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Abstract. We determine the Lie superalgebras that are graded by the root systems
of the basic classical simple Lie superalgebras of type C(n), D(m, n), D(2, 1; α) (α ∈
F \ {0,−1}), F(4), and G(3).

§1. Introduction

The concept of a Lie algebra graded by a finite root system was defined and inves-
tigated by Berman and Moody [BM] as an approach for studying various important
classes of Lie algebras such as the intersection matrix Lie algebras of Slodowy [S],
which arise in the study of singularities, or the extended affine Lie algebras of
[AABGP]. The unifying theme is that these Lie algebras exhibit a grading by a
finite (possibly nonreduced) root system ∆. The formal definition depends on a
finite-dimensional split simple Lie algebra g over a field F of characteristic zero
having a root space decomposition g = h ⊕ ⊕

µ∈∆ gµ relative to a split Cartan
subalgebra h. Such a Lie algebra g is an analogue over F of a finite-dimensional
complex simple Lie algebra.

Definition 1.1. A Lie algebra L over F is graded by the (reduced) root
system ∆ or is ∆-graded if

(∆G1) L contains as a subalgebra a finite-dimensional split simple Lie algebra g =
h ⊕⊕

µ∈∆ gµ whose root system is ∆ relative to a split Cartan subalgebra
h = g0;
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Dirección General de Enseñanza Superior e Investigación Cient́ıfica (Programa de Estancias de
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(∆G2) L =
⊕

µ∈∆∪{0} Lµ, where Lµ = {x ∈ L | [h, x] = µ(h)x for all h ∈ h} for
µ ∈ ∆ ∪ {0}; and

(∆G3) L0 =
∑

µ∈∆[Lµ, L−µ].

There is also a notion of a Lie algebra graded by the nonreduced root system
BCr introduced and studied in [ABG2] (see also [BS] for the BC1-case). The Lie
algebras graded by finite root systems (both reduced and nonreduced) decompose
relative to the adjoint action of g into a direct sum of finite-dimensional irreducible
g-modules. There is one possible isotypic component corresponding to each root
length and one corresponding to 0 (the sum of the trivial g-modules). Thus, for the
simply-laced root systems only adjoint modules and trivial modules occur. For the
doubly-laced root systems, copies of the module having the highest short root as its
highest weight also can occur. For type BCr, there are up to four isotypic compo-
nents, except when the grading subalgebra g has type D2

∼= A1× A1, where there
are five possible isotypic components. The complexity increases with the number
of isotypic components. These g-module decompositions and the representation
theory of g play an essential role in the classification of the Lie algebras graded
by finite root systems, which has been accomplished in the papers [BM], [BZ], [N],
[ABG1], [ABG2], [BS].

Our focus here and in [BE1], [BE2] is on Lie superalgebras graded by the root
systems of the finite-dimensional basic classical simple Lie superalgebras A(m, n) ,
B(m,n), C(n), D(m,n), D(2, 1;α) (α ∈ F\{0,−1}), F(4), and G(3). (A standard
reference for results on simple Lie superalgebras is Kac’s ground-breaking paper
[K1].)

Let g be a finite-dimensional split simple basic classical Lie superalgebra over a
field F of characteristic zero with root space decomposition g = h⊕⊕

µ∈∆ gµ relative
to a split Cartan subalgebra h. Thus, g is an analogue over F of a complex simple
Lie superalgebra whose root system ∆ is of type A(m,n) (m ≥ n ≥ 0, m + n ≥ 1),
B(m,n) (m ≥ 0, n ≥ 1), C(n) (n ≥ 3),D(m,n) (m ≥ 2, n ≥ 1), D(2, 1;α) (α ∈
F \ {0,−1}), F(4), and G(3). These Lie superalgebras can be characterized by the
properties of being simple, having reductive even part, and having a nondegenerate
even supersymmetric bilinear form. Mimicking Definition 1.1, we say

Definition 1.2. (Compare [BE1, Defn. 1.4] and [GN, Sec. 4.7].) A Lie superal-
gebra L over F is graded by the root system ∆ or is ∆-graded if

(i) L contains as a subsuperalgebra a finite-dimensional split simple basic clas-
sical Lie superalgebra g = h ⊕⊕

µ∈∆ gµ whose root system is ∆ relative to
a split Cartan subalgebra h = g0;

(ii) (∆G2) and (∆G3) of Definition 1.1 hold for L relative to the root system
∆.

The B(m, n)-graded Lie superalgebras were determined in [BE1]. These Lie su-
peralgebras differ from rest because of their complicated structure and most closely
resemble the Lie algebras graded by the nonreduced root systems BCr. In this
work we tackle ∆-graded Lie superalgebras for ∆ = C(n), D(m,n), D(2, 1; α) (α ∈
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F \ {0,−1}), F(4), and G(3). Our main theorem (Theorem 5.2) completely de-
scribes the structure of the Lie superalgebras graded by these root systems. The
A(n, n)-graded Lie superalgebras are truly exceptional for several reasons, and their
study (along with A(m,n)-graded Lie superalgebras for m 6= n) forms the subject
of [BE2].

We would like to view a ∆-graded Lie superalgebra L as a g-module in order to
determine its structure. However, a major obstacle encountered in the superalgebra
case is that g-modules need not be completely reducible. We circumvent this road-
block below (and previously in [BE1]) by showing that a ∆-graded Lie superalgebra
L must be completely reducible as a module for its grading subsuperalgebra g in
all cases except when ∆ is of type A(n, n).

