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Abstract. We consider generalized symmetric compositions over a ring k on the one

hand, and unital algebras with multiplicative cubic forms on the other. Given a prim-

itive sixth root of unity in k, we construct functors between these categories which are
equivalences if 3 is a unit in k. This extends to arbitrary base rings, and with new proofs,

results of Elduque and Myung on non-degenerate symmetric compositions and separable
alternative algebras of degree 3 over fields. It also answers a problem posed in “The Book

of Involutions” [boi, 34.26].

Introduction

Consider a finite-dimensional separable alternative algebra A of degree 3 over a field
k of characteristic not 3, containing a primitive third root of unity. Okubo [ok] and
later Faulkner [foa] found on the space A0 of trace zero elements a remarkable
multiplication ? which has the composition and associativity property

q(x ? y) = q(x)q(y), b(x ? y, z) = b(x, y ? z), (1)

where q is −1/3 times the quadratic trace of A and b is the polar form of q. In [boi,
§34], the terminology “symmetric compositions” was coined for non-associative al-
gebras over a field with a non-degenerate quadratic form satisfying (1). There is
also a construction in the opposite direction: Given a symmetric composition on
a k-vector space M of dimension >2, there is a naturally defined multiplication •
and a cubic form N on A = k ⊕M making A a separable alternative algebra of
degree 3 with generic norm N . Thus one obtains an equivalence between the cat-
egories of separable alternative algebras of degree 3, and symmetric compositions
of dimension >2, always under the restrictions on k mentioned earlier. This result
is due to Elduque-Myung [elmy], see also [boi, Theorem 34.23]. Results of Schafer
[schafer:n] show that separable alternative algebras of degree 3 are the same as
unital algebras of dimension >3 with non-degenerate multiplicative cubic forms.
By this detour, the symmetric composition property (1) is equivalent to the mul-
tiplicativity of N with respect to •. As remarked in [boi, 34.26], it would be nice
to have a direct proof of this fact. Such a proof was attempted by Tschupp [tsch].
While his construction of a symmetric composition from A and N works well, the
opposite direction — from symmetric compositions to algebras with multiplicative
cubic forms — contains errors.

The object of this paper is to give a direct proof of this correspondence without
making any non-degeneracy assumptions, and at the same time to extend the theory
as far as possible to arbitrary base rings.

Specifically, we work in the following setting. Let k be an arbitrary commutative
ring. On the one hand, we consider unital cubic compositions, that is, pairs (A,N)
consisting of a unital k-algebra A and a multiplicative cubic form N on A. Apart
from assuming that the unit element of A be a unimodular vector, there are no
restrictions on the k-module structure of A. Hence, the cubic form N must be
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interpreted as a polynomial law in the sense of Roby [roby]. With an obvious
definition of morphism, unital cubic compositions over k form a category uccompk.

On the other hand, there is the category scompk of (generalized) symmetric
compositions (M, q, ?), where M is a k-module with a quadratic form q and a
multiplication ? satisfying (1). We make no assumptions on the structure of M as
a k-module or on non-degeneracy of q. Let π6(k) = {α ∈ k : α2 − α + 1 = 0}
denote the set of primitive sixth roots of unity in k (sixth and third primitive roots
of unity are in bijection via α 7→ −α; formulas tend to become simpler using sixth
roots of unity). Given α ∈ π6(k), we define functors

Cα : uccompk → scompk, Aα : scompk → uccompk

and show that there are natural transformations

Aα−1 ◦Cα → Iduccompk
, Cα ◦Aα−1 → Idscompk

, (2)

which are isomorphisms if 3 is a unit in k. This yields the desired correspondence.

Here is a more detailed description of the contents. In §1, we establish notation
and collect some facts on polynomial laws. In particular, we introduce the kernel
of a polynomial law, a notion only implicitly contained in [roby].

It is useful to develop the above-mentioned correspondence first on a level not
involving any multiplications and, hence, not requiring the existence of α ∈ π6(k).
Accordingly, we consider the category ucformk of unital cubic forms (instead of
unital cubic compositions) on the one hand, and the category qcformk of modules
with a quadratic and a cubic form (instead of symmetric compositions) on the other.
In §2 we show that there are functors C: ucformk → qcformk and A: qcformk →
ucformk which are equivalences provided 3 ∈ k×.

§3 contains, after some auxiliary results on unital compositions, the construction
of the functor Cα. Let (A,N) be a unital cubic composition. Since we do not
assume 3 invertible in k, there is no direct sum decomposition of A into k · 1A and
the space of trace zero elements. But there is a naturally induced quadratic form q
on the quotient Ȧ = A/k · 1A, as well as a family of multiplications depending on a
scalar parameter α. Theorem 3.6 shows that Ȧ becomes a symmetric composition
if either α ∈ π6(k) or A is commutative.

In §4, we construct the algebra Aα(M, q, ?) of a symmetric composition (The-
orem 4.1) and prove the existence of the natural transformations (2) (Proposi-
tion 4.10). On k⊕M we consider the cubic form N(λ⊕x) = λ3−λq(x)+b(x, x?x)
and a family of multiplications, depending on a parameter α ∈ k. There is an
explicit formula for the lack of multiplicativity of N (Lemma 4.8) which shows that
α ∈ π6(k) or commutativity of M is sufficient for N to be multiplicative. The proof
is purely computational but not at all straightforward.

The previous constructions hinge on the existence of a primitive sixth root of
unity in k. Since this is in general not the case, we introduce in §5 the quadratic
k-algebra K = k[t]/(t2− t+1) (the affine algebra of the scheme π6) and define the
category uccomp(2)

K/k of unital cubic compositions of the second kind. The algebra
K is étale if and only if 3 ∈ k× but it always has surjective trace form. This allows
us to develop a sufficient part of Galois descent theory and to show that there are
functors C̃ and Ã between uccomp(2)

K/k and scompk which are isomorphisms if
3 ∈ k× (Proposition 5.10).

The final §6 discusses the transfer of regularity conditions, such as non-degen-
eracy, separability or strictness, by the functors Cα and Aα.

Throughout, k denotes an arbitrary unital commutative ring and k-alg the cat-
egory of commutative associative unital k-algebras. Unsubscripted tensor products
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are understood over k. For a k-module X and R ∈ k-alg, the base change X⊗R is
often abbreviated to XR. Similarly, the base extension of a linear map f : X → Y
is denoted fR. The symbol N denotes the natural numbers including zero.

Acknowledgements. The research on this paper was started during a stay at
the ETH Zürich in May 2006 and continued at the FernUniversität in Hagen in
June 2006. The hospitality of these institutions is gratefully acknowledged. I am
indebted to M.-A. Knus for pointing out the problem and for providing me with
a copy of Tschupp’s Thesis [tsch]. H. P. Petersson and U. Stenger have listened
patiently to expositions of preliminary results and made valuable comments. I
am particularly grateful to H. P. Petersson who discovered the counterexample
mentioned at the beginning of §4, carefully read a first draft of the paper and
suggested many improvements.

1. Generalities

1.1. Polynomial laws [roby]. For any k-module X, define the functor Xa on
k-alg with values in sets byXa(R) = X⊗R for all R ∈ k-alg, and byXa(ϕ) = IdX⊗
ϕ: Xa(R) → Xa(S), for all k-algebra homomorphisms ϕ: R→ S. A polynomial law
f on X with values in a k-module V is a natural transformation f : Xa → Va of
functors. Thus for every R ∈ k-alg, fR: XR = X⊗R→ VR is a map, and for every
k-algebra homomorphism ϕ: R→ S, the diagram

XR
fR //

IdX⊗ϕ

��

VR

IdV ⊗ϕ

��
XS

fS

// VS

is commutative. As long as this does not cause confusion, we often write simply
f(x) instead of fR(x), for an element x ∈ XR. Denote by P(X,V ) the set (actually,
a k-module) of V -valued polynomial laws on X.

A polynomial law f ∈ P(X,V ) is said to be homogeneous of degree d if f(rx) =
rdf(x), for all r ∈ R, x ∈ XR, R ∈ k-alg. Traditionally, homogeneous polynomial
laws of degree >1 with values in V = k are called forms.

For example, polynomial laws of degree zero are in bijection with elements of V ,
and those of degree 1 are naturally identified with linear maps from X to V [roby,
Corollary of Prop. I.6]. A polynomial law of degree 2 is the same as a quadratic
map q: X → V in the usual sense [roby, Prop. II.1].

Polynomial laws can be composed in the obvious way: If f ∈ P(X,Y ) and
g ∈ P(Y, V ) then g ◦ f ∈ P(X,V ) is given by (g ◦ f)R = gR ◦ fR, for all R ∈ k-alg.
If f and g are homogeneous of degree m and n then g ◦ f is homogeneous of degree
mn. In particular, composition with linear maps does not change the degree.

1.2. Extension and restriction of scalars. Let k′ ∈ k-alg and denote by
ϕ: k → k′ the ring homomorphism making k′ a k-algebra. For a k′-module X ′

let kX
′ be the k-module whose underlying abelian group is that of X ′, but with

scalar operation of k given by λ · x := ϕ(λ)x, for all λ ∈ k, x ∈ X ′. In particular,
if S ∈ k′-alg then kS ∈ k-alg. Now let X and V be k-modules and f ∈ P(X,V ).
The base change of f from k to k′ is the polynomial law f ⊗ k′ ∈ P(X ⊗ k′, V ⊗ k′)
given as follows. There is a canonical isomorphism (X ⊗k k

′) ⊗k′ S ∼= X ⊗k (kS).
Treating this as in identification, we put

(f ⊗ k′)S(x) = f(kS)(x), (1.2.1)
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for all x ∈ (X ⊗k k
′)⊗k′ S, S ∈ k′-alg.

There is also restriction of scalars for polynomial laws. Let X ′ and V ′ be k′-
modules and let f ′ ∈ P(X ′, V ′) be a polynomial law. For any R ∈ k-alg there
is a canonical isomorphism kX

′ ⊗k R ∼= X ′ ⊗k′ (k′ ⊗k R). Treating this as an
identification, kf

′ ∈ P(kX
′, kV

′) is given by the formula

(kf
′)R(x) = f ′k′⊗kR(x) (1.2.2)

for all x ∈ kX
′ ⊗k R, R ∈ k-alg.

1.3. Homogeneous components. An arbitrary f ∈ P(X,V ) determines a family
(fd)d∈N of homogeneous polynomial laws such that

f(x) =
∑
d>0

fd(x), (1.3.1)

for all x ∈ XR and R ∈ k-alg (for every x, only finitely many fd(x) are different
from zero, but there may be infinitely many non-zero fd).

More generally, for all (i1, . . . , in) ∈ Nn there are unique polynomial laws fi1...in

on Xn, multi-homogeneous of multi-degree (i1, . . . , in), such that

f(x1 + · · ·+ xn) =
∑

(i1,...,in)∈Nn

fi1...in
(x1, . . . , xn), (1.3.2)

for all xj ∈ XR and R ∈ k-alg. The fi1...in
are called polarizations of f . If f is

homogeneous of degree d then fi1...in
= 0 unless i1 + · · · + in = d. If ij = 0 then

fi1...in
does not depend on the j-th variable, which then may be omitted in the

notation. The polarizations satisfy the symmetry property

fi1...in(x1, . . . , xn) = fiσ(1)...iσ(n)(xσ(1), . . . , xσ(n))

for σ in the symmetric group. For example, if f = f3 is a cubic form, we have the
expansions

f(x+ y) = f(x) + f21(x, y) + f12(x, y) + f(y),
f(x+ y + z) = f(x) + f(y) + f(z) + f21(x, y) + f21(x, z) + f21(y, z)

+ f12(x, y) + f12(x, z) + f12(y, z) + f111(x, y, z),

where f21(x, y) = f12(y, x) is quadratic in x and linear in y, and f111(x, y, z) is
trilinear and symmetric.

Let z ∈ X and i ∈ N. There is a unique polynomial law ∂
[i]
z f ∈ P(X,V ), called

the i-th divided directional derivative of f in direction z, satisfying

f(x+ z ⊗ r) =
∑
i>0

(∂[i]
z f)(x)ri, (1.3.3)

for all r ∈ R, x ∈ XR, R ∈ k-alg. For i = 1, this is the usual directional derivative
∂zf of f in direction z. In general, (∂z)i = i!∂[i]

z which explains the terminology
“divided derivative”. In terms of the polarizations fij , we have(

∂[i]
z f

)
(x) =

∑
j>0

fij(z ⊗ 1R, x),

for all x ∈ XR, R ∈ k-alg. If f is homogeneous of degree d then fij = 0 for i+j 6= d,
and hence (

∂[i]
z f

)
(x) = fi,d−i(z ⊗ 1R, x)

is homogeneous of degree d− i (in x) if i6 d, and zero if i > d.
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1.4. Definition. Let f ∈ P(X,V ). The kernel of f , denoted Ker(f), is the set of
all z ∈ X such that

f(x+ z ⊗ r) = f(x), (1.4.1)

for all x ∈ XR, R ∈ k-alg. We say f is non-degenerate if Ker(f) = {0}. Condition
(1.4.1) can be reformulated as follows:

z ∈ Ker(f) ⇐⇒ ∂[i]
z f = 0 for all i> 1. (1.4.2)

Indeed, ⇐= is clear from (1.3.3), and =⇒ follows also from (1.3.3) by replacing
R with R[t], the polynomial ring in one variable, putting r = t and comparing
coefficients at powers of t. If fd denotes as before the homogeneous component of
degree d of f , then

Ker(f) =
⋂
d>0

Ker(fd). (1.4.3)

Indeed, the homogeneous component of degree d of ∂[i]
z f is ∂[i]

z fd+i, and a polyno-
mial law is zero if and only if all its homogeneous components vanish (by uniqueness
of homogeneous components).

Examples. (a) The kernel of a polynomial law of degree 1, i.e., a linear map, is
the usual kernel of the linear map.

(b) Let q be a polynomial law of degree 2, i.e., a quadratic map. Denoting by
b the polar form of q, we have

z ∈ Ker(q) ⇐⇒ q(z) = b(x, z) = 0, (1.4.4)

for all x ∈ X.

