A NOTE ON SOME ALGEBRA CONSTRUCTIONS OVER RATIONAL
FUNCTION FIELDS

S. PUMPLUN

ABSTRACT. Let F be a field of characteristic not 2 or 3. We give easy sufficient criteria
for some first Tits constructions over the rational function field F(X) to yield division

algebras.

INTRODUCTION

Let F(z) the field of rational functions over a field F of characteristic not 2 or 3. We
obtain some easy to check sufficient criteria which help to construct examples of cubic
Jordan division algebras over F(x) which arise as first Tits constructions out of separable
cubic algebras.

In [G-R-SB], Gajivaradhan, Rema and Sri Bala gave some sufficient criteria for quaternion
and octonion algebras over F(z) to be division algebras, with F of characteristic unequal to

2. Their methods of proof are analogous to the ones used here.

1. PRELIMINARIES

1.1. Let F be a field of characteristic not 2 or 3 and A\ € F*. Let B be a separable
associative unital algebra of degree 3 over F' with norm Np,r and trace Tz,;p. We denote
the first Tits construction employing B and A by J(B, ). For the definition and general
properties of J(B, ), the reader is referred to [P-R1], [McC| or [KMRT]. The norm of the
Jordan algebra J(B, \) is given by

Ny ((b1,b2,b3)) = Ng/p(b1) + ANp,p(b2) + N> Ng,p(bs) — AT, p(b1babs)

with by,b2,b35 € B. It is well-known that J(B, ) is a division algebra if and only if A ¢
Np,p(B*) if and only if Ny(p ) is anisotropic. Moreover, J(B,b) = J(B,c*b) for all
ceF*.

An Albert algebra over F' is an exceptional simple Jordan algebra of degree 3, i.e. an
F-form of the Jordan algebra of 3-by-3 hermitian matrices with diagonal entries in F' and
off-diagonal entries in the split octonion algebra Zor(F') (or details, see for instance [P-R1,
2], or [KMRT, p. 524]). Every Albert algebra over F' can be obtained by a first or second
Tits construction (cf. [P-R1] or [McC]).
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For an iterated first Tits construction we write J(B, u, A) = J(J(B, u), A) or J(B, pu, A\, o) =
J(J(J(B, 1), N),a) with p, \,a € F'*.

1.2. The set-up. Let K = F(z) be the field of rational functions over F'. A polynomial
f(z) € F[a] is said to be of the nth kind if f(0) = 0 for all i € {1,...,n — 1}, but
f(0) # 0. Every element in the group K*/K*? is given by a polynomial of either the
first, the second or the third kind.

Let B be a separable associative algebra of degree 3 over K = F(x). When looking at
a first Tits construction J(B, A(z)) with A(z) € F(x), A(z) = f(z)/g(x) with f(x),g(x) €
F[z], we can 'clear the denominator’ and instead look at J(B, A(z)) for a suitable A(z) €
Fla]: let X = g(2)£(2)/9(x) = g(x)2£(z) € Fla] then J(B, A(x)) = J(B, X(x).

So we only need to deal with the case J(B, f(x)), where f(z) € F[z]. Let f(x) =
fi(@)er - fr(x)®" be the decomposition of f(x) € F[z] into distinct irreducible factors
fi(z),..., fr(z). Since we know that two polynomials f(z),h(z) € Flz] with f(z) =
I[(z)3h(z) for some I(x) € F[x] yield isomorphic Jordan algebras J(B, f(z)) = J(B, h(x)),
when looking at J(B, f(x)), we may assume without loss of generality that

f@) = fi(@)™ - fr(@)™

with g; € {1,2} foralli=1,...,r.
Define

a(z) € Flz], a(z) =ag+ a1z + agz® + - + ayat,

p(x) € Fla],  p(@) = po + paa + poa® + - + ppa’,

Mz) € Flz], AMx) = Ao+ Mz + Aoz + - + N2,
Remark 1. Let a(z), 8(z),v(x) € Flz] be of the first kind. Gajivaradhan, Rema and Sri
Bala [G-R-SB] proved two results for octonion algebras: they showed that if the octonion
algebra Cay(F, «(0), 5(0),v(0)) obtained by a repeated Cayley-Dickson doubling process out
of F'is a division algebra over a field F' of characteristic not 2, then the octonion algebra
Cay(K, a(z), B(z),v(x)) is a division algebra over K. If a(z) and 3(x) are of the first kind
and y(z) is of the second kind, and if the quaternion algebra (a(0),3(0))F is a division
algebra over I then Cay(K,a(x),(x),v(x)) is a division algebra over K. They proved a

similar result for quaternion algebras over K. Since we know that every composition algebra

over the polynomial ring F[z] is defined over F' [P, 6.8], we point out that for instance
CaY(Ka O‘(x)’ﬂ(x),’)/(x)) = CaY(F[x]v a(x),ﬂ(x),'y(x)) ® F({E) gF[m] CaY(Fa a, bv C) QF F(LE)

for suitable a,b,c € F*.