§2. The g-module structure of ∆-graded Lie superalgebras for
∆ = C(n), D(m,n), D(2, 1;α) (α ∈ F \ {0,−1}), F(4), and G(3)

The following result is instrumental in examining ∆-graded Lie superalgebras.

Lemma 2.1. ([BE1, Lemma 2.2]) Let L be a ∆-graded Lie superalgebra, and let g
be its grading subsuperalgebra. Then L is locally finite as a module for g.

This result says that each element of a ∆-graded Lie superalgebra L, in particular
each weight vector of L relative to the Cartan subalgebra h of g, generates a finite-
dimensional g-module. Such a finite-dimensional module has a g-composition series
whose irreducible factors have weights which are roots of g or 0. Next we determine
which finite-dimensional irreducible g-modules have weights which are roots of g or
are 0. For this purpose, we will need to do a case-by-case analysis.

G(3) case.

When g is of type G(3), its even part g0̄ is a sum of two ideals, g0̄ = s1 ⊕ s2,
where s1 is a simple Lie algebra type G2 and s2 is sl2. We assume that h = h1⊕h2,
where h2 = Fh, a Cartan subalgebra of sl2, and h1 is a Cartan subalgebra of an sl3
subalgebra of s1.

As in [K1, §2.5.4], ∆ = ∆0̄ ∪∆1̄ (even and odd roots relative h), where

(2.2)

∆0̄ = {εi − εj , ±εi | i 6= j, i, j = 1, 2, 3, ε1 + ε2 + ε3 = 0} ∪ {±2δ},
∆1̄ = {±εi ± δ, ±δ}, and

Π = {α1 = δ + ε1, α2 = ε2, α3 = ε3 − ε2}

is a system of simple roots. Here we suppose that δ(h) = 1, and that h1 ⊂ sl3 ⊂ s1

consists of diagonal matrices d = diag{d1, d2, d3} with trace d1 + d2 + d3 = 0, and
εi(d) = di. We also assume that δ(h1) = 0 = εi(h2) for all i. Solving the system
αj(hi) = ai,j , where ai,j is the (i, j) entry of the Cartan matrix (see p. 49 of [K1])

(2.3)




0 1 0
−1 2 −3
0 −1 2


 ,
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we obtain the coroots

(2.4)

h1 = 2h + diag(−2, 1, 1)

h2 = diag(−1, 2,−1)

h3 = diag(0,−1, 1).

Now the conditions for Λ ∈ h∗ to be the highest weight of a finite-dimensional
irreducible g-module V (Λ) are given in [K1, Thm. 8] or [K2, Prop. 2.3] in terms
of the values Λ(hi) = ai. For G(3) they are

(2.5)
(i) a2 and a3 ∈ Z≥0;
(ii) k = 1

2

(
a1 − 2a2 − 3a3

) ∈ Z≥0 and k 6= 1;
(iii) If k = 0, then all ai = 0, (i.e. Λ = 0); and if k = 2, then a2 = 0.

The roots that satisfy constraints (i) and (ii) are ε3 − ε1 (the highest long root of
G2), −ε1 (the highest short root of G2), and 2δ (the positive root of sl2 and the
highest root of G(3)). (Note that δ satisfies (i) but has k = 1.) Both Λ = ε3 − ε1

and Λ = −ε1 have k = 0 so they can be ruled out. Thus, the only finite-dimensional
irreducible modules having weights that are roots or 0 are the adjoint module (with
highest weight 2δ) or the trivial module. We allow the possibility that the highest
weight vector in these modules has its parity changed from even to odd.

F(4) case.

When g is of type F(4), its even part is a sum of two ideals, g0̄ = s1 ⊕ s2, where
s1 is a simple Lie algebra type B3 and s2 is sl2. We assume that h = h1⊕h2, where
h2 = Fh, a Cartan subalgebra of sl2, and h1 is a Cartan subalgebra of s1 (which we
identify with the orthogonal Lie algebra o7).

As in [K1, §2.5.4],

(2.6)

∆0̄ = {±εi ± εj , ±εi | i 6= j, i, j = 1, 2, 3} ∪ {±δ},

∆1̄ =
{

1
2
(± ε1 ± ε2 ± ε3 ± δ

)}
, and

Π =
{

α1 =
1
2
(
ε1 + ε2 + ε3 + δ

)
, α2 = −ε1, α3 = ε1 − ε2, α4 = ε2 − ε3

}

is a system of simple roots. Here we suppose that δ(h) = 2, and that h1 ⊂ s1

consists of diagonal matrices d = diag{0, d1, d2, d3,−d1,−d2,−d3} with εi(d) = di.
We also assume that δ(h1) = 0 = εi(h2) for all i. Let t1 = diag{0, 1, 0, 0,−1, 0, 0},
t2 = diag{0, 0, 1, 0, 0,−1, 0}, and t3 = diag{0, 0, 0, 1, 0, 0,−1}. Then solving the
system αj(hi) = ai,j coming from the Cartan matrix

(2.7)




0 1 0 0
−1 2 −2 0
0 −1 2 −1
0 0 −1 2


 ,

we obtain the coroots
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(2.8)

h1 = −t1 − t2 − t3 +
3
2
h

h2 = −2t1

h3 = t1 − t2

h4 = t2 − t3.

Here the conditions for Λ ∈ h∗ to be the highest weight of a finite-dimensional
irreducible g-module V (Λ) are, in terms of the values Λ(hi) = ai, given by

(2.9)
(i) a2, a3, and a4 ∈ Z≥0;
(ii) k = 1

3

(
2a1 − 3a2 − 4a3 − 2a4

) ∈ Z≥0 and k 6= 1;
(iii) If k = 0, then all ai = 0; if k = 2, then a2 = 0 = a4; if k = 3, then

a2 = a4 + 1.