(c) Let f ∈ P(X,V ) be cubic, i.e., of degree 3. Then
(
∂

[1]
z f

)
(x) = f21(x, z) and(

∂
[2]
z f

)
(x) = f21(z, x). Since these polynomial laws are of degree 2 and 1 (in x),

they vanish if and only if they vanish on X. Thus

z ∈ Ker(f) ⇐⇒ f(z) = f21(z, x) = f21(x, z) = 0, (1.4.5)

for all x ∈ X.

1.5. Lemma. Let f ∈ P(X,V ). Then:

(a) Ker(f) is a submodule of X.

(b) For every R ∈ k-alg, define

Ker(f)(R) := Ker(f ⊗R) ⊂ X ⊗R,

where f ⊗ R is the base change of f from k to R as in 1.2. Then Ker(f) is a
sub-functor of Xa; i.e., for every k-algebra homomorphism ϕ: R → S, we have
Xa(ϕ)

(
Ker(f)(R)

)
⊂ Ker(f)(S).

(c) Let j: Ker(f) → X be the inclusion map and, for R ∈ k-alg, let jR: Ker(f)⊗
R→ X ⊗R be its R-linear extension. Then

jR
(
Ker(f)⊗R

)
⊂ Ker(f ⊗R) (1.5.1)

for all R ∈ k-alg.

(d) If R ∈ k-alg is faithfully flat and f ⊗ R is non-degenerate then f is non-
degenerate.
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Remark. In general, the map jR of (c) is not injective nor is its image equal to
Ker(f ⊗ R). Also, non-degeneracy is in general not preserved under base change,
even in case of fields.

Proof. (a) This follows easily from the definition (1.4.1).

(b) Let z ∈ Ker(f)(R) = Ker(f ⊗ R). Then Xa(ϕ)(z) = z ⊗ 1S , where we
canonically identify XR⊗RS ∼= X⊗kS = Xa(S). Now let T be an S-algebra, t ∈ T
and x ∈ Xa(T ). We must show that

f
(
x+ (z ⊗ 1S)⊗ t

)
= f(x).

Under the canonical identification (XR⊗RS)⊗ST ∼= XR⊗RT , we have (z⊗1S)⊗t =
z ⊗ t, where we consider T as an R-algebra by means of R → S → T . Since
z ∈ Ker(f ⊗R), it follows that f(x+ z ⊗ t) = f(x), as desired.

(c) By (b), the canonical homomorphism ϕ: k → R making R a k-algebra
induces a map Ker(f) → Ker(f ⊗R) given by z 7→ j(z)⊗ 1R. Since Ker(f ⊗R) is
an R-submodule of X⊗R by (a), it follows that jR(

∑
zi⊗ri) =

∑(
j(zi)⊗1R

)
ri ∈

Ker(f ⊗R) for all zi ∈ Ker(f) and ri ∈ R, which proves (1.5.1).

(d) Since R is flat, the map jR: Ker(f)⊗R→ Ker(f ⊗R) ⊂ X⊗R is injective.
Thus non-degeneracy of f⊗R implies Ker(f)⊗R = {0} and therefore also Ker(f) =
{0}, since R is faithfully flat.

1.6. Proposition. Let X and V be k-modules, let Z ⊂ X be a submodule and
denote by π: X → X/Z the canonical map. For g ∈ P(X/Z, V ), let π∗(g) := g ◦ π
be the pullback of g to a polynomial law on X as in 1.1. Then the map g 7→ π∗(g)
is a bijection

π∗ : P(X/Z, V )
∼=−→ {f ∈ P(X,V ) : Z ⊂ Ker(f)}.

Denoting by π∗ its inverse, we have

Ker
(
π∗(g)

)
= π−1

(
Ker(g)

)
, (1.6.1)

Ker
(
π∗(f)

)
= π

(
Ker(f)

)
. (1.6.2)

Proof. Let i: Z → X be the inclusion map and define α1 = pr1: X × Z → X
and α2: X × Z → X, (x, z) 7→ x+ i(z). Then the sequence of sets

X × Z
α1 //
α2

//X
π //X/Z

is exact in the sense of [roby, IV, No. 8]. Hence by [roby, Theorem IV.4], the
map π∗ is a bijection between P(X/Z, V ) and the set of all f ∈ P(X,V ) for which
f ◦ α1 = f ◦ α2. This condition means that

f(x) = f
(
x+ iR(y)

)
(1.6.3)

all R ∈ k-alg, x ∈ XR, y ∈ ZR. Thus we must show that (1.6.3) holds if and only
if Z ⊂ Ker(f).

(a) Suppose (1.6.3) is true and let z ∈ Z. Also let R ∈ k-alg, r ∈ R and
x ∈ XR. Then z ⊗ r ∈ ZR, so f(x+ i(z)⊗ r) = f(x+ iR(z ⊗ r)) = f(x), showing
that i(z) = z ∈ Ker(f).
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(b) Conversely, let Z ⊂ Ker(f). This means that the inclusion map i: Z → X
factors via Ker(f), i.e., i = j ◦ i′ where i′: Z → Ker(f) and j: Ker(f) → X are the
inclusions. Tensoring with R yields iR = jR ◦ i′R, and by Lemma 1.5(c), jR takes
values in Ker(f ⊗ R). Hence iR(y) ∈ Ker(f ⊗ R), which in particular implies that
(1.6.3) holds.

To complete the proof, let f = π∗(g). Then we have f(x+ y⊗ r) = g
(
(πR(x) +

π(y)⊗ r
)

for all y ∈ X, x ∈ XR, R ∈ k-alg. Using the fact that πR: XR → (X/Z)R

is surjective, it is now easy to verify that (1.6.1) and (1.6.2) hold. The details are
left to the reader.

1.7. Corollary. Any f ∈ P(X,V ) induces a non-degenerate polynomial law π∗(f)
on X/Ker(f).

Proof. Put Z = Ker(f). Then (1.6.2) shows Ker
(
π∗(f)

)
= π

(
Ker(f)

)
=

π(Z) = {0}.

2. Unital forms

2.1. Definition. A unital form of degree d over k or a unital d-form is a triple
X = (X,N, 1X) consisting of a k-module X, a form (i.e., a k-valued homoge-
neous polynomial law) N of degree d, and a unimodular vector 1X ∈ X satisfying
N(1X) = 1. Here an element u ∈ X is called unimodular if α(u) = 1 for some
linear form α on X. In case d = 2 these are the unital quadratic forms studied in
[uqf], and for d = 3 they are called unital cubic forms. As in loc. cit., one shows
that a vector 1X ∈ X with N(1X) = 1 is automatically unimodular if either X is
finitely generated and projective or d ∈ k×.

A morphism ϕ: X → X′ of unital d-forms is a linear map ϕ: X → X ′ satisfying
ϕ(1X) = 1X′ and N ′ ◦ ϕ = N . Unless this leads to confusion, we will often write
1 instead of 1X . We put Ẋ := X/k · 1X and denote the canonical map κ: X → Ẋ
by x 7→ ẋ. Then the fact that 1X is unimodular is equivalent to the sequence
0 → k → X → Ẋ → 0 being split-exact. Note that the property of being a unital
d-form is stable under base change and descends from faithfully flat base extensions.

2.2. The trace forms. Let X be a unital d-form. The trace forms of X are the
forms Ti of degree i defined by

Ti = ∂
[d−i]
1X

N, (2.2.1)

cf. (1.3.3). Since N has degree d, we have the expansion

N(1X ⊗ r + x) =
d∑

i=0

Ti(x)rd−i, (2.2.2)

for all r ∈ R, x ∈ XR, R ∈ k-alg. Clearly T0 = 1k, Td = N and Ti = 0 for i > d.
Morphisms ϕ: X → X′ of unital d-forms are compatible with the trace forms in the
sense that T ′i ◦ ϕ = Ti. The linear and quadratic trace forms are the linear and
quadratic forms

T := T1, Q := T2.

For indices (i1, . . . , ip) ∈ Np with i1 + · · · + ip = i, let Ti1...ip
denotes the corre-

sponding polarization of Ti, cf. 1.3. In particular,

B := T11 and Φ := T111
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denote the polar form of the quadratic trace form Q and the total linearization of
the cubic form T3, respectively.

From (2.2.2) we see that
∑d

i=0 Ti(1)ti = N(1X ⊗ t + 1X) = N((1 + t)1X) =
(1 + t)d, and hence

Ti(1X) =
(
d

i

)
. (2.2.3)

Similarly, expand N
(
(s + t)1X + x

)
= N

(
t1 + (x + s1)

)
and compare coefficients

of smtn to see that

Tij(x, 1X) =
(
d− i

j

)
Ti(x). (2.2.4)

2.3. The characteristic polynomial and the discriminant. Let X = (X,N, 1)
be a unital form of degree d and let P(X) := P(X, k) be the algebra of polynomial
laws on X with values in k [roby, V.4]. Then Ti ∈ P(X), and we introduce the
monic polynomial

χ(t) =
d∑

i=0

(−1)iTi td−i ∈ P(X)[t],

called the characteristic polynomial of X. Evaluation of a polynomial law at x ∈ XR

(R ∈ k-alg) yields a homomorphism P(X) → R. Writing χ(t;x) ∈ R[t] for the
polynomial obtained by evaluating the coefficients of χ at x, we have

χ(t;x) = N(t1X − x).

The discriminant ∆ ∈ P(X) of χ(t) will also be called the discriminant of X. For
d = 2, this is the quadratic form ∆ = T 2 − 4Q while for d = 3, it is the sextic form

∆ = −4T 3N + T 2Q2 + 18TQN − 4Q3 − 27N2.

To shorten notation, we will often write Tx instead of T (x) = T1(x), as long as this
is not in conflict with the notation Ti for the trace form of degree i.

2.4. Lemma. Let X = (X,N, 1) be a unital cubic form. Define quadratic and
cubic forms H2 and H3 on X by

H2(x) = T (x)2 − 3Q(x), (2.4.1)
H3(x) = 2T (x)3 − 9T (x)Q(x) + 27N(x) (2.4.2)

= −T (x)3 + 3T (x)H2(x) + 27N(x).

(a) Then 1X ∈ Ker(H2) ∩ Ker(H3). Hence by Prop. 1.6, H2 and H3 induce
quadratic and cubic forms q and h on Ẋ = X/k · 1, given by

q(ẋ) = H2(x), h(ẋ) = H3(x),

for all x ∈ XR, R ∈ k-alg. The polar forms H11 and H21 of H2 and H3 are

H11(x, y) = 2T (x)T (y)− 3B(x, y), (2.4.3)
H21(x, y) = 6T 2

xTy − 9TyQ(x)− 9TxB(x, y) + 27N21(x, y) (2.4.4)
= −3T 2

xTy + 3TyH2(x) + 3TxH11(x, y) + 27N21(x, y).

(b) 27 times the discriminant of X is expressible by H2 and H3:
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−27∆ = H2
3 − 4H3

2 . (2.4.5)

Proof. (a) By (2.2.3) and (2.2.4) we have T (1) = 3 = Q(1) and B(x, 1) =
T11(x, 1) =

(
3−1
1

)
T1(x) = 2T (x). Hence for all r ∈ R, x ∈ XR,

H2(x+ 1X ⊗ r) =
{
T (x) + rT (1)

}2 − 3
{
Q(x) +B(x, 1)r +Q(1)r2

}
= T 2

x + 6rTx + 9r2 − 3Q(x)− 6rTx − 9r2 = H2(x).

Similarly, using (2.2.2),

H3(x+ 1⊗ r) = −
{
Tx + 3r

}3 + 3
(
Tx + 3r

)
H2(x+ 1⊗ r) + 27N(x+ 1⊗ r)

= −
{
T 3

x + 9rT 2
x + 27r2Tx + 27r3

}
+ 3TxH2(x) + 9rH2(x)

+ 27
{
r3 + r2Tx + rQ(x) +N(x)

}
= H3(x).

Formulas (2.4.3) and (2.4.4) follow easily from (2.4.1) and (2.4.2).

(b) This follows by a lengthy but straightforward computation.

Remark. It can be shown that H2 and H3 are the essentially unique (up to a
scalar factor) quadratic (resp., cubic) forms on Ẋ which are linear combinations of
T 2 and Q (resp., of T 3, TQ and N) and for which 1X lies in the kernel.

2.5. Definition. Let ucformk denote the category of unital cubic forms over k,
with morphisms defined in 2.1. As suggested by Lemma 2.4, we consider also the
following category qcformk: Its objects are triples M = (M,f2, f3) where M is
a k-module and f2 and f3 is a quadratic and a cubic form on M , respectively.
Morphisms are linear maps preserving these forms. From Lemma 2.4(a), it follows
that there is a functor

C : ucformk → qcformk,

given by C(X) = (Ẋ, q, h) on objects, while for a morphism ϕ: X → X′ of unital
cubic forms, C(ϕ) is the induced map ϕ̇: Ẋ → Ẋ ′.

There is also a functor A: qcformk → ucformk in the opposite direction: For
M = (M,f2, f3) ∈ qcformk, let A(M) = (k ⊕M,NM, 1k ⊕ 0), where NM is the
cubic form on k ⊕M given by

NM(λ⊕ x) = λ3 − 3λf2(x) + f3(x), (2.5.1)

for all λ ∈ R, x ∈MR, R ∈ k-alg. For a morphism ψ: M → M′, define A(ψ) by

A(ψ)(λ⊕ x) = λ⊕ ψ(x) (λ ∈ k, x ∈M).

Note that the linear and quadratic trace of NM are

TM(λ⊕ x) = 3λ, (2.5.2)
QM(λ⊕ x) = 3

(
λ2 − f2(x)

)
, (2.5.3)

as follows easily from the definition.

2.6. Proposition. Let C and A be the functors defined above.

(a) There is a natural transformation

ζ : A ◦C → Iducformk

9
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as follows: Given X = (X,N, 1) ∈ ucformk, define

ζX : (A ◦C)(X) = k ⊕ Ẋ → X, ζX(λ⊕ ẋ) =
(
λ− T (x)

)
1X + 3x, (2.6.1)

where T is the linear trace form of X, and Ẋ = X/k · 1 and x 7→ ẋ are as in 2.1.

