}\right)-b\left(x y, y^{2}\right)\right\} \\
& =-q_{x} b\left([x, y], y^{2}\right)=q_{x} b\left(\left[y^{2}, y\right], x\right)=0,
\end{aligned}
$$

by (4.5.3) and (4.5.4). This completes the proof.
4.8. Lemma. With the notations of Theorem 4.1, the formula

$$
\begin{align*}
N(v) N(w) & -N(v \bullet w)=(1-\alpha \beta)\left\{3 b\left(x \cdot x y,\left[x, y^{2}\right]\right)+(1+\beta) h([x, y])\right\} \\
& +3(1-\alpha \beta) b([x, y],-\lambda x y \cdot y+\mu y x \cdot x+\lambda \mu x y) \tag{4.8.1}
\end{align*}
$$

holds for all $v=\lambda \oplus x, w=\mu \oplus y$ in all base extensions of $k \oplus M$.
Proof. Since all constructions are compatible with base change, it suffices to prove (4.8.1) for $\lambda, \mu \in k$ and $x, y \in M$. We use the abbreviations introduced in Lemma 4.6, put

$$
L:=N(\lambda \oplus x) N(\mu \oplus y), \quad R:=N((\lambda \oplus x) \bullet(\mu \oplus y)),
$$

and expand L and R as polynomials in λ, μ :

$$
L=\sum_{i, j} L_{i j} \lambda^{i} \mu^{j}, \quad R=\sum_{i, j} R_{i j} \lambda^{i} \mu^{j} .
$$

Then (4.8.1) will be a consequence of the following relations:

$$
\begin{align*}
L_{00}-R_{00} & =(1-\alpha \beta)\left\{(1+\beta) h([x, y])+3 b\left(x s,\left[x, y^{2}\right]\right)\right\} \tag{4.8.2}\\
L_{10}-R_{10} & =-3(1-\alpha \beta) b(s y,[x, y]) \tag{4.8.3}\\
L_{01}-R_{01} & =-3(1-\alpha \beta) b(t x,[y, x]) \tag{4.8.4}\\
L_{11}-R_{11} & =3(1-\alpha \beta) b(s,[x, y]) \tag{4.8.5}\\
L_{i j}-R_{i j} & =0 \quad \text { otherwise } \tag{4.8.6}
\end{align*}
$$

Let us prove (4.8.2). Clearly, $L_{00}=N(0 \oplus x) N(0 \oplus y)=h_{x} h_{y}$. The expansion of $R_{00}=N\left(b_{x, y} \oplus(\alpha s+\beta t)\right)$ yields

$$
\begin{aligned}
R_{00}= & b_{x, y}^{3} \\
= & -3 b_{x, y} q(\alpha s+\beta t)+h(\alpha s+\beta t) \\
& b_{x, y}^{3}-3 b_{x, y}\left\{\left(\alpha^{2}+\beta^{2}\right) q_{x} q_{y}+\alpha \beta b_{s, t}\right\} \\
& +\alpha^{3} h_{s}+\alpha^{2} \beta h_{21}(s, t)+\alpha \beta^{2} h_{21}(t, s)+\beta^{3} h_{t} .
\end{aligned}
$$

By (4.4.1) and (4.6.2), $h_{21}(s, t)=3 b\left(s^{2}, t\right)=3 b\left(t^{2}, s\right)=h_{21}(t, s)=3(a-c)$, and $\alpha^{2} \beta+\alpha \beta^{2}=\alpha \beta(\alpha+\beta)=\alpha \beta$ as well as $\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta=1-2 \alpha \beta$. Hence,

$$
\begin{align*}
R_{00} & =b_{x, y}^{3}-3(1-2 \alpha \beta) c-3 \alpha \beta e+\alpha^{3} h_{s}+3 \alpha \beta(a-c)+\beta^{3} h_{t} \\
& =b_{x, y}^{3}-3 c+3 \alpha \beta(a+c-e)+\alpha^{3} h_{s}+\beta^{3} h_{t} . \tag{4.8.7}
\end{align*}
$$

Observe that $1+\alpha^{3}=(1+\alpha)\left(1-\alpha+\alpha^{2}\right)$ and $1-\alpha+\alpha^{2}=1-\alpha(1-\alpha)=1-\alpha \beta$. Hence $1+\alpha^{3}=(1-\alpha \beta)(1+\alpha)$ and by symmetry, $1+\beta^{3}=(1-\alpha \beta)(1+\beta)$. Now (4.8.7) and (4.7.5) imply

$$
\begin{align*}
L_{00}-R_{00} & =3(1-\alpha \beta)(a+c-e)-\left(1+\alpha^{3}\right) h_{s}-\left(1+\beta^{3}\right) h_{t} \\
& =(1-\alpha \beta)\left\{3(a+c-e)-(1+\alpha) h_{s}-(1+\beta) h_{t}\right\} . \tag{4.8.8}
\end{align*}
$$

This formula is symmetric in (α, x) and (β, y) but contains no explicit commutators. To introduce them, we use (4.7.4) and (4.6.3):

$$
\begin{aligned}
L_{00}-R_{00} & =(1-\alpha \beta)\left\{3 b\left(x s,\left[x, y^{2}\right]\right)+(2-\alpha) h_{s}-(1+\beta) h_{t}\right\} \\
& =(1-\alpha \beta)\left\{3 b\left(x s,\left[x, y^{2}\right]\right)+(1+\beta)\left(h_{s}-h_{t}\right)\right\} \\
& =(1-\alpha \beta)\left\{3 b\left(x s,\left[x, y^{2}\right]\right)+(1+\beta) h([x, y])\right\} .
\end{aligned}
$$

This proves (4.8.2). - Next, we establish the relations involving $L_{i 0}-R_{i 0}$ for $i>0$. On the left, we have

$$
N(\lambda \oplus x) N(y)=\left(\lambda^{3}-3 \lambda q_{x}+h_{x}\right) h_{y}
$$

whence

$$
L_{10}=-3 q_{x} h_{y}, \quad L_{20}=0, \quad L_{30}=h_{y} .
$$

On the right, expansion yields

$$
\begin{align*}
N((\lambda \oplus x) \bullet(0 \oplus y)) & =N\left(b_{x, y} \oplus(\alpha s+\beta t+\lambda y)\right) \\
& =R_{00}-3 \lambda b_{x, y}\left(\alpha b_{s, y}+\beta b_{t, y}\right)-3 \lambda^{2} b_{x, y} q_{y} \\
& +\lambda h_{21}(\alpha s+\beta t, y)+\lambda^{2} h_{21}(y, \alpha s+\beta t)+\lambda^{3} h_{y} . \tag{4.8.9}
\end{align*}
$$

Here $b_{s, y}=b_{t, y}=b\left(x, y^{2}\right)$ because b is associative, and, by (4.4.1),

$$
\begin{aligned}
h_{21}(\alpha s+\beta t, y) & =3 b\left((\alpha s+\beta t)^{2}, y\right) \\
& =3\left\{\alpha^{2} b\left(s^{2}, y\right)+\beta^{2} b\left(t^{2}, y\right)+\alpha \beta b(s t, y)+\alpha \beta b(t s, y)\right\} .
\end{aligned}
$$

Now $b\left(y, s^{2}\right)=b(y s, s)=q_{y} b(x, s)=q_{y} b_{y, x^{2}}$ and $b\left(t^{2}, y\right)=b(t, t y)=q_{y} b(t, x)=$ $q_{y} b\left(y, x^{2}\right)$ as well as $b(s t, y)=b(s, t y)=q_{y} b(s, x)=q_{y} b\left(y, x^{2}\right)$, using (4.5.4). Hence R_{10}, the coefficient of λ in (4.8.9), is

$$
R_{10}=3\left\{-b_{x, y} b\left(x, y^{2}\right)+\left(\alpha^{2}+\beta^{2}+\alpha \beta\right) q_{y} b\left(y, x^{2}\right)+\alpha \beta b(t s, y)\right\}
$$

Furthermore, $\alpha^{2}+\beta^{2}+\alpha \beta=(\alpha+\beta)^{2}-\alpha \beta=1-\alpha \beta$, so

$$
R_{10}=3\left\{-b_{x, y} b\left(x, y^{2}\right)+(1-\alpha \beta) q_{y} b\left(y, x^{2}\right)+\alpha \beta b(t s, y)\right\} .
$$

Hence, using (4.7.3) and (4.7.2),

$$
\begin{aligned}
L_{10}-R_{10} & =3\left\{-q_{x} h_{y}+b_{x, y} b\left(x, y^{2}\right)-(1-\alpha \beta) q_{y} b\left(y, x^{2}\right)-\alpha \beta b(s y, t)\right\} \\
& =3(1-\alpha \beta)\left\{b(s y, t)-q_{y} b\left(y, x^{2}\right)\right\} \\
& =-3(1-\alpha \beta) b(s y,[x, y])
\end{aligned}
$$

which proves (4.8.3). Formula (4.8.4) follows by symmetry.
Next,

$$
R_{20}=-3 b_{x, y} q_{y}+3 b\left(y^{2}, \alpha s+\beta t\right)=0
$$

because $b\left(y^{2}, s\right)=b\left(y^{2}, x y\right)=q_{y} b_{x, y}=b\left(y^{2}, t\right)$ by (4.5.1), and $\alpha+\beta=1$. Since $R_{30}=h_{y}$, we obtain $L_{i 0}-R_{i 0}=0$ for $i \geqslant 2$.