2. THE FIRST TITS CONSTRUCTION OVER F'(z) USING POLYNOMIALS OF THE FIRST KIND
Lemma 2. Let F = J(F(z),a(x)) with a(x) € F[z| of the first kind. If
EO = J(F, Oéo)

is a division algebra over F, then E is a division algebra over F(x).
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Proof. Assume E = J(F(z),a(z)) is not a division algebra over F(x), then a(z) € F(x)*3,
which means a(x) = f(z)3/g(z)?3 for suitable f(z), g(x) € Flx]. Since in this case J(F(z), a(z)) =
J(F(z), f(x)?), we may assume a(z) = f(z)® with f(z) € F[z]. This implies that a(z) =
b3+ ... for some b € F*, ie. ap =0b® and therefore Ey = J(F,a(0)) = J(F,ap) is not a
division algebra, either. O

Theorem 3. (i) Let E = Ey ®p K with Ey a separable cubic field extension over F. Let
A= J(E, Nx)) with XN(z) € Flz] of the first kind. If

Ao = J(Eo; Mo)
is a division algebra over F, then A is a division algebra over F(x).
(i) Let B = By ®@p K where By is a central simple associative division algebra over F. Let
J = J(B,a(z)) with a(z) € Flz] of the first kind. If

Jo = J(Bo, o)
is an Albert division algebra over F, then J is an Albert division algebra over F(x).
Proof. (i) Let 1, e, f be a basis of Fy over F. Suppose that Ag = J(Ey, A\(0)) = J(Eo, Ag) is a
division algebra over F. A = J(E, A(x)) is a division algebra over F'(x) if and only if N, is
an anisotropic cubic form, i.e. we have to show that there are only trivial h;(x) € K such that

0 = Na/k((h1,...,hg)). Suppose there are h;(z) € K such that 0 = Ny g ((h1,...,hg)).

By clearing denominators we may assume that h;(z) € Flx],

ng

hi = hl(iE) = Zci,jxj,

§j=0
so that
0= NA/K((hh ey hg)) = NE/K(h1+h26+h3f)+>\NE/K(h4+h5€+h6f)+/\2NE/K(h7+h86+h9f)

—ATg i ((h1 + hoe + ha f)(ha + hse + he f)(hr + hge + ho f)).

Comparing the constants (which amounts to plugging in 0 everywhere), this yields
0= Nay/r((h1(0),...,hg(0))) = Ng,/r(c1,0 + c20e+c30f) + ANg,/r(cao +cs0e+coo0f)

AN g,/ (cr0+cs0e+co,0f)—XNoTr,  r((c1,0+c20e+es,0f) (caotcsoetesof)(crotesoeteoof)).
Since Ay is division by hypothesis, this means all ¢; g, ..., 9,0 must be zero and so we have
h; = zh; for all i and Nay/r((hy,.. . he)) = mgNAO/F(EI,...,Eg). We now proceed by
induction and assume that all coefficients of the h;’s up to the one of x™ are zero. Then
Nay/p((hi, ... hg)) = $3nNAO/F((;L\I7...,71\;)) where now h; = 2™h; for all i and hence

0 = Nay/p((h1,...,hg)) means 0 = NAO/F((hl,...jL\;)) Now compare the coefficients of

the "+1’s appearing in the equation. Then by the same argument we obtain that
0= Na,/r((crns1,---sCon41)) =
Ngy/p(cing1 + congre + ez i1 f) + AoNgyp(Cans1 + s 1€ + conirf)
+A N, /7 (€741 + cs0€ + Cont1f)

*/\OTEU/F((Cl,o +eont1e+cznt1f)(Cant1 + s nr1e+ cont1f)(Cr i1+ Canri€+Coniif))
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which means all ¢i p41,...,¢9n+1 must be zero as well. By induction we thus show that
0= Na/g((h1,...,hg)) implies that hy = --- = hg = 0, hence that A is a division algebra
over K.