(b) If 3 ∈ k× then ζX is an isomorphism with inverse

ζ−1
X (x) =

1
3
(
T (x)⊕ ẋ).

In general, denoting by 3Ẋ the 3-torsion elements of Ẋ, there is an exact sequence

0 //
3Ẋ

i //k ⊕ Ẋ
ζX //X

p //Ẋ/3Ẋ //0 ,

where p(x) = ẋ+ 3Ẋ and i is given as follows: Choose a linear form α on X with
α(1X) = 1. Then i(ẋ) =

(
T (x)− α(3x)

)
⊕ ẋ.

(c) There is a natural transformation

ϑ : C ◦A → Idqcformk

given as follows: For M = (M,f2, f3) ∈ qcformk, the k-module underlying (C ◦
A)(M) is (k ⊕M)/k · (1⊕ 0) which is canonically identified with M . Then define

ϑM: (C ◦A)(M) = M →M, ϑM(x) := 3x. (2.6.2)

If 3 ∈ k× then ϑM is an isomorphism, while in general we have the exact sequence

0 //
3M

inc //M
ϑM //M

can //M/3M //0 .

Proof. (a) From T (1X) = 3 one sees easily that ζX is a well-defined map.
Clearly ζX(1⊕0) = 1X , so it remains to check that ζX preserves cubic forms. Using
(2.2.2) in case d = 3, we compute, in any base ring extension,

N
(
ζX(λ⊕ ẋ)

)
= N

(
(λ− Tx)1X + 3x

)
= (λ− Tx)3 + (λ− Tx)2T (3x) + (λ− Tx)Q(3x) +N(3x)

= λ3 − 3λ
(
T 2

x − 3Qx) +
{
2T 3

x − 9TxQx + 27N(x)
}

= λ3 − 3λH2(x) +H3(x)

= λ3 − 3λq(ẋ) + h(ẋ) = NM(λ⊕ ẋ).

Finally, naturality of ζ means that, for a morphism ϕ: X → X′ of unital cubic forms,
the diagram

(A ◦C)(X)
ζX //

(A◦C)(ϕ)

��

X

ϕ

��
(A ◦C)(X′)

ζX′
// X′

commutes, which is straightforward to check.

(b) It is easily verified that ζ−1
X is given by the indicated formula if 3 ∈ k×.

To prove the remaining statements, we show first that i is well-defined. Indeed,

10
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T − 3α vanishes on 1X because T (1) = 3 and α(1) = 1, and thus induces a linear
form α′ on Ẋ. Moreover, if also β(1) = 1 and ẋ ∈ 3Ẋ, then (β′ − α′)(ẋ) =(
T (x) − 3β(x)

)
−

(
T (x) − 3α(x)

)
= (α − β)(3x) = 0 because 3ẋ = 0 implies

3x ∈ k · 1X .
Next, injectivity of i is clear (project onto the second factor), and Im(i) ⊂

Ker(ζX) follows from (ζX ◦ i)(ẋ) = ζX
(
(T (x) − α(3x)) ⊕ ẋ

)
= 3

(
x − α(x)1

)
= 0,

because 3ẋ = 0 implies 3x = µ1 where µ = α(3x). Conversely, let λ⊕ ẋ ∈ Ker(ζX).
Then

(
λ − T (x)

)
1X + 3x = 0, i.e., 3x =

(
T (x) − λ)1X . Hence α(3x) = T (x) − λ

and therefore λ⊕ ẋ =
(
T (x)− α(3x)

)
⊕ ẋ = i(ẋ).

(c) We check that ϑM preserves quadratic and cubic forms. Note that TM(0⊕
x) = 0, QM(0⊕ x) = −3f2(x) and NM(0⊕ x) = f3(x), for x ∈MR, R ∈ k-alg, by
(2.5.2), (2.5.3) and (2.5.1). Since we identify x ∈M with can(0⊕ x) ∈ (k⊕M)/k ·
(1 ⊕ 0), it follows from Lemma 2.4 that q(x) = H2(0 ⊕ x) = (−3)

(
− 3f2(x)

)
=

9f2(x) = f2
(
ϑM(x)

)
, and h(x) = H3(0 ⊕ x) = 27f3(x) = f3

(
ϑM(x)

)
, as required.

It is easily checked that ϑM depends functorially on M, so ϑ is indeed a natural
transformation of functors. The final statement is evident.

2.7. Corollary. If 3 ∈ k×, then the categories ucformk and qcformk are equiv-
alent.

3. From unital cubic to symmetric compositions

3.1. Definition. Let k be a commutative ring. A unital composition of degree d
is a quadruple A = (X,N, 1, ·) such that X = (X,N, 1) is a unital form of degree d
as in 2.1, A = (X, ·, 1) is a unital k-algebra, and both structures are related by the
requirement that N be multiplicative:

N(xy) = N(x)N(y) for all x, y ∈ X ⊗R, R ∈ k-alg. (3.1.1)

Depending on context, we will write A = (X, ·) or A = (A,N). This definition is
the special case where the values of the form N lie in k and A is unital, of the
more general definition of Roby [roby2]. Note that we assume neither associativity
conditions on A nor non-degeneracy conditions on N . In case d = 2 or d = 3, we
speak of a unital quadratic or cubic composition.

It is tempting to call A a “composition algebra of degree d”, and indeed this
terminology is used in [bb] (except for a different definition of form). However,
this may be in conflict with the notion of degree of an algebra in cases where
such a degree is well-defined, e.g., when A is associative or alternative and finite-
dimensional over a field. In these cases, the degree of A will in general be different
from the degree d of N . For example, A = k (as a k-algebra) has degree 1, but for
any d, the form N(x) = xd makes the pair (k,N) a unital composition of degree d.
Also, A = k× k with component-wise operations is an algebra of degree 2, but the
form N(x1, x2) = x1 makes (k × k,N) a unital composition of degree 1.

By a morphism ϕ: A → A′ of unital compositions of degree d we mean a linear
map of the underlying modules preserving forms, units and multiplications. Unital
compositions of degree d form a category, and there is an obvious forgetful functor Ω
from unital compositions to unital forms omitting the product. Note that (Aop, N)
is a unital composition of degree d along with (A,N).

3.2. Lemma. Let (A,N) be a unital composition of degree d. With the notations
introduced in 2.2, the following formulas hold for all x, y, z ∈ A:

T (xy) = T (x)T (y)−B(x, y) = T (yx), (3.2.1)

11
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T
(
x(yz)

)
= T (x)T (y)T (z)−B(x, yz)−B(y, xz)−B(z, xy)− Φ(x, y, z) (3.2.2)

= T
(
(xy)z

)
, (3.2.3)

B(x, 1) = (d− 1)T (x), (3.2.4)
Φ(x, y, 1) = (d− 2)B(x, y). (3.2.5)

Proof. Consider the algebra R = k(ε, δ, η) with relations ε2 = δ2 = η2 = 0.
Then, since N is multiplicative and R is associative,

N
(
(1 + εx)[(1 + δy)(1 + ηz)]

)
= N(1 + εx)N(1 + δy)N(1 + ηz)

= N
(
[(1 + εx)(1 + δy)](1 + ηz)

)
. (3.2.6)

Using (2.2.2) and the relations in R, we have

N(1 + εx)N(1 + δy)N(1 + ηz) = 1 + εT (x) + δT (y) + ηT (z)
+ εδT (x)T (y) + εηT (x)T (z) + δηT (y)T (z) + εδηT (x)T (y)T (z).

For easier notation, let us put

x1 = x, x2 = y, x3 = z,

x4 = x1x2, x5 = x1x3, x6 = x2x3, x7 = x1(x2x3),
ε1 = ε, ε2 = δ, ε3 = η,

ε4 = ε1ε2, ε5 = ε1ε3, ε6 = ε2ε3, ε7 = ε1ε2ε3.

Then

(1 + εx)[(1 + δy)(1 + ηz)] = 1 +
7∑

i=1

εixi = 1 + u,

where u :=
∑7

i=1 εixi. By the general expansion formula (2.2.2), N(1 + u) =∑d
i=0 Ti(u). We show first that Tp(u) = 0 for p> 4. Indeed,

Tp(u) =
7∑

i=1

Tp(xi)ε
p
i

+
∑

16i<j67

∑
l+m=p

Tlm(xi, xj)εl
iε

m
j

+
∑

16i<j<k67

∑
l+m+n=p

Tlmn(xi, xj , xk)εl
iε

m
j ε

n
k

+
∑

16i1<i2<i3<i467

∑
l1+···+l4=p

Tl1...l4(xi1 , . . . , xi4)ε
l1
i1
· · · εl4

i4

+ · · · +
∑

l1+···+l7=p

Tl1...l7(x1, . . . , x7)εl1
1 · · · ε

l7
7 .

(The summation runs over all partitions of p in at most 7 parts). Now consider the
products of powers of the εi. Since ε2i = 0, the first sum vanishes as soon as p> 2.
Likewise, the second sum vanishes for p > 3, because then either l > 2 or m > 2.
In the third sum, the only product of type εl

iε
m
j ε

n
k which is non-zero is ε1ε2ε3, as

follows from the definition of the ε4, . . . , ε7 above. Hence the third sum vanishes
for p > 4, and yields only the term ε1ε2ε3Φ(x, y, z) for p = 3. Furthermore, again
by definition of the εi, any product of more than three different εi vanishes, so the
remaining sums vanish as well. This yields

12
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T1(u) = εT (x) + δT (y) + ηT (z) + εδT (xy) + εηT (xz) + δηT (yz)
+ εδηT (x(yz)),

T2(u) = εδB(x, y) + εηB(x, z) + δηB(y, z),

+ εδη
{
B(x, yz) +B(y, xz) +B(z, xy)

}
,

T3(u) = εδηΦ(x, y, z).

Adding everything up and comparing the coefficients of εδ shows (3.2.1). Com-
paring the coefficients of εδη yields (3.2.2), and (3.2.3) follows by passing to the
opposite algebra. Formula (3.2.4) is a special case of (2.2.4). Finally, put z = 1 in
(3.2.2) and use (3.2.1) and (3.2.4):

Φ(x, y, 1) = T (x)T (y)T (1)−B(x, y)−B(y, x)−B(xy, 1)− T (xy)
= dT (x)T (y)− 2B(x, y)− (d− 1)T (xy)− T (xy)

= d
{
T (x)T (y)− T (xy)

}
− 2B(x, y) = (d− 2)B(x, y).

Remark. The formulas T (xy) = T (yx) and T
(
(xy)z

)
= T

(
x(yz)

)
are expressed

by saying that T is commutative and associative. To save parentheses, we will often
write Tx instead of T (x) and xy · z instead of (xy)z. Because of commutativity and
associativity of T we have Txy·x = Tx·yx = Tyx·x for which we simply write Txyx.
In particular, T (x3) := T (x · x2) = T (x2 · x) is well-defined although x · x2 may be
different from x2 · x.

3.3. Corollary. Let (A,N) be a unital composition of degree d. Then Φ is given by
the following formula involving only the linear trace form T and the multiplication
in A:

Φ(x, y, z) = Txyz + Tzyx − TxTyz − TyTzx − TzTxy + TxTyTz. (3.3.1)

Proof. Substitute (3.2.1) into (3.2.2) and use commutativity and associativity
of T .

The first five formulas of the following lemma are also found in [bb, Lemma 1].

3.4. Lemma. Let (A,N) be a unital cubic composition and use the notations of
2.2 and 3.2. Then the following formulas hold for all u, x, y, z in all base extensions
of A:

T (u)N(x) = N21(x, ux) = N21(x, xu), (3.4.1)
T (u)N21(x, y) = Φ(x, y, ux) +N21(x, uy) (3.4.2)

= Φ(x, y, xu) +N21(x, yu), (3.4.3)
T (u)Φ(x, y, z) = Φ(ux, y, z) + Φ(x, uy, z) + Φ(x, y, uz) (3.4.4)

= Φ(xu, y, z) + Φ(x, yu, z) + Φ(x, y, zu), (3.4.5)
Q(x)T (y) = B(x, xy) +N21(x, y), (3.4.6)

Q(xy) = Q(yx) = Q(x)Q(y)− Φ(x, y, xy), (3.4.7)
B(xy, x) = B(yx, x) = TxyTx − Txyx, (3.4.8)

Q(x)Q(y) +Q(xy) = T (xy · yx)− TxTyxy − TyTxyx + TxTyTxy, (3.4.9)
3N(x)− T (x)Q(x) = T (x3)− T (x)T (x2). (3.4.10)

Proof. Let u, x ∈ A⊗R, R ∈ k-alg. Then we have in A⊗R(ε), where R(ε) is
the algebra of dual numbers:

13
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N(x+ εux) = N
(
(1 + εu)x

)
= N(1 + εu)N(x) = N(x)N(1 + εu) = N(x+ εxu),

since R(ε) is commutative. Expanding both sides and comparing terms at ε yields
(3.4.1), since N(1 + εu) = 1 + εT (u). Linearizing (3.4.1) with respect to x in
direction y and then in direction z shows that (3.4.2) – (3.4.5) hold.

Next, consider R(ε, δ) where ε3 = δ3 = 0. Then it follows by expanding

N
(
(1 + εx)(1 + δy)

)
= N(1 + εx)N(1 + δy)

and comparing terms at ε2δ and ε2δ2 that (3.4.6) holds, as well as

Q(x)Q(y) = Q(xy) + Φ(x, y, xy). (3.4.11)

Putting u = y in (3.4.2) and (3.4.3) yields

Φ(x, y, xy) = Φ(x, y, yx) = T (y)N21(x, y)−N21(x, y2).

Now (3.4.11) shows that (3.4.7) holds. Formula (3.4.8) is a consequence of (3.2.1)
and commutativity and associativity of T (Lemma 3.2) while (3.4.9) follows by
adding Q(xy) to both sides of (3.4.11), using (3.3.1) to evaluate Φ(x, y, xy) and
recalling that 2Q(xy) = B(xy, xy) = T 2

xy − T (xy · xy) by (3.2.1).
Finally, we prove (3.4.10). Put x = y in (3.4.6). This shows N21(x, x) =

T (x)Q(x)−B(x, x2) = T (x)Q(x)−T (x)T (x2)+T (x ·x2) (by (3.2.1)). On the other
hand, 3N(x) = N21(x, x) since N is homogeneous of degree 3, whence (3.4.10).