Let us consider (4.8.5). Clearly, $L_{11}=9 q_{x} q_{y}$. On the other hand, a straightforward expansion and (4.4.1) shows that

$$
\begin{aligned}
R_{11} & =-3\left(\alpha^{2}+\beta^{2}\right) q_{x} q_{y}-3 \alpha \beta b_{s, t}+\alpha h_{111}(x, y, s)+\beta h_{111}(x, y, t) \\
& =-3\left(\alpha^{2}+\beta^{2}\right) q_{x} q_{y}-3 \alpha \beta b_{s, t}+3\{\alpha b(s, s)+\alpha b(t, s)+\beta b(s, t)+\beta b(t, t)\}
\end{aligned}
$$

Now $b(s, s)=b(x y, x y)=2 q_{x} q_{y}$ as well as $b(t, t)=b(y x, y x)=2 q_{x} q_{y}$. Hence

$$
\begin{aligned}
R_{11} & =-3\left(\alpha^{2}+\beta^{2}\right) q_{x} q_{y}-3 \alpha \beta b_{s, t}+6(\alpha+\beta) q_{x} q_{y}+3 b_{s, t} \\
& =3\left\{\left(2-\alpha^{2}-\beta^{2}\right) q_{x} q_{y}+(1-\alpha \beta) b_{s, t}\right\} .
\end{aligned}
$$

From $\alpha+\beta=1$ it follows that $\alpha^{2}+\beta^{2}=1-2 \alpha \beta$, so we finally obtain, using (4.7.1),

$$
\begin{aligned}
L_{11}-R_{11} & =3\left\{(3-1-2 \alpha \beta) q_{x} q_{y}-(1-\alpha \beta) b_{s, t}\right\} \\
& =3(1-\alpha \beta)\left(2 q_{x} q_{y}-b_{s, t}\right)=3(1-\alpha \beta) b(s,[x, y])
\end{aligned}
$$

This proves (4.8.5). Finally, it is easily seen that $L_{i j}-R_{i j}=0$ for the remaining cases $(i j)=(33),(32),(23),(31),(13),(22),(21),(12)$. This completes the proof of Lemma 4.8 and also of Theorem 4.1.
4.9. Definition. Let $\alpha \in \boldsymbol{\pi}_{6}(k)$ be a primitive sixth root of unity. We define a functor

$$
\mathbf{A}_{\alpha}: \operatorname{scomp}_{k} \rightarrow \mathbf{u c c o m p}_{k}
$$

from symmetric to unital cubic compositions as follows. For a symmetric composition $\mathfrak{C}=(M, q, \star)$, let $\mathbf{A}_{\alpha}(\mathfrak{C})=(k \oplus M, N, 1 \oplus 0, \bullet)$ be the unital cubic composition defined in Cor. 4.3. For a morphism $\psi: \mathfrak{C} \rightarrow \mathfrak{C}^{\prime}$ of symmetric compositions let $\mathbf{A}_{\alpha}(\psi): \mathbf{A}_{\alpha}(\mathfrak{C}) \rightarrow \mathbf{A}_{\alpha}\left(\mathfrak{C}^{\prime}\right)$ be defined by $\lambda \oplus x \mapsto \lambda \oplus \psi(x)$. Then \mathbf{A}_{α} is compatible with the functor $\mathbf{A}: \mathbf{q c f o r m}_{k} \rightarrow \mathbf{u c c o m p}_{k}$ of 2.5 , i.e., the diagram

is commutative, cf. also the diagram in 3.12.
We now extend Prop. 2.6 to the functors \mathbf{C}_{α} and \mathbf{A}_{α} :
4.10. Proposition. Let $\alpha \in \boldsymbol{\pi}_{6}(k)$ be a primitive sixth root of unity and put $\beta=$ $\alpha^{-1}=1-\alpha$. Composing the functors $\Omega: \mathbf{u c c o m p}_{k} \rightarrow \mathbf{u c f o r m}_{k}$ and $\Upsilon: \boldsymbol{\operatorname { s c o m p }}_{k} \rightarrow$ $\mathbf{q c f o r m}_{k}$ with the natural transformations ζ and ϑ of 2.6 yields natural transformations

$$
\zeta^{\prime}: \mathbf{A}_{\beta} \circ \mathbf{C}_{\alpha} \rightarrow \mathrm{Id}_{\mathbf{u c c o m p}_{k}}, \quad \vartheta^{\prime}: \mathbf{C}_{\alpha} \circ \mathbf{A}_{\beta} \rightarrow \mathrm{Id}_{\mathbf{s c o m p}_{k}} .
$$

If $3 \in k^{\times}$then ζ^{\prime} and ϑ^{\prime} are isomorphisms.
Proof. (a) In more detail, ζ^{\prime} is given as follows. For a unital cubic composition $\mathfrak{A}=(A, N)$ let $\Omega(\mathfrak{A})=\mathfrak{X}$ be the unital cubic form obtained by omitting the multiplication, cf. 3.1. Then $\zeta_{\mathfrak{A}}^{\prime}:=\zeta_{\mathfrak{X}}$ is defined as in (2.6.1). Thus by Prop. 2.6(a), it remains to show that $\zeta_{\mathfrak{X}}$ is a homomorphism of algebras. Consider the product * on A as in (3.9.1), where now $\beta=1-\alpha=\alpha^{-1}$, so $\alpha \beta=\alpha+\beta=1$ and $\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta=-1$. Then

$$
\begin{align*}
\beta x * y+\alpha y * x= & \beta\left\{(1+\alpha) x y+(1+\beta) y x-T_{x} y-T_{y} x\right\} \\
& +\alpha\left\{(1+\alpha) y x+(1+\beta) x y-T_{y} x-T_{x} y\right\} \\
= & (\beta+1+\alpha+1) x y+\left(\beta+\beta^{2}+\alpha+\alpha^{2}\right) y x-T_{x} y-T_{y} x \\
= & 3 x y-T_{x} y-T_{y} x . \tag{4.10.1}
\end{align*}
$$

Since $\zeta_{\mathfrak{X}}$ preserves unit elements, we may restrict attention to elements of the form $v=0 \oplus \dot{x}$ and $w=0 \oplus \dot{y}$ of $k \oplus \dot{X}$, where $x, y \in A$ and $\dot{x}=\kappa(x)$. Then

$$
\begin{equation*}
\zeta_{\mathfrak{X}}(0 \oplus x) \cdot \zeta_{\mathfrak{X}}(0 \oplus y)=\left(3 x-T_{x} \cdot 1_{A}\right)\left(3 y-T_{y} \cdot 1_{A}\right), \tag{4.10.2}
\end{equation*}
$$

while by (4.3.1) (with α replaced by α^{-1}) and (4.10.1),

$$
\begin{aligned}
\zeta_{\mathfrak{X}}((0 \oplus \dot{x}) & \bullet(0 \oplus \dot{y}))=\zeta_{\mathfrak{X}}\left(b(\dot{x}, \dot{y}) \oplus\left(\alpha^{-1} \dot{x} \star \dot{y}+\alpha \dot{y} \star \dot{x}\right)\right) \\
& =\zeta_{\mathfrak{X}}\left(\left(2 T_{x} T_{y}-3 B(x, y)\right) \oplus \kappa\left(\alpha^{-1} x * y+\alpha y * x\right)\right) \\
& =\zeta_{\mathfrak{X}}\left(\left(2 T_{x} T_{y}-3 B(x, y)\right) \oplus \kappa\left(3 x y-T_{x} y-T_{y} x\right)\right) \\
& =\left(2 T_{x} T_{y}-3 B(x, y)-T(3 x y)+2 T_{x} T_{y}\right) 1_{A}+3\left(3 x y-T_{x} y-T_{y} x\right) .
\end{aligned}
$$

This agrees with (4.10.2) because $4 T_{x} T_{y}-3 B(x, y)-3 T(x y)=4 T_{x} T_{y}-3 T_{x} T_{y}$ (by (3.2.1)) $=T_{x} T_{y}$.
(b) For a symmetric composition $\mathfrak{C}=(M, q, \star)$ let $\mathfrak{M}=\Upsilon(\mathfrak{C})=(M, q, h) \in$ $\boldsymbol{q} \mathbf{c f o r m}{ }_{k}$ as in (3.12.1). Then $\vartheta_{\mathfrak{C}}^{\prime}:=\vartheta_{\mathfrak{M}}$ as in (2.6.2). Since $\vartheta_{\mathfrak{M}}$ preserves quadratic forms by 2.6(b), it remains to show that it preserves products. For $v=\lambda \oplus x$ and $w=\mu \oplus y$ in $k \oplus M$ the traces are $T_{\mathfrak{M}}(v)=3 \lambda$ and $T_{\mathfrak{M}}(w)=3 \mu$ by (2.5.2). Now use the definition of the $*$-product in (3.9.1), where the algebra product is taken in the algebra $\mathbf{A}_{\beta}(\mathfrak{C})$ with product as in (4.3.1) but with α and β interchanged. Then a similar computation as in (4.10.1) shows

$$
\begin{aligned}
v * w & =(1+\alpha) v \bullet w+(1+\beta) w \bullet v-T_{\mathfrak{M}}(v) w-T_{\mathfrak{M}}(w) v \\
& =(1+\alpha)\left\{\left(\lambda \mu+b_{x, y}\right) \oplus(\beta x \star y+\alpha y \star x+\lambda y+\mu x)\right\} \\
& +(1+\beta)\left\{\left(\lambda \mu+b_{x, y}\right) \oplus(\beta y \star x+\alpha x \star y+\mu x+\lambda y)\right\}-3 \lambda w-3 \mu v \\
& =\left\{\left(3 \lambda \mu+3 b_{x, y}\right) \oplus 3(x \star y+\lambda y+\mu x)\right\}-3 \lambda w-3 \mu v \\
& =3\left\{\left(b_{x, y}-\lambda \mu\right) \oplus x \star y\right\} .
\end{aligned}
$$

Hence the product $\dot{*}$ induced from $*$ on $(k \oplus M) / k \cdot 1$ is, after the identification with M, simply given by $x \dot{*} y=3 x \star y$. This shows that indeed $\vartheta_{\mathfrak{M}}(x * y)=3(3 x \star y)=$ $(3 x) \star(3 y)=\vartheta_{\mathfrak{M}}(x) \star \vartheta_{\mathfrak{M}}(y)$.

Finally, it is clear from Prop. 2.6 that ζ^{\prime} and ϑ^{\prime} are isomorphisms if $3 \in k^{\times}$. Hence:
4.11. Corollary. If $3 \in k^{\times}$and if k contains a primitive sixth root of unity then the categories $\mathbf{u c c o m p}_{k}$ and $\mathbf{s c o m p}_{k}$ are equivalent.

We will see in the next section that the condition on the existence of the sixth root of unity can be omitted after replacing unital cubic compositions over k by unital cubic compositions of the second kind over a suitable quadratic extension of k.

5. Unital cubic compositions of the second kind

5.1. Quadratic algebras. Following [knus, III, §4], we mean by a quadratic algebra an algebra $K \in k$-alg which is finitely generated and projective of rank 2 as a k-module. Such an algebra has a canonical linear form t_{K}, the trace, and a quadratic form n_{K}, the norm, as well as an involution ι which satisfy

$$
\begin{gathered}
x^{2}-t_{K}(x) x+n_{K}(x) 1_{K}=0 \\
x+\iota(x)=t_{K}(x) 1_{K}, \quad x \iota(x)=n_{K}(x) 1_{K}
\end{gathered}
$$

for all $x \in K$.
Being of rank 2, K is in particular faithful as a k-module. By [knus, I, (1.3.5)], the map $\lambda \mapsto \lambda 1_{K}$ is an isomorphism of k onto a direct summand of K. Hence $\dot{K}:=K / k \cdot 1$ is finitely generated and projective of rank 1 over k.
5.2. Conjugations. Let K be a quadratic algebra and let Y be a K-module. A conjugation on Y is a k-linear map j from Y to itself which satisfies $j(j(y))=y$ and $j(y \mu)=j(y) \iota(\mu)$, for all $y \in Y$ and $\mu \in K$. Note that this definition generalizes the definition of a Galois descent datum [knus, III, p. 115] insofar as K is not assumed to be étale over k.

Let $\bmod _{k}$ be the category of k-modules and let $\bmod _{K / k}$ be the category whose objects are pairs (Y, j) consisting of a K-module Y and a conjugation j, with
morphisms K-linear maps commuting with the conjugations. By abuse of notation, the explicit reference to j will often be suppressed. For $X \in \bmod _{k}$ let

$$
\mathbf{E}(X)=\left(X \otimes_{k} K, \operatorname{Id}_{X} \otimes \iota\right)
$$

be the base extension from k to K (with conjugation $\operatorname{Id}_{X} \otimes \iota$ induced from ι), and for $(Y, j) \in \bmod _{K / k}$, let

$$
\mathbf{D}(Y, j)=\operatorname{Ker}\left(\operatorname{Id}_{Y}-j\right)=\{x \in Y: j(x)=x\}
$$

the fixed point set of j. Then it is easy to see that we have functors

$$
\mathbf{E}: \boldsymbol{\operatorname { m o d }}_{k} \rightarrow \bmod _{K / k}(" e x t e n s i o n "), \quad \mathbf{D}: \bmod _{K / k} \rightarrow \bmod _{k}(" d \text { descent") }
$$

and that \mathbf{D} is right adjoint to \mathbf{E}, i.e., that there are natural bijections

$$
\bmod _{K / k}(\mathbf{E}(X), Y) \cong \bmod _{k}(X, \mathbf{D}(Y))
$$

By general facts from category theory [maclane], there are natural transformations

$$
\begin{equation*}
\eta: \mathrm{Id}_{\bmod _{k}} \rightarrow \mathbf{D} \circ \mathbf{E}, \quad \varepsilon: \mathbf{E} \circ \mathbf{D} \rightarrow \mathrm{Id}_{\bmod _{K / k}} \tag{5.2.1}
\end{equation*}
$$

which in the present situation are given as follows:

$$
\begin{aligned}
\eta_{X}(x) & =x \otimes 1_{K} \in \mathbf{D}(\mathbf{E}(X)) & & \left(x \in X \in \bmod _{k}\right), \\
\varepsilon_{Y}(y \otimes \mu) & =y \mu \in Y & & \left(y=j(y) \in Y \in \bmod _{K / k}\right) .
\end{aligned}
$$

Standard results on Galois descent [knus, Chapter III] say that if K is étale, then η and ε are isomorphisms, and \mathbf{D} and \mathbf{E} are quasi-inverse equivalences of categories. More generally, there is still the following result.
5.3. Lemma. Let K be a quadratic algebra and put $K^{0}:=\operatorname{Ker}\left(t_{K}\right)$ and $\dot{K}:=$ $K / k \cdot 1_{K}$. Then the following conditions are equivalent:
(i) K has surjective trace,
(ii) Id $-\iota$ induces an isomorphism $\dot{K} \xrightarrow{\cong} K^{0}$,
(iii) for all $X \in \bmod _{k}$, the map $x \mapsto x \otimes 1$ is an isomorphism of X onto the fixed point set of $j:=\operatorname{Id}_{X} \otimes \iota$ in $X \otimes K=\mathbf{E}(X)$,
(iv) $\eta: \mathrm{Id}_{\mathbf{m o d}_{k}} \rightarrow \mathbf{D} \circ \mathbf{E}$ is an isomorphism.

Proof. (i) \Longrightarrow (ii): Clearly $\varphi:=\mathrm{Id}-\iota=2 \operatorname{Id}-1_{K} \otimes t_{K}$ vanishes on $k \cdot 1_{K}$ and takes values in K^{0}, thus inducing a homomorphism $\dot{K} \rightarrow K^{0}$. Since t_{K} is surjective the sequence $0 \longrightarrow K^{0} \longrightarrow K \xrightarrow{t_{K}} k \longrightarrow 0$ is exact, so K^{0} is finitely generated and projective of rank 1 . Therefore, it suffices to show that $\varphi \otimes \boldsymbol{\kappa}(\mathfrak{p}) \neq 0$ for all prime ideals \mathfrak{p} of k, where $\boldsymbol{\kappa}(\mathfrak{p})$ denotes the quotient field of k / \mathfrak{p}. After changing base from k to $\boldsymbol{\kappa}(\mathfrak{p})$, we may assume k is a field and then have to show that $\varphi \neq 0$. If $\operatorname{char}(k)=2, \varphi=1_{K} \otimes t_{K} \neq 0$ is clear. If $\operatorname{char}(k) \neq 2, K=k \cdot 1_{K} \oplus K^{0}$, and $\varphi \mid K^{0}=2 \mathrm{Id} \neq 0$.
(ii) \Longrightarrow (iii): By (ii), we have an exact sequence

$$
\begin{equation*}
0 \longrightarrow k \xrightarrow{i} K \xrightarrow{\mathrm{Id}-\iota} K^{0} \longrightarrow 0 \tag{5.3.1}
\end{equation*}
$$

where $i(\lambda)=\lambda \cdot 1_{K}$, and it splits because K^{0} is projective. Hence tensoring (5.3.1) with X yields the exact sequence $0 \longrightarrow X \longrightarrow X \otimes K \xrightarrow{\text { Id }-j} X \otimes K^{0} \longrightarrow 0$. This shows that the fixed point set of j in $X \otimes K$ is $X \otimes 1 \cong X$.
(iii) \Longleftrightarrow (iv): Evident.
(iii) \Longrightarrow (i): Let $I \subset k$ be the image of t_{K} and put $X=k / I$. Then $I X=0$ and $-x=x$ for all $x \in X$ because $2=t_{K}\left(1_{K}\right) \in I$. Hence for all $x \in X$ and $\mu \in K$,

$$
\left(\operatorname{Id}_{X} \otimes \iota\right)(x \otimes \mu)=x \otimes\left(t_{K}(\mu) \cdot 1_{K}-\mu\right)=t_{K}(\mu) x \otimes 1_{K}-x \otimes \mu=x \otimes \mu
$$