Only the roots −ε2 − ε3, −ε3, δ, and − 1
2 (−ε1 − ε2 − ε3 + δ) satisfy (i), and for

each of them except δ, the corresponding value of k is 0. For Λ = δ (the highest
root of g), the value of k is 2 and a2 = 0 = a4, so that all conditions hold. Thus,
again the only finite-dimensional irreducible modules having weights that are roots
or 0 are the adjoint module (with highest weight δ) or the trivial module and parity
changes of them.

D(2, 1; α) case.

For a simple Lie superalgebra g of type D(2, 1; α) (α ∈ F \ {0,−1}), the even
part g0̄ = sl2 ⊕ sl2 ⊕ sl2 = sl2 ⊗F F3. We identify F3 with triples ξ = (ξ1, ξ2, ξ3),
and the Cartan subalgebra h of g with h⊗ F3, where Fh is the Cartan subalgebra
of sl2. Let εi(h ⊗ ξ) = ξi for i = 1, 2, 3. Then the even and odd roots and simple
roots are

(2.10)

∆0̄ = {±2εi, | i = 1, 2, 3},
∆1̄ = {±ε1 ± ε2 ± ε3},
Π = {α1 = −(ε1 + ε2 + ε3), α2 = 2ε2, α3 = 2ε3}.

Using the Cartan matrix

(2.11)




0 1 α
−1 2 0
−1 0 2


 ,

we determine that the coroots are

(2.12)
h1 = h⊗ 1

2
(− (1 + α), 1, α

)

h2 = h⊗ (0, 1, 0)

h3 = h⊗ (0, 0, 1).

By [K2, Prop. 2.3], a root Λ gives a finite-dimensional g-module when the values
Λ(hi) = ai satisfy the conditions,
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(2.13)
(i) a2 and a3 ∈ Z≥0;

(ii) k =
1

1 + α

(
2a1 − a2 − αa3

) ∈ Z≥0;

(iii) If k = 0, then all ai = 0; and if k = 1, then (a3 + 1)α = ±(a2 + 1).

The only roots for which (i) and (ii) hold are 2ε2, 2ε3,−ε1+ε2+ε3 and −2ε1 (which
is the highest root of g). But for the first two, k = 0. Now when Λ = −ε1 + ε2 + ε3,
k = 1, and (iii) says that 2α = ±2 must be true. But α is assumed to be different
from 0 and −1. When α = 1, the Lie superalgebra D(2,1;α) is isomorphic to D(2, 1).
(We consider this next as part of the general D(m,n) case.) Hence for D(2, 1;α)
with α 6= 0,±1, the only finite-dimensional irreducible modules with weights that
are roots are the adjoint and trivial modules (and parity changes of them).

D(m,n) (m ≥ 2, n ≥ 1) case.

Let V = V0̄⊕V1̄ be a Z2-graded vector space over a field F of characteristic zero,
with dimV0̄ = 2m and dimV1̄ = 2n, where m ≥ 2 and n ≥ 1. We assume ( | ) is a
nondegenerate supersymmetric bilinear form of maximal Witt index on V . Thus,
we may suppose there is a basis {u1, . . . , u2m} of V0̄ and a basis {v1, . . . , v2n} of V1̄

such that

(2.14)
(ui | ui+m) = 1 = (ui+m | ui) (i = 1, . . . , m)

(vj | vj+n) = 1 = −(vj+n | vj) (j = 1, . . . , n),

and all other products are 0.
The space EndF(V ) of transformations on V inherits a Z2-grading: EndF(V ) =(

EndF(V )
)
0̄
⊕ (

EndF(V )
)
1̄

where x.u ∈ Va+b (subscripts read mod 2) whenever
x ∈ (

EndF(V )
)
a

and u ∈ Vb. Setting

(2.15)
g = {x ∈ EndF(V ) | (x.u | v) = −(−1)x̄ū(u | x.v) for all u, v ∈ V },
s = {s ∈ EndF(V ) | (s.u | v) = (−1)s̄ū(u | s.v) for all u, v ∈ V and str(s) = 0},

we have that g is the orthosymplectic split simple Lie superalgebra osp2m,2n of
type D(m,n). (In displays such as (2.15), we assume all elements shown are
homogeneous, and our convention is that ū = b (viewed as an element of Z2)
whenever u ∈ Vb.) The transformations s ∈ s are supersymmetric relative to the
form on V and have supertrace 0. Thus, str(s) = trV0̄

(s) − trV1̄
(s) = 0 whenever

s ∈ (EndF(V )
)
0̄
, and the supertrace is automatically 0 for all transformations in

(EndF(V )
)
1̄
. The space s is an irreducible g-module under the natural action.