3.5. Definition. A symmetric composition over k is a triple C = (M, q, ?) consist-
ing of a k-module M , a bilinear multiplication ? : M ×M → M , and a quadratic
form q on M such that q is multiplicative and the polar form b of q is associative
with respect to ?, i.e.,

q(x ? y) = q(x)q(y), (3.5.1)
b(x ? y, z) = b(x, y ? z), (3.5.2)

for all x, y, z ∈M . This generalizes the usual definition [boi, §34] inasmuch as non-
degeneracy assumptions on q are not imposed and k is an arbitrary ring instead of
a field. Hence, C should perhaps be called a generalized symmetric composition,
but we will drop the epithet “generalized” for brevity. In any case, non-degeneracy
of q can be forced by dividing out the kernel of q, see Lemma 4.4. Note that passing
to the opposite multiplication yields again a symmetric composition. — Given a
symmetric composition, we introduce the cubic form

h(x) = b(x, x ? x). (3.5.3)

We can now formulate the main result of this section.

3.6. Theorem. Let (A,N) be a unital cubic composition, and let α, β ∈ k satisfy
α+ β = 1.

(a) There is a well-defined multiplication ? on Ȧ = A/k · 1 such that

κ(x) ? κ(y) = κ
(
(1 + α)xy + (1 + β)yx− Txy − Tyx

)
(3.6.1)

for all x, y ∈ A, where κ: A→ Ȧ is the canonical map.

(b) Denote by q = κ∗(H2) the quadratic form on Ȧ as in 2.4 and assume that.

3(αβ − 1)[A,A] = 0, (3.6.2)

where [x, y] = xy − yx denotes the commutator in A. Then the triple (Ȧ, q, ?) is a
symmetric composition, and its associated cubic form is h = κ∗(H3).
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3.7. Remarks and special cases. (a) Switching α and β in (3.6.1) or replacing A
by the opposite algebra Aop amounts to replacing ? by the opposite multiplication.

(b) Condition (3.6.2) holds if either 3 = 0 in k or A is commutative or αβ = 1.
We discuss these cases in turn.

(i) Assume 3 = 0 in k. Then we obtain a one-parameter family (because
β = 1 − α) of symmetric compositions on Ȧ, all with the same quadratic form
q. Note, however, that q is the square of a linear form, because T (1A) = 3, so T
induces a linear form t on Ȧ, and then q = t2 by (2.4.1).

(ii) If A is commutative the symmetric composition (Ȧ, q, ?) is commutative
and independent of the choice of α.

(iii) Since β = 1−α, the condition αβ = 1 is equivalent to α2−α+ 1 = 0. Let
Φn(t) be the n-th cyclomotic polynomial and define the functor of primitive n-th
roots of unity πn from k-alg to sets by

πn(R) = {r ∈ R : Φn(r) = 0} (R ∈ k-alg).

In particular, Φ3(t) = t2 + t+ 1 and Φ6(t) = t2− t+ 1, so π6
∼= π3 under r 7→ −r.

We have preferred to use primitive sixth rather than third roots of unity because
the formulas become more natural and involve fewer minus signs. Formulas closer
to [elmy, boi] are obtained by writing α = −ω where ω ∈ π3(k). For easy reference,
we formulate the following consequence of Theorem 3.6:

3.8. Corollary. Let (A,N) be a unital cubic composition and let α ∈ π6(k) be
a primitive sixth root of unity. Then Ȧ becomes a symmetric composition with
quadratic form q = κ∗(H3), product

κ(x) ? κ(y) = κ
(
(1 + α)xy + (1 + α−1)yx− Txy − Tyx

)
(3.8.1)

and associated cubic form h = κ∗(H3).

The proof of Theorem 3.6 rests on the following lemmas. We use the notations
introduced in Lemma 2.4; in particular, H11 is the polar form of H2.

3.9. Lemma. Let α, β ∈ k and consider the multiplication

x ∗ y := (1 + α)xy + (1 + β)yx− Txy − Tyx (3.9.1)

on A. Then

x ∗ 1 = 1 ∗ x = (α+ β − 1)x− Tx · 1, (3.9.2)
H11(x ∗ y, z)−H11(x, y ∗ z) = (α+ β − 1)(TxTyz − TzTxy), (3.9.3)

for all x, y, z ∈ A.

Proof. (3.9.2) is immediate from the definition and T (1) = 3. By (2.4.3),
H11(x, y) = 2TxTy − 3B(x, y). Now a simple computation using (3.2.1) and as-
sociativity of T shows that

H11(x ∗ y, z) = 2TxTyTz − 3TxTyz − 3TyTzx − (2 + α+ β)TzTxy

+ 3(1 + α)Txyz + 3(1 + β)Tzyx. (3.9.4)

Subtracting from (3.9.4) the formula obtained by cyclically permuting x, y, z yields
(3.9.3).
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3.10. Lemma. Let α, β ∈ k satisfy α+β = 1 and define x ∗ y as in (3.9.1). Then

H2(x)H2(y)−H2(x ∗ y) = 3(αβ − 1)T
(
xy · [x, y]

)
, (3.10.1)

H2(x)2 = H2(x ∗ x). (3.10.2)

Proof. Put λ = αβ − 1. Then

(1 + α)2 + (1 + β)2 = 3− 2λ and (1 + α)(1 + β) = 3 + λ.

Hence, by the symmetry of Q(xy) in x and y ((3.4.7)), the symmetry B(xy, x) =
B(yx, x) ((3.4.8)) and the standard formula B(u, v) = T (u)T (v) − T (uv) ((3.2.1))
as well as 2Q(u) = B(u, u),

Q(x ∗ y) = Q
(
(1 + α)xy + (1 + β)yx− (Txy + Tyx)

)
= (1 + α)2 + (1 + β)2)Q(xy) + (1 + α)(1 + β)B(xy, yx) +Q

(
Txy + Tyx

)
−B

(
(1 + α)xy + (1 + β)yx, Txy + Tyx

)
= (3− 2λ)Q(xy) + (λ+ 3)B(xy, yx)

+ T 2
xQ(y) + T 2

yQ(x) + TxTyB(x, y)

− 3B
(
xy, Txy + Tyx

)
= λ

{
B(xy, yx)−B(xy, xy)

}
+ 3Q(xy) + 3B(xy, yx)

+ T 2
xQ(y) + T 2

yQ(x) + TxTyB(x, y)

− 3B
(
xy, Txy + Tyx

)
.

Here the coefficient of λ is, by commutativity of T and (3.2.1),

B(xy, yx)−B(xy, xy) = TxyTyx − T (xy · yx)− T 2
xy + T (xy · xy) = T

(
xy · [x, y]

)
.

Replacing systematically B(u, v) by TuTv − Tuv, we obtain

Q(x ∗ y) = λT
(
xy · [x, y]

)
+ T 2

xT
2
y + 3

{
TxTyxy + TyTxyx + T 2

xy − T (xy · yx)
}

− 7TxTyTxy + 3Q(xy) + T 2
xQ(y) + T 2

yQ(x). (3.10.3)

Again by commutativity of T and α + β = 1, we have T (x ∗ y) = 3Txy − 2TxTy.
Hence,

H2(x)H2(y)−H2(x ∗ y) =
{
T 2

x − 3Q(x)
}{
T 2

y − 3Q(y)
}

−
{
3Txy − 2TxTy

}2 + 3Q(x ∗ y).

Let us put δ = H2(x)H2(y)−H2(x ∗ y)− 3λT
(
xy · [x, y]

)
. Then by (3.10.3),

δ = T 2
xT

2
y − 3Q(x)T 2

y − 3Q(y)T 2
x + 9Q(x)Q(y)

− 9T 2
xy + 12TxTyTxy − 4T 2

xT
2
y

+ 3T 2
xT

2
y + 9

{
TxTyxy + TyTxyx + T 2

xy − T (xy · yx)
}

− 21TxTyTxy + 9Q(xy) + 3T 2
xQ(y) + 3T 2

yQ(x)

= 9
{
Q(x)Q(y) +Q(xy) + TxTyxy + TyTxyx − TxTyTxy − T (xy · yx)

}
and the expression in braces vanishes by (3.4.9). This proves (3.10.1), and (3.10.2)
is an immediate consequence.
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3.11. Proof of Theorem 3.6. It only remains to show that the cubic form h
associated with (Ȧ, q, ?) is indeed κ∗(H3). By (3.9.4), (3.4.10), and the definition
of H3 in 2.4,

h
(
κ(x)

)
= b

(
κ(x), κ(x) ? κ(x)

)
= H11(x, x ∗ x) = 2T 3

x − 9TxT (x2) + 9T (x3)

= 2T 3
x + 9

(
3N(x)− TxQ(x)

)
= H3(x),

as desired.

3.12. Definition. Let scompk denote the category of symmetric compositions
over k, where morphisms are k-linear maps preserving products and quadratic
forms, and recall the category qcformk of 2.5. Then there is a functor

Υ : scompk → qcformk, (M, q, ?) 7→ (M, q, h). (3.12.1)

Let uccompk denote the category of unital cubic compositions over k, and let
α ∈ π6(k). We define a functor

Cα: uccompk → scompk

as follows. For a unital cubic composition A = (A,N) and a primitive sixth root
of unity α, let Cα(A) = (Ȧ, q, ?) be the symmetric composition defined in Cor. 3.8.
For a morphism ϕ: A → A′ let Cα(ϕ): Cα(A) → Cα(A′) be the induced map
ϕ̇: Ȧ → Ȧ′. Then Cα: uccompk → scompk is compatible with the functor C of
2.5 in the sense that the diagram

uccompk

Ω

��

Cα // scompk

Υ

��
ucformk

C
// qcformk

is commutative, where Ω is the functor forgetting the multiplication, cf. 3.1.

3.13. The connection with [tsch]. Let (A,N) be a unital cubic composition
and suppose 3 ∈ k×. Then A = k · 1A ⊕A0 where A0 = Ker(T ). Let ω ∈ π3(k) be
a primitive third root of unity, and define a multiplication ~ on A0 by

x~ y =
1− ω

3
xy +

1− ω−1

3
yx− 1

3
T (xy)1A, (3.13.1)

see [tsch]. The last term serves to make x ~ y lie in A0. Also, define a quadratic
form n on A0 by

n(x) = −1
3
Q(x). (3.13.2)

It is proved in [tsch, 3.1], for k a field of characteristic not 2 or 3, that n is
multiplicative and the polar form bn of n is associative with respect to ~. This
result, without assuming characteristic 6= 2, can now be recovered in our setting as
follows. Let α = −ω ∈ π6(k) and let (Ȧ, q, ?) = Cα(A,N). Then the map

ϕ = κ ◦ inc : A0 → A→ Ȧ, x 7→ 1
3
ẋ,

is an isomorphism ϕ: (A0, n,~)
∼=−→ (Ȧ, q, ?). Indeed, ϕ is clearly an isomorphism

of k-modules. From (3.13.1) and (3.8.1) we see that ϕ preserves products, and
from (3.13.2) and Lemma 2.4(a) it follows that ϕ preserves quadratic forms. Since
(Ȧ, q, ?) is a symmetric composition, so is (A0, n,~).
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4. From symmetric to unital cubic compositions

4.1. Theorem. Let (M, q, ?) be a symmetric composition over k and let α, β ∈ k
with α+ β = 1. On the k-module A := k ⊕M consider the unital cubic form

N(λ⊕ x) = λ3 − 3λq(x) + b(x, x ? x), (4.1.1)

and define a multiplication • with unit element 1A := 1⊕ 0 and

(0⊕ x) • (0⊕ y) = b(x, y)⊕
(
αx ? y + βy ? x

)
(4.1.2)

for x, y ∈M . Assume that

(αβ − 1)[M,M ] = 0 (4.1.3)

where [x, y] = x ? y − y ? x denotes the commutator. Then (A,N, 1A, •) is a unital
cubic composition.

4.2. Remarks. (a) The cubic form N is of course the cubic form NM defined in
(2.5.1), for M = Υ (C) = (M, q, h) as in (3.12.1) and h(x) = b(x, x ? x) as in (3.5.3).

(b) Interchanging α and β in (4.1.2) or replacing C by Cop amounts to replacing
the multiplication • by its opposite.

(c) If C is commutative then (4.1.3) is satisfied for any choice of α, and the
product • is again commutative and independent of α.

(d) As in 3.7(b)(iii), the conditions α+β = αβ = 1 are equivalent to α ∈ π6(k).
Hence we have the following corollary.

4.3. Corollary. Let (M, q, ?) be a symmetric composition and let α ∈ π6(k) be a
primitive sixth root of unity. Then k ⊕M becomes a unital cubic composition with
unit element 1⊕ 0, cubic form (4.1.1) and product

(0⊕ x) • (0⊕ y) = b(x, y)⊕
(
αx ? y + α−1y ? x

)
. (4.3.1)

Remark. For the case where k is a field of characteristic different from 2 and 3
and q is non-degenerate, Tschupp [tsch, 3.2] attempted to prove this result, but
his proof contains errors. Specifically, it is claimed in [tsch, Lemma 3.10] that,
in our notation, h(x ? y) = b

(
(x ? y) ? (x ? y), y ? x

)
, and in [tsch, Lemma 3.11]

that b
(
y ? (y ? x), (y ? x) ? x

)
= q(x)q(y)b(x, y). The following example, due to

H. P. Petersson, disproves these formulas: Let M = Mat2(k) with q(x) = det(x)

and x ? y = x̄ȳ, where x̄ =
(
d −b
−c a

)
for x =

(
a b
c d

)
. Then it suffices to put

x = e12 and y = e21 (matrix units).

Theorem 4.1 will be a consequence of the following Lemmas 4.6 – 4.8. We note
that P. Alberca and C. Mart́ın [ident] have recently proved and extended these
lemmas with the aid of a computer.

In the interest of readability, we denote in this section the multiplication in a
symmetric composition simply by juxtaposition; thus xy = x ? y, and in particular,
x2 = x?x. Also, to save parentheses, we will often write x · yz instead of x(yz) etc.

18
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4.4. Lemma. With the above notations, the polar forms h21 and h111 of h are
given by

h21(x, y) = 3b(x2, y), h111(x, y, z) = 3b(xy + yx, z). (4.4.1)

Writing Z := Ker(q), we have

Z ⊂ Ker(h), Z ? M +M ? Z ⊂ Z. (4.4.2)

Hence there is a symmetric composition C/Ker(q) := (M/Z, q̄, ?̄) whose quadratic
form q̄ (induced from q) is non-degenerate.

Proof. The formulas (4.4.1) follow easily from associativity of b ((3.5.2)). If
z ∈ Z and x ∈M then h(z) = b(z, z2) = 0 and h21(z, x) = 3b(z2, x) = 3b(z, zx) = 0
as well as h21(x, z) = 3b(z, x2) = 0, which shows Z ⊂ Ker(h). Finally, q(zx) =
q(z)q(x) = 0 and b(zx, y) = b(z, xy) = 0 so ZM ⊂ Z, and similarly MZ ⊂ Z. The
last statement follows from Cor. 1.7.

4.5. Formulas in symmetric compositions. There is a number of formulas
which are known for non-degenerate symmetric compositions [boi, §34] but which
hold only modulo Ker(q) in general. Therefore, we introduce the notation

x ≡ y : ⇐⇒ x− y ∈ Ker(q).

First of all, linearization of q(xy) = q(x)q(y) ((3.5.1)) yields

b(xy, xz) = b(yx, zx) = q(x)b(y, z), (4.5.1)
b(x1, x2)b(x3, x4) = b(x1x3, x2x4) + b(x1x4, x2x3). (4.5.2)

Associativity of b is equivalent to the fact that b(xy, z) is invariant under cyclic
permutation of x, y, z. As before, let [x, y] := xy − yx denote the commutator.
Then:

The trilinear form (x, y, z) 7→ b
(
[x, y], z

)
is alternating. (4.5.3)

Next, we have flexibility modulo Ker(q):

xy · x ≡ x · yx ≡ q(x)y, (4.5.4)

Indeed, for all v ∈ M , b(xy · x, v) = b(xy, xv) = q(x)b(y, v) = b
(
q(x)y, v

)
by

associativity and (4.5.1), and

q
(
xy · x− q(x)y

)
= q(xy · x)− q(x)b(xy · x, y) + q

(
q(x)y

)
= q(x)2q(y)− q(x)2b(y, y) + q(x)2q(y) = 0.

This proves xy·x ≡ q(x)y, and the second formula follows by passing to the opposite
multiplication. An immediate consequence is

(xx2)x ≡ (x2x)x ≡ x(xx2) ≡ x(x2x) ≡ q(x)x2. (4.5.5)

Since Ker(q) is a submodule, (4.5.4) can be linearized:

xy · z + zy · x ≡ x · yz + z · yx ≡ b(x, z)y. (4.5.6)

Specializing z to y in (4.5.6) and also interchanging x and y yields

xy · y + y2x ≡ xy2 + y · yx ≡ b(x, y)y, (4.5.7)
x2y + yx · x ≡ yx2 + x · xy ≡ b(x, y)x. (4.5.8)

These imply the commutator formulas

[x, y2] ≡ xy · y − y · yx, (4.5.9)
[x2, y] ≡ x · xy − yx · x, (4.5.10)

[x2, y2] ≡ (x2y)y − y(yx2) ≡ x(xy2)− (y2x)x. (4.5.11)
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4.6. Lemma. Let x, y ∈M . We introduce the abbreviations

s := xy, t := yx, a := b(x, y2)b(y, x2), c := bx,yqxqy, e := bx,ybs,t.

Then the following identities hold:

h(x)h(y) = b(s, x2y2) + b(xy2, x2y), (4.6.1)
b(s2, t) = b(t2, s) = b(s, y2x2) = b(t, x2y2) = a− c, (4.6.2)

h(s)− h(t) = h([x, y]), (4.6.3)
h(s) = a− b(sy, xs), (4.6.4)
h(t) = a− b(tx, yt), (4.6.5)

b(xs, yt) = e− c, (4.6.6)
b(x, y)3 = b(xy2, yx2) + c+ e. (4.6.7)

Proof. Formula (4.6.1) follows by applying (4.5.2) to h(x)h(y) = b(x, x2)b(y, y2).
For (4.6.2), we use again (4.5.2), applied to x1 = x, x2 = y2, x3 = y, x4 = x2, and
then (4.5.5) and the definition of c:

a = b(x, y2)b(y, x2) = b(xy, y2x2) + b(xx2, y2y) = b(xy, y2x2) + c.

Since a − c is symmetric in x and y, we also have b(yx, x2y2) = a − c. Next, by
associativity of b and again (4.5.2), as well as (4.5.4) and (4.5.1),

a = b(xy, y)b(yx, x) = b(xy · yx, yx) + b(xy · x, y · yx)
= b(st, t) + q(x)b(y, y · yx) = b(s, t2) + q(x)b(yy, yx) = b(s, t2) + c.

Interchanging x and y switches s and t and leaves a − c fixed. Hence this proves
(4.6.2). Now expand and use (4.4.1) and (4.6.2) to obtain (4.6.3):

h([x, y]) = h(s− t) = h(s)− h21(s, t) + h21(t, s)− h(t)

= hs − 3b(s2, t) + 3b(t2, s)− ht = hs − ht.

Next, we rewrite a in a third form, using associativity of b and again the linearized
composition formula (4.5.2):

a = b(xy, x)b(xy, y) = b(s, x)b(s, y) = b(s2, xy) + b(sy, xs) = h(s) + b(sy, xs).

This is (4.6.4), and (4.6.5) follows by interchanging x and y.
By (4.5.4), xt ≡ q(x)y and ys ≡ q(y)x. Hence, again by (4.5.2),

e = b(x, y)b(s, t) = b(xs, yt) + b(xt, ys) = b(xs, yt) + c,

which proves (4.6.6).
For (4.6.7), observe first that b2x,y = b(x2, y2) + bs,t follows from (4.5.2). Now

multiply this by bx,y and obtain

b3x,y = bx,yb(x2, y2) + e = b(xx2, yy2) + b(xy2, yx2) + e (by (4.5.2))

= b(xy2, yx2) + c+ e (by (4.5.4)).

This completes the proof.
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4.7. Lemma. We use the abbreviations introduced in Lemma 4.6. Then for all
x, y ∈M ,

b
(
s, [x, y]

)
= 2qxqy − bs,t, (4.7.1)

b
(
sy, [x, y]

)
= qyb(y, x2)− b(sy, t), (4.7.2)

b(sy, t) = b(x, y)b(x, y2)− qxhy, (4.7.3)
b
(
xs, [x, y2]

)
= a+ c− e− hs, (4.7.4)

hxhy = b3x,y + 3(a− e)− hs − ht. (4.7.5)

Proof. Formula (4.7.1) is easy: b
(
s, [x, y]

)
= b(xy, xy)− b(xy, yx) = 2qxqy − bs,t

by (4.5.1). Similarly, (4.7.2) follows from b
(
sy, [x, y]

)
= b(sy, xy) − b(sy, yx) =

qyb(s, x)− b(sy, t). Next, associativity of b and (4.5.2) as well as (4.5.4) imply

b(x, y)b(x, y2) = b(x, y)b(t, y) = b(xt, y2) + b(xy, yt)

= b(x · yx, y2) + b(s, yt) = q(x)b(y, y2) + b(sy, t)

which is (4.7.3).
To prove (4.7.4), we have a − hs = b(xs, sy) by (4.6.4) and e − c = −b(xs, yt)

by (4.6.6). Adding these two formulas yields

a− c+ e− hs = b(xs, sy − yt) = b(xs, [x, y2]),

because of (4.5.9).
For (4.7.5), we begin by rewriting the right hand side, substituting from (4.6.7),

(4.6.4) and (4.6.5):

rhs =
{
b(xy2, yx2) + c+ e

}
+ 3(a− e) +

{
b(sy, xs)− a

}
+

{
b(tx, yt)− a

}
= b(xy2, yx2) + (a− c)− 2(e− c) + b(sy, xs) + b(tx, yt).

Replace here a−c by b(s, y2x2) (using (4.6.2)) and e−c by b(xs, yt) (using (4.6.6)).
Then

rhs = b(xy2, yx2) + b(xy, y2x2)− 2b(xs, yt) + b(sy, xs) + b(tx, yt)

= b(xy2, yx2) + b(xy, y2x2) + b(xs, sy − yt) + b(yt, tx− xs).

Now use (4.6.1) to expand the left hand side of (4.7.5) and form the difference δ of
the left and right hand side:

δ = b
(
s, [x2, y2]

)
+ b

(
xy2, [x2, y]

)
+ b(xs, yt− sy) + b(yt, xs− tx).

By (4.5.10), xs− tx ≡ [x2, y] so

δ = b
(
s, [x2, y2]

)
+ b

(
xy2 + yt, [x2, y]

)
+ b(xs, yt− sy).

Furthermore, by (4.5.7), xy2 + yt ≡ b(x, y)y, and therefore the middle term is

b
(
xy2 + yt, [x2, y]

)
= b(x, y)b(y, [x2, y]) = 0,

because of (4.5.3). It follows from (4.5.11) and (4.5.9) and associativity of b that

δ = b(s, [x2, y2]) + b(xs, yt− sy) = b(s, x(xy2)− (y2x)x) + b(xs, y2x− xy2)

= b(sx, xy2)− b(xs, y2x) + b(xs, y2x− xy2) = b(sx− xs, xy2).

Here sx = (xy)x ≡ qxy by (4.5.4), and b(xs, xy2) = qxb(s, y2) by (4.5.1). Thus

δ = qx
{
b(y, xy2)− b(s, y2)

}
= qx

{
b(yx, y2)− b(xy, y2)

}
= −qxb([x, y], y2) = qxb([y2, y], x) = 0,

by (4.5.3) and (4.5.4). This completes the proof.
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4.8. Lemma. With the notations of Theorem 4.1, the formula

N(v)N(w)−N(v • w) = (1− αβ)
{
3b

(
x · xy, [x, y2]

)
+ (1 + β)h

(
[x, y]

)}
+ 3(1− αβ)b

(
[x, y], −λxy · y + µyx · x+ λµxy

)
(4.8.1)

holds for all v = λ⊕ x, w = µ⊕ y in all base extensions of k ⊕M .

Proof. Since all constructions are compatible with base change, it suffices to
prove (4.8.1) for λ, µ ∈ k and x, y ∈ M . We use the abbreviations introduced in
Lemma 4.6, put

L := N(λ⊕ x)N(µ⊕ y), R := N
(
(λ⊕ x) • (µ⊕ y)

)
,

and expand L and R as polynomials in λ, µ:

L =
∑
i,j

Lijλ
iµj , R =

∑
i,j

Rijλ
iµj .

Then (4.8.1) will be a consequence of the following relations:

L00 −R00 = (1− αβ)
{
(1 + β)h([x, y]) + 3b

(
xs, [x, y2]

)}
, (4.8.2)

L10 −R10 = −3(1− αβ)b
(
sy, [x, y]

)
, (4.8.3)

L01 −R01 = −3(1− αβ)b
(
tx, [y, x]

)
, (4.8.4)

L11 −R11 = 3(1− αβ)b
(
s, [x, y]

)
, (4.8.5)

Lij −Rij = 0 otherwise. (4.8.6)

Let us prove (4.8.2). Clearly, L00 = N(0 ⊕ x)N(0 ⊕ y) = hxhy. The expansion of
R00 = N

(
bx,y ⊕ (αs+ βt)

)
yields

R00 = b3x,y − 3bx,yq(αs+ βt) + h(αs+ βt)

= b3x,y − 3bx,y

{
(α2 + β2)qxqy + αβbs,t

}
+ α3hs + α2βh21(s, t) + αβ2h21(t, s) + β3ht.

By (4.4.1) and (4.6.2), h21(s, t) = 3b(s2, t) = 3b(t2, s) = h21(t, s) = 3(a − c), and
α2β + αβ2 = αβ(α + β) = αβ as well as α2 + β2 = (α + β)2 − 2αβ = 1 − 2αβ.
Hence,

R00 = b3x,y − 3(1− 2αβ)c− 3αβe+ α3hs + 3αβ(a− c) + β3ht

= b3x,y − 3c+ 3αβ(a+ c− e) + α3hs + β3ht. (4.8.7)

Observe that 1+α3 = (1+α)(1−α+α2) and 1−α+α2 = 1−α(1−α) = 1−αβ.
Hence 1 + α3 = (1− αβ)(1 + α) and by symmetry, 1 + β3 = (1− αβ)(1 + β). Now
(4.8.7) and (4.7.5) imply

L00 −R00 = 3(1− αβ)(a+ c− e)− (1 + α3)hs − (1 + β3)ht

= (1− αβ)
{
3(a+ c− e)− (1 + α)hs − (1 + β)ht

}
. (4.8.8)

This formula is symmetric in (α, x) and (β, y) but contains no explicit commutators.
To introduce them, we use (4.7.4) and (4.6.3):
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L00 −R00 = (1− αβ)
{
3b

(
xs, [x, y2]

)
+ (2− α)hs − (1 + β)ht

}
= (1− αβ)

{
3b

(
xs, [x, y2]

)
+ (1 + β)(hs − ht)

}
= (1− αβ)

{
3b

(
xs, [x, y2]

)
+ (1 + β)h

(
[x, y]

)}
.

This proves (4.8.2). — Next, we establish the relations involving Li0−Ri0 for i > 0.
On the left, we have

N(λ⊕ x)N(y) = (λ3 − 3λqx + hx)hy,

whence
L10 = −3qxhy, L20 = 0, L30 = hy.