This shows $\operatorname{Id}_{X} \otimes \iota$ is the identity on $X \otimes K$, so by (iii), the map $x \mapsto x \otimes 1_{K}$ is an isomorphism $X \cong X \otimes K$ of k-modules. On the other hand, the sequence $0 \longrightarrow k \longrightarrow K \xrightarrow{\text { can }} \dot{K} \longrightarrow 0$ is split-exact. Tensoring with X yields the (split-)exact sequence $0 \longrightarrow X \xrightarrow{\cong} X \otimes K \longrightarrow X \otimes \dot{K} \longrightarrow 0$ which implies $X \otimes \dot{K}=0$. Since \dot{K} is faithfully flat, it follows that $X=0$.
5.4. Modules with additional structure. The foregoing considerations extend in a straightforward manner to the situation where $\bmod _{k}$ is replaced by a category of modules with some additional algebraic structure, for example, a (not necessarily associative) multiplication. Then a conjugation is required to preserve the additional structure, and the analogously defined functors \mathbf{D} and \mathbf{E} have the same properties as above. We will need in particular the case of modules equipped with polynomial laws which is more involved. Let pol $_{k}$ be the category whose objects are triples (X, V, f) consisting of k-modules X and V and a polynomial law f on X with values in V. A morphism from (X, V, f) to $\left(X^{\prime}, V^{\prime}, f^{\prime}\right)$ is a pair of k-linear maps $\varphi: X \rightarrow X^{\prime}$ and $\psi: V \rightarrow V^{\prime}$ such that $\psi_{R} \circ f_{R}=f_{R}^{\prime} \circ \varphi_{R}$ for all $R \in k$-alg. Similarly, define $\mathbf{p o l}_{K / k}$ to be the category whose objects are quintuples $\left(Y, j_{Y}, W, j_{W}, g\right)$, where $\left(Y, j_{Y}\right)$ and $\left(W, j_{W}\right)$ are in $\bmod _{K / k}$ and $g \in \mathcal{P}(Y, W)$ is a polynomial law, compatible with the conjugations in the sense that the diagram

is commutative. Here ${ }_{k}()$ is restriction of scalars to k, cf. (1.2.2). Morphisms in $\mathbf{p o l}_{K / k}$ are defined similarly as in $\mathbf{p o l}_{k}$. Then there is a base extension functor $\mathbf{E}: \mathbf{p o l}_{k} \rightarrow \mathbf{p o l}_{K / k}$ given by

$$
\mathbf{E}(X, V, f)=(\mathbf{E}(X), \mathbf{E}(V), \mathbf{E}(f)=f \otimes K)
$$

There is also a descent functor which requires more care:
5.5. Proposition. Given $\left(Y, j_{Y}, W, j_{W}, g\right) \in \operatorname{pol}_{K / k}$, there is a "descended" polynomial law $f=\mathbf{D}(g) \in \mathcal{P}(\mathbf{D}(Y), \mathbf{D}(W))$, uniquely determined by the condition that, for all $R \in k$-alg, and putting $X=\mathbf{D}(Y)$ and $V:=\mathbf{D}(W)$ for short, the following diagram is commutative:

Here $i_{X}: X \rightarrow{ }_{k} Y$ and $i_{V}: V \rightarrow{ }_{k} W$ denote the inclusion maps. This defines a functor $\mathbf{D}: \mathbf{p o l}_{K / k} \rightarrow \mathbf{p o l}_{k}$, compatible with taking homogeneous components and
right adjoint to $\mathbf{E}: \mathbf{p o l}_{k} \rightarrow \mathbf{p o l}_{K / k}$, so there are natural transformations η and ε as in (5.2.1).

Proof. Let $k_{\infty}=k\left[\mathbf{t}_{1}, \mathbf{t}_{2}, \ldots\right]$ be the polynomial ring in countably many indeterminates, and let k-alg' be the full subcategory of k-alg having the single object k_{∞}. For a k-module M, let $M_{\mathbf{a}^{\prime}}$ be the restriction of the functor $M_{\mathbf{a}}$ to k - alg^{\prime}. By [roby, Prop. IV.4], a polynomial law $f \in \mathcal{P}(X, V)$ is the same as a natural transformation $f^{\prime}: X_{\mathbf{a}^{\prime}} \rightarrow V_{\mathbf{a}^{\prime}}$. More precisely, any $f \in \mathcal{P}(X, V)$ induces by restriction a natural transformation $f^{\prime}: X_{\mathbf{a}^{\prime}} \rightarrow V_{\mathbf{a}^{\prime}}$, and this establishes a bijection between $\mathcal{P}(X, V)$ and the set of natural transformations from $X_{\mathbf{a}^{\prime}}$ to $V_{\mathbf{a}^{\prime}}$. Since k_{∞} is free as a k-module, the exact sequence

$$
0 \longrightarrow X{\xrightarrow{i_{X}}}_{k} Y{\xrightarrow{\text { Id }-j_{Y}}}_{k} Y
$$

remains exact upon tensoring with k_{∞}. Hence $i_{X} \otimes \operatorname{Id}_{k_{\infty}}$ maps $X \otimes k_{\infty}$ isomorphically onto the fixed point set of $j_{Y} \otimes \operatorname{Id}_{k_{\infty}}$, and the same is true for i_{V}. Since $\left({ }_{k} g\right)_{k_{\infty}}$ commutes with the conjugations by (5.4.1), it induces a unique map $f_{k_{\infty}}: X \otimes k_{\infty} \rightarrow V \otimes k_{\infty}$. It remains to show that this defines a natural transformation $X_{\mathbf{a}^{\prime}} \rightarrow V_{\mathbf{a}^{\prime}}$; i.e., that for every k-algebra homomorphism $\varphi: k_{\infty} \rightarrow k_{\infty}$, the diagram

is commutative, where we have abbreviated $f_{\infty}:=f_{k_{\infty}}$ and $X_{\infty}:=X \otimes k_{\infty}$ and similarly for V_{∞}. This follows by chasing the diagram below whose sides and bottom are commutative and where the vertical arrows are injective, being induced from i_{X} and i_{V} :

The proof of the remaining statements is left to the reader.
5.6. Corollary. Let K be a quadratic algebra with surjective trace. Let $V \in \bmod _{k}$ and $(Y, j) \in \bmod _{K / k}$, and let $g \in \mathcal{P}(Y, \mathbf{E}(V))$ be a polynomial law compatible with the conjugations j on Y and $\operatorname{Id} \otimes \iota$ on $\mathbf{E}(V)=V \otimes K$. Then the descended polynomial law $f=\mathbf{D}(g)$ takes values in V. In particular, if $V=k$ and g is a form of degree d then $\mathbf{D}(g)$ is a form of degree d on $X=\mathbf{D}(Y)$.

Proof. By Prop. 5.5, $\mathbf{D}(g)$ takes values in $\mathbf{D}(\mathbf{E}(V))$ which is canonically isomorphic to V by Lemma 5.3.
5.7. Definition. Let K be a quadratic k-algebra with surjective trace. An involution of the second kind on a K-algebra \tilde{A} (not necessarily associative or unital) is a conjugation J as in 5.2 which is, in addition, an anti-automorphism of the k-algebra ${ }_{k} \tilde{A}$. The category $\mathbf{u c c o m p}_{K / k}^{(2)}$ of unital cubic compositions of the second kind is defined as follows. Its objects are triples $(\tilde{A}, \tilde{N}, J)$ where $(\tilde{A}, \tilde{N}) \in \mathbf{u c c o m p}_{K}$ is a
unital cubic composition over K and J is an involution of the second kind of \tilde{A} which is compatible with \tilde{N} in the sense of 5.4 ; i.e., such that $(\tilde{A}, J, K, \iota, \tilde{N}) \in \operatorname{pol}_{K / k}$. Morphisms are defined as expected. Here, the descended k-module $\mathcal{H}:=\{x \in \tilde{A}$: $J(x)=x\}$ is the set of hermitian elements of \tilde{A}. In general, it does not inherit an algebra structure from \tilde{A} because J is not an automorphism of \tilde{A} but if \tilde{A} is associative or alternative, it will be a Jordan algebra over k. Since K has surjective trace, \tilde{N} induces by Cor. 5.6 a k-valued cubic form $N=\mathbf{D}(\tilde{N})$ on \mathcal{H}.