(ii) By a well-known theorem of Wedderburn, every central simple algebra of degree 3 over
F is cyclic. Suppose By = (L,a) is a central simple division algebra of degree 3 over F,
where L = F[z]/(x3 — b) = F(2) is a cubic field extension of F. We give the argument for
the special case that F' contains a primitive cube root of unity p, because then the basis of
the algebra is easy to write down (but the general case works analogously): By has F-basis
{1'29|0 < i,j < 2} where

2=1lzp, P=acF*, 2>=beF*

[Pi, p. 299]. Suppose that J = J(By,a(0)) = J(Byp,ap) is a division algebra over F. Use
that

N (B a(x)) ((b1,b2,3)) = Np/rc(b1) + (x)Np i (b2) + a(z)>Np i (bs) — a(z) T (b1 babs)

J = J(B,a(x)) is a division algebra over F(x) if and only if N;/k is an anisotropic
cubic form, i.e. we have to show that there are only the trivial h;(z) € K such that
0= Ny ((h1,...,har)). Suppose there are h;(x) € K such that 0 = Na g ((h1,...,har)).

By clearing denominators we may assume there exist polynomials h;(z) € F|x],
hi = hl(x) = Zci,jxj,
j=0
such that
0= NJ/K((hl, ceey h27)> = NB/K(hl +Zh2+22h3+l(h4+Zh5+2’2h6)+l2(h7+zhg+22hg)>+
OZ(II?)NB/K(hlo + -+ l2Z2h18) + OZ(Z’)2NB/K(h19 +-- 4+ 1222h27)
—a(2)Ty/rc((h1 + -+ + ?2%hg)(hio + - - - + 1P2%hag) (hig + - - - + 1?2 har)).

The proof now works analogously as in (ii): Comparing the constants, since Ay is divi-
sion by hypothesis, all ¢;,,...,c27,0 must be zero and so we have h; = zh; for all ¢ and
Nay/p((hi,. .. har)) = :1:3NAD/F(h1, ..., har). We now proceed by induction and assume
that all coefficients of the h;’s up to the one of ™ are zero. Then Ny, p((h1,...,ho7)) =
23" Ny, r((ha, ..., hoT)) where now h; = 2™h; for all i and hence 0 = N, /r((h1, ..., har))

means 0 = NAU/F((E,...,E;)) Now compare the coefficients of the z"*1’

s appearing
in the equation. Then by the same argument we obtain that all ¢i py1,...,Co7,n+1 must
be zero as well. By induction we thus show that 0 = N4 x((h1,...,h27)) implies that

hy =--- = hg =0, hence that A is a division algebra over K. O

Remark 4. Alternatively, we can prove (i) and (ii) much quicker as follows:

(i) Identify Ey ® F(z) = Eo(x) = E. Suppose A = J(E, p(x)) is not a division algebra over
F(x), then pu(z) € Ng/x(E>). This means p(r) = Ng/p)(e(z)) for a suitable non-zero
e(z) € Eo(x). Substituting z = 0, we get p(0) = Ng,/p(e(0)), ie. u(0) € Ng,/p(Es).
Therefore Ay = J(Eo, 1(0)) = J(Ey, f19) is not a division algebra over F.

(ii) Let B = By ®r K where By is a central simple associative division algebra over F.
Let J = J(B,a(z)) with a(r) € F[z] of the first kind. Suppose A = J(B, a(z)) is not a
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division algebra over F(z), then a(r) € Np,/x(B*). This means a(z) = Np () (e()) for
a suitable e(z) € By® F(z). We get a(0) = N, ,r(e(0)), i.e. a(0) € Np,/p(B(). Therefore
Ay = J(By,a(0)) = J(By, ap) is not a division algebra over F.

We give the lengthy proof here as well to show the inductive nature of the argument.
Theorem 5. (i) Let A= J(F(x),u(x), A(z)) and p(x), X\(z) € Flx] of the first kind. If
Ao = J(F, 1o, Mo)

is a diwision algebra over F, then A is a division algebra over F(x).
(ii) Let J = J(F(z), p(z), AM(x), a(z)) and p(z), A(z), a(x) € Flx] of the first kind. If

Jo = J(F o, Ao, o)
is a division algebra over F, then J is a division algebra over F(x).

Proof. For J = J(F(z), u(x)), by plugging in zero the term Nj(hy(x), ha(x), hs(x)) becomes
N (7,0 (R1(0), ha(0), h3(0)), i.e. the norm of J(F, 1(0)) (and for J = J(F'(x), u(x), AM(x)),
Nj(hi(z),... ho(x)) becomes N j(r .(0),r(0)) (P1(0),...,h9(0))). Hence the same induction
method as in the proof of Theorem 3 can be applied, substituting N; for Ng or Ng every-

where. O

More generally, if ¢ is a form of degree n over F(z), we may assume without loss of

generality that all its coefficients a, ;. (x) are polynomials in F[z]. If they are all of the

i
first kind, the same inductive argument proves that ¢ is anisotropic, if the corresponding
form ¢ over F' we obtain from ¢ by putting Qiy,.i, (0) instead of iy, i, (z) as coeflicients

everywhere, is anisotropic.