Using the basis in (2.14), we may identify linear transformations with their ma-
trices. The diagonal matrices in g form a Cartan subalgebra h. The corresponding
even and odd roots and a system of simple roots of g are given by [K1, §2.5]:

(2.16)
∆0̄ = {±εi ± εj ,±δr ± δs,±2δr | 1 ≤ i < j ≤ m, 1 ≤ r < s ≤ n},
∆1̄ = {±εi ± δr | 1 ≤ i ≤ m, 1 ≤ r ≤ n},
Π = {δ1 − δ2, . . . , δn−1 − δn, δn − ε1, ε1 − ε2, . . . , εm−1 − εm, εm−1 + εm},
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where for any h = diag(b1, . . . , bm,−b1, . . . ,−bm, c1, . . . , cn,−c1, . . . ,−cn) ∈ h,
εi(h) = bi and δr(h) = cr for any i, r. The corresponding Cartan matrix is

(2.17)




An−1

0
...
0
−1

0

0 . . . 0 −1 0 1 0 . . . 0

0

−1
0
...
0

Dm




for m ≥ 3 (if n = 1, it is just the (m + 1) × (m + 1) bottom right corner above),
where

An−1 =




2 −1
−1

. . .
−1

−1 2 −1
−1 2




and

Dm =




2 −1
−1

. . .
−1

−1 2 −1 −1
−1 2 0
−1 0 2




;

while for m = 2, the Cartan matrix is

(2.17’)




An−1

0
...
0
−1

0

0 . . . 0 −1 0 1 1

0 −1
−1

2 0
0 2




.

Let t1, . . . , tn+m ∈ h be the dual basis to δ1, . . . , δn, ε1, . . . , εm. Then relative
to this basis of h, the coroots h1, . . . , hn+m have the following expressions:

hi = ti − ti+1 (1 ≤ i ≤ n− 1)
hn = tn + tn+1

hn+j = tn+j − tn+j+1 (1 ≤ j ≤ m− 1)
hn+m = tn+m−1 + tn+m.
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Now, suppose

Λ =
n∑

i=1

πiδi +
m∑

j=1

µjεj ,

and Λ(hi) = ai in Kac’s notation. The conditions for Λ to be the highest weight of
a finite-dimensional irreducible module are given in [K1, Thm. 8]:

(2.18)
(i) ai ∈ Z≥0 for i 6= n;
(ii) k = an −

(
an+1 + . . . an+m−2 + 1

2 (an+m−1 + an+m)
) ∈ Z≥0;

(iii) If k ≤ m − 2, then an+k+1 = · · · = an+m = 0; and if k = m − 1, then
an+m−1 = an+m.

The first condition in (2.18) says

πi − πi+1 = ai ∈ Z≥0 i = 1, . . . , n− 1
µj − µj+1 = an+j ∈ Z≥0 j = 1, . . . , m− 1

µm−1 + µm = an+m ∈ Z≥0.

The second requirement is πn = an −
(
an+1 + . . . an+m−2 + 1

2 (an+m−1 + an+m)
)

=
k ∈ Z≥0. These two conditions imply that π1 ≥ π2 ≥ · · · ≥ πn ≥ 0 is a partition
and µ1 ≥ µ2 ≥ · · · ≥ µm−1 ≥ |µm|, with µi ∈ 1

2Z for any i = 1, . . . , m (compare
the results of [LS]).

The final condition is that when k = πn ≤ m − 2, µk+1 = · · · = µm = 0; while
if k = πn = m − 1, µm = 0. Hence both cases can be combined to say that when
πn ≤ m− 1, then µk+1 = · · · = µm = 0.

If Λ ∈ ∆0̄ ∪∆1̄, then πn = 0, 1 or 2, and the three conditions above imply that
for n ≥ 2, Λ is either 2δ1 or δ1 + δ2; while for n = 1, Λ is either 2δ1 or δ1 + ε1. But
2δ1 is the highest root, so V (2δ1) is the adjoint module. The root δ1 + δ2 if n ≥ 2
or δ1 + ε1 if n = 1 is the highest weight of s in (2.15). However, 2ε1 is a weight of
s which is not a root. Thus, again only the adjoint and trivial modules appear.

C(n) (n ≥ 3) case.

The simple Lie superalgebra g of type C(n) may be identified with the orthosym-
plectic Lie superalgebra osp2,2(n−1). (The restriction n ≥ 3 comes from the isomor-
phism osp2,2

∼= sl2,1. Thus, C(2)-graded superalgebras are regarded as A(1, 0)-
graded superalgebras and are described in [BE2].) For simplicity of notation, take
r = n − 1 so that g = osp2,2r, and suppose in what follows that r ≥ 2. We make
the same identifications as for D(m,n), but here m = 1, and as above assume the
Cartan subalgebra h of g consists of the diagonal matrices

(2.19) h = diag(µ,−µ, d,−d)

where µ ∈ F, and d = diag{d1, . . . , dr} is a diagonal matrix with entries in F. Now
for C(r + 1) = C(n):

(2.20)

∆0̄ = {±2δi, ±δi ± δj | 1 ≤ i 6= j ≤ r}
∆1̄ = {±ε± δi | 1 ≤ i ≤ r}, and

Π = {α0 = ε + δ1, αi = δi − δi+1, (1 ≤ i ≤ r − 1), αr = 2δr}
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is a system of simple roots. If h is as in (2.19), then ε(h) = µ, and δi(h) = di for
i = 1, . . . , n. The corresponding Cartan matrix is

(2.21)




0 1
−1 2 −1

−1 2
. . .

−1 2 −2
−1 2




,

and the corresponding coroots (αj(hi) = ai,j) are given as follows (note that the
row and column indices here are −1, 0, . . . , 2r):

(2.22)

h0 = (E−1,−1 − E0,0) + (E1,1 − Er+1,r+1)

hi = (Ei,i − Er+i,r+i)− (Ei+1,i+1 − Er+i+1,r+i+1) (1 ≤ i ≤ r − 1)
hr = Er,r − E2r,2r.