We also introduce the following category $\operatorname{scomp}_{K / k}$. Its objects are pairs ($\tilde{\mathfrak{C}}, j$) where $\tilde{\mathfrak{C}}=(\tilde{M}, \tilde{q}, \tilde{\AA}) \in \mathbf{s c o m p}_{K}$ is a symmetric composition over K and j is a conjugation on M compatible with \tilde{q} and $\tilde{\star}$ as explained in 5.4. In particular,

$$
\begin{equation*}
j(x \tilde{\star} y)=j(x) \tilde{\star} j(y) \tag{5.7.1}
\end{equation*}
$$

(no reversal of factors). By Cor. 5.6, \tilde{q} induces a quadratic form $q=\mathbf{D}(\tilde{q})$ with values in k on $M=\mathbf{D}(\tilde{M})$. Because of (5.7.1), $\tilde{\star}$ induces a multiplication $\star=\mathbf{D}(\tilde{\star})$ on M, making $\mathbf{D}(\tilde{\mathfrak{C}}, j):=(M, q, \star)$ a symmetric composition over k. We thus have a descent functor

$$
\begin{equation*}
\mathbf{D}: \mathbf{s c o m p}_{K / k} \rightarrow \mathbf{s c o m p}_{k} \tag{5.7.2}
\end{equation*}
$$

which is, as in 5.2 , right adjoint to the base extension functor

$$
\mathbf{E}: \mathbf{s c o m p}_{k} \rightarrow \mathbf{s c o m p}_{K / k}
$$

Since K has surjective trace, the unit η of this adjunction is, by Lemma 5.3, an isomorphism

$$
\begin{equation*}
\eta: \mathrm{Id}_{\mathbf{s c o m p}_{k}} \xrightarrow{\cong} \mathbf{D} \circ \mathbf{E} . \tag{5.7.3}
\end{equation*}
$$

We now specialize the quadratic algebra K to

$$
\begin{equation*}
K:=k[\mathbf{t}] /\left(\mathbf{t}^{2}-\mathbf{t}+1\right) . \tag{5.7.4}
\end{equation*}
$$

Thus K is a free quadratic algebra with basis 1 and $\rho:=\operatorname{can}(\mathbf{t})$ and the relation $\rho^{2}-\rho+1=0$, and the functor $\boldsymbol{\pi}_{6}$ of $3.7(\mathrm{c})$ is (represented by) the affine scheme defined by K; i.e., $\boldsymbol{\pi}_{6}(R)$ is in natural bijection with $\operatorname{Hom}_{k \text {-alg }}(K, R)$, by associating with $r \in \pi_{6}(R)$ the homomorphism $K \rightarrow R$ sending $\rho \mapsto r$. In particular, $t_{K}(\rho)=$ $n_{K}(\rho)=1$ and $\rho \in \boldsymbol{\pi}_{6}(K)$. The involution ι of K is given on ρ by

$$
\begin{equation*}
\iota(\rho)=1-\rho=\rho^{-1} \tag{5.7.5}
\end{equation*}
$$

The discriminant of $\mathbf{t}^{2}-\mathbf{t}+1$ is -3 , so K is étale if and only if $3 \in k^{\times}$.
5.8. The functor $\tilde{\mathbf{C}}$. Let $(\tilde{A}, \tilde{N}, J)$ be a unital cubic composition of the second kind over K / k, with K as in (5.7.4). Then (\tilde{A}, \tilde{N}) is a unital cubic composition over K and $\rho \in \boldsymbol{\pi}_{6}(K)$, so we may apply the functor \mathbf{C}_{ρ} of 3.12 and obtain a symmetric composition $\mathbf{C}_{\rho}(\tilde{A}, \tilde{N})=(\tilde{A} / K \cdot 1, \tilde{q}, \tilde{\star})$ over K. Moreover, J leaves $K \cdot 1$ stable and hence induces a conjugation j on the K-module $\tilde{A} / K \cdot 1$. We claim that j is compatible with \tilde{q} and $\tilde{\star}$, so that

$$
\begin{equation*}
\tilde{\mathbf{C}}_{\rho}(\tilde{A}, \tilde{N}, J):=\left(\mathbf{C}_{\rho}(\tilde{A}, \tilde{N}), j\right) \in \operatorname{scomp}_{K / k} \tag{5.8.1}
\end{equation*}
$$

Indeed, let \tilde{T} and \tilde{Q} be the linear and quadratic trace forms of \tilde{N}, cf. 2.2. From compatibility of \tilde{N} and J and since J fixes the unit element of \tilde{A}, it follows that \tilde{T} and \tilde{Q} are compatible with J as well. Hence, the same is true of the quadratic form $\tilde{H}_{2}=\tilde{T}^{2}-3 \tilde{Q}$, which implies that the quadratic form \tilde{q} induced by \tilde{H}_{2} on
$\tilde{M}:=\tilde{A} / K \cdot 1$ is compatible with j. The multiplication $\tilde{\star}$ on \tilde{M} is induced from the multiplication

$$
\begin{equation*}
x \tilde{*} y=(1+\rho) x y+\left(1+\rho^{-1}\right) y x-\tilde{T}(x) y-\tilde{T}(y) x \tag{5.8.2}
\end{equation*}
$$

on \tilde{A}, cf. (3.8.1). By applying J to this equation and using (5.7.5) as well as $\tilde{T}(J(x))=\iota(\tilde{T}(x))$, one sees that $J(x \tilde{*} y)=J(x) \tilde{*} J(y)$. Hence the multiplication $\tilde{\star}$ on \tilde{M} is compatible with the conjugation j. This proves (5.8.1), and it is easily checked that we have in fact a functor $\tilde{\mathbf{C}}_{\rho}: \mathbf{u c c o m p}_{K / k}^{(2)} \rightarrow \mathbf{s c o m p}_{K / k}$. Combining this with the descent functor (5.7.2), we obtain a functor

$$
\begin{equation*}
\tilde{\mathbf{C}}:=\mathbf{D} \circ \tilde{\mathbf{C}}_{\rho}: \mathbf{u c c o m p}_{K / k}^{(2)} \rightarrow \mathbf{s c o m p}_{k} . \tag{5.8.3}
\end{equation*}
$$

Remark. The symmetric composition $(M, q, \star)=\tilde{\mathbf{C}}(\tilde{A}, \tilde{N}, J)$ can also be obtained as follows. Instead of first forming the quotient $\tilde{A} / K \cdot 1$ and then taking the fixed point set of j, one can take first the fixed point set $\mathcal{H}=\mathbf{D}(\tilde{A}, J)$, which is a k submodule of \tilde{A} containing $k \cdot 1$, and then pass to the quotient $\mathcal{H}=\mathcal{H} / k \cdot 1$. Indeed, since (by definition) the unit element of \tilde{A} is a unimodular vector, we have the splitexact sequence $0 \rightarrow K \rightarrow \tilde{A} \rightarrow \tilde{M} \rightarrow 0$ of K-modules. Applying the functor \mathbf{D} yields the split-exact sequence $0 \rightarrow k \rightarrow \mathcal{H} \rightarrow M \rightarrow 0$ (where $M:=\mathbf{D}(\tilde{M})$) of k-modules, so $M \cong \dot{\mathcal{H}}$. Moreover, it is easily seen that \mathcal{H} is closed under the multiplication (5.8.2). Since the quadratic form \tilde{H}_{2} restricted to \mathcal{H} takes values in k, it follows that q and \star on M are also induced from the corresponding structures on \mathcal{H}.
5.9. The functor $\tilde{\mathbf{A}}$. There is a functor $\tilde{\mathbf{A}}$ in the opposite direction as follows. Let $(\tilde{\mathfrak{C}}, j) \in \mathbf{s c o m p}_{K / k}$, cf. 5.7. We apply the functor $\mathbf{A}_{\rho^{-1}}$ of 4.9 to $\tilde{\mathfrak{C}}$ and obtain a unital cubic composition $\mathbf{A}_{\rho^{-1}}(\tilde{\mathfrak{C}})=(K \oplus \tilde{M}, \tilde{N}) \in \mathbf{u c c o m p}_{K}$ over K. Now extend the conjugation j on \tilde{M} to a conjugation J on $\tilde{A}:=K \oplus \tilde{M}$ by

$$
J(\mu \oplus x):=\iota(\mu) \oplus j(x) \quad(\mu \in K, x \in \tilde{M})
$$

Then J is an involution of the second kind of \tilde{A}. Indeed, it is clear that J fixes the unit element $1_{K} \oplus 0$, so it suffices to prove the antiautomorphism property for elements of the form $0 \oplus x$. Since the action of j on \tilde{M} is compatible with $\tilde{\star}$ and \tilde{q}, we have $j(x \tilde{\star} y)=j(x) \tilde{\star} j(y)$ and $\iota(\tilde{b}(x, y))=\tilde{b}(j(x), j(y))$. Hence it follows from (5.7.5) that

$$
\begin{aligned}
J((0 \oplus x) \bullet(0 \oplus y)) & =J\left(\tilde{b}(x, y) \oplus\left(\rho^{-1} x \tilde{\star} y+\rho y \tilde{\star} x\right)\right) \\
& =\tilde{b}(j(x), j(y)) \oplus\left(\rho j(x) \tilde{\star} j(y)+\rho^{-1} j(y) \tilde{\star} j(x)\right) \\
& =J(0 \oplus y) \bullet J(0 \oplus x) .
\end{aligned}
$$