3. THE FIRST TITS CONSTRUCTION OVER F'(z) USING POLYNOMIALS OF THE SECOND OR
THIRD KIND

Lemma 6. F = J(F(z),a(x)) is a division algebra over F(z) for all p(x) € F[x] of the
second or third kind.

Proof. Suppose E = J(F(x),a(x)) is not a division algebra over F(x). Then a(z) € F(z)*3
which means a(x) = f(x)3/g(x)? for suitable f(z),g(x) € F[z]. Since J(F(z),a(r)) =
J(F(x), f(x)?) assume w.l.o.g. that a(x) = f(z)® with f(z) € F[z] and f(x) = by + b1x +
b2$2 + ...

Suppose a(z) is of the second kind, i.e. a(r) = z(a; + agz +...) = a1 + apa? ... with
a1 # 0. Comparing coefficients implies a; = s = 0, a contradiction to our assumption that
ai #0. Thus a(z) ¢ F(x)*3 and E = J(F(z),a(z)) a division algebra over F(x) for every
polynomial a(x).

Suppose a(z) is of the third kind, i.e. a(z) = 2%(ag + azz +...) = az2® + azz®... with
ag # 0. Comparing coefficients again implies a; = as = 0, a contradicting that as # 0.
Thus a(x) € F(x)*3 and E = J(F(x),a(z)) a division algebra over F(x). O

Theorem 7. Let Ey be a separable cubic field extension over F, E = Ey Qg F(x) defined
over F and A = J(E, X x)) with A(z) € F[z].
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(i) If M(z) is of the second kind then A is a division algebra over F(z).
(i) If A(x) is of the third kind then A is a division algebra over F(x).

Proof. A= J(E,u(x)) is a division algebra over F'(x) if and only if N4/ is an anisotropic
cubic form, i.e. we have to show that there are only trivial h;(z) € K such that 0 =
Nayg((hi,...,hg)). Suppose there are h;(x) € K such that 0 = N4 x((h1,...,hg)). Clear-
ing denominators we assume these h;(z) € F|[z],

hi = hi(z) = Zci,ﬂﬂj,
=0
such that

0= Na/k((h1,...,h9)) = Ng,r(h1+hoe+hs f)+Ma)Ng/k ((hathse+he f)+A(2)*Ng 1 ((hr, hs, ho))
—MN2)Tg/k((h1 + hae + haf) - (ha + hse + he f) - (h7 + hge + ho f),
with 1,e, f a basis of Ey over F.
(i) Let
Az) = Mz + Aoz 4 -+ Aez® = 2(A 4+ Aoz + - + Az® ) = zA(z), M £0
be of the second kind. Plugging in 0 everywhere yields

0 = Ng,/r(h1(0) + h2(0)e + h3(0)f) = Ng,/r(c10 + c20e + c30f)
Since Ejy is division by hypothesis, ¢10 = c20 = c30 = 0 and so we have h; = xli for
i=1,2,3 and

0= Na/k((hi,...,hg))
= ZL'BNE/F(EI + E;e + il\;f) + .’E}V\((E)NE/K(}M + h5€ + th) + 1'2X2NE/K(}L7 + hge + hgf)

*IZXTE/K((H + haa + ha f)(ha + hsa + ha?) (b + hga + ho f)).
Cancel z:
0= $2NE/F(EI + }L\;e + il\;f) + X(x)NE/K(h4 + h56 + h6a2) + SUX2NE/K(h7 + hge + hgag)

—2 ATk (b1 + hae + ha f) (ha + hse + ho f)(hr + hse + hof)).
Put z =0:
0= /\INEU/F(h4(O) + h5(0)€ + h6(0)f) = /\INEO/F(C4,0 + ¢5,0€ + Cﬁ,of).