On the right, expansion yields

N
(
(λ⊕ x) • (0⊕ y)

)
= N

(
bx,y ⊕ (αs+ βt+ λy)

)
= R00 − 3λbx,y

(
αbs,y + βbt,y

)
− 3λ2bx,yqy

+ λh21(αs+ βt, y) + λ2h21(y, αs+ βt) + λ3hy. (4.8.9)

Here bs,y = bt,y = b(x, y2) because b is associative, and, by (4.4.1),

h21(αs+ βt, y) = 3b
(
(αs+ βt)2, y)

= 3
{
α2b(s2, y) + β2b(t2, y) + αβb(st, y) + αβb(ts, y)

}
.

Now b(y, s2) = b(ys, s) = qyb(x, s) = qyby,x2 and b(t2, y) = b(t, ty) = qyb(t, x) =
qyb(y, x2) as well as b(st, y) = b(s, ty) = qyb(s, x) = qyb(y, x2), using (4.5.4). Hence
R10, the coefficient of λ in (4.8.9), is

R10 = 3
{
− bx,yb(x, y2) + (α2 + β2 + αβ)qyb(y, x2) + αβb(ts, y)

}
.

Furthermore, α2 + β2 + αβ = (α+ β)2 − αβ = 1− αβ, so

R10 = 3
{
− bx,yb(x, y2) + (1− αβ)qyb(y, x2) + αβb(ts, y)

}
.

Hence, using (4.7.3) and (4.7.2),

L10 −R10 = 3
{
− qxhy + bx,yb(x, y2)− (1− αβ)qyb(y, x2)− αβb(sy, t)

}
= 3(1− αβ)

{
b(sy, t)− qyb(y, x2)

}
= −3(1− αβ) b

(
sy, [x, y]

)
,

which proves (4.8.3). Formula (4.8.4) follows by symmetry.
Next,

R20 = −3bx,yqy + 3b(y2, αs+ βt) = 0,

because b(y2, s) = b(y2, xy) = qybx,y = b(y2, t) by (4.5.1), and α + β = 1. Since
R30 = hy, we obtain Li0 −Ri0 = 0 for i> 2.

Let us consider (4.8.5). Clearly, L11 = 9qxqy. On the other hand, a straightfor-
ward expansion and (4.4.1) shows that

R11 = −3(α2 + β2)qxqy − 3αβbs,t + αh111(x, y, s) + βh111(x, y, t)

= −3(α2 + β2)qxqy − 3αβbs,t + 3
{
αb(s, s) + αb(t, s) + βb(s, t) + βb(t, t)

}
Now b(s, s) = b(xy, xy) = 2qxqy as well as b(t, t) = b(yx, yx) = 2qxqy. Hence

R11 = −3(α2 + β2)qxqy − 3αβbs,t + 6(α+ β)qxqy + 3bs,t

= 3
{
(2− α2 − β2)qxqy + (1− αβ)bs,t

}
.

From α+β = 1 it follows that α2+β2 = 1−2αβ, so we finally obtain, using (4.7.1),

L11 −R11 = 3
{
(3− 1− 2αβ)qxqy − (1− αβ)bs,t

}
= 3(1− αβ)

(
2qxqy − bs,t

)
= 3(1− αβ)b

(
s, [x, y]

)
.

This proves (4.8.5). Finally, it is easily seen that Lij − Rij = 0 for the remaining
cases (ij) = (33), (32), (23), (31), (13), (22), (21), (12). This completes the proof of
Lemma 4.8 and also of Theorem 4.1.
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4.9. Definition. Let α ∈ π6(k) be a primitive sixth root of unity. We define a
functor

Aα: scompk → uccompk

from symmetric to unital cubic compositions as follows. For a symmetric composi-
tion C = (M, q, ?), let Aα(C) = (k⊕M,N, 1⊕ 0, •) be the unital cubic composition
defined in Cor. 4.3. For a morphism ψ: C → C′ of symmetric compositions let
Aα(ψ): Aα(C) → Aα(C′) be defined by λ⊕ x 7→ λ⊕ ψ(x). Then Aα is compatible
with the functor A: qcformk → uccompk of 2.5, i.e., the diagram

scompk

Υ

��

Aα // uccompk

Ω

��
qcformk A

// ucformk

is commutative, cf. also the diagram in 3.12.

We now extend Prop. 2.6 to the functors Cα and Aα:

4.10. Proposition. Let α ∈ π6(k) be a primitive sixth root of unity and put β =
α−1 = 1−α. Composing the functors Ω: uccompk → ucformk and Υ : scompk →
qcformk with the natural transformations ζ and ϑ of 2.6 yields natural transfor-
mations

ζ ′: Aβ ◦Cα → Iduccompk
, ϑ′: Cα ◦Aβ → Idscompk

.

If 3 ∈ k× then ζ ′ and ϑ′ are isomorphisms.

Proof. (a) In more detail, ζ ′ is given as follows. For a unital cubic composition
A = (A,N) let Ω(A) = X be the unital cubic form obtained by omitting the
multiplication, cf. 3.1. Then ζ ′A := ζX is defined as in (2.6.1). Thus by Prop. 2.6(a),
it remains to show that ζX is a homomorphism of algebras. Consider the product
∗ on A as in (3.9.1), where now β = 1 − α = α−1, so αβ = α + β = 1 and
α2 + β2 = (α+ β)2 − 2αβ = −1. Then

βx ∗ y + αy ∗ x = β
{
(1 + α)xy + (1 + β)yx− Txy − Tyx

}
+ α

{
(1 + α)yx+ (1 + β)xy − Tyx− Txy

}
= (β + 1 + α+ 1)xy + (β + β2 + α+ α2)yx− Txy − Tyx

= 3xy − Txy − Tyx. (4.10.1)

Since ζX preserves unit elements, we may restrict attention to elements of the form
v = 0⊕ ẋ and w = 0⊕ ẏ of k ⊕ Ẋ, where x, y ∈ A and ẋ = κ(x). Then

ζX(0⊕ x) · ζX(0⊕ y) = (3x− Tx · 1A)(3y − Ty · 1A), (4.10.2)

while by (4.3.1) (with α replaced by α−1) and (4.10.1),

ζX
(
(0⊕ ẋ) • (0⊕ ẏ)

)
= ζX

(
b(ẋ, ẏ)⊕ (α−1ẋ ? ẏ + αẏ ? ẋ)

)
= ζX

((
2TxTy − 3B(x, y)

)
⊕ κ(α−1x ∗ y + αy ∗ x

))
= ζX

((
2TxTy − 3B(x, y)

)
⊕ κ(3xy − Txy − Tyx)

)
=

(
2TxTy − 3B(x, y)− T (3xy) + 2TxTy

)
1A + 3(3xy − Txy − Tyx).
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This agrees with (4.10.2) because 4TxTy − 3B(x, y)− 3T (xy) = 4TxTy − 3TxTy (by
(3.2.1)) = TxTy.

(b) For a symmetric composition C = (M, q, ?) let M = Υ (C) = (M, q, h) ∈
qcformk as in (3.12.1). Then ϑ′C := ϑM as in (2.6.2). Since ϑM preserves quadratic
forms by 2.6(b), it remains to show that it preserves products. For v = λ⊕ x and
w = µ ⊕ y in k ⊕M the traces are TM(v) = 3λ and TM(w) = 3µ by (2.5.2). Now
use the definition of the ∗-product in (3.9.1), where the algebra product is taken in
the algebra Aβ(C) with product as in (4.3.1) but with α and β interchanged. Then
a similar computation as in (4.10.1) shows

v ∗ w = (1 + α)v • w + (1 + β)w • v − TM(v)w − TM(w)v

= (1 + α)
{
(λµ+ bx,y)⊕ (βx ? y + αy ? x+ λy + µx)

}
+ (1 + β)

{
(λµ+ bx,y)⊕ (βy ? x+ αx ? y + µx+ λy)

}
− 3λw − 3µv

=
{
(3λµ+ 3bx,y)⊕ 3(x ? y + λy + µx)

}
− 3λw − 3µv

= 3
{
(bx,y − λµ)⊕ x ? y

}
.

Hence the product ∗̇ induced from ∗ on (k⊕M)/k ·1 is, after the identification with
M , simply given by x ∗̇ y = 3x ? y. This shows that indeed ϑM(x ∗̇ y) = 3(3x ? y) =
(3x) ? (3y) = ϑM(x) ? ϑM(y).

Finally, it is clear from Prop. 2.6 that ζ ′ and ϑ′ are isomorphisms if 3 ∈ k×.
Hence:

4.11. Corollary. If 3 ∈ k× and if k contains a primitive sixth root of unity then
the categories uccompk and scompk are equivalent.

We will see in the next section that the condition on the existence of the sixth
root of unity can be omitted after replacing unital cubic compositions over k by
unital cubic compositions of the second kind over a suitable quadratic extension of
k.

5. Unital cubic compositions of the second kind

5.1. Quadratic algebras. Following [knus, III, §4], we mean by a quadratic al-
gebra an algebra K ∈ k-alg which is finitely generated and projective of rank 2
as a k-module. Such an algebra has a canonical linear form tK , the trace, and a
quadratic form nK , the norm, as well as an involution ι which satisfy

x2 − tK(x)x+ nK(x)1K = 0,
x+ ι(x) = tK(x)1K , xι(x) = nK(x)1K ,

for all x ∈ K.
Being of rank 2, K is in particular faithful as a k-module. By [knus, I, (1.3.5)],

the map λ 7→ λ1K is an isomorphism of k onto a direct summand of K. Hence
K̇ := K/k · 1 is finitely generated and projective of rank 1 over k.

5.2. Conjugations. Let K be a quadratic algebra and let Y be a K-module. A
conjugation on Y is a k-linear map j from Y to itself which satisfies j(j(y)) = y and
j(yµ) = j(y)ι(µ), for all y ∈ Y and µ ∈ K. Note that this definition generalizes the
definition of a Galois descent datum [knus, III, p. 115] insofar as K is not assumed
to be étale over k.

Let modk be the category of k-modules and let modK/k be the category whose
objects are pairs (Y, j) consisting of a K-module Y and a conjugation j, with
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morphisms K-linear maps commuting with the conjugations. By abuse of notation,
the explicit reference to j will often be suppressed. For X ∈ modk let

E(X) = (X ⊗k K, IdX ⊗ ι),

be the base extension from k to K (with conjugation IdX ⊗ ι induced from ι), and
for (Y, j) ∈ modK/k, let

D(Y, j) = Ker(IdY − j) = {x ∈ Y : j(x) = x},

the fixed point set of j. Then it is easy to see that we have functors

E : modk → modK/k (“extension”), D : modK/k → modk (“descent”),

and that D is right adjoint to E, i.e., that there are natural bijections

modK/k

(
E(X), Y

) ∼= modk

(
X,D(Y )

)
.

By general facts from category theory [maclane], there are natural transformations

η : Idmodk
→ D ◦E, ε : E ◦D → IdmodK/k

, (5.2.1)

which in the present situation are given as follows:

ηX(x) = x⊗ 1K ∈ D(E(X)) (x ∈ X ∈ modk),
εY (y ⊗ µ) = yµ ∈ Y (y = j(y) ∈ Y ∈ modK/k).

Standard results on Galois descent [knus, Chapter III] say that if K is étale, then η
and ε are isomorphisms, and D and E are quasi-inverse equivalences of categories.
More generally, there is still the following result.

5.3. Lemma. Let K be a quadratic algebra and put K0 := Ker(tK) and K̇ :=
K/k · 1K . Then the following conditions are equivalent:

(i) K has surjective trace,
(ii) Id− ι induces an isomorphism K̇

∼=−→ K0,
(iii) for all X ∈ modk, the map x 7→ x⊗ 1 is an isomorphism of X onto the

fixed point set of j := IdX ⊗ ι in X ⊗K = E(X),
(iv) η : Idmodk

→ D ◦E is an isomorphism.

Proof. (i) =⇒ (ii): Clearly ϕ := Id− ι = 2Id− 1K ⊗ tK vanishes on k · 1K and
takes values in K0, thus inducing a homomorphism K̇ → K0. Since tK is surjective
the sequence 0 −→ K0 −→ K

tK−→ k −→ 0 is exact, so K0 is finitely generated
and projective of rank 1. Therefore, it suffices to show that ϕ ⊗ κ(p) 6= 0 for all
prime ideals p of k, where κ(p) denotes the quotient field of k/p. After changing
base from k to κ(p), we may assume k is a field and then have to show that ϕ 6= 0.
If char(k) = 2, ϕ = 1K ⊗ tK 6= 0 is clear. If char(k) 6= 2, K = k · 1K ⊕ K0, and
ϕ
∣∣K0 = 2Id 6= 0.

(ii) =⇒ (iii): By (ii), we have an exact sequence

0 // k
i // K

Id−ι // K0 // 0 (5.3.1)

where i(λ) = λ · 1K , and it splits because K0 is projective. Hence tensoring (5.3.1)

with X yields the exact sequence 0 −→ X −→ X ⊗ K
Id−j−→ X ⊗ K0 −→ 0. This

shows that the fixed point set of j in X ⊗K is X ⊗ 1 ∼= X.
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(iii) ⇐⇒ (iv): Evident.

(iii) =⇒ (i): Let I ⊂ k be the image of tK and put X = k/I. Then IX = 0 and
−x = x for all x ∈ X because 2 = tK(1K) ∈ I. Hence for all x ∈ X and µ ∈ K,

(IdX ⊗ ι)(x⊗ µ) = x⊗ (tK(µ) · 1K − µ) = tK(µ)x⊗ 1K − x⊗ µ = x⊗ µ.

This shows IdX ⊗ ι is the identity on X ⊗ K, so by (iii), the map x 7→ x ⊗ 1K

is an isomorphism X ∼= X ⊗ K of k-modules. On the other hand, the sequence
0 −→ k −→ K

can−→ K̇ −→ 0 is split-exact. Tensoring with X yields the (split-)exact
sequence 0 −→ X

∼=−→ X ⊗K −→ X ⊗ K̇ −→ 0 which implies X ⊗ K̇ = 0. Since
K̇ is faithfully flat, it follows that X = 0.