The cubic form \tilde{N} of \tilde{A} is given by $\tilde{N}(\mu \oplus x)=\mu^{3}-3 \mu \tilde{q}(x)+\tilde{b}(x, x \tilde{\star} x)$. This readily implies that \tilde{N} is compatible with the conjugation J on \tilde{A}. Altogether, we see that $\tilde{\mathbf{A}}_{\rho^{-1}}(\tilde{\mathfrak{C}}, j):=\left(\mathbf{A}_{\rho^{-1}}(\tilde{\mathfrak{C}}), J\right)$ is a unital cubic composition of the second kind and one checks easily that this defines a functor $\tilde{\mathbf{A}}_{\rho^{-1}}: \boldsymbol{\operatorname { s c o m p }}_{K / k} \rightarrow \boldsymbol{u c c o m p}_{K / k}^{(2)}$. Now combine this with the extension functor \mathbf{E} to obtain a functor

$$
\begin{equation*}
\tilde{\mathbf{A}}:=\tilde{\mathbf{A}}_{\rho^{-1}} \circ \mathbf{E}: \mathbf{s c o m p}_{k} \rightarrow \mathbf{u c c o m p}_{K / k}^{(2)} . \tag{5.9.1}
\end{equation*}
$$

5.10. Proposition. With $K, \tilde{\mathbf{A}}$ and $\tilde{\mathbf{C}}$ as above, there are natural transformations

$$
\begin{align*}
& \tilde{\zeta}: \tilde{\mathbf{A}} \circ \tilde{\mathbf{C}} \rightarrow \mathrm{Id}_{\mathbf{u c c o m p}_{K / k}^{(2)}}, \tag{5.10.1}\\
& \tilde{\vartheta}: \tilde{\mathbf{C}} \circ \tilde{\mathbf{A}} \rightarrow \mathrm{Id}_{\mathbf{s c o m p}_{k}} . \tag{5.10.2}
\end{align*}
$$

If $3 \in k^{\times}$then $\tilde{\zeta}$ and $\tilde{\vartheta}$ are isomorphisms, and hence the category of symmetric compositions over k is equivalent to the category of unital cubic compositions of the second kind.

Proof. By Prop. 2.6(a) and Prop. 4.10(a), there is a natural transformation $\zeta^{\prime}: \mathbf{A}_{\rho^{-1}} \circ \mathbf{C}_{\rho} \rightarrow \mathrm{Id}_{\mathbf{u c c o m p}_{K}}$, given as follows: If $\tilde{\mathfrak{A}}=(\tilde{A}, \tilde{N}) \in \mathbf{u c c o m p}_{K}$ then

$$
\begin{equation*}
\zeta_{\tilde{\mathfrak{A}}}^{\prime}(\mu \oplus \dot{x})=(\mu-\tilde{T}(x)) \cdot 1+3 x \tag{5.10.3}
\end{equation*}
$$

for all $x \in \tilde{A}, \mu \in K$. Here \tilde{T} denotes the linear trace form of the cubic form \tilde{N}. Now suppose that $(\tilde{\mathfrak{A}}, J)=(\tilde{A}, \tilde{N}, J)$ is a unital cubic composition of the second kind. Since the conjugation J is compatible with \tilde{T}, and since the conjugation on $\tilde{\mathbf{C}}_{\rho}(\tilde{\mathfrak{A}}, J)$ is induced from J by passing to the quotient modulo $K \cdot 1$, it is clear from (5.10.3) that $\zeta_{\tilde{\mathfrak{A}}}^{\prime}$ commutes with the respective conjugations. Hence we obtain a natural transformation

$$
\zeta^{\prime \prime}: \tilde{\mathbf{A}}_{\rho^{-1}} \circ \tilde{\mathbf{C}}_{\rho} \rightarrow \mathrm{Id}_{\mathbf{u c c o m p}_{K / k}^{(2)}}
$$

by defining $\zeta_{(\tilde{\mathfrak{A}}, J)}^{\prime \prime}=\zeta_{\tilde{\mathfrak{A}}}^{\prime}$. The desired natural transformation (5.10.1) is then obtained by combining $\zeta^{\prime \prime}$ with the natural transformation $\varepsilon: \mathbf{E} \circ \mathbf{D} \rightarrow \mathrm{Id}$, cf. (5.2.1):

$$
\tilde{\zeta}: \tilde{\mathbf{A}} \circ \tilde{\mathbf{C}}=\tilde{\mathbf{A}}_{\rho^{-1}} \circ \mathbf{E} \circ \mathbf{D} \circ \tilde{\mathbf{C}}_{\rho} \xrightarrow{\varepsilon} \tilde{\mathbf{A}}_{\rho^{-1}} \circ \tilde{\mathbf{C}}_{\rho} \xrightarrow{\zeta^{\prime \prime}} \operatorname{Id}_{\mathbf{u c c o m p}_{K / k}^{(2)}} .
$$

Similarly, by Prop. 2.6(c) and Prop. 4.10(b), there is a natural transformation ϑ^{\prime} : $\mathbf{C}_{\rho} \circ \mathbf{A}_{\rho^{-1}} \rightarrow \mathrm{Id}_{\mathbf{s c o m p}_{K}}$ which is simply multiplication by 3 . If $(\tilde{\mathfrak{C}}, j) \in \boldsymbol{\operatorname { s c o m p }}_{K / k}$ then this map obviously commutes with the conjugations. Hence we obtain a natural transformation

$$
\vartheta^{\prime \prime}: \tilde{\mathbf{C}}_{\rho} \circ \tilde{\mathbf{A}}_{\rho^{-1}} \rightarrow \mathrm{Id}_{\mathbf{s c o m p}_{K / k}}
$$

by defining $\vartheta_{(\tilde{\mathfrak{c}}, j)}^{\prime \prime}=\vartheta_{\tilde{\mathfrak{c}}}^{\prime}$. The asserted natural transformation $\tilde{\vartheta}$ is then obtained by combining $\vartheta^{\prime \prime}$ with the inverse of η of (5.7.3):

$$
\tilde{\vartheta}: \tilde{\mathbf{C}} \circ \tilde{\mathbf{A}}=\mathbf{D} \circ \tilde{\mathbf{C}}_{\rho} \circ \tilde{\mathbf{A}}_{\rho^{-1}} \circ \mathbf{E} \xrightarrow{\vartheta^{\prime \prime}} \mathbf{D} \circ \mathbf{E} \xrightarrow{\eta^{-1}} \mathrm{Id}_{\mathbf{s c o m p}_{k}} .
$$

The last statement is clear from the corresponding statement in Prop. 4.10.

6. Transfer of regularity conditions

6.1. Separable polynomial laws. While non-degeneracy of a polynomial law descends from faithfully flat base extensions by Lemma 1.5(d), this property is not preserved under base extension even in the case of fields:

Example. Let k be an imperfect field of characteristic p, suppose $a \in k$ is not a p-th power, and consider the polynomial law f of degree p on $X=k \times k$ with values in k given by

$$
f(x)=x_{1}^{p}-a x_{2}^{p}
$$

for all $x=\left(x_{1}, x_{2}\right) \in X_{R}=R \times R, R \in k$-alg. Then f is anisotropic $(f(x) \neq 0$ for all $0 \neq x \in X)$, in particular, $\operatorname{Ker}(f)=0$. Now put $R=k[\mathbf{t}] /\left(\mathbf{t}^{p}-a\right)$ and let $\tau=\operatorname{can}(\mathbf{t})$, so that $\tau^{p}=a$. Then $z=(\tau, 1) \in \operatorname{Ker}(f \otimes R)$ since f is additive.

Therefore, we introduce the following notion: A polynomial law $f \in \mathcal{P}(X, V)$ is said to be separable if X and V are finitely generated and projective k-modules and $f \otimes F$ is non-degenerate, for all fields $F \in k$-alg. This generalizes the separable quadratic forms of [uqf, §3]. It can be shown that a linear map $f: X \rightarrow V$ between finitely generated and projective modules, considered as a polynomial law of degree 1 , is separable if and only if it is an isomorphism of X onto a direct summand of V.

By Lemma 6.2 below, separability behaves well under base change. Note, however, that separability does not imply non-degeneracy: Let $p \in \mathbb{Z}$ be a prime. The form f of degree p on \mathbb{Z} given by $f(x)=x^{p}$ (for all $x \in R, R$ a \mathbb{Z}-algebra, i.e., an arbitrary commutative ring) is clearly separable, because $f \otimes F$ is anisotropic for any field F. But let for example $R=\mathbb{Z} / p^{2} \mathbb{Z}$. Then $z=p 1_{R} \in R$ is not zero, satisfies $z^{2}=p z=0$, and hence for all $S \in R$-alg and all $x \in S$, we have

$$
f\left(z_{S}+x\right)=\left(p 1_{S}+x\right)^{p}=x^{p}
$$

because $p^{p}=p^{2} p^{p-2}=0$ and $\binom{p}{i} \equiv 0(\bmod p)$ for $0<i<p$. Hence $z \in \operatorname{Ker}(f \otimes R)$.
6.2. Lemma. Let $f \in \mathcal{P}(X, V)$.
(a) If f is separable then so is $f \otimes R$, for all $R \in k$-alg.
(b) Conversely, let $R \in k$-alg be faithfully flat and $f \otimes R$ separable. Then f is separable.

Proof. (a) It is well known that finitely generated and projective modules remain so under base extension. Any field $F \in R$-alg can be considered, by restriction of scalars, as a field in k-alg. With the usual identifications, $\left(f \otimes_{k} R\right) \otimes_{R} F=f \otimes_{k} F$ whence $\operatorname{Ker}\left(\left(f \otimes_{k} R\right) \otimes_{R} F\right)=0$.
(b) If X_{R} and V_{R} are finitely generated and projective over R then so are X and V over k by [bac, I, §3.6, Prop. 12]. Let $F \in k$-alg be a field. After replacing k by F and correspondingly R by $R \otimes F$ (which is still faithfully flat over F, i.e., $\neq\{0\}$), we may assume that k is a field, and then must show that f is non-degenerate. Let $\mathfrak{m} \subset R$ be a maximal ideal and $L=R / \mathfrak{m}$. Then L is an extension field of k via $k \rightarrow R \rightarrow L$. Since $f \otimes R$ is separable, $\left(f \otimes_{k} R\right) \otimes_{R} L$ is non-degenerate. But $\left(f \otimes_{k} R\right) \otimes_{R} L=f \otimes_{k} L$, and L is obviously faithfully flat over k (being an extension field). Hence $f \otimes_{k} L$ non-degenerate implies f non-degenerate by Lemma 1.5(d).
6.3. Definition. A unital d-form $\mathfrak{X}=(X, N, 1)$ is called separable if N is separable in the sense of 6.1. Similarly, a quadratic-cubic form $\mathfrak{M}=\left(M, f_{2}, f_{3}\right) \in$ qcform $_{k}$ as in 2.5 is called separable if $f=f_{2}+f_{3}$ is separable. We show next how the functors \mathbf{C} and \mathbf{A} of 2.5 interact with non-degeneracy and separability.
6.4. Proposition. Let $\mathfrak{X}=(X, N, 1) \in \operatorname{ucform}_{k}$ and $\mathfrak{M}=\mathbf{C}(\mathfrak{X})=(\dot{X}, q, h) \in$ $\mathbf{q c f o r m}_{k}$ as in 2.5. The canonical map $X \rightarrow \dot{X}=X / k \cdot 1$ is denoted by κ.
(a) Then $\kappa(\operatorname{Ker}(N)) \subset \operatorname{Ker}(q+h)$, and equality holds if $3 \in k^{\times}$.
(b) If $\mathbf{C}(\mathfrak{X})$ is separable then so is \mathfrak{X}, and the converse holds if $3 \in k^{\times}$.

Proof. (a) By Lemma 2.4(a), $q+h=\kappa_{*}\left(H_{2}+H_{3}\right)$. Hence Prop. 1.6 shows that $\dot{z} \in \operatorname{Ker}(q+h)$ if and only if $z \in \operatorname{Ker}\left(H_{2}+H_{3}\right)$. By (1.4.3), we have $\operatorname{Ker}\left(H_{2}+H_{3}\right)=$ $\operatorname{Ker}\left(H_{2}\right) \cap \operatorname{Ker}\left(H_{3}\right)$. One sees by a straightforward computation, using (2.4.1) (2.4.4) as well as the description of the kernel of a quadratic and a cubic form in (1.4.4) and (1.4.5), that $z \in \operatorname{Ker}\left(H_{2}\right) \cap \operatorname{Ker}\left(H_{3}\right)$ if and only if

$$
\begin{align*}
T(z)^{2} & =3 Q(z) \tag{6.4.1}\\
2 T(z) T(x) & =3 B(z, x) \quad \text { for all } x \in X \tag{6.4.2}\\
3 T(z) Q(z) & =27 N(z) \tag{6.4.3}\\
9 T(x) Q(z) & =27 N_{21}(z, x) \quad \text { for all } x \in X \tag{6.4.4}\\
9 T(z) Q(x) & =27 N_{21}(x, z) \quad \text { for all } x \in X . \tag{6.4.5}
\end{align*}
$$

We also have

$$
\begin{equation*}
z \in \operatorname{Ker}(N) \quad \Longrightarrow \quad z \in \operatorname{Ker}(T) \cap \operatorname{Ker}(Q) \tag{6.4.6}
\end{equation*}
$$

Indeed, $z \in \operatorname{Ker}(N)$ implies $N_{21}(x, z)=N_{21}(z, x)=0$ for all $x \in X$. Putting $x=1$ yields $T(z)=N_{21}(1, z)=0$ and $Q(z)=N_{21}(z, 1)=0$. Moreover, $B(x, z)=$ $\Phi(x, z, 1)=0$ follows by linearizing the condition $N_{21}(x, z)=0$ with respect to x in direction z.

Now (6.4.1) - (6.4.6) show that $\operatorname{Ker}(N) \subset \operatorname{Ker}\left(H_{2}+H_{3}\right)$, and hence $\kappa(\operatorname{Ker}(N))$ $\subset \kappa\left(\operatorname{Ker}\left(H_{2}+H_{3}\right)\right)=\operatorname{Ker}(q+h)$, by (1.6.2).

Suppose $3 \in k^{\times}$. Then $X=k \cdot 1 \oplus X^{0}$ where $X^{0}=\operatorname{Ker}(T)$, so $\kappa: X^{0} \rightarrow \dot{X}$ is an isomorphism of k-modules. For an element $w \in \operatorname{Ker}(q+h)$ let $z_{0} \in X^{0}$ be its inverse image. Then $z_{0} \in \operatorname{Ker}\left(H_{2}\right) \cap \operatorname{Ker}\left(H_{3}\right)$ by (1.6.1), so (6.4.1) and (6.4.3) (6.4.5) show that $z_{0} \in \operatorname{Ker}(N)$, and therefore $w=\kappa\left(z_{0}\right) \in \kappa(\operatorname{Ker}(N))$, as desired.
(b) As 1_{X} is a unimodular vector, $X \cong k \oplus \dot{X}$ as a k-module. Hence X is finitely generated and projective if and only if \dot{X} is so. Now let $\mathbf{C}(\mathfrak{X})$ be separable and let $F \in k$-alg be a field. After extending the base from k to F, we may assume that k itself is a field. Then $\kappa(\operatorname{Ker}(N)) \subset \operatorname{Ker}(q+h)=\{0\}$ implies $\operatorname{Ker}(N) \subset k \cdot 1$. But if $\lambda \cdot 1 \in \operatorname{Ker}(N)$ then $0=N(\lambda \cdot 1)=\lambda^{3}$ implies $\lambda=0$, because k is a field. Hence $\operatorname{Ker}(N)=\{0\}$.

Now assume $3 \in k^{\times}$and $\mathbf{C}(\mathfrak{X})$ separable. As before, we may assume k to be a field. Then $\operatorname{Ker}(q+h)=\kappa(\operatorname{Ker}(N))=\kappa(\{0\})=\{0\}$.
6.5. Proposition. Let $\mathfrak{M}=\left(M, f_{2}, f_{3}\right) \in \mathbf{q c f o r m}_{k}$ and let $N_{\mathfrak{M}}$ be the cubic form of $\mathbf{A}(\mathfrak{M})$ as in (2.5.1).
(a) Then $\nu \oplus z \in \operatorname{Ker}\left(N_{\mathfrak{M}}\right)$ if and only if

$$
\begin{align*}
& z \in \operatorname{Ker}\left(3 f_{2}\right) \tag{6.5.1}\\
& 3 \nu=\nu^{3}+f_{3}(z)=0 \tag{6.5.2}\\
& f_{21}(x, z)=f_{21}(z, x)=0 \quad \text { for all } x \in M \tag{6.5.3}
\end{align*}
$$

In particular, $0 \oplus \operatorname{Ker}\left(f_{2}+f_{3}\right) \subset \operatorname{Ker}\left(N_{\mathfrak{M}}\right)$. If k has no 3 -torsion, then

$$
\begin{equation*}
\operatorname{Ker}\left(N_{\mathfrak{M}}\right)=0 \oplus \operatorname{Ker}\left(f_{2}+f_{3}\right) \tag{6.5.4}
\end{equation*}
$$

(b) If $\mathbf{A}(\mathfrak{M}) \in \mathbf{u c f o r m}_{k}$ is separable then so is \mathfrak{M}, and the converse holds provided $3 \in k^{\times}$.