Hence also c4,0 = ¢5,0 = c6,0 = 0 and h; = xi?z for i = 4,5,6 and
0= Na/k((hi,...,hg))
= 2 Ng/p(hi + hoe + h3a?) + 2 N(@) N, i (ha + hse + he f) + 22NN i (hy + hge + ho f)
—® N (1 + hae + hs f)(ha + hse + he f) (hy + hse + ho f)).
Cancel z%:
0 = oNg/p(hy + hae + hf) + 2 N2) N i (ha + hse + he f) + NN, i (hr + hse + hof)

_zXTE/K((H + hae + ha f)(ha + hse + ho f) (hr + hse + hof)).
Put z = 0:
0 =AY Ng/k (h7(0) + hs(0)e + ho(0) f).
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Hence also c7,90 = cg0 = c9,0 = 0 and h; = aci?z for i = 7,8,9. An obvious induction now

shows that we may conclude hy = --- = hg = 0 this way.

(ii) Let

Az) = Aot + -+ A2® = 22(Aa 4 Asz + -+ Az® 2) = 22A(x), A2 #0

be of the third kind. Put 2 = 0, then
0= Ng,/r(h1(0) + ha(0)e + h3(0) f) = Ng,/r(c1,0 + c2,0e + c30f),

ie. c10=co0=c30=0andh; = xli for i = 1,2,3. Now

0= Na/k((hi,...,hg))
= IBNE/F(E; ha, h3) + IQX(Q:)NE/K(}M + hse + he f) + $4X($)2NE/K(}I7 + hge + ho f)

—® M) T/ (b1 + hae + haf)(ha + hse + ha f)(hr + hse + ho ).

Cancel z2:

0= xNE/F(;L\; ha, hs) + X(30)]\7P1/1r<(h4 + hse 4 he f) + $2X(x)2NE/K(h7 + hge + ho f)

—aMx) T (b1 + hae + hsf)(ha + hse + haf)(hr + hse + ho f)).

Put z =0:

0= XaNg,/r(ha(0) + h5(0)e + he(0) f) = AaNg,/r(ca,0 + ¢5.0€ + c6,0f)-
Hence also c4,0 = ¢5,0 = c6,0 = 0 and h; = xi?z for i = 4,5,6 and
0= Z'NE/F(E; ha, hs) + $3X($)NE/K(H + hse + hef) + 2 N()? N, (hr + hse + ho f)

—2? M) T/ (b1 + hae + hsf)(ha + hse + ha f)(hr + hse + ho ).

Cancel z:

0= NE/F(E7E;7E?:) + JUQX(»’U)NE/K(;ZZ + hse + he f) + JJX(JJ)QNE/K(/W + hge + ho f)

—aX(@) Ty ((hy + hae + ha f)(ha + hse + hof)(hr + hse + ho f)).
Put x = 0:
0= Ng/r(hi, ha, h3).

So here the proof differs slightly form the previous case: Hence also ¢11 = c21 =¢31 =0
and we write h; = x f; for i = 1,2,3. Then

0=2*Ng p(fi + fae+ fsf) + 2> N@)Ni i (ha + hse + ho f) + 2X\(2)? N i (hy + hge + ho f)
—2?M@)Ti/k ((f1 + foe + f3f)(ha + hse + he f)(hr + hse + ho f)).

Cancel z:

0=22Ng p(f1 + fae + f3f) + 2AN@) N, i (ha + hse + ha f) + A(@)2Ng, i (hr + hge + hof)

*IX(fU)TE/K((fl + foe + f3f)(ha + hse + he f)(h7 + hge + ho f)).
Put x =0:
0= A3Ng/k (h7 + hse + ho f)
Hence c79 = cg,0 = c9,0 = 0 and h; = a:l?z for i = 7,8,9. An obvious induction again shows
that hy =--- = hg = 0. O
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This can be generalized using the same method of proof to show:

Theorem 8. (i) Let A = J(F(z), p(x), A(z)) with u(z), \(z) € F[z], where u(z) is of the
first kind such that J(F, o) is a division algebra. If A(x) is of the second or third kind then
A is a division algebra over F(x).

(i) Let J = J(F(x), A(z), p(x), a(zx)), where A(z), u(x) are of the first kind and J(F, Ao, to)
is a division algebra over F. If a(x) is of the second or third kind then J is a division algebra
over F(x).

In particular, the above conditions are necessary in case the scalars used are monomials:
e.g., given J = J(F(x), A(z), p(z), a(x)), if A(z) = Ao, u(x) = po and a(x) = ap are con-
stants (i.e., monomials of the first kind), J = J(F(z), A(x), u(x), a(x)) = J(F, Xo, to, 00) @F
F(z), so that J is division iff so is J(F, Ao, to, o), and if A(z) = Ao, pu(z) = po and
a(z) = a1z or a(z) = azz? is of the second or third kind, J is division implies that so
is J(F, Ao, to)-
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