In order for Λ ∈ h∗ to correspond to a finite-dimensional irreducible module V (Λ),
we must have Λ(hi) ∈ Z≥0 for all i = 1, . . . , r and Λ(h0) ∈ Z. Consideration of the
roots in (2.20) shows that only Λ = 2δ1, δ1 + δ2, −ε + δ1, and ε + δ1 (the highest
root of g) are possible solutions.

Now the Lie superalgebra g has a Z-gradation, g = g−1 ⊕ g0 ⊕ g1 with g0̄ = g0

and g1̄ = g−1 ⊕ g1. Kac [K2, Sec. 2] shows that for a finite-dimensional irreducible
g-module V = V (Λ), V ′ = {x ∈ V | g1.x = 0} is an irreducible g0-submodule of
highest weight Λ, and V is a quotient of the induced module U(g) ⊗U(g0⊕g1) V ′,
which as a vector space is isomorphic to U(g−1) ⊗F V ′ (where U( ) denotes the
universal enveloping algebra). Thus, the weights of V are of the form ω + ν, where
ω is a weight of the g0-module V ′ and ν is a weight of U(g−1). Hence ν is either 0
or a sum of roots of the form −ε± δi.

Assume that Λ is either 2δ1, δ1 + δ2, or −ε + δ1. Then with c = E−1,−1 − E0,0,
(ω + ν)(c) ∈ Z≤0. But if V is a finite-dimensional module, the supertrace of the
action of c is 0, so it must be (ω + ν)(c) = 0 for any weight ω + ν of V . This
forces V = V ′, so g1.V = 0, a contradiction since g is simple, and hence V is a
faithful module. Therefore, the only possibility left is Λ = ε+δ1, so V is the adjoint
module.

§3. Complete reducibility

Proposition 3.1. Let g be one of the split simple Lie superalgebras C(n) (n ≥ 3),
D(m,n) (m ≥ 2, n ≥ 1), D(2, 1;α) (α ∈ F \ {0,−1}), F(4), or G(3) with split
Cartan subalgebra h. Assume V is a locally finite g-module satisfying

(i) h acts semisimply on V ;
(ii) any composition factor of any finite-dimensional submodule of V is isomor-

phic to the adjoint module g or to a trivial module (possibly with the parity
changed).
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Then V is a completely reducible g-module.

Proof. Assume X is a submodule of V , and Y is a submodule of X such that Y
and X/Y are trivial or adjoint modules. By the diagonalizability of the action
of h on X, if X/Y and Y are isomorphic (possibly with a change in parity) with
highest weight µ, then there are linearly independent weight vectors xµ, yµ ∈ Xµ

so that X = U(g)xµ + U(g)yµ. But U(g)xµ and U(g)yµ are strictly contained in
X (the dimension of their highest weight spaces is 1), and both X/Y and Y are
irreducible. The only possibility is that both submodules are irreducible and that
X = U(g)xµ⊕U(g)yµ, so that X is completely reducible (this is the same argument
used in the proof of Theorem 3.3 of [BE1]).

As a result, it suffices to show that if Y is an adjoint module and X/Y is trivial,
or if Y is trivial and X/Y is adjoint, then X ∼= Y ⊕X/Y . When g is of type C(n),
F(4), or G(3), its Killing form is nondegenerate and dim g0̄ 6= dim g1̄. Therefore in
this case, the supertrace of the Casimir element is dim g0̄ − dim g1̄ 6= 0. Hence the
Casimir element acts nontrivially on the adjoint module, and X is the direct sum
of the two different eigenspaces for the Casimir element.

Now in all the remaining cases, g1̄ is an irreducible module for g0̄, which is a
semisimple Lie algebra. In addition, Homg0̄

(g0̄⊗ g1̄,F) = 0, and Homg0̄
(g1̄⊗ g1̄,F)

is spanned by a nondegenerate skew-symmetric bilinear form.

Assume initially that Y is an adjoint module. Changing the parity of X if
necessary, we may assume that there is an even isomorphism of g-modules ϕ : g →
Y . By complete reducibility for g0̄-modules, X = Y ⊕ Fv for some 0 6= v ∈ V
with g0̄.v = 0. If g1̄.v 6= 0, then by the irreducibility of g1̄, we may scale v so that
x.v = ϕ(x) for any x ∈ g1̄. But then for any x, y ∈ g1̄,

0 = [x, y].v = x.(y.v) + y.(x.v) = x.ϕ(y) + y.ϕ(x)

= ϕ([x, y]) + ϕ([y, x]) = 2ϕ([x, y])

so that ϕ(g0̄) = ϕ([g1̄, g1̄]) = 0, a contradiction.

Finally, suppose that Y is trivial and X/Y is adjoint. As X is a completely
reducible g0̄-module, X = Fv ⊕ Z where g0̄.v = 0 and g0̄.Z 6= 0. Again we may
assume that there is an even isomorphism ψ : g → Z of g0̄-modules. If Z is not
a g-submodule of X, then v is odd, and for any x, y ∈ g1̄ and z ∈ g0̄, x.ψ(y) =
ψ([x, y])+(x | y)v, where ( | ) is a skew-symmetric form spanning Homg0̄

(g1̄⊗g1̄,F),
and x.ψ(z) = ψ([x, z]). Hence

ψ([[x, y], z]) = [x, y].ψ(z) = x.(y.ψ(z)) + y.(x.ψ(z))

= x.ψ([y, z]) + y.ψ([x, z])

= ψ([x, [y, z]] + [y, [x, z]]) +
(
(x | [y, z]) + (y | [x, z])

)
v

= ψ([[x, y], z]) + 2(x | [y, z])v

so that (g1̄ | g1̄) = (g1̄ | [g0̄, g1̄]) = 0. We have arrived at a contradiction, so it must
be that Z is a g-submodule of X. ¤
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§4. The structure of Lie superalgebras
with certain g-module decompositions

From Proposition 3.1 it follows that every Lie superalgebra graded by the root
system C(n) (n ≥ 3), D(m, n) (m ≥ 2, n ≥ 1), D(2, 1; α) (α ∈ F \ {0,−1}), F(4),
or G(3) decomposes as a g-module into a direct sum of adjoint modules and trivial
modules. The next general result describes the structure of Lie superalgebras L
having such decompositions. The restrictions imposed on L in the next lemma will
hold in particular in the ∆-graded case.