5.4. Modules with additional structure. The foregoing considerations extend
in a straightforward manner to the situation where modk is replaced by a cat-
egory of modules with some additional algebraic structure, for example, a (not
necessarily associative) multiplication. Then a conjugation is required to preserve
the additional structure, and the analogously defined functors D and E have the
same properties as above. We will need in particular the case of modules equipped
with polynomial laws which is more involved. Let polk be the category whose
objects are triples (X,V, f) consisting of k-modules X and V and a polynomial
law f on X with values in V . A morphism from (X,V, f) to (X ′, V ′, f ′) is a pair
of k-linear maps ϕ: X → X ′ and ψ: V → V ′ such that ψR ◦ fR = f ′R ◦ ϕR for all
R ∈ k-alg. Similarly, define polK/k to be the category whose objects are quintuples
(Y, jY ,W, jW , g), where (Y, jY ) and (W, jW ) are in modK/k and g ∈ P(Y,W ) is a
polynomial law, compatible with the conjugations in the sense that the diagram

(kY )a
kg //

kjY

��

(kW )a

kjW

��
(kY )a

kg
// (kW )a

(5.4.1)

is commutative. Here k( ) is restriction of scalars to k, cf. (1.2.2). Morphisms in
polK/k are defined similarly as in polk. Then there is a base extension functor
E : polk → polK/k given by

E(X,V, f) =
(
E(X),E(V ),E(f) = f ⊗K

)
.

There is also a descent functor which requires more care:

5.5. Proposition. Given (Y, jY ,W, jW , g) ∈ polK/k, there is a “descended” poly-
nomial law f = D(g) ∈ P

(
D(Y ),D(W )

)
, uniquely determined by the condition

that, for all R ∈ k-alg, and putting X = D(Y ) and V := D(W ) for short, the
following diagram is commutative:

X ⊗R
fR //

iX⊗IdR

��

V ⊗R

iV ⊗IdR

��
(kY )⊗R

(kg)R

// (kW )⊗R

(5.5.1)

Here iX : X → kY and iV : V → kW denote the inclusion maps. This defines a
functor D : polK/k → polk, compatible with taking homogeneous components and
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right adjoint to E : polk → polK/k, so there are natural transformations η and ε
as in (5.2.1).

Proof. Let k∞ = k[t1, t2, . . .] be the polynomial ring in countably many inde-
terminates, and let k-alg′ be the full subcategory of k-alg having the single object
k∞. For a k-module M , let Ma′ be the restriction of the functor Ma to k-alg′. By
[roby, Prop. IV.4], a polynomial law f ∈ P(X,V ) is the same as a natural trans-
formation f ′: Xa′ → Va′ . More precisely, any f ∈ P(X,V ) induces by restriction
a natural transformation f ′: Xa′ → Va′ , and this establishes a bijection between
P(X,V ) and the set of natural transformations from Xa′ to Va′ . Since k∞ is free
as a k-module, the exact sequence

0 //X
iX //

kY
Id−jY //

kY

remains exact upon tensoring with k∞. Hence iX ⊗ Idk∞ maps X ⊗ k∞ iso-
morphically onto the fixed point set of jY ⊗ Idk∞ , and the same is true for iV .
Since (kg)k∞ commutes with the conjugations by (5.4.1), it induces a unique map
fk∞ : X ⊗ k∞ → V ⊗ k∞. It remains to show that this defines a natural transfor-
mation Xa′ → Va′ ; i.e., that for every k-algebra homomorphism ϕ: k∞ → k∞, the
diagram

X∞
f∞ //

Id⊗ϕ

��

V∞

Id⊗ϕ

��
X∞

f∞

// V∞

(5.5.2)

is commutative, where we have abbreviated f∞ := fk∞ and X∞ := X ⊗ k∞ and
similarly for V∞. This follows by chasing the diagram below whose sides and bottom
are commutative and where the vertical arrows are injective, being induced from
iX and iV :

X∞ //

��

V∞

��

X∞ //

��

<<yyyy
V∞

��

<<yyyy

Y∞ // W∞

Y∞ //

<<yyyy
W∞

<<yyyy

The proof of the remaining statements is left to the reader.

5.6. Corollary. Let K be a quadratic algebra with surjective trace. Let V ∈ modk

and (Y, j) ∈ modK/k, and let g ∈ P
(
Y,E(V )

)
be a polynomial law compatible with

the conjugations j on Y and Id⊗ι on E(V ) = V⊗K. Then the descended polynomial
law f = D(g) takes values in V . In particular, if V = k and g is a form of degree
d then D(g) is a form of degree d on X = D(Y ).

Proof. By Prop. 5.5, D(g) takes values in D
(
E(V )

)
which is canonically iso-

morphic to V by Lemma 5.3.

5.7. Definition. Let K be a quadratic k-algebra with surjective trace. An involu-
tion of the second kind on a K-algebra Ã (not necessarily associative or unital) is a
conjugation J as in 5.2 which is, in addition, an anti-automorphism of the k-algebra
kÃ. The category uccomp(2)

K/k of unital cubic compositions of the second kind is

defined as follows. Its objects are triples (Ã, Ñ , J) where (Ã, Ñ) ∈ uccompK is a
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unital cubic composition overK and J is an involution of the second kind of Ã which
is compatible with Ñ in the sense of 5.4; i.e., such that (Ã, J,K, ι, Ñ) ∈ polK/k.
Morphisms are defined as expected. Here, the descended k-module H := {x ∈ Ã :
J(x) = x} is the set of hermitian elements of Ã. In general, it does not inherit
an algebra structure from Ã because J is not an automorphism of Ã but if Ã is
associative or alternative, it will be a Jordan algebra over k. Since K has surjective
trace, Ñ induces by Cor. 5.6 a k-valued cubic form N = D(Ñ) on H.

We also introduce the following category scompK/k. Its objects are pairs (C̃, j)
where C̃ = (M̃, q̃, ?̃) ∈ scompK is a symmetric composition over K and j is a
conjugation on M̃ compatible with q̃ and ?̃ as explained in 5.4. In particular,

j(x ?̃ y) = j(x) ?̃ j(y) (5.7.1)

(no reversal of factors). By Cor. 5.6, q̃ induces a quadratic form q = D(q̃) with
values in k on M = D(M̃). Because of (5.7.1), ?̃ induces a multiplication ? = D(?̃)
on M , making D(C̃, j) := (M, q, ?) a symmetric composition over k. We thus have
a descent functor

D : scompK/k → scompk , (5.7.2)

which is, as in 5.2, right adjoint to the base extension functor

E : scompk → scompK/k .

Since K has surjective trace, the unit η of this adjunction is, by Lemma 5.3, an
isomorphism

η : Idscompk

∼=−→ D ◦E . (5.7.3)

We now specialize the quadratic algebra K to

K := k[t]/(t2 − t + 1). (5.7.4)

Thus K is a free quadratic algebra with basis 1 and ρ := can(t) and the relation
ρ2 − ρ + 1 = 0, and the functor π6 of 3.7(c) is (represented by) the affine scheme
defined by K; i.e., π6(R) is in natural bijection with Homk-alg(K,R), by associating
with r ∈ π6(R) the homomorphism K → R sending ρ 7→ r. In particular, tK(ρ) =
nK(ρ) = 1 and ρ ∈ π6(K). The involution ι of K is given on ρ by

ι(ρ) = 1− ρ = ρ−1. (5.7.5)

The discriminant of t2 − t + 1 is −3, so K is étale if and only if 3 ∈ k×.

5.8. The functor C̃. Let (Ã, Ñ , J) be a unital cubic composition of the second
kind over K/k, with K as in (5.7.4). Then (Ã, Ñ) is a unital cubic composition over
K and ρ ∈ π6(K), so we may apply the functor Cρ of 3.12 and obtain a symmetric
composition Cρ(Ã, Ñ) = (Ã/K · 1, q̃, ?̃) over K. Moreover, J leaves K · 1 stable
and hence induces a conjugation j on the K-module Ã/K · 1. We claim that j is
compatible with q̃ and ?̃, so that

C̃ρ(Ã, Ñ , J) :=
(
Cρ(Ã, Ñ), j

)
∈ scompK/k. (5.8.1)

Indeed, let T̃ and Q̃ be the linear and quadratic trace forms of Ñ , cf. 2.2. From
compatibility of Ñ and J and since J fixes the unit element of Ã, it follows that
T̃ and Q̃ are compatible with J as well. Hence, the same is true of the quadratic
form H̃2 = T̃ 2 − 3Q̃, which implies that the quadratic form q̃ induced by H̃2 on
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M̃ := Ã/K ·1 is compatible with j. The multiplication ?̃ on M̃ is induced from the
multiplication

x ∗̃ y = (1 + ρ)xy + (1 + ρ−1)yx− T̃ (x)y − T̃ (y)x (5.8.2)

on Ã, cf. (3.8.1). By applying J to this equation and using (5.7.5) as well as
T̃

(
J(x)

)
= ι

(
T̃ (x)

)
, one sees that J(x ∗̃ y) = J(x) ∗̃ J(y). Hence the multiplication

?̃ on M̃ is compatible with the conjugation j. This proves (5.8.1), and it is easily
checked that we have in fact a functor C̃ρ : uccomp(2)

K/k → scompK/k. Combining
this with the descent functor (5.7.2), we obtain a functor

C̃ := D ◦ C̃ρ : uccomp(2)
K/k → scompk. (5.8.3)

Remark. The symmetric composition (M, q, ?) = C̃(Ã, Ñ , J) can also be obtained
as follows. Instead of first forming the quotient Ã/K · 1 and then taking the fixed
point set of j, one can take first the fixed point set H = D(Ã, J), which is a k-
submodule of Ã containing k ·1, and then pass to the quotient Ḣ = H/k ·1. Indeed,
since (by definition) the unit element of Ã is a unimodular vector, we have the split-
exact sequence 0 → K → Ã → M̃ → 0 of K-modules. Applying the functor D
yields the split-exact sequence 0 → k → H → M → 0 (where M := D(M̃)) of
k-modules, so M ∼= Ḣ. Moreover, it is easily seen that H is closed under the
multiplication (5.8.2). Since the quadratic form H̃2 restricted to H takes values in
k, it follows that q and ? on M are also induced from the corresponding structures
on H.

5.9. The functor Ã. There is a functor Ã in the opposite direction as follows.
Let (C̃, j) ∈ scompK/k, cf. 5.7. We apply the functor Aρ−1 of 4.9 to C̃ and obtain a
unital cubic composition Aρ−1(C̃) = (K⊕M̃, Ñ) ∈ uccompK over K. Now extend
the conjugation j on M̃ to a conjugation J on Ã := K ⊕ M̃ by

J(µ⊕ x) := ι(µ)⊕ j(x) (µ ∈ K, x ∈ M̃).

Then J is an involution of the second kind of Ã. Indeed, it is clear that J fixes
the unit element 1K ⊕ 0, so it suffices to prove the antiautomorphism property for
elements of the form 0⊕ x. Since the action of j on M̃ is compatible with ?̃ and q̃,
we have j(x ?̃ y) = j(x) ?̃ j(y) and ι

(
b̃(x, y)

)
= b̃(j(x), j(y)). Hence it follows from

(5.7.5) that

J
(
(0⊕ x) • (0⊕ y)

)
= J

(
b̃(x, y)⊕ (ρ−1x ?̃ y + ρy ?̃ x)

)
= b̃(j(x), j(y))⊕

(
ρj(x) ?̃ j(y) + ρ−1j(y) ?̃ j(x)

)
= J(0⊕ y) • J(0⊕ x).

The cubic form Ñ of Ã is given by Ñ(µ⊕x) = µ3−3µq̃(x)+ b̃(x, x?̃x). This readily
implies that Ñ is compatible with the conjugation J on Ã. Altogether, we see that
Ãρ−1(C̃, j) :=

(
Aρ−1(C̃), J

)
is a unital cubic composition of the second kind and

one checks easily that this defines a functor Ãρ−1 : scompK/k → uccomp(2)
K/k.

Now combine this with the extension functor E to obtain a functor

Ã := Ãρ−1 ◦E : scompk → uccomp(2)
K/k . (5.9.1)
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5.10. Proposition. With K, Ã and C̃ as above, there are natural transformations

ζ̃ : Ã ◦ C̃ → Id
uccomp

(2)
K/k

, (5.10.1)

ϑ̃ : C̃ ◦ Ã → Idscompk
. (5.10.2)

If 3 ∈ k× then ζ̃ and ϑ̃ are isomorphisms, and hence the category of symmetric
compositions over k is equivalent to the category of unital cubic compositions of the
second kind.

Proof. By Prop. 2.6(a) and Prop. 4.10(a), there is a natural transformation
ζ ′ : Aρ−1 ◦Cρ → IduccompK

, given as follows: If Ã = (Ã, Ñ) ∈ uccompK then

ζ ′
Ã
(µ⊕ ẋ) =

(
µ− T̃ (x)

)
· 1 + 3x, (5.10.3)

for all x ∈ Ã, µ ∈ K. Here T̃ denotes the linear trace form of the cubic form Ñ .
Now suppose that (Ã, J) = (Ã, Ñ , J) is a unital cubic composition of the second
kind. Since the conjugation J is compatible with T̃ , and since the conjugation on
C̃ρ(Ã, J) is induced from J by passing to the quotient modulo K ·1, it is clear from
(5.10.3) that ζ ′

Ã
commutes with the respective conjugations. Hence we obtain a

natural transformation

ζ ′′ : Ãρ−1 ◦ C̃ρ → Id
uccomp

(2)
K/k

by defining ζ ′′
(Ã,J)

= ζ ′
Ã
. The desired natural transformation (5.10.1) is then ob-

tained by combining ζ ′′ with the natural transformation ε : E◦D → Id, cf. (5.2.1):

ζ̃ : Ã ◦ C̃ = Ãρ−1 ◦E ◦D ◦ C̃ρ
ε−→ Ãρ−1 ◦ C̃ρ

ζ′′−→ Id
uccomp

(2)
K/k

.

Similarly, by Prop. 2.6(c) and Prop. 4.10(b), there is a natural transformation ϑ′ :
Cρ ◦Aρ−1 → IdscompK

which is simply multiplication by 3. If (C̃, j) ∈ scompK/k

then this map obviously commutes with the conjugations. Hence we obtain a
natural transformation

ϑ′′ : C̃ρ ◦ Ãρ−1 → IdscompK/k

by defining ϑ′′
(C̃,j)

= ϑ′
C̃
. The asserted natural transformation ϑ̃ is then obtained by

combining ϑ′′ with the inverse of η of (5.7.3):

ϑ̃ : C̃ ◦ Ã = D ◦ C̃ρ ◦ Ãρ−1 ◦E ϑ′′−→ D ◦E
η−1

−→ Idscompk
.

The last statement is clear from the corresponding statement in Prop. 4.10.

6. Transfer of regularity conditions

6.1. Separable polynomial laws. While non-degeneracy of a polynomial law
descends from faithfully flat base extensions by Lemma 1.5(d), this property is not
preserved under base extension even in the case of fields:
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Example. Let k be an imperfect field of characteristic p, suppose a ∈ k is not
a p-th power, and consider the polynomial law f of degree p on X = k × k with
values in k given by

f(x) = xp
1 − axp

2

for all x = (x1, x2) ∈ XR = R × R, R ∈ k-alg. Then f is anisotropic (f(x) 6= 0
for all 0 6= x ∈ X), in particular, Ker(f) = 0. Now put R = k[t]/(tp − a) and let
τ = can(t), so that τp = a. Then z = (τ, 1) ∈ Ker(f ⊗R) since f is additive.

Therefore, we introduce the following notion: A polynomial law f ∈ P(X,V )
is said to be separable if X and V are finitely generated and projective k-modules
and f⊗F is non-degenerate, for all fields F ∈ k-alg. This generalizes the separable
quadratic forms of [uqf, §3]. It can be shown that a linear map f : X → V between
finitely generated and projective modules, considered as a polynomial law of degree
1, is separable if and only if it is an isomorphism of X onto a direct summand of
V .

By Lemma 6.2 below, separability behaves well under base change. Note, how-
ever, that separability does not imply non-degeneracy: Let p ∈ Z be a prime. The
form f of degree p on Z given by f(x) = xp (for all x ∈ R, R a Z-algebra, i.e.,
an arbitrary commutative ring) is clearly separable, because f ⊗ F is anisotropic
for any field F . But let for example R = Z/p2Z. Then z = p1R ∈ R is not zero,
satisfies z2 = pz = 0, and hence for all S ∈ R-alg and all x ∈ S, we have

f(zS + x) = (p1S + x)p = xp,

because pp = p2pp−2 = 0 and
(
p
i

)
≡ 0 (mod p) for 0 < i < p. Hence z ∈ Ker(f ⊗R).

6.2. Lemma. Let f ∈ P(X,V ).

(a) If f is separable then so is f ⊗R, for all R ∈ k-alg.

(b) Conversely, let R ∈ k-alg be faithfully flat and f ⊗R separable. Then f is
separable.

Proof. (a) It is well known that finitely generated and projective modules re-
main so under base extension. Any field F ∈ R-alg can be considered, by restriction
of scalars, as a field in k-alg. With the usual identifications, (f⊗kR)⊗RF = f⊗kF
whence Ker

(
(f ⊗k R)⊗R F

)
= 0.

(b) If XR and VR are finitely generated and projective over R then so are X and
V over k by [bac, I, §3.6, Prop. 12]. Let F ∈ k-alg be a field. After replacing k by
F and correspondingly R by R⊗F (which is still faithfully flat over F , i.e., 6= {0}),
we may assume that k is a field, and then must show that f is non-degenerate.
Let m ⊂ R be a maximal ideal and L = R/m. Then L is an extension field of k
via k → R → L. Since f ⊗ R is separable, (f ⊗k R) ⊗R L is non-degenerate. But
(f⊗kR)⊗RL = f⊗kL, and L is obviously faithfully flat over k (being an extension
field). Hence f ⊗k L non-degenerate implies f non-degenerate by Lemma 1.5(d).

6.3. Definition. A unital d-form X = (X,N, 1) is called separable ifN is separable
in the sense of 6.1. Similarly, a quadratic-cubic form M = (M,f2, f3) ∈ qcformk

as in 2.5 is called separable if f = f2 + f3 is separable. We show next how the
functors C and A of 2.5 interact with non-degeneracy and separability.

6.4. Proposition. Let X = (X,N, 1) ∈ ucformk and M = C(X) = (Ẋ, q, h) ∈
qcformk as in 2.5. The canonical map X → Ẋ = X/k · 1 is denoted by κ.

(a) Then κ
(
Ker(N)

)
⊂ Ker(q + h), and equality holds if 3 ∈ k×.
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(b) If C(X) is separable then so is X, and the converse holds if 3 ∈ k×.

Proof. (a) By Lemma 2.4(a), q+h = κ∗(H2 +H3). Hence Prop. 1.6 shows that
ż ∈ Ker(q+h) if and only if z ∈ Ker(H2+H3). By (1.4.3), we have Ker(H2+H3) =
Ker(H2) ∩ Ker(H3). One sees by a straightforward computation, using (2.4.1) –
(2.4.4) as well as the description of the kernel of a quadratic and a cubic form in
(1.4.4) and (1.4.5), that z ∈ Ker(H2) ∩Ker(H3) if and only if

T (z)2 = 3Q(z), (6.4.1)
2T (z)T (x) = 3B(z, x) for all x ∈ X, (6.4.2)
3T (z)Q(z) = 27N(z), (6.4.3)
9T (x)Q(z) = 27N21(z, x) for all x ∈ X, (6.4.4)
9T (z)Q(x) = 27N21(x, z) for all x ∈ X. (6.4.5)

We also have
z ∈ Ker(N) =⇒ z ∈ Ker(T ) ∩Ker(Q). (6.4.6)

Indeed, z ∈ Ker(N) implies N21(x, z) = N21(z, x) = 0 for all x ∈ X. Putting
x = 1 yields T (z) = N21(1, z) = 0 and Q(z) = N21(z, 1) = 0. Moreover, B(x, z) =
Φ(x, z, 1) = 0 follows by linearizing the condition N21(x, z) = 0 with respect to x
in direction z.

Now (6.4.1) – (6.4.6) show that Ker(N) ⊂ Ker(H2 +H3), and hence κ
(
Ker(N)

)
⊂ κ

(
Ker(H2 +H3)

)
= Ker(q + h), by (1.6.2).

Suppose 3 ∈ k×. Then X = k · 1 ⊕X0 where X0 = Ker(T ), so κ: X0 → Ẋ is
an isomorphism of k-modules. For an element w ∈ Ker(q + h) let z0 ∈ X0 be its
inverse image. Then z0 ∈ Ker(H2) ∩ Ker(H3) by (1.6.1), so (6.4.1) and (6.4.3) –
(6.4.5) show that z0 ∈ Ker(N), and therefore w = κ(z0) ∈ κ

(
Ker(N)

)
, as desired.

(b) As 1X is a unimodular vector, X ∼= k ⊕ Ẋ as a k-module. Hence X is
finitely generated and projective if and only if Ẋ is so. Now let C(X) be separable
and let F ∈ k-alg be a field. After extending the base from k to F , we may assume
that k itself is a field. Then κ

(
Ker(N)

)
⊂ Ker(q+h) = {0} implies Ker(N) ⊂ k ·1.

But if λ · 1 ∈ Ker(N) then 0 = N(λ · 1) = λ3 implies λ = 0, because k is a field.
Hence Ker(N) = {0}.

Now assume 3 ∈ k× and C(X) separable. As before, we may assume k to be a
field. Then Ker(q + h) = κ

(
Ker(N)

)
= κ({0}) = {0}.

6.5. Proposition. Let M = (M,f2, f3) ∈ qcformk and let NM be the cubic form
of A(M) as in (2.5.1).

(a) Then ν ⊕ z ∈ Ker(NM) if and only if

z ∈ Ker(3f2), (6.5.1)
3ν = ν3 + f3(z) = 0, (6.5.2)
f21(x, z) = f21(z, x) = 0 for all x ∈M. (6.5.3)

In particular, 0⊕Ker(f2 + f3) ⊂ Ker(NM). If k has no 3-torsion, then

Ker(NM) = 0⊕Ker(f2 + f3). (6.5.4)

(b) If A(M) ∈ ucformk is separable then so is M, and the converse holds
provided 3 ∈ k×.
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Proof. (a) Put N = NM for short. From (2.5.1) it follows easily that

N21(λ⊕ x, µ⊕ y) = 3λ2µ− 3µf2(x)− 3λf11(x, y) + f21(x, y).

Here f11 and f21 denote the polarizations of f2 and f3. By (1.4.5), ν⊕z ∈ Ker(N) if
and only if N(ν⊕z) = N21(ν⊕z, λ⊕x) = N21(λ⊕x, ν⊕z) = 0 for all λ⊕x ∈ k⊕M .
It is straightforward to show that these conditions are equivalent to (6.5.1) – (6.5.3),
and are implied by ν = 0 and z ∈ Ker(N). If k has no 3-torsion then (6.5.1) –
(6.5.3) are equivalent to ν = 0 and z ∈ Ker(f2) ∩Ker(f3).

(b) This follows by observing that M is finitely generated and projective if and
only if k ⊕M is so, and by applying (a) to M⊗ F where F ∈ k-alg a field.

6.6. Definition. Recall (3.1) the functor Ω from unital compositions to unital
forms which omits the multiplication. For a unital degree d composition A =
(X, ·) = (A,N), we define separability by

A is separable ⇐⇒ Ω(A) = X is separable, (6.6.1)
⇐⇒ N is separable.

Thus separability of A is not defined in terms of the algebra A (this would be rather
awkward, since we don’t even know whether A is alternative), but solely in terms
of the form N .

A symmetric composition C = (M, q, ?) is called separable if the quadratic
form q is separable. Recall from (3.12.1) the functor Υ : scomp → qcformk, C 7→
(M, q, h). Since Υ is compatible with base change, and Ker(q ⊗ F + h ⊗ K) =
Ker(q ⊗ F ) ∩Ker(h⊗ F ) (by (1.4.3)) = Ker(q ⊗ F ) (by (4.4.2)), we see that

C is separable ⇐⇒ Υ (C) = (M, q, h) is separable. (6.6.2)

Note that the underlying module of a separable unital or symmetric composition
is, by definition, finitely generated and projective.

Now combine Prop. 6.4(b) and 6.5(b) with (6.6.1) and (6.6.2) and the compat-
ibility of the functors Ω and Υ with Cα and C as well as Aα−1 and A. Then
Prop. 4.10 implies:

6.7. Corollary. Let 3 ∈ k× and α ∈ π6(k) a primitive sixth root of unity. Then
Cα and Aα−1 induce quasi-inverse equivalences between the categories of separable
unital cubic compositions and separable symmetric compositions.

It is possible to formulate a twisted version of this result, using the functors C̃
and Ã of §5. The details are omitted.

6.8. Strictness. We call a symmetric composition C = (M, q, ?) strict if the con-
gruences (4.5.4) are equalities, i.e., if

(x ? y) ? x = x ? (y ? x) = q(x)y, (6.8.1)

for all x, y ∈M . From 4.5 it is clear that

q non-degenerate =⇒ C strict,

and it can be shown that separable symmetric compositions are strict as well.
In a similar vein, let us call a unital cubic composition A = (A,N) strict if A is

an alternative algebra and satisfies the characteristic polynomial χ of 2.3, i.e.,
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χ(x;x) = x3 − T (x)x2 +Q(x)x−N(x)1 = 0

for all x ∈ A ⊗ R, R ∈ k-alg. — Here the relation between non-degeneracy and
strictness is less clear than in case of symmetric compositions. It is claimed in [bb,
Satz 3] that N non-degenerate implies A alternative. Similarly, it is claimed in
[berg, p. 142, Satz 4] and [bb, Satz 4] that non-degeneracy of N implies that A
satisfies χ. I have not been able to verify the arguments given by Baumgartner
and Bergmann. On the other hand, Schafer [schafer:n, Theorem 2, Theorem 3]
proved that this is true if k is a field of characteristic different from 2 or 3.

The following result is the analogue, in our setting, of [elmy, Prop. 4.1, Prop. 4.2].
We leave it to the reader to formulate and prove a twisted version like [elmy,
Prop. 5.1, Prop. 5.2].

6.9. Proposition. The functors Cα and Aα preserve strictness.

Proof. Let A = (A,N) ∈ uccompk be strict. We compute the product (x∗y)∗x,
defined as in (3.9.1), where now β = α−1 = 1− α. A straightforward computation
shows that

(x∗y)∗x = 3(x2y+xyx+yx2)−3Tx(xy+yx)−3Tyx
2+3

(
TxTy−Txy

)
x+T 2

xy. (6.9.1)

On the other hand, x+ y satisfies the polynomial χ(t;x+ y), whence

(x+ y)3 − Tx+y(x+ y)2 = N(x+ y) · 1−Q(x+ y)(x+ y).

By expanding and comparing the terms quadratic in x and linear in y, we obtain

x2y + xyx+ yx2 − Tx(xy + yx)− Tyx
2 = N21(x, y)1−Qxy −B(x, y)x. (6.9.2)

Combining (6.9.1) and (6.9.2) and using (3.2.1) yields

(x ∗ y) ∗ x = (T 2
x − 3Qx)y + 3N21(x, y) · 1. (6.9.3)

Now pass to the quotient Ȧ = A/k ·1 and recall that the quadratic form q on Cα(A)
is induced from H2(x) = T 2

x − 3Qx. Then (6.9.3) implies (ẋ ? ẏ) ? ẋ = q(ẋ)ẏ, and
the second equation of (6.8.1) is proved similarly.

Let C = (M, q, ?) be strict and Aα(C) = A = (A,N), thus A = k ⊕M with the
multiplication • of (4.3.1) and the cubic form N of (4.1.1). We first show that A is
alternative. It suffices to prove the alternative law for elements of the form u = 0⊕x
and v = 0 ⊕ y. Then the assertion follows by a straightforward computation,
using (6.8.1) and the identities (4.5.7) and (4.5.8) which follow from (6.8.1) by
linearization and are now equalities (instead of congruences modulo Ker(q)).

The fact that A satisfies the characteristic polynomial is likewise a straightfor-
ward computation, using the formulas (2.5.2) and (2.5.3) for the trace and quadratic
trace of N .
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