Proof. (a) Put $N=N_{\mathfrak{M}}$ for short. From (2.5.1) it follows easily that

$$
N_{21}(\lambda \oplus x, \mu \oplus y)=3 \lambda^{2} \mu-3 \mu f_{2}(x)-3 \lambda f_{11}(x, y)+f_{21}(x, y)
$$

Here f_{11} and f_{21} denote the polarizations of f_{2} and f_{3}. By (1.4.5), $\nu \oplus z \in \operatorname{Ker}(N)$ if and only if $N(\nu \oplus z)=N_{21}(\nu \oplus z, \lambda \oplus x)=N_{21}(\lambda \oplus x, \nu \oplus z)=0$ for all $\lambda \oplus x \in k \oplus M$. It is straightforward to show that these conditions are equivalent to (6.5.1) - (6.5.3), and are implied by $\nu=0$ and $z \in \operatorname{Ker}(N)$. If k has no 3 -torsion then (6.5.1) (6.5.3) are equivalent to $\nu=0$ and $z \in \operatorname{Ker}\left(f_{2}\right) \cap \operatorname{Ker}\left(f_{3}\right)$.
(b) This follows by observing that M is finitely generated and projective if and only if $k \oplus M$ is so, and by applying (a) to $\mathfrak{M} \otimes F$ where $F \in k$-alg a field.
6.6. Definition. Recall (3.1) the functor Ω from unital compositions to unital forms which omits the multiplication. For a unital degree d composition $\mathfrak{A}=$ $(\mathfrak{X}, \cdot)=(A, N)$, we define separability by

$$
\begin{align*}
\mathfrak{A} \text { is separable } & \Longleftrightarrow \Omega(\mathfrak{A})=\mathfrak{X} \text { is separable }, \tag{6.6.1}\\
& \Longleftrightarrow N \text { is separable. }
\end{align*}
$$

Thus separability of \mathfrak{A} is not defined in terms of the algebra A (this would be rather awkward, since we don't even know whether A is alternative), but solely in terms of the form N.

A symmetric composition $\mathfrak{C}=(M, q, \star)$ is called separable if the quadratic form q is separable. Recall from (3.12.1) the functor $\Upsilon: \mathbf{s c o m p} \rightarrow \mathbf{q c f o r m}_{k}, \mathfrak{C} \mapsto$ (M, q, h). Since Υ is compatible with base change, and $\operatorname{Ker}(q \otimes F+h \otimes K)=$ $\operatorname{Ker}(q \otimes F) \cap \operatorname{Ker}(h \otimes F)($ by (1.4.3) $)=\operatorname{Ker}(q \otimes F)($ by (4.4.2)), we see that

$$
\begin{equation*}
\mathfrak{C} \text { is separable } \quad \Longleftrightarrow \quad \Upsilon(\mathfrak{C})=(M, q, h) \text { is separable. } \tag{6.6.2}
\end{equation*}
$$

Note that the underlying module of a separable unital or symmetric composition is, by definition, finitely generated and projective.

Now combine Prop. 6.4(b) and 6.5(b) with (6.6.1) and (6.6.2) and the compatibility of the functors Ω and Υ with \mathbf{C}_{α} and \mathbf{C} as well as $\mathbf{A}_{\alpha^{-1}}$ and \mathbf{A}. Then Prop. 4.10 implies:
6.7. Corollary. Let $3 \in k^{\times}$and $\alpha \in \boldsymbol{\pi}_{6}(k)$ a primitive sixth root of unity. Then \mathbf{C}_{α} and $\mathbf{A}_{\alpha^{-1}}$ induce quasi-inverse equivalences between the categories of separable unital cubic compositions and separable symmetric compositions.

It is possible to formulate a twisted version of this result, using the functors $\tilde{\mathbf{C}}$ and $\tilde{\mathbf{A}}$ of $\S 5$. The details are omitted.
6.8. Strictness. We call a symmetric composition $\mathfrak{C}=(M, q, \star)$ strict if the congruences (4.5.4) are equalities, i.e., if

$$
\begin{equation*}
(x \star y) \star x=x \star(y \star x)=q(x) y, \tag{6.8.1}
\end{equation*}
$$

for all $x, y \in M$. From 4.5 it is clear that

$$
q \text { non-degenerate } \quad \Longrightarrow \quad \mathfrak{C} \text { strict }
$$

and it can be shown that separable symmetric compositions are strict as well.
In a similar vein, let us call a unital cubic composition $\mathfrak{A}=(A, N)$ strict if A is an alternative algebra and satisfies the characteristic polynomial χ of 2.3, i.e.,

$$
\chi(x ; x)=x^{3}-T(x) x^{2}+Q(x) x-N(x) 1=0
$$

for all $x \in A \otimes R, R \in k$-alg. - Here the relation between non-degeneracy and strictness is less clear than in case of symmetric compositions. It is claimed in [bb, Satz 3] that N non-degenerate implies A alternative. Similarly, it is claimed in [berg, p. 142, Satz 4] and [bb, Satz 4] that non-degeneracy of N implies that A satisfies χ. I have not been able to verify the arguments given by Baumgartner and Bergmann. On the other hand, Schafer [schafer:n, Theorem 2, Theorem 3] proved that this is true if k is a field of characteristic different from 2 or 3 .

The following result is the analogue, in our setting, of [elmy, Prop. 4.1, Prop. 4.2]. We leave it to the reader to formulate and prove a twisted version like [elmy, Prop. 5.1, Prop. 5.2].
6.9. Proposition. The functors \mathbf{C}_{α} and \mathbf{A}_{α} preserve strictness.

Proof. Let $\mathfrak{A}=(A, N) \in \mathbf{u c c o m p}_{k}$ be strict. We compute the product $(x * y) * x$, defined as in (3.9.1), where now $\beta=\alpha^{-1}=1-\alpha$. A straightforward computation shows that

$$
\begin{equation*}
(x * y) * x=3\left(x^{2} y+x y x+y x^{2}\right)-3 T_{x}(x y+y x)-3 T_{y} x^{2}+3\left(T_{x} T_{y}-T_{x y}\right) x+T_{x}^{2} y \tag{6.9.1}
\end{equation*}
$$

On the other hand, $x+y$ satisfies the polynomial $\chi(\mathbf{t} ; x+y)$, whence

$$
(x+y)^{3}-T_{x+y}(x+y)^{2}=N(x+y) \cdot 1-Q(x+y)(x+y) .
$$

By expanding and comparing the terms quadratic in x and linear in y, we obtain

$$
\begin{equation*}
x^{2} y+x y x+y x^{2}-T_{x}(x y+y x)-T_{y} x^{2}=N_{21}(x, y) 1-Q_{x} y-B(x, y) x \tag{6.9.2}
\end{equation*}
$$

Combining (6.9.1) and (6.9.2) and using (3.2.1) yields

$$
\begin{equation*}
(x * y) * x=\left(T_{x}^{2}-3 Q_{x}\right) y+3 N_{21}(x, y) \cdot 1 . \tag{6.9.3}
\end{equation*}
$$

Now pass to the quotient $\dot{A}=A / k \cdot 1$ and recall that the quadratic form q on $\mathbf{C}_{\alpha}(\mathfrak{A})$ is induced from $H_{2}(x)=T_{x}^{2}-3 Q_{x}$. Then (6.9.3) implies $(\dot{x} \star \dot{y}) \star \dot{x}=q(\dot{x}) \dot{y}$, and the second equation of (6.8.1) is proved similarly.

Let $\mathfrak{C}=(M, q, \star)$ be strict and $\mathbf{A}_{\alpha}(\mathfrak{C})=\mathfrak{A}=(A, N)$, thus $A=k \oplus M$ with the multiplication \bullet of (4.3.1) and the cubic form N of (4.1.1). We first show that A is alternative. It suffices to prove the alternative law for elements of the form $u=0 \oplus x$ and $v=0 \oplus y$. Then the assertion follows by a straightforward computation, using (6.8.1) and the identities (4.5.7) and (4.5.8) which follow from (6.8.1) by linearization and are now equalities (instead of congruences modulo $\operatorname{Ker}(q)$).

The fact that A satisfies the characteristic polynomial is likewise a straightforward computation, using the formulas (2.5.2) and (2.5.3) for the trace and quadratic trace of N.

References