Lemma 4.1. Let L be a Lie superalgebra over F with a subsuperalgebra g, and
assume that under the adjoint action of g, L is a direct sum of

(1) copies of the adjoint module g,
(2) copies of the trivial module F.

Assume that
(1’) dim Homg(g⊗ g, g) = 1 so that Homg(g⊗ g, g) is spanned by x⊗ y 7→ [x, y].
(2’) Homg(g⊗ g,F) = Fκ, where κ is even, nondegenerate and supersymmetric,

and the following conditions hold:
(i) There exist f, g ∈ g0̄ such that [f, g] 6= 0 and κ(f, g) 6= 0;
(ii) There exist f, g, h ∈ g0̄ such that [f, h] = [g, h] = 0; and

κ(f, h) = κ(g, h) = 0 6= κ(f, g),
(iii) There exists f, g, h ∈ g0̄ such that [[f, g], h] = 0 6= [[g, h], f ].

Then there exist superspaces A and D such that L ∼= (g⊗A)⊕D and
(a) A is a unital (super)commutative associative F-superalgebra;
(b) D is a trivial g-module and is a Lie superalgebra;
(c) Multiplication in L is given by

[f ⊗ a, g ⊗ a′] = (−1)āḡ
(
[f, g]⊗ aa′ + κ(f, g)〈a, a′〉

)

[d, f ⊗ a] = (−1)d̄f̄f ⊗ da,

[d, d′] (is the product in D)

for all f, g ∈ g, a, a′ ∈ A, d, d′ ∈ D, where

• 〈 , 〉 : A × A → D, (a, a′) 7→ 〈a, a′〉 is F-bilinear, even and superskew-
symmetric,

• [d, 〈a, a′〉] = 〈da, a′〉 + (−1)d̄ā〈a, da′〉 holds for d ∈ D and a, a′ ∈ A. In
particular, 〈A,A〉 is an ideal of D.

• Φ : D → DerF(A), d 7→ Φ(d) where Φ(d) : a → da is a representation with
〈A,A〉 ⊆ kerΦ.

• 0 =
∑
	(−1)ā1ā3〈a1a2, a3〉 = 0 for any a1, a2, a3 ∈ A.

Conversely, the conditions above are sufficient to guarantee that a superspace L =
(g⊗A)⊕D satisfying (a)–(c) is a Lie superalgebra.

Proof. When a Lie superalgebra L is a direct sum of copies of adjoint modules and
trivial modules for g (allowing for changes in their parity), then after collecting
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isomorphic summands, we may assume there are superspaces A = A0̄ ⊕ A1̄ and
D = D0̄ ⊕ D1̄ so that L = (g ⊗ A) ⊕ D. Suppose such a superalgebra L satisfies
conditions (1),(2),(1)’, and (2)’. Notice first that D is a subsuperalgebra of L, since
it is the (super)centralizer of g. Fixing basis elements {ai}i∈I of A and choosing
ai, aj , ak with i, j, k ∈ I, we see that the projection of the product [g ⊗ ai, g ⊗ aj ]
onto g ⊗ ak determines an element of Homg(g ⊗ g, g), which is spanned by the
supercommutator on g. Thus, there exist scalars ξk

i,j so that

[x⊗ ai, y ⊗ aj ]
∣∣∣
g⊗A

=
∑

k∈I

ξk
i,j [x, y]⊗ ak = [x, y]⊗

(∑

k∈I

ξk
i,jak

)
.

Defining A×A → A by ai × aj 7→
∑

k∈I ξk
i,jak and extending it bilinearly, we have

a product on A. Necessarily this multiplication is supercommutative because the
products on g and L are superanticommutative. By similar arguments (compare
[BZ]), there exist bilinear pairings A×A → D, a×a′ 7→ 〈a, a′〉 ∈ D, and D×A → A,
d× a 7→ da ∈ A, such that the multiplication in L is as in (c).

Now the Jacobi superidentity J(z1, z2, z3) =
∑
	(−1)z̄1z̄3 [[z1, z2], z3] = 0 (cyclic

permutation of the homogeneous elements z1, z2, z3), when specialized with ho-
mogeneous elements d1, d2 ∈ D and f ⊗ a ∈ g ⊗ A, and then with d ∈ D and
f ⊗ a, g ⊗ a′ ∈ g ⊗ A will show that Φ(d)a = da is a representation of D as su-
perderivations of A. We assume next that f, g are taken to satisfy (i). Then for
homogeneous elements d ∈ D, a, a′ ∈ A, the identity J(d, f⊗a, g⊗a′) = 0 gives the
condition [d, 〈a, a′〉] = 〈da, a′〉 + (−1)d̄ā〈a, da′〉. From J(f ⊗ a, g ⊗ a′, h ⊗ a′′) = 0
with homogeneous a, a′, a′′ ∈ A and with f, g, h ∈ g as in assumption (ii), we de-
termine that 〈A,A〉 is contained in the kernel of Φ. Finally, J(f ⊗ a1, g ⊗ a2, h ⊗
a3) = 0 for a1, a2, a3 homogeneous and f, g, h ∈ g as in assumption (iii) gives
0 =

∑
	(−1)ā1ā3〈a1a2, a3〉 = 0 and (a2a3)a1 = (−1)ā2(ā3+ā1)(a3a1)a2. By super-

commutativity, this is the same as (a2a3)a1 = a2(a3a1), and hence the associativity
of A follows.

The converse is a simple computation. ¤

§5. The Main Theorem

In order to apply Lemma 4.1 to the ∆-graded Lie superalgebras considered
here, it has to be checked that both Homg(g ⊗ g, g) and Homg(g ⊗ g,F) are one-
dimensional, g being a split simple classical Lie superalgebra of type C(n) (n ≥ 3),
D(m,n) (m ≥ 2, n ≥ 1), D(2, 1; α) (α ∈ F \ {0,−1}), F(4), or G(3). The existence
of a nondegenerate even supersymmetric bilinear form on g and the fact that g is
central simple over F immediately imply the assertion for Homg(g⊗ g,F).

Lemma 5.1. Let g be a split simple classical Lie superalgebra of type C(n) (n ≥
3), D(m,n) (m ≥ 2, n ≥ 1),D(2, 1; α) (α ∈ F \ {0,−1}), F(4), or G(3). Then
dimHomg(g⊗ g, g) = 1.

Proof. Assume first that g is of type C(n) (n ≥ 3) and consider the Z-gradation
used in Section 2, g = g−1 ⊕ g0 ⊕ g1, with g0̄ = g0 and g1̄ = g−1 ⊕ g1. Then
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g0 = Fc ⊕ sp2r, where c = E−1,−1 − E0,0 as in Section 3, which is central in g0,
and r = n − 1. The spaces g1 and g−1 are isomorphic, as sp2r-modules, to the
natural 2r-dimensional irreducible module for sp2r, while c acts as the identity on
g1 and as minus the identity on g−1. Once the Cartan subalgebra h = Fc ⊕ h′ of
g0 and a system of simple roots are chosen as in (2.19) and (2.20), we may take a
highest weight vector v ∈ g1 and a lowest weight vector w ∈ g−1 (as g0-modules).
Then v⊗w generates g⊗ g as a g-module (one gets easily that g1 ⊗w is contained
in the g0-module generated by v ⊗ w, and hence that g ⊗ w is contained in the
g-module generated by v ⊗ w. But g ⊗ w generates g ⊗ g as a g-module). Thus,
any ϕ ∈ Homg(g ⊗ g, g) is determined by ϕ(v ⊗ w), which belongs to h = Fc ⊕ h′

because v⊗w has weight 0. In particular, ϕ restricts to a g0-module homomorphism
g1⊗g−1 → g0. Since Homsp2r

(g1⊗g−1, sp2r) has dimension 1 (as sp2r-modules, this
is Homsp2r

(
V (ω1) ⊗ V (ω1), V (2ω1)

)
, where ω1 is the first fundamental dominant

weight for sp2r), it follows that there is 0 6= h ∈ h′ such that ϕ(v⊗w) ∈ Fc⊕Fh for
any ϕ ∈ Homg(g⊗g, g) and dim Homg(g⊗g, g) ≤ 2. If this dimension were 2, there
would exist a ϕ ∈ Homg(g⊗g, g) with ϕ(v⊗w) = c and, therefore, ϕ(g1⊗g−1) = Fc.
Then, for any x ∈ g1, ϕ(g1 ⊗ [x, g−1]) ⊆ F[c, x] = Fx. It is not difficult to find
linearly independent elements x, y ∈ g1 such that both [x, g−1] and [y, g−1] are
not contained in sp2r, and there is a nonzero z ∈ [x, g−1] ∩ [y, g−1] ∩ sp2r. Then
ϕ(g1 ⊗ z) ⊆ Fx ∩ Fy = 0, which implies ϕ(g1 ⊗ sp2r) = 0, since sp2r is simple
and hence generated by z as a g0-module. But then ϕ(g1 ⊗ g0) = ϕ(g1 ⊗ c) =
ϕ(g1 ⊗ [x, g−1]) ⊆ Fx, and also ϕ(g1 ⊗ g0) ⊆ Fy. Therefore, ϕ(g1 ⊗ g0) = 0.
Since ϕ is adc-invariant, ϕ(g1 ⊗ g1) = 0 too. In the same way we prove that
ϕ(g0 ⊗ g−1) = ϕ(g−1 ⊗ g−1) = 0. Finally, ϕ(g0 ⊗ g1) = ϕ([g1, g−1] ⊗ g1) ⊆
[g−1, ϕ(g1⊗g1)]+ϕ(g1⊗g0) = 0 and also ϕ(g−1⊗g0) = 0. Therefore ϕ(g⊗g) ⊆ g0,
but 0 6= ϕ(g⊗ g) is an ideal of g, a contradiction.

Assume now that g is of type D(m,n) (m ≥ 2, n ≥ 1),D(2, 1;α) (α ∈ F\{0,−1}),
F(4), or G(3). Then g has a Z-gradation [K1, §2] g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2,
with g0̄ = g−2 ⊕ g0 ⊕ g2 and g1̄ = g−1 ⊕ g1. The spaces g2 and g−2 are irreducible
contragredient g0-modules as are g1 and g−1; g0 = Fc⊕ [g0, g0], where [g0, g0] is a
semisimple Lie algebra; and [c, xi] = ixi for any xi ∈ gi, i = ±2,±1, 0. As before
we fix a Cartan subalgebra h = Fc⊕h′ of g0 and take a highest weight vector v ∈ g2

and a lowest weight vector w ∈ g−2. Then v ⊗ w generates g ⊗ g as a g-module,
and any ϕ ∈ Homg(g ⊗ g, g) is determined by ϕ(v ⊗ w), which belongs to h (by
adc-invariance, ϕ must respect the Z-gradation).

For types D(2, 1; α) (α ∈ F \ {0,−1}), F(4), or G(3), g±2 is one-dimensional
and annihilated by [g0, g0]. Hence ϕ(v ⊗ w) ∈ Fc and, therefore, Homg(g⊗ g, g) is
one-dimensional. For type D(m,n) (m ≥ 2, n ≥ 1), [g0, g0] = o2m⊕ sln and g2 and
g−2 are annihilated by o2m. The argument in [BE1, Proof of (3.5)] applies here to
give the result. ¤

Theorem 5.2. Assume L is a ∆-graded Lie superalgebra with grading subalge-
bra g corresponding to a root system ∆ of type C(n) (n ≥ 3), D(m,n) (m ≥ 2,
n ≥ 1), D(2, 1;α) (α ∈ F \ {0,−1}), F(4), or G(3). Then there exist a unital
supercommutative associative F-superalgebra A and an F-superspace D such that
L ∼= (g⊗A)⊕D. Multiplication in L is given by
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[f ⊗ a, g ⊗ a′] = (−1)āḡ
(
[f, g]⊗ aa′ + κ(f, g)〈a, a′〉

)

[d, L] = 0

for all f, g ∈ g, a, a′ ∈ A, d ∈ D, where κ(f, g) is a fixed even nondegenerate super-
symmetric bilinear form on g, and 〈 , 〉 : A × A → D is F-bilinear and superskew-
symmetric and satisfies the two-cocycle condition,

∑
	(−1)ā1ā3〈a1a2, a3〉 = 0.

Proof. The results of Sections 2 and 3 show that every such ∆-graded Lie su-
peralgebra L is a direct sum of adjoint and trivial modules. Most of the con-
clusions of the theorem will be immediate consequences of Lemma 4.1, once we
verify that the hypotheses in (1)’ and (2)’ of that lemma are satisfied. The fact
dimHomg(g⊗g,F) = 1 = dim Homg(g⊗g, g) comes from Lemma 5.1 and the para-
graph preceding it. When g0̄ is a reductive Lie algebra of rank at least 2 (which
happens in all our cases), conditions (i)–(iii) of (2)’ are always satisfied. Indeed,
assume we have a root space decomposition of g0̄ relative to the Cartan subalgebra
h. For (i) take f in a root space (say of root α) and g in the root space correspond-
ing to the root −α; while for (ii) and (iii) choose f, g as before. Let h ∈ h be such
that α(h) = 0 for (ii); and for (iii), take h ∈ h with α(h) 6= 0.

The only point left is the proof of the centrality of D. Condition (ii) of Definition
1.2 implies that L0 =

∑
µ∈∆[Lµ, L−µ]. This forces D = 〈A | A〉, which by Lemma

4.1 is contained in kerΦ. Therefore D = 〈A | A〉 is abelian and centralizes g ⊗ A,
hence it is central. ¤

Recall that a central extension of a Lie superalgebra L is a pair (L̃, π) consisting
of a Lie superalgebra L̃ and a surjective Lie superalgebra homomorphism π : L̃ → L

(preserving the grading) whose kernel lies in the center of L̃. If L̃ is perfect (L̃ =
[L̃, L̃]), then L̃ is said to be a cover or covering of L. Any perfect Lie superalgebra
L has a unique (up to isomorphism) universal covering superalgebra (L̂, π̂) which
is also perfect, called the universal central extension of L. From Theorem 5.2 we
can draw the conclusion that our ∆-graded Lie superalgebras are coverings:

Corollary 5.3. A ∆-graded Lie superalgebra with grading subalgebra g correspond-
ing to a root system ∆ of type C(n) (n ≥ 3), D(m,n) (m ≥ 2, n ≥ 1), D(2, 1;α)
(α ∈ F \ {0,−1}), F(4), or G(3) is a covering of a Lie superalgebra g ⊗ A, where
A is a unital supercommutative associative superalgebra.

Suppose now that A is a unital supercommutative associative superalgebra. Set
{A | A} = (A ⊗ A)/I, where I is the subspace spanned by the elements a1 ⊗
a2 + (−1)ā1ā2a2 ⊗ a1 and

∑
	(−1)ā1ā3a1a2 ⊗ a3 (ai ∈ A0̄ ∪ A1̄, i = 1, 2, 3). As a

shorthand we write {a | a′} = a ⊗ a′ + I. Then it follows from Theorem 5.2 that
the universal central extension of the Lie superalgebra L = g⊗A is

(5.4) L̂ =
(
g⊗A

)⊕ {A | A}
with {A | A} central and with

(5.5) [f ⊗ a, g ⊗ a′] = (−1)āḡ
(
[f, g]⊗ aa′ + κ(f, g){a | a′}

)
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for all f, g ∈ g and a, a′ ∈ A. In the special case that A is a commutative associative
algebra, this result appears in [IK].
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