ADDENDUM TO: "FACTORING SKEW POLYNOMIALS OVER HAMILTON'S QUATERNION ALGEBRA AND THE COMPLEX NUMBERS" [J. ALGEBRA 427 (2015), 20-29]

S. PUMPLÜN

Abstract

Let D be the quaternion division algebra over a real closed field F. Then every non-constant polynomial in a skew-polynomial ring $D[t ; \sigma, \delta]$ decomposes into a product of linear factors, and thus has a zero. This improves [8, Theorem 2].

Introduction

We use the notation of [8]. In particular, let F be a real closed field, that is, a formally real field such that every polynomial of odd degree with coefficients in F has at least one root in F, and for every element $a \in F$ there is $b \in F$ such that $a=b^{2}$ or $a=-b^{2}$. Equivalently, F is a real closed field if it is not algebraically closed but if the field extension $F(\sqrt{-1})$ is algebraically closed. Then every division algebra over F has dimension $1,2,4$ or 8 and up to isomorphism, there are exactly three associative division algebras over F, one each of dimension 1,2 , and 4 (cf. [1], [5]). Let D be the quaternion division algebra over F, σ an injective ring homomorphism of D and δ a σ-derivation. After a linear change of variables, the skew-polynomial ring $D[t ; \sigma, \delta]$ is either a twisted polynomial ring or a differential polynomial ring [3, Theorem 1.1.21]. For the special case that $\sigma=i d$ and $\delta=0$, we obtain the usual ring of left polynomials $D[t]=D[t ; i d, 0]$, often also denoted $D_{L}[t]$ (cf. Gordon and Motzkin [2]).

Generalizing a result by Jimenez and Pérez-Izquierdo [4, Proposition 3], we can improve [8, Theorem 2] and show that every non-constant polynomial in $D[t ; \sigma, \delta]$ decomposes into a product of linear factors, and thus has a zero.

For the elementary proof, we employ the nonassociative algebras S_{f} defined by Petit [7].

1. The Factorization Theorem

Proposition 1. (i) Let F be a field of characteristic not 2 and D a quaternion division algebra over F. Suppose that any quadratic quaternionic equation

$$
t^{2}+t b-a=0, \quad a, b \in D, a \neq 0
$$

has a non-zero solution. Then there are no eight-dimensional nonassociative division algebras over F with two associative nuclei (left, middle or right) isomorphic to D.

Date: 24.2.2015.

1991 Mathematics Subject Classification. Primary: 16S36; Secondary: 17A35, 12D05.
Key words and phrases. Skew-polynomials, Ore rings, factorization theorem, roots of polynomials, real closed field.
(ii) Let F be a real closed field and D the quaternion division algebra over F. Then there are no eight-dimensional nonassociative division algebras over F with two associative nuclei (left, middle or right) isomorphic to D.

Proof. (i) The proof is analogous to the one given for [4, Proposition 3].
(ii) If F is a real closed field, an equation of the type $t^{2}+t b-a=0, \quad a, b \in D, a \neq 0$ always has a non-zero solution [6].

Using the result quoted above, we are able to improve [8, Theorem 2]:
Theorem 2. (Factorization Theorem) Let D be the quaternion division algebra over a real closed field. Then every polynomial $f \in D[t ; \sigma, \delta]$ decomposes into a product of linear polynomials. In particular, $f(t)$ has a root.
(ii) If σ is a ring automorphism and $f=p_{1} \cdots p_{s}=p_{1}^{\prime} \cdots p_{t}^{\prime}$ are two such decompositions, then $s=t$ and there is a permutation $\pi \in S_{s}$ such that

$$
p_{\pi(i)}^{\prime} \sim p_{i}
$$

for all $i, 1 \leq i \leq s$.
Proof. (i) By [8, Theorem 2], every polynomial $f \in D[t ; \sigma, \delta]$ of degree $m>2$ decomposes into a product of linear or quadratic irreducible polynomials. No irreducible quadratic polynomial is a two-sided element in $D[t ; \sigma, \delta]$.

If f is an irreducible quadratic polynomial, then S_{f} must be a division algebra over F of dimension 8 and hence is nonassociative with $\operatorname{Nuc}_{l}\left(S_{f}\right)=\operatorname{Nuc}_{m}\left(S_{f}\right)=D$, contradiction Proposition 1.

In particular, $f(t)$ has a root in $D:$ for $f(t)=g(t)(a t-b), f\left(a^{-1} b\right)=g\left(a^{-1} b\right)\left(a a^{-1} b-b\right)=$ 0.
(ii) By [3, Theorem 1.2.9], this decomposition is unique up to a permutation of the factors and similarity.

References

[1] E. Darpö, E. Dieterich, M. Herschend, In which dmensions does a division algebra over a given ground field exist?, Enseign. Math. (2) 51 (3-4) (2005), 255-263.
[2] B. Gordon, T. S. Motzkin, On the zeros of polynomials over division rings, Trans. AMS 116 (1965), 218-226.
[3] N. Jacobson, "Finite-dimensional division algebras over fields," Springer Verlag, Berlin-Heidelberg-New York, 1996.
[4] Jimenez, C., Pérez-Izquierdo, J. M., Ternary derivations of finite-dimensional real division algebras. Linear Alg. and Its Appl. 428 (2008), 2192 - 2219.
[5] T. Y. Lam, " A first course in noncommutative algebra", second edition. Graduate Texts in Mathematics, 131. Springer-Verlag, New York, 2001.
[6] I. Niven, Equations in quaternions, The Amer. Math. Monthly 48 (10) (1941), 654-661.
[7] J.-C. Petit, Sur certains quasi-corps généralisant un type d'anneau-quotient, Séminaire Dubreil. Algèbre et théorie des nombres 20 (1966-67), 1-18.
[8] Pumplün, S., Factoring skew polynomials over Hamilton's quaternion algebra and the complex numbers, J. Algebra 427 (2015), 20-29.

E-mail address: susanne.pumpluen@nottingham.ac.uk
School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